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Abstract 11 

Contemporary robotics gives us mechatronic capabilities for augmenting human bodies with extra 12 
limbs. However, how our brains and bodies pose limits on such augmentation is an open question. We 13 
developed Supernumerary Robotic 3rd Thumbs (SR3T) with two degrees-of-freedom controlled by the 14 
user’s body to endow them with an extra contralateral thumb on the hand. We demonstrate that a pianist 15 

can learn to play the piano with 11 fingers within an hour. We then evaluate 6 naïve and 6 experienced 16 
piano players in their prior motor coordination and their capability in piano playing with the robotic 17 
augmentation. Intriguingly, individuals’ augmented performance did not depend on prior piano experience 18 
but could be predicted by our new custom motor coordination assessment, the Human Augmentation 19 
Motor Coordination Assessment (HAMCA) performed pre-augmentation. Our work demonstrates how 20 
supernumerary robotics can augment humans in skilled tasks and that individual differences in their 21 

augmentation capability are predictable by their individual brains’ motor coordination abilities. 22 

Introduction 23 

From ancient myths, such as the many-armed goddess Shiva to modern comic book characters, 24 

augmentation with supernumerary (i.e. extra) limbs has captured our common imagination. In real 25 

life, Human Augmentation is emerging as the result of the confluence of robotics and 26 

neurotechnology. We are mechatronically able to augment the human body; from the first 27 

myoelectric prosthetic hand developed in the 1940s 1 to the mechanical design, control and feedback 28 

interfaces of modern bionic prosthetic hands e.g. 2–5. Robots have been used to augment the bodies of 29 

disabled humans, restoring some of their original capabilities e.g. 6–9. Similar setups can augment 30 

healthy users beyond their capabilities, e.g. augmenting workers in industrial settings through 31 

intelligent collaboration e.g. 10–12, or equipping them with additional arms to perform several tasks 32 

concurrently e.g. 13,14. The latter fits within a particular area of human augmentation robotics which is 33 

referred to as supernumerary robotics. These are robotic systems, typically worn by the user, to 34 

extend their body and its physical capabilities. However, a major question is, to what extent do the 35 

human brain and body have the capability of adapting and learning to use such technologies efficiently 36 
15. The supernumerary and augmentative nature of this area of research presents an interesting 37 

challenge on how to map human motor commands to robot control. 38 

Supernumerary robotic limbs e.g. 16 are envisioned to assist human factory workers, and adapted for 39 

different types of applications e.g. 14. The introduction of supernumerary robotic fingers developed as 40 

a grasp support device 17 led to further exploration on optimal materials and mechanical designs for 41 

supernumerary robotics e.g. 9,18,19. Supernumerary robotic fingers have been particularly envisioned, 42 
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and successful in grasp restoration for stroke patients e.g. 9,20,21. However, regardless of the mechanism, 43 

material, and use case, given the presence of a human within these devices' control loops, the control 44 

interface is of essential importance.  45 

It was recently shown that for polydactyly subjects who possess six fingers on their hands, the 46 

control interface involves a cortical representation of the supernumerary finger 22. Unlike polydactyly, 47 

supernumerary robotic limbs and fingers must utilize indirect control interfaces to achieve the same 48 

goal – to enable more complex movements and better task performance. Abdi et. al investigate the 49 

feasibility of controlling a supernumerary robotic hand with the foot 23. Others have focused on 50 

electromyography (EMG) as the control interface – both in supernumerary robotic fingers e.g. 9, and 51 

supernumerary robotic limbs e.g. 24. Other interfaces used for supernumerary robotics include inertial 52 

measurement units e.g. 21, voice e.g. 25, pushbuttons e.g. 18, and graphical user interfaces e.g. 26. Researchers 53 

have also explored indirect control interfaces, e.g. using the concept of grasp synergies 27 to assume 54 

that the supernumerary robotic finger’s posture will be highly correlated with that of natural fingers 55 

during manipulation, allowing supernumerary robotic finger control through natural movement of 56 

existing fingers 28. Importantly, all these user interfaces focus on the interface and not the user.  57 

While extensive research has been conducted on the mechanical design, interface, and control of 58 

supernumerary robotics, there is a gap in understanding the role of human motor control in the 59 

success and adoption of these robotic human augmentation systems. In the rapid development of 60 

human augmentation little attention is devoted to how humans interact with the technology and learn 61 

to control it 15. There are clear needs for neuroscience and robotics research to come together in 62 

analysing such scenarios e.g. 29. Learning to control a supernumerary robot limb or finger is a complex 63 

process which involves learning to utilize one movement (set muscles activations) to perform a new 64 

movement. The field of motor neuroscience has extensively studied the control mechanisms and 65 

learning processes of perturbed movements, where we utilize arm movement in one direction to 66 

move a cursor on the screen in a different direction, accounting for a rotation perturbation 30–33 or a 67 

mirror reversal perturbation e.g. 34–36. In these settings, one can predict subjects learning from the task-68 

relevant variability in their unperturbed movements e.g. 37,38. Nevertheless, these studies were done on 69 

simplistic lab-based tasks and only recently the field is starting to address the complexities of real-70 

world movement and to ask to what extent those lab-based findings generalize to real world motor 71 

control and learning 39,40. While the relationship between task-relevant variability and learning 72 

performance seems to generalize to real-world tasks, defining task relevance is less trivial e.g. 39 and 73 

the learning mechanism can differ between users e.g. 41. In the case of augmentation technology, the 74 

relevant features can be either those related to performing the task itself without the augmented 75 

device, or features related to the control interface of the augmented device.   76 

In human performance research, such as sports science and rehabilitation, there are significant 77 

efforts to predict future performance. In sports science, there is an attempt to predict athletes’ future 78 

success for talent identification purposes. Motor coordination and motor learning are often used as 79 

predictors e.g. 42–45. Similar approaches are used in rehabilitation research to predict skill learning 80 

capacity following traumatic brain injury, stroke, or neurodegenerative disease e.g. 46,47. Here we are 81 

looking into the predictability of future performance with augmentation technology. We specifically 82 
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ask which aspect of motor coordination is a better predictor of performance with the device – i.e. 83 

performance in task related tests versus performance in control interface related tests.     84 

 To address this, we have created an experimental setup to study how different parameters within 85 

the remit of human motor control contribute to successful control, coordination and usage of a human 86 

augmentative robotic system, using a set of motor coordination tests that we developed: the Human 87 

Augmentation Motor Coordination Assessment (HAMCA). We have created a 2 degrees of freedom 88 
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Fig. 1. Piano playing task setup. (A) Top view rendering of the SR3T, showing the horizontal 

motion DOF and relevant motor. (B) Side view rendering of the SR3T showing the vertical motion 

