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Abstract 45 

Human object recognition is dependent on occipito-temporal cortex, but a complete 46 
understanding of the complex functional architecture of this area must account for 47 
how it is connected to the wider brain. Converging functional magnetic resonance 48 
imaging evidence shows that univariate responses to different categories of 49 
information (e.g. faces, bodies, & non-human objects) are strongly related to, and 50 
potentially shaped by, functional and structural connectivity to the wider brain. 51 
However, to date, there have been no systematic attempts to determine how distal 52 
connectivity and complex local high-level responses in occipito-temporal cortex (i.e. 53 
multivoxel response patterns) are related. Here, we show that distal functional 54 
connectivity is related to, and can reliably index, high-level representations for 55 

several visual categories (i.e. tools, faces, & places) within occipito-temporal cortex; 56 
that is, voxels sets that are strongly connected to distal brain areas show higher 57 
pattern discriminability than less well-connected sets do. We further show that, in 58 
several cases, pattern discriminability is higher in sets of well-connected voxels than 59 
sets defined by „local‟ activation (e.g. strong amplitude responses to faces in fusiform 60 
face area). Together, these findings demonstrate the important relationship between 61 
the complex functional organization of occipito-temporal cortex and wider brain 62 
connectivity. 63 
 64 
Significance statement 65 
 66 

Human object recognition relies strongly on occipito-temporal cortex (OTC), yet 67 

responses in this broad area are often considered in relative isolation to the rest of 68 
the brain. We employ a novel „connectivity-guided‟ voxel selection approach with 69 
functional MRI data to show higher sensitivity to information (i.e. higher multivoxel 70 
pattern discriminability) in voxel sets that share strong connectivity to distal brain 71 
areas, relative to: 1) voxel sets that are less-strongly connected; and in several 72 
cases 2) voxel sets that are defined by strong „local‟ response amplitude. These 73 
findings underscore the importance of distal contributions to local processing in OTC. 74 
 75 
 76 
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Introduction 95 
 96 

Human object recognition is a rapid process that relies heavily on occipito-97 

temporal cortex (OTC; e.g. Grill-Spector & Malach, 2004), and there have been 98 

extensive efforts to fully characterize the complex functional organization of this area 99 

(e.g. Grill-Spector & Weiner, 2014; Op de Beeck et al., 2019; Peelen & Downing, 100 

2017). Convergent functional magnetic resonance imaging (fMRI) findings show 101 

coarse-grain organization of OTC as evidenced by spatially clustered „category-102 

preferring‟ responses, that is, regions that show enhanced fMRI response amplitude 103 

for one category over others (e.g. faces, tools, & places/scenes: Almeida et al., 104 

2013; Beauchamp & Martin, 2007; Chao & Martin, 2000; Downing et al., 2006; 105 

Epstein and Kanwisher, 1998; Kanwisher et al., 1997; Kristensen et al., 2016), along 106 

with finer-grain organization via „patchy‟ organization of OTC (i.e. sparsely distributed 107 

cortical patches that respond strongly to different information; e.g. Grill-Spector et al., 108 

2006; Weiner & Grill-Spector, 2010) that are well-captured with multivoxel pattern 109 

analysis (MVPA) techniques (Haxby et al., 2001; Kamitani & Tong, 2005). 110 

However, a complete understanding of the functional architecture of OTC 111 

must account for how this broad area interfaces with the wider brain. Indeed, 112 

connectivity is a major constraint on the functional organization of cerebral cortex in 113 

general, such that the functional response of a given region is partially determined by 114 

the integration of relevant information shared via structural and functional 115 

connectivity to other brain regions (e.g. Garcea et al., 2019; Lee et al., 2019; Mahon 116 

& Caramazza, 2011; Sporns & Zwi, 2004; Sporns, 2004). More specifically, 117 

category-preferring OTC responses are functionally coupled with, and modulated by, 118 

distal regions that share the same category-preference (e.g. tool responses in medial 119 

fusiform gyrus are shaped by inferior parietal cortex; Amaral et al., under review; 120 
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Chen et al., 2017; Garcea et al., 2019; Lee et al., 2019); similarly, OTC responses 121 

for multiple visual categories (e.g. faces, objects, bodies, & places) can be reliably 122 

predicted from patterns of white matter connectivity to the wider brain (Osher et al., 123 