DOF and relevant motor. (C) Top view rendering of the SR3T control interface for the 1st degree 

of freedom (DOF); the participant controls the motion of the SR3T using their right foot, captured 

through an inertial measurement unit (IMU) worn on the foot. (D) Side view rendering of the SR3T 

control interface for the 2nd DOF. (E) Work surface of a human thumb end-point projected on a 

sphere for comparison with (F) the work surface of the SR3T end-point projected on a sphere – 

augmenting work surface range for the human (see methods). (G, H) Top and side view of the 

unconstrained pilot experiment: an experienced piano player freely improvising on the piano 

while wearing and making use of the SR3T, effectively playing 11-fingered piano within 1 hour of 

use. (I) Systematic experiments: playing the piano sequence using 5 fingers of the right hand plus 

the left-hand index finger (LHIF) and (J) Playing the sequence using the SR3T. (K) A participant 

plays the sequence of notes as displayed on the monitors in front of them, using the SR3T. 
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(DOF) robotic finger, worn on the side of the hand, to augment human finger count to 11, effectively 89 

giving them a 3rd thumb. We call this the supernumerary robotic 3rd thumb (SR3T – engineering and 90 

design previously described in 48), and we study its usage in a skilled human task: playing the piano. 91 

The piano is a setting which involves the use of all fingers of the hand, and hence a good environment 92 

to consider for testing the augmentation of fingers. Furthermore, piano playing is structured both in 93 

spatial and temporal dimensions, allowing for quantification of the performance in both aspects.  94 
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Fig. 2. Human Augmentation Motor Coordination Assessment (HAMCA) – a set of simple behavioural tasks to 

predict the ability of human augmentation (see Methods for details). (A) Balance board force measurement platform 

for the Foot-balance task. (B) Foot motion trajectory (curve and arrows) during the Foot-tracking task required to move 

the foot in a figure of 8 in a plane perpendicular to the resting foot’s major axis. (Inset) visual feedback to the participant 

on the computer screen in front of them, showing the desired trajectory (green curve), the red dot indicating the 

desired location of the foot tip for pacing the foot movement and the current location of the foot tip (blue dot). (C) 

See-saw like foot motion in the sagittal plane of the foot during the Foot up-down task. (D,E) Measurement of motor 

coordination complexity in the fingers of the right hand by  assembly of a toy car and of a toy train in the Toy Assembly 

Task. (F) Piano-position task: Piano key sequences to be played with individual fingers to capture hand and finger 

positional acuity. Performance is assessed by timing and key board press down errors movement between 3 keys 

(spaced 1 octave apart) labelled “Left”, “Middle” and “Right”. 
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Results 96 

We developed a mechanically powerful supernumerary robotic 3rd thumb (SR3T) and means for 97 

interfacing it with human users, initially through a combination of foot and thumb motions, directly 98 

controlling the two degrees of freedom of the SR3T. We then tested an experienced piano player in 99 

an unconstrained pilot experiment, allowing them to freely play the piano and improvise while 100 

wearing the SR3T. We observed that within 1 hour of playing the piano, the participant incorporated 101 

the SR3T in their piano playing, effectively playing the piano with 11 fingers (see Fig. 1G-H, and 102 

supplementary video). Based on this outcome, and feedback from the participant, we upgraded the 103 

control interface to be solely based on foot motions (see Fig. 1, and Methods), for more robust control, 104 

and to limit the interface to one limb. We then set out to understand the constraints affecting success 105 

with the SR3T, by devising protocols and behavioural markers for motor coordination evaluation: the 106 

Human Augmentation Motor Coordination Assessment (HAMCA). We also developed a piano 107 

sequence playing task as well as measures for assessing the quality of playing. Finally, we 108 

systematically evaluated the SR3T on human subjects, and predicted how well subjects would be able 109 

to perform in playing the piano sequence with an augmented additional finger, based on the basic 110 

motor coordination assay from the HAMCA. Twelve right-handed participants (6 experienced pianists 111 

and 6 naïve players), attended 2 experimental sessions held on separate days in the lab. In the first 112 

session they performed the HAMCA set of 8 tasks to assess their hand and foot motor coordination. 113 

This set was developed to investigate the possibility of a priori prediction of how well each individual 114 

human user can learn to use an augmented device. From the HAMCA we extracted 8 scores as 115 

measures of hand and foot motor coordination (see Methods). In the second session the subjects 116 

learned to play a sequence on the piano and then repeated it with our human augmentation device, 117 

the supernumerary robotic 3rd thumb (SR3T), operated through foot motions as the interface (Fig. 1). 118 

The hand and foot motor-coordination scores from the HAMCA, recorded during the first 119 

experimental session, showed moderate differences between the pianists and the naïve players (Fig. 120 

Fig. 3. Performance of all subjects in the HAMCA. Showing results for 6 naïve (grey dots) and 6 experienced piano 

players (black dots). (A) Accuracy in HAMCA tasks (foot Balance - FB, foot tracking – FT, foot up down spatial – FUDS, 

foot up down temporal – FUDT, hand dimensionality – HD, piano positioning – PP, piano timing – PT, piano loudness - 

PL). (B) Pearson’s correlations between the accuracies of all HAMCA tasks across subjects. The 6 naïve and 6 

experienced players were lumped together as individual performances were not different between the groups (see 

main text). 

A B 
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3A). There were no significant group differences in any of the piano-based tasks (Piano Position, Piano 121 

Timing, and Piano Loudness). The only measure where the pianists performed significantly different 122 

to the naïve players was Hand Dimensionality (p = 0.049), which is based on the assembly of toys (see 123 

Methods). On the other hand, in the Foot Up-Down Spatial measure the naïve players showed higher 124 

scores than the pianists (p = 0.012), though we believe this difference is possibly the result of a sample 125 

bias due to the small N. In both groups the inter-subject variabilities were relatively evenly distributed 126 

except for one pianist who was an outlier showing poor performance on the Foot Balance, Foot 127 

Tracking, and the Piano Loudness tasks.  128 

The correlation matrix between the subjects’ motor-coordination scores (Fig. 3B) suggests 129 

relatively weak dependencies, i.e. a subject who showed high coordination in one task did not 130 

necessarily show high coordination in any other task. There were no significant dependencies within 131 

the foot measures and the only dependency within the hand measures was between the Piano 132 

Position and Piano Timing scores (r = 0.64, p = 0.026). There were a few intriguing correlations 133 

between foot and hand measures. First, the foot and hand timing scores were highly correlated (Foot 134 

Up-Down Temporal and Piano Timing: r = 0.68, p = 0.015). Second, the Foot Up-Down Temporal also 135 

correlated with the Piano Position (r = 0.66, p = 0.020). This was expected considering the correlation 136 

between the piano position and timing scores. These three tasks are metronome based, thus 137 

measuring rhythmic coordination. Lastly, we found a significant correlation between Foot Balance and 138 

Piano Loudness scores (r = 0.61, p = 0.035), but this was driven by the pianist who was an outlier in 139 

both tasks.    140 

 In the second experimental session, all subjects performed 10 trials of the Piano Playing task, using 141 

their left-hand index finger (LHIF) to play notes further to the right of their right-hand. This was 142 

followed by an additional 10 trials of Piano Playing with the SR3T, where subjects use both degrees of 143 

freedom within the SR3T for the horizontal reach for the notes to the right and the vertical motion to 144 

play the note. In both tasks (playing with the LHIF and with the SR3T) subjects showed improvement 145 

over the first 5 trials after which they plateaued (Fig. 4, right). Thus, for all future analysis we averaged 146 

over trials 5 to 10 to have a single piano playing score for each of these tasks. Here as well, there were 147 

no significant differences between the pianists and the naïve players in any of the trials played with 148 

Fig. 4. Piano playing performance. (A) The note sequence played for the piano playing task. Notes 

exclusively played with the right hand, and those with the SR3T or LHIF are marked, (B) Visualisation of 

how each individual note is scored linearly based on delay from the beat. Incorrect notes and skipped 

notes are assigned a score of 0, full sequence score is the average of all individual scores, (C) Accuracy 

over trials with the SR3T (orange) and without, using the LHIF (blue). 
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their LHIF (t-test p > 0.12) and with the SR3T (t-test p > 0.32). Testing over all plateau trials (5-10), 149 

pianists were significantly better in playing with their LHIF (t-test p = 0.017) but there were no group 150 

differences in playing with the SR3T (t-test p = 0.9). Therefore, we merged the two groups and all 151 

further analysis was done on all 12 subjects together.  152 

The Piano Playing with SR3T score is our metric for performance with the human augmentation 153 

device, and the fundamental question is to what extent can it be explained by motor-coordination 154 

measures. The correlations between the subjects’ scores in the Piano Playing tasks and the motor-155 

coordination measures suggest different dependencies for playing with and without the SR3T (See 156 

supplementary, Fig. S1 & Fig. S2). The scores in the Piano Playing task with the LHIF, which required 157 

no foot interface, were significantly correlated with Foot Tracking and Foot Up-Down Temporal scores 158 

(r = 0.66, p = 0.019 and r = 0.64, p = 0.026, respectively). The scores in Piano Playing with SR3T were 159 

significantly correlated only with the Piano 160 

Loudness scores (r = 0.59, p = 0.044).  161 

The pianist who was an outlier in few 162 

motor-coordination measures was also an 163 

outlier in the Piano Playing with the SR3T 164 

score (but not in Piano Playing without) and 165 

is driving the correlation with the Piano 166 

Loudness. Thus, we further investigated the 167 

correlations between Piano Playing with 168 

SR3T and the motor-coordination scores 169 

with Spearman rank correlation scores (Fig. 170 

S1). Foot Up-Down Temporal was the only 171 

measure which showed significant 172 

Spearman correlation with the Piano Playing 173 

with SR3T score (r(Spearman) = 0.67, p = 174 

0.02). The Piano Playing scores without and 175 

with SR3T were highly correlated even with 176 

the outlier (r = 0.63, p = 0.028), and even 177 

better correlated with Spearman rank 178 

correlation (r(Spearman) = 0.71, p = 0.012). 179 

Since none of the motor-coordination 180 

scores explained the Piano Playing with 181 

SR3T score well, we asked whether a 182 

combination of motor-coordination scores 183 

can explain it. We specifically asked which 184 

combination could better explain it – that of 185 

the hand measures, which includes piano-186 

based tasks as well as the only score where 187 

the pianists were significantly better than 188 

the naïve players (Hand Dimensionality); or 189 

that of the foot measures, considering it 190 

being the control interface of the SR3T. 191 

Generalized linear models were fitted to the 192 

hand (Fig. 5A) and foot (Fig. 5B) measures 193 

trying to explain the Piano Playing with SR3T 194 

Fig. 5. Model predictions for SR3T piano playing. 

N=11 subjects after outlier removal. Naïve subjects 

marked as grey and experienced subjects as black dots. 

(A) model from the 4 HAMCA hand dexterity measures. 

(B) model from the 4 HAMCA foot dexterity measures. 

(C) The corrected Akaike information criterion (AICc) for 

the HAMCA foot and HAMCA hand models, as well as 

the models with additional component of the LHIF piano 

playing score, the expertise group (experienced vs 

naïve), or both. 
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score. To account for the impact of the outlier subject, we removed them and fitted the Generalized 195 

linear models to the remaining 11 subjects. While both models could explain most of the variance in 196 

the SR3T Piano Playing score, the Generalized linear models based on foot measures showed a much 197 

better fit than the one based on the hand measures (r = 0.79 and r = 0.55, respectively) and was the 198 

only significant fit (p = 0.0035 and p = 0.081, respectively). Moreover, while in the foot model all scores 199 

had positive contributions to the model with similar magnitudes, the hand model was dominated by 200 

Piano Position while Piano Timing had negative contribution and Hand Dimensionality and Piano 201 

Loudness had none. We then tried Generalized linear models where we added the LHIF Piano Playing 202 

score (without SR3T) to the hand and foot models (See supplementary, Fig. S3 A&B). While it 203 

performed better for both models (r = 0.87 and r = 0.92 respectively, p < 0.005), it still showed more 204 

contribution from the foot measures than the hand, and thus better performance in the Foot+LHIF 205 

model.  206 

Next, we tested for the contribution of piano expertise to the prediction by adding it to the model 207 

(Fig. S3 C&D). Adding expertise improved both models, though to a lesser extent than adding the LHIF 208 

Piano Playing score (r = 0.63 and r = 0.89 respectively, p < 0.05). The expertise had no contribution to 209 

the models with the LHIF Piano Playing score (Fig. S3 E&F). To compare between these models of 210 

different complexity we used the corrected Akaike information criterion (AICc) which is modified for 211 

small sample sizes. AICc estimate the amount of information that is lost while fitting a model and thus 212 

can measure the quality of different models relative to each other. The information criterion clearly 213 

show that the foot models are better than the hand models (Fig. 5C). While information criteria might 214 

be biased to select models with more parameters and overfit, the AICc was developed to address such 215 

potential overfitting. With this correction, the AICc suggests that the best model is the Foot model 216 

without the LHIF Piano Playing score and the piano expertise.   217 

Lastly, we fitted all models to all 12 subjects, including the outlier subject who drives the 218 

correlations (See supplementary, Fig. S4). While both hand and foot model could now significantly 219 

explain most of the variance in the SR3T Piano Playing score (p < 0.01) the model based on foot 220 

measures showed a better fit than the one based on the hand measures (r = 0.92 and r = 0.71, 221 

respectively). 222 

Discussion 223 

In this study we addressed a gap in our understanding of human augmentation technology which 224 

is how human-in-the-loop interaction with an augmentative device is learned and performed by the 225 

human brain. We had previously described the different neurocognitive barriers to successful 226 

embodiment and use of robotic augmentation devices 15. Here, following the operational definition 227 

set out in the same work 15 for the embodiment of robotic augmentation as the ability to use extra 228 

limbs in natural tasks, we focused on how different parameters within the remit of human motor 229 

control contribute to successful control of a supernumerary robotic finger in an augmented piano 230 

playing task. We created a supernumerary robotic 3rd thumb (SR3T), controlled through substitution, 231 

initially with a combination of the natural thumb and the foot wearing different sensing modalities. 232 