2016; Saygin et al., 2012; Saygin et al., 2016).  124 

The preceding evidence demonstrates a clear relationship between distal 125 

connectivity and functional local OTC responses at the level of individual voxels. 126 

However, the extent to which connectivity relates to complex distributed functional 127 

responses (i.e. multivoxel pattern decoding), is not yet understood. Here, we show 128 

that the discriminability of distributed multivoxel response patterns in OTC is related 129 

to – and importantly, can be indexed by – patterns of distal connectivity; that is, sets 130 

of voxels that afford high pattern discriminability of different object categories can be 131 

identified by the strength of connectivity they share with distal brain areas. 132 

Specifically, our results demonstrate that: 1) „Most-connected‟ grey matter voxel sets 133 

consistently yield higher pattern discriminability than „least-connected‟ sets do, and; 134 

2)  Most-connected voxel sets are partially distinct from – and, in several cases, 135 

afford significantly higher pattern discriminability than – „most-activated‟ voxel sets 136 

do (i.e. sets defined by strongest amplitude responses). In summary, these findings 137 

demonstrate a compelling relationship between distal connectivity and locally 138 

distributed functional responses in OTC. 139 

Materials and Methods 140 

 141 

Participants 142 

20 right-handed undergraduate adult participants (mean age: 22.1 years; SD: 143 

5.4; 14 females) gave informed consent and were reimbursed with university course 144 

credit. Head motion was not excessive for any subject (i.e. no >2mm scan-to-scan 145 
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spikes), so all data was used. Ethical procedures were approved by the Faculty of 146 

Psychology and Educational Sciences of the University of Coimbra ethics board. 147 

MRI scanning parameters 148 

Scanning was performed with a Siemens Tim Trio 3T MRI scanner (Siemens 149 

Healthineers, Erlangen, Germany) with a 12-channel head coil at the University of 150 

Coimbra. Functional images were acquired with the following parameters: T2*-151 

weighted single-shot echo-planar imaging pulse sequence, TR = 2000ms, TE = 152 

30ms, flip angle = 90°, 40 interleaved axial slices (no gap), acquisition matrix = 96 x 153 

96 with field of view = 256mm, with a voxel size of 2.3 x 2.3 x 3mm. Structural T1-154 

weighted images were obtained using an MPRAGE (magnetization prepared rapid 155 

gradient echo) sequence with the following parameters: TR = 2530ms, TE = 3.29ms, 156 

in 1.7ms steps, total acquisition time = 136s, FA = 8°, acquisition matrix = 256 × 256, 157 

with field of view 256mm, and voxel size = 1 mm3. 158 

Task 159 

Participants completed 6 runs of a blocked-design task, where they centrally 160 

fixated grey-scaled images (400 x 400 pixels; ~10° of visual angle) of tools, faces, 161 

and places (animal images, as well as phase-scrambled variants of these categories 162 

were also presented, but were not analysed here). Each run consisted of alternating 163 

6s blocks of stimuli and 6s fixation, with 16s fixation at the beginning and end of 164 

each run (run length: 176s = 88 TRs); 2 blocks were presented for each of the 165 

categories (and 1 block for each of the phase-scrambled conditions). Block order 166 

was randomized across runs.  167 

Pre-processing 168 

Pre-processing was performed with SPM12 169 

(fil.ion.ucl.ac.uk/spm/software/spm12). This entailed slice-timing correction, re-170 
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alignment (and re-slicing), co-registration, and segmentation. Segmented grey 171 

matter maps were co-registered and warped to subject‟s functional image space for 172 

later masking out white matter voxels. A duplicate set of functional 173 

data was normalized and smoothed for the sole purpose of identifying group-level 174 

activation peaks for creating „search spaces‟ for each target area. All default SPM12 175 

parameters were used (except for normalized data where output the voxel size was 176 

3mm3 and a 6mm3 FWHM Gaussian smoothing kernel was used). 177 

General linear model estimation was performed in SPM12 and all analyses 178 

were performed in subject space. Block durations and onsets for each experimental 179 

condition were modelled by convolving the corresponding box-car time-course with a 180 

canonical hemodynamic response function (without time or dispersion derivatives), 181 

with a high-pass filter of 256s and autoregressive AR(1) model. Beta maps were 182 

generated on a run-wise basis, yielding one regressor per condition, along with 6 183 

rigid-motion regressors (and an intercept regressor). T-maps were estimated for the 184 

contrasts described below.  185 

The pre-processed functional data was duplicated and de-noising was 186 

performed with the CONN Toolbox (Whitfield-Gabrieli & Nieto-Castanon, 2012) by 187 

regressing out task-related effects (i.e. haemodynamic response convolved with 188 

blocks for each condition), along with other head motion (6 rigid-motion regressors + 189 