We first demonstrated, in an unconstrained pilot experiment, the feasibility of human augmentation 233 

with the SR3T, with one experienced piano player using the device to freely play the piano using 11 234 

fingers, within 1 hour of wearing it. We then updated our SR3T interface, so that both degrees of 235 

freedom are controlled through a single IMU worn on the foot, and developed the HAMCA set to 236 

assess the participants’ motor coordination within the hand (task-space) and the foot (interface-237 

space) prior to piano playing. This is followed by our subjects playing a piano sequence on the piano 238 

using their natural fingers, and then using the SR3T along with their natural fingers. Our findings 239 

suggest that it is not your expertise in the task you perform with the supernumerary robotic finger 240 
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(i.e. piano playing expertise), nor your task-space coordination (i.e. motor coordination of the hand 241 

and fingers), but your interface-space coordination (i.e. foot coordination) that can predict your level 242 

of task performance with the augmented device.  243 

While half of our subjects were experienced pianists and the other half naïve, there were not many 244 

significant differences between the two groups within our experiments. The only motor-coordination 245 

score in the HAMCA in which the experienced pianists performed significantly different to the naïve 246 

players was hand dimensionality (HD, see Fig. 3A). The notion that as a skill evolves into an expertise 247 

one learns to use more degrees of freedom in the movement, is known since the pioneering work of 248 

Nikolai Bernstein. Bernstein found that professional blacksmiths use high variability in their joint 249 

angles across repetitive trials to achieve low variability in their hammer end-point trajectory 49. 250 

Pianists need to get their hands to posture with independent control of digits which are not common 251 

in daily life. Thus, they should be able to control more degrees of freedom in their hand movement. 252 

We would have expected to see significant differences on the piano-based tasks as well as timing-253 

based tasks with the foot, given the pianists’ experience. This is, however, not the case within our 254 

performance results (see Fig. 3.A), which might be due to the design of the tasks within HAMCA not 255 

capturing that difference. 256 

Looking at correlations between the different motor coordination scores (Fig. 3.B), we see a high 257 

and significant correlation between Piano Position (PP), Piano Timing (PT) and Foot Up-Down 258 

Temporal (FUDT) tasks. These are the only three tasks relying on a timing-based measure, with a 259 

metronome-controlled beat. Therefore, they are measuring rhythmic coordination, and presumably 260 

relay on a common timing mechanism 50, and a common coordination-dependent timing network 51. 261 

The strong correlations between these measures is suggesting that rhythmic coordination is a personal 262 

trait similarly performed in both the fingers (for PP and PT) and the foot (FUDT). 263 

In the piano playing task, all subjects (naïve players and experienced pianists alike) initially showed 264 

improvement in accuracy from trial to trial (i.e. learning). This was a short learning process which 265 

plateaued quickly after 5 trials. For all subjects the plateau with the SR3T was significantly lower than 266 

with their LHIF, which is to be expected, particularly in early stage of SR3T use. This fast learning within 267 

a session and low plateau (which leaves much room for improvement in future sessions) are hallmarks 268 

of early motor skill learning. This is in line with many evidence of multiple time scales in skill learning 269 

where fast improvement in performance occurs in the initial training and plateau within a session, and 270 

slow improvement develops across sessions e.g. 52–55. Accordingly, learning to play the piano, 271 

augmented with the SR3T, seems to be a novel motor skill learning task. Further support can be found 272 

in the group differences while playing the piano with and without the SR3T. When subjects played 273 

with their own LHIF, across all plateau trials pianists performed better than naïve players, as expected 274 

based on their piano experience. Though, surprisingly, there were no significant group differences on 275 

a trial by trial basis, not during learning nor during plateau. When subjects played with the SR3T there 276 

were also no significant group differences on a trial by trial basis, but also across all plateau trials 277 

pianists did not perform better than naïve players. This suggests that playing augmented with the SR3T 278 

is not a trivial extension of the regular piano sequence playing task with your own finger, but a novel 279 

skill that the subjects need to learn.  280 

The correlations of the SR3T piano playing score with all motor coordination measures (See 281 

supplementary, Fig. S1) suggest no one-to-one mapping. While most measures showed some positive 282 

correlation trend, hand dimensionality – the best metric for piano playing expertise – showed no 283 

correlation, and even a slightly negative trend. This is in line with the lack of difference between 284 

experienced pianists and naïve players in performance with the SR3T. The two measures that showed 285 

the strongest correlations to the SR3T score were Piano Loudness and Foot Up-Down Temporal. Yet, 286 
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Piano Loudness correlation was driven by the outlier and Foot Up-Down Temporal showed significant 287 

rank correlation but no Pearson or robust correlation. Overall, no motor coordination measure can 288 

predict the SR3T piano playing score by itself. The only measure that showed high correlation with the 289 

SR3T score was the LHIF piano playing score. Thus, while piano playing experience showed no 290 

significant contribution to the performance in the SR3T task, performance in the same task without 291 

the SR3T is a good predictor of the performance with the SR3T. Given the good performance of the 292 

LHIF score as a predictor of the SR3T score, it is interesting to consider which of the HAMCA measures 293 

correlate with it. Looking at correlations between the coordination measures and the LHIF piano 294 

playing score, we see Foot Tracking showing a significant and robust correlation with the LHIF score, 295 

rather than any of the hand related scores. 296 

Next, we asked if a combination of motor coordination measures from HAMCA can predict 297 

performance with the SR3T, and if so, which set of measures would be a better predictor – that of the 298 

hand coordination measures, directly linked to playing the piano; or that of the foot coordination 299 

measures, which are linked to the control mechanism of the SR3T. Our results suggest that the set of 300 

foot coordination measures is a good predictor of performance with the SR3T (Fig. 5). The regression 301 

coefficients of the four measures are within the same range, suggesting a balanced contribution of 302 

these different measures. The model based on hand coordination measures does not perform as well 303 

in prediction. Furthermore, the contributions of the measures are unbalanced relative to how foot 304 

measures contributed to the foot-based model. Hand dimensionality which was the best metric to 305 

distinguish pianists from naïve subjects shows a minimal contribution to the model. Piano position 306 

and timing measures are showing reverse contributions, even though they are highly and significantly 307 

correlated (see Fig. 3). 308 

Our results suggest that the human motor coordination skill in using the control interface of the 309 

robotic augmentation device (in our case, the foot) is the best predictor of how well the augmented 310 

human performs with the robotic system; this is confirmed through AICc in comparison with models 311 

arising from different combinations of features. Interestingly, skills otherwise relating to the actual 312 

task do not serve as good predictors either, i.e. in the case of piano playing, the hand-related motor 313 

coordination measures from HAMCA which the piano task heavily relies on are not good predictors of 314 

how well the human will perform, even though one of them (hand dimensionality) serves as the best 315 

predictor of piano playing expertise. Previous work on interfaces for supernumerary robotics have 316 

shown that the foot can generally serve as a good interface for robotic limbs working collaboratively 317 

with the user’s hands e.g. 23,56,57. Abdi et al. 23 study the control of a third robotic hand via the foot in 318 

virtual reality, for robotic surgery applications, showing similar learning trends to what we observe 319 

here. We see similar effects where roboticists have used legs and feet as a multi-DOF control interface 320 

for successfully teleoperating two 58 or four 59 robotic arms, albeit in less skilled tasks than what we 321 

show here. Saraiji et. al. show that subjects significantly increased their self-reported sense of 322 

embodiment of the tele-operated robots over the course of the experiments, i.e. 40 minutes 58. Results 323 

obtained with adaptive foot interfaces for robot control e.g. 60, where data-driven approaches are used 324 

to create subject-specific motion mapping, are in line with our findings. Huang et al. 60 report that 325 

inter-subject variability decreases once a subject-specific motion mapping is enabled. This confirms 326 

the dependency of robot control performance on metrics inherent to each subject, which we present 327 

here to be the interface space motor coordination skills. 328 

Our work shows the possibility of humans being able to quickly acquire a skilled behaviour, such as 329 

playing piano sequences, with a human augmentative robotic system. Both naïve piano players (i.e. 330 

without prior experience) and piano playing experts demonstrated the same ability to integrate the 331 

supernumerary robotic limb: We saw no difference in the performance with the SR3T, suggesting that 332 
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integrating robotic augmentation is primarily driven by a priori motor coordination skills and not 333 

affected significantly by expert motor domain knowledge. We are looking here at a setup where 334 

supernumerary robotic thumb is controlled by the foot, therefore leading to a transfer of skills across 335 

limbs. While this has not been systematically evaluated before, we can look at the expertise of hand 336 

use and its transference to the foot in the domain of handwriting, where the shape of handwriting is 337 

recognizably transferred from the hand to the foot, and other limbs 61–63. Similarly, we were expecting 338 

people skilled at piano playing with the hand, would show similar levels of skill when controlling the 339 

piano with the foot. However, surprisingly, this is not the case in our results. This observation might 340 

be due to crudeness in our setup, leading to piano skills not being carried across. Nevertheless, our 341 

unconstrained experiment, and our systematic one both show participants capable of controlling the 342 

robotic thumb to play the piano and to achieve high scores. It could also be the case that the selected 343 

piano sequence was not complex enough for the transfer of skill to emerge, as it is a one handed, 344 

simple melody. We designed our piano piece to ensure comparability with the experimental setup, so 345 

that pre-augmentation the participants would play the main notes with their right hand and then play 346 

the additional notes with the left hand index finger, therefore limiting us to one-handed pieces. The 347 

structure of the music piece itself also needed to be simple enough so that piano-naïve participant 348 

could acquire it within a reasonable amount of time and not immediately fail. 349 

It is important to consider the meaning of these results in the context of prosthetics, and human 350 

augmentation in general. Prosthetics replace a limb that was lost whereas with the SR3T, and with 351 

supernumerary robotics in general, the human is operating a new, additional limb – in our case a 352 

thumb. Our augmentation is done through substitution, i.e. we use an existing limb to operate an 353 

additional one. We show here that this makes the system reliant on human motor skills, specifically in 354 

controlling the interface-space. We also demonstrate the possibility of applying substitution across 355 

different levels of the biomechanical hierarchy. The foot, which in terms of the biomechanical 356 

hierarchy is equivalent of the entire hand, is used here as the interface-space controlling a thumb, 357 

which is further down the biomechanical hierarchy. These results sit at one end of the spectrum of 358 

solutions for controlling an augmentative device, which goes from substitution all the way to direct 359 

augmentation via higher level control, either brain-machine-interfacing or cognitive interfaces such as 360 

eye gaze decoding. We previously showed that the end-point of visual attention (where one looks) 361 

can control the spatial end-point of a robotic actuator with centimetre-level precision 8,64,65. This direct 362 

control modality is more effective from a user perspective than voice or neuromuscular signals as a 363 

natural control interface 66. We showed that such direct augmentation can be used to control a 364 

supernumerary robotic arm to draw or paint, freeing up the two natural arms to do other activities 365 

such as eating and drinking at the same time 13. But such direct augmentation has to date not achieved 366 

augmenting fine motor skills such as playing the piano, as playing this instrument requires not just the 367 

execution of a note: it is not a simple button-press exercise, but requires fine grade expression of 368 

temporal and spatial motor coordination across robotic and natural fingers. We show that we can 369 

predict the degree to which subjects can integrate supernumerary limbs into their natural body 370 

movements, as a function of their basic motor skills. Thus, our work shows that we can achieve 371 

effective augmentation but also predict the capability of individuals to embody supernumerary robotic 372 

limbs in real-world tasks, which has impact for robotic augmentation from healthcare to agriculture 373 

and industrial assembly e.g. in the aerospace industry.  374 

Materials and Methods 375 

Experimental design. For our unconstrained pilot experiment, a right-handed piano player 376 

was selected to wear the SR3T and freely improvise. For our systematic follow-up experiments 377 

we developed a set of measurement protocols and behavioural biomarkers, the Human 378 
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Augmentation Motor Coordination Assessment (HAMCA), and ran this set of tests to assess 379 

hand and foot coordination (due to the foot being the control interface for our robotic system, 380 

described below under Setup) and piano-related skills. As opposed to existing motor 381 

assessments such as the Purdue pegboard 67, the motor domain of the NIH Toolbox 68, the 382 

Jebsen-Taylor hand function test 69 or the Action Research Arm Test ARAT, 70 among others, 383 

which tend to be focused on dexterity, and are mainly used to quantify the extent or progress 384 

of motor disabilities, here we are interested in assessing specific human motor coordination 385 

aspects which relate to the interface-space (foot) and task-space (hand use over the piano) 386 

of our piano playing task. The HACMA set includes both spatial and temporal evaluations. 387 

From these coordination tasks we extracted 8 hand and foot motor-coordination scores. 388 

Finally, the participants were given specific melodies to play on the piano with and without 389 

the SR3T. The melody was designed to require 6 fingers, forcing the participant to either use 390 

their left-hand index finger (LHIF), or the SR3T if they are wearing it. Table 1 summarises the 391 

experimental setup procedure and how they map to results. 392 

Table 1. Experimental procedure 393 

First Session – 2 hours Second session – 1 hour 

Foot Balance (15 trials) – 20 mins Piano Playing with LHIF – 25 mins 

Foot Up-Down (15 trials) – 15 mins 

5 Practice Trials 

10 trials 

recorded at 

80bpm (last 5 

count for score) Foot Tracking (6 trials) – 10 mins 

Piano Timing (25 trials) – 15 mins SR3T setup and calibration – 10 mins 

Piano Positioning (15 trials) – 10 mins Piano Playing with SR3T – 25 mins 

Piano Loudness (25 trials) – 15 mins 

5 Practice Trials 

10 trials 

recorded at 

80bpm (last 5 

count for score) Hand Dimensionality (2x toy tasks) – 35 mins 

 394 

Subjects. Twelve right-handed participants took part in our systematic experiments (mean 395 

age 23.3+/-2.8 years). Six of the participants had played the piano for several years (pianists 396 

group) and the other six did not have any piano playing experience (naïve group). All of the 397 

participants from the pianists group had at least 5 years of piano training (range 5-21 years, 398 

mean 10.6+/-5.4 years). Two participants of the naïve group had over 5 years’ experience of 399 
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guitar playing. All participants gave informed consent prior to participating in the study and 400 

all experimental procedures were approved by Imperial College Research Ethics Committee 401 

and performed in accordance with the declaration of Helsinki. 402 

Setup. We created an experimental setup to investigate how individual motor skills 403 

contribute to the performance of a human user of a supernumerary robotic thumb; i.e. a 404 

robotic augmented human. To this end, we have created a 2 degrees of freedom (DoF) robotic 405 

finger that users can wear on the side of their hand, effectively augmenting them with a third 406 

thumb. The design, creation and initial testing of the supernumerary robotic third thumb 407 

(SR3T) was reported in 48, and is the same setup used for our unconstrained pilot experiment 408 

with a single piano player participant. The design specifications for the SR3T were derived 409 

from the design requirements of a fully spherical operating thumb 71 and the natural 410 

eigenmotions of human thumbs in daily life activities 72. The SR3T is attached to the user’s 411 

right hand and is controlled through the user’s right foot. In our original implementation, used 412 

for the pilot experiment, the vertical motion of the foot was measured using an 413 

accelerometer, together with horizontal motion data obtained with a flex sensor worn on the 414 

natural thumb on the augmented hand, to control the vertical and horizontal DoFs of the 415 

SR3T, respectively 48. For our main experiments, we updated the interface, using a 9DoF 416 

inertial measurement unit (IMU - Bosch BNO055, breakout board by Adafruit) for increased 417 

stability, and to limit the interface to a single limb, i.e. the foot. The unit can provide absolute 418 

orientation measurements (with respect to the earth’s magnetic field) thanks to an onboard 419 

sensor fusion algorithm. Absolute orientation can then be extracted as Euler vectors, at 420 

100Hz. In this setup, the SR3T’s two DoFs correspond to horizontal and vertical movements 421 

of the robotic fingertip. These are mapped to horizontal and vertical movements of the foot, 422 

i.e. yaw and pitch, respectively. Once the subject is wearing the SR3T on their hand, and the 423 

IMU on their foot, they are asked to sit with their foot on the ground facing the piano. The 424 

SR3T is moved horizontally for the fingertip to face the forward position as well. The values 425 

read by the IMU for the orientation of the foot, and by the motor encoders for the position 426 

of the SR3T are recorded. The subject is then asked to rotate their foot clockwise, with the 427 

heel as the centre of rotation, to their maximum comfortable reach (typically 45 degrees from 428 

the forward-facing pose). The SR3T fingertip is also moved accordingly, to the maximum 429 

horizontal position on the right, and values recorded as before. These are used to map the 430 

horizontal motion of the foot to that of the SR3T, with a similar process for vertical motions.  431 

The setup can be seen in Fig. 1.  432 

In order to investigate the workspace augmentation achieved by the SR3T optical markers 433 

were placed at the tip and base of the SR3T, with the SR3T then activated by the subject to 434 

move in its full range of motion. Similarly, optical markers were placed at the tip and base of 435 

the subject’s left-hand thumb with them performing the maximum range of thumb 436 

movement while the motion was optically tracked. We used three OptiTrack Prime 13W 437 

cameras with the Motive software for motion capture (NaturalPoint, Inc. DBA OptiTrack, 438 

Oregon, USA). The results can be seen in Fig. 1.E and F; the thumbs’ end-point surface is 439 

mapped onto a sphere, assuming the base of the thumbs are situated at the centre. Based on 440 

these measurements, the SR3T has an end-point work surface that is 4 times that of the 441 
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human thumb. Furthermore, we used the same camera system to measure delay between 442 

motor intention and action, by placing markers on the user’s foot as well as the SR3T; the 443 

mean delay is measured as 85msec. 444 

For the piano playing tasks and piano related hand coordination tasks we used a digital 445 

piano (Roland RP501R-CB, Roland Corp., Osaka, Japan). The piano was connected to a PC with 446 

a MATLAB script establishing communication through its MIDI interface. Each keystroke on 447 

the piano was received by the MATLAB script as a MIDI message which comprised data 448 

regarding the note played, time of keystroke (with a 1ms resolution) and the keystroke 449 

velocity, which leads to proportional loudness of the note played. 450 

HAMCA foot coordination tasks 451 

Foot balance task 452 

A Wii Balance Board (Nintendo Co. Ltd., Kyoto, Japan) together with the BrainBloX software 73 was 453 

used. The board (Figure 2A) is made of four pressure plates and the software interface displays the 454 

real-time centre of pressure computed by the Wii Balance Board across all four plates, and relative to 455 

the board’s coordinate system. 456 

Weight plates (70 N) were placed on the left side of the board, moving the centre of pressure away 457 

from the system origin. Subjects then had to move the centre of pressure back towards the origin by 458 

applying pressure on the right side of the board with their right foot. The plates were placed in three 459 

positions (Figure 2A), with five trials per position, resulting in a total of 15 trials, performed in random 460 

order. Before the beginning of each trial, participants were asked to place the centre of pressure as 461 

close as possible to the origin. Once they stated their readiness and after a 3-seconds countdown, a 462 

15-seconds recording was started. Samples were recorded at 85 Hz. The resulting motor-coordination 463 

score is computed according to equation (1): 464 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 − 
𝑒𝑟𝑟𝑜𝑟

𝑚𝑎𝑥𝐸𝑟𝑟𝑜𝑟
   (1) 465 

Where error corresponds to the mean Euclidean distance of the centre of pressure from the origin 466 

of the coordinate system across all recorded samples. The maximum error corresponds to the error 467 

computed if the subject was not acting on the platform. 468 

Foot up-down task 469 

The same setup as in the Foot Balance Task was used, without the weights. A steady beat was 470 

played with a metronome, which the subjects had to match when moving their feet from a toe-lifted 471 

(dorsiflexion) to a heel-lifted (plantarflexion) pose and vice versa (see Figure 2C). The pressure exerted 472 

by the foot had to match an upper and lower target value marked on the screen. Ideally, the output 473 

should resemble a square signal with a period equivalent to that of the beat on the metronome. 474 

Subjects performed 15 trials in random order, five at each selected tempi: 40bpm, 60bpm and 80bpm. 475 

Two types of motor-coordination scores are computed from this task: spatial and temporal, both 476 

using equation (1). For the spatial measure, the error is calculated as the absolute distance between 477 

the target pressure position and the measured position of the centre of pressure. The maximum error 478 

corresponds to the total distance between the upper and lower pressure targets. The temporal 479 

measure’s error is based on how precise in time the change between target positions occurs. This is 480 
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specifically measured at the time of zero-crossing, respective to the beats of the metronome. 481 

Maximum error is the time corresponding to one full period. Both the spatial and temporal absolute 482 

errors had skewed distributions; therefore, the median of the error was utilised instead of the mean. 483 

Foot tracking task 484 

The subjects controlled the 2D position of a dot on a screen through rotations of their ankle, 485 

captured with an inertial measurement unit (IMU) attached to their shoe (see Figure 2B) -- the same 486 

setup used as the control interface of the SR3T. The subjects were directed to use ankle rotations only, 487 

the result of which they could see as a blue dot on a screen. They had to make the blue dot follow the 488 

position of a red dot moving along a figure-of-eight path, as shown in Figure 2B. The path, the red and 489 

blue dots were shown to subjects on a monitor screen in front of them. Each trial is composed of 6 490 

laps around the figure-of-eight path, lasting 35 seconds total. The subjects sat at a height to have their 491 

foot freely moving in space (see Figure 2B). The motor-coordination score for this task follows 492 

equation (1), with the error defined as the Euclidean distance between the blue and red dots. The 493 

maximum error is taken as the maximum recorded error across all time points in all trials of all 494 

subjects. Once again, due to the skewness in the absolute error distribution, the median of the error 495 

was used in the accuracy calculation. 496 

HAMCA hand coordination tasks 497 

Hand dimensionality 498 

Subjects performed two toy assembly tasks while wearing a Cyberglove II (CyberGlove Systems LLC, 499 

San Jose, CA) to capture the motion of their hand and fingers, with 22 degrees of freedom. The tasks 500 

involved assembling a LEGO DUPLO toy train (LEGO 10874), and assembling a toy car (Take Apart, F1 501 

Racing Car Kit) using a toy drill and screws (see Figure 2, D and E). To ensure the appropriate fit of 502 

Cyberglove II we made sure all participants had a minimum hand length of 18 cm, measured from the 503 

wrist to the tip of the middle finger.  504 

Principal Component Analysis (PCA) was performed on the collected data. We relate a greater 505 

number of principal components needed to explain the variance of the motion, to greater hand 506 

coordination 74. The resulting motor-coordination score is defined as the number of principal 507 

components required to explain 99% of the recorded motion’s variance, normalised by the number of 508 

degrees of freedom recorded: 22. 509 

Piano timing 510 

The subjects used their right-hand index finger to press the same piano key at varying tempi 511 

(40bpm, 60bpm, 80bpm, 100bpm and 120bpm) played by a metronome. In total, subjects performed 512 

25 trials in random order (5 at each tempo) composed of 10 keystrokes. 513 

The relevant motor-coordination score follows the same concept as that of equation (1); for further 514 

clarity we present it in more detail, in equation (2). The normalised error is the absolute time deviation 515 

from the correct tempo divided by its period; that is, the time between keystrokes (inter-onset 516 

intervals or IOI) minus the period of each tempo in seconds, as shown in equation (2). 517 

𝑇𝑖𝑚𝑖𝑛𝑔𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 − 
|𝐼𝑂𝐼−(60 𝑡𝑒𝑚𝑝𝑜𝑏𝑝𝑚⁄ )|

60 𝑡𝑒𝑚𝑝𝑜𝑏𝑝𝑚⁄
   (2) 518 
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Where tempo is the beats per minute value, hence making 60/tempo the beat period in seconds. 519 

Nine samples were generated in each trial (given that nine IOI are generated by ten keystrokes); 520 

hence, there were 45 samples generated at each tempo, which had a skewed distribution. The median 521 

of these values was taken as the score at each tempo and then the five tempi’s scores were averaged 522 

to obtain a single value for their motor-coordination score in the task. 523 

Piano positioning 524 

The right-hand index finger was used to move back and forth between two keys and press them at 525 

a rate given by the metronome (fixed tempo of 60bpm). Three piano keys were selected, one 526 

positioned in the middle of the piano and the other two spaced 7 whole notes to the left and right of 527 

it. Three combinations of two keys were to be followed: left and middle, middle and right, left and 528 

right (see Figure 2F). In total, subjects performed 15 trials in random order (5 at each key combination) 529 

composed of 12 keystrokes each. The relevant motor-coordination score is defined the same way as 530 

in the piano timing task. Timings are measured between two consecutive and correct key presses - 531 

timings relating to incorrect keypresses were discarded. The latter is done automatically as the note 532 

values will be different to what is expected. In order to make up for cases where participants might 533 

have pressed the incorrect key, or missed a beat, we consider a window of size of the tempo period 534 

(1 second) centred on the correct beat time. If notes are played outside of this window, we assume 535 

that the first keystroke of the interval is a wrong one. As the incorrect notes are already removed, a 536 

time before the window would mean that the same key was pressed twice consecutively and a time 537 

after it would mean that a keystroke was missed. Most of the subjects had no misses or 1 miss out of 538 

165 samples. 539 

Piano loudness 540 

On the digital piano, the loudness of a note depends on the velocity with which the relevant key is 541 

pressed. A fast press will produce a louder sound and vice versa. Subjects were instructed to press a 542 

single key at a target level of loudness, with both the target level and the level at which they pressed 543 

shown to them visually. Before starting the experiment, participants were instructed on how to set 544 

their minimum (0%) and maximum (100%) keystroke loudness values. The piano’s recorded loudness 545 

values range from 0 to 127. A very slow key press corresponds to values around 2-8, whereas fast 546 

presses fall within values of 120-127. Participants were allowed to familiarise themselves with the 547 

visual interface by the experiment runner doing one block of trials on themselves, with the participant 548 

watching the interface. Then, they are given up to 5 unrecorded trials to familiarise themselves with 549 

how the key presses relate to numerical values, and for the experiment runner to ensure that they 550 

cover the full range of values in their key presses. They are then asked each to define their own range, 551 

by pressing the key at 0% and 100%. These values are recorded and used to define their range for the 552 

experiment. The loudness values for levels 25%, 50% and 75% are obtained by linear interpolation 553 

between the 0% and 100% values defined for each participant. 554 

In total, subjects performed 25 trials, 5 at each loudness level (randomised): 0%, 25%, 50%, 75% 555 

and 100%, composed of 10 keystrokes each. The motor-coordination score is calculated following 556 

equation (1), with the error defined as the deviation from the target values (in percentage loudness) 557 

and maximum error as the maximum committed among all the trials of all of the participants for each 558 

loudness level (these are as follows, Level 0: 34.0833, Level 25: 42.6250 , Level 50: 34.6667, Level 75: 559 

28.4583 and Level 100: 24.4167). After analysing the results, the average motor-coordination score 560 

was calculated using only the results at the 25%, 50% and 75% loudness levels given that these targets 561 
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required more skilled velocity control than the 0% and 100% levels. Thus, their use would enhance 562 

individual differences between participants. 563 

Piano playing 564 

To assess the participants’ performance on actual piano playing, a sequence with 38 notes played 565 

at a constant tempo (isochronous) of 80bpm was devised. Subjects were able to learn and follow the 566 

sequence while playing, aided by the software Synthesia (Synthesia LLC). Synthesia showed the notes 567 

of the sequence as coloured blocks scrolling on-screen. The participants had to press the keys 568 

corresponding to the positions on the keyboard with which the Synthesia blocks were aligned in time 569 

to the music in order to score points (see Figure 1). The sequence of notes was designed to be played 570 

mainly with the right hand, plus one finger for notes that were too far to the right side of the right 571 

hand. These notes could then be reached either using the index finger of the left hand, or, if wearing 572 

the SR3T, by activating the robotic finger. On Synthesia, the notes to be played by the right-hand 573 

fingers were coloured in green, and the notes to be reached with the extra finger were coloured blue. 574 

Similarly, the relevant keys on the keyboard were marked with the same colours (see Figure 2F).  575 

Subjects played the sequence first without and then with the SR3T for 15 trials in each block. The 576 

first five trials were considered as practice trials (not recorded), the next ten were recorded but only 577 

the last 5 are used for computing the mean piano playing scores per subject due to the fact that 578 

subjects were still learning the sequence, especially the ones with no piano playing experience. For 579 

the first block of trials, without the SR3T, subjects played using their right hand for green coloured 580 

notes while blue coloured ones were played with the left-hand index finger. To achieve this, subjects 581 

had to cross their left hand over the right one. For the second block of trials, the left index finger was 582 

replaced by the SR3T. We score each individual keypress’s timing as follows: 583 

𝑆𝑐𝑜𝑟𝑒 = 1 −  
∆𝑇

𝐼𝑂𝐼 2⁄
   (3) 584 

where ΔT is the absolute time difference between the keypress and metronome beat, and IOI is 585 

the corresponding beat time period. Therefore, the participants receive a full score for each correct 586 

keypress at the exact correct time, with the score linearly decreasing for time deviations, up to half 587 

the beat period on each side, at which point the score is 0. Incorrect notes within this window are 588 

obviously marked as 0 too. We then average the note scores for the entire sequence. 589 

In some trials, recordings were stopped prematurely due to technical errors. In all such cases, the 590 

score is calculated with respect to the recorded section only. However, if less than 50% of the notes 591 

are recorded, then the trial is discarded. This happened only in two trials from the same subject which 592 

were removed. No other trials for any subjects had any missed recordings. There were also cases 593 

where participants missed one initial beat, leading to them being off-beat for the entire sequence. To 594 

adjust for this, we calculate the scores for the sequence as originally timed, plus if it were started one 595 

beat early, or one beat late. We then take the highest score of the three cases to represent the piano 596 

playing score for that trial. This only occurred twice. 597 

Statistical Analysis 598 

We first tested for statistically significant differences between the pianists and the naïve players in 599 

each of the HAMCA motor-coordination scores, using student t test. We then calculated the 600 

correlation matrix between the motor-coordination scores of all subjects, looking for dependencies 601 

between the HAMCA tasks and scores.  602 
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For the analysis of the piano playing performance with the LHIF and with the SR3T we addressed 603 

trials 5 to 10, after the initial fast learning plateau. Using t test, we looked for significant differences 604 

between the pianists and the naïve players in the scores of the trials played with their LHIF and with 605 

the SR3T. We then averaged over trials 5 to 10 to get a single piano playing score for each subject in 606 

each task to be used in all following analysis. We also merged the two groups (pianists and the naïve 607 

players) so that all test of interactions between the HAMCA motor-coordination scores and the piano 608 

playing scores were across all subjects. We then calculated the correlations between the subjects’ 609 

scores in the piano playing tasks and the HAMCA motor-coordination scores. To account for an outlier 610 

subject, we further investigated the correlations with Spearman rank correlation scores.  611 

We then fitted generalized linear models to explain the piano playing scores using two different 612 

sets of HAMCA motor-coordination scores: the HAMCA hand measures and the HAMCA foot 613 

measures. We first removed the outlier subject before fitting the models (in the main text), and later 614 

repeated the analysis with the outlier (in the supplementary figures). We then tested for the 615 

contribution of piano expertise and the LHIF playing score to the prediction by adding them to the 616 

model (each of them separately and both together). To compare between these models of different 617 

complexity we used the corrected Akaike information criterion (AICc) which is modified for small 618 

sample sizes. 619 
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Supplementary Materials 814 

 815 

 816 

Fig. S1. Correlations between accuracies. The first eight panels shows correlations between accuracies 

in piano playing with the SR3T and in the motor coordination tasks. The ninth panel shows correlations 

between accuracies in piano playing with and without the SR3T. Naïve subjects marked as grey and 

experienced subjects as black dots. 
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  817 

Fig. S2. Correlations between accuracies. Correlations between accuracies in piano playing with the 

LHIF and in the motor coordination tasks. 
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 818 

Fig. S3. Model predictions for SR3T piano playing. N=11 subjects after outlier removal. Naïve subjects 

marked as grey and experienced subjects as black dots. (A-B) model from the 4 hand (A) or foot (B) dexterity 

measures and the LHIF piano playing score. (C-D) model from the 4 hand (C) or foot (D) dexterity measures 

and the expertise group (experienced vs naïve). (E-F) model from the 4 hand (E) or foot (F) dexterity 

measures and the LHIF piano playing score and the expertise group. 
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Fig. S4. Model predictions for SR3T piano playing. 

N=12 subjects. Naïve subjects marked as grey and 

experienced subjects as black dots. (A) model from the 4 

HAMCA hand dexterity measures. (B) model from the 4 

HAMCA foot dexterity measures. 

Hand 
A 

B 
Foot 
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