6 first-order temporal derivatives) and physiological noise related variables (mean 190 

global signal estimated from all white matter and cerebrospinal fluid voxels, along 191 

with outlier scan removal), and band-pass filtered (0.01-0.1hz). Previous work shows 192 

that this approach successfully removes task-related signal, resulting in time-course 193 

data that this very similar to resting-state fMRI signal (e.g. Fair et al., 2007).  194 

Voxel selection 195 
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We employed a „connectivity-guided voxel selection‟ approach in 6 target 196 

regions: Tool-preferring medial fusiform gyrus (MFus) and posterior medial temporal 197 

gyrus (PMTG); face-preferring fusiform face area (FFA) and occipital face area 198 

(OFA); and place-preferring parahippocampal place area (PPA) and occipital place 199 

area (OPA). The following regions outside of OTC were also used for connectivity 200 

seeding: Tool-preferring inferior parietal lobe (IPL) and superior parietal lobe (SPL); 201 

face-preferring superior temporal sulcus (STS-F), and; place-preferring retrosplenial 202 

cortex (RSC). Thus, voxel selection within a given target region depended on 203 

connectivity to all other regions (both within and outside of OTC) that shared the 204 

same category-preference (e.g. PMTG, IPL, & SPL served as „seed‟ regions for 205 

voxel selection in MFus). Analyses were restricted to left-hemisphere tool regions, 206 

and right hemisphere face and place regions, based on widely-observed hemispheric 207 

asymmetries (e.g. Downing et al., 2006); however, we also observed the same 208 

pattern of results in the „opposite‟ hemisphere, for each set of regions.  209 

Target region masks (i.e. „search spaces‟ for voxel selection) were created by 210 

centring a 15mm-radius sphere at the most-activated voxel (uncorrected p<.05), 211 

based on group-level activation in normalised space. For tool-, face-, and place-212 

preferring regions, activation was based on the following t-contrasts respectively: 213 

Tools > [faces + places + animals]; faces > [tools + places + animals]; and places > 214 

[tools + faces + animals]. Voxels that overlapped between two adjacent search 215 

spaces for the same category (e.g. OFA and FFA) were removed; search spaces 216 

between categories (e.g. tool-preferring MFus and face-preferring FFA) were free to 217 

overlap. Target region masks were then inverse-registered to each subject's own 218 

brain space, and white-matter (and cerebellum) voxels were removed. All target 219 

region masks contained >300 grey-matter voxels. „Seed‟ regions were then defined 220 
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as the 100 most-activated voxels (for the same contrasts described above, based on 221 

each subject‟s own activity (i.e. t-values)) within each target region. 222 

For each target region, a functional connectivity matrix was calculated that 223 

described the time-course correlation (Fisher-transformed Pearson's r coefficient) 224 

between each voxel and all other same-category seed voxels (e.g. 350 MFus target 225 

regions voxels x 100 PMTG + 100 IPL + 100 SPL seed region voxels). The mean 226 

correlation for each target region voxel (across all seed regions) was then obtained, 227 

and the 100 most highly connected and 100 least highly connected target region 228 

voxels were selected, respectively. 229 

We also compared sets of most-connected voxels with sets of 100 most 230 

highly activated voxels based on the corresponding t-contrast for each decoding 231 

analysis (e.g. tools > faces t-values were used for tools vs. faces decoding). 232 

Importantly, due to potential circularity problems (Kriegeskorte et al., 2009; e.g. 233 

exaggerated tools vs. faces decoding accuracy might result if voxel sets are defined 234 

with the exact same data) data was independently split for voxel selection and 235 

decoding, as follows. Subject data (both task & task-regressed connectivity datasets) 236 

was divided into 3 splits (2 runs each). A leave-one-split-out approach was adopted 237 

(for generating and testing both connectivity and activity voxel sets) where one split 238 

of data was used for voxel selection while the remaining 2 splits were used in the 239 

corresponding decoding fold (iterated 3 times, so that each split was used for voxel 240 

selection). Within each target region, voxels did not overlap for the most-connected- 241 

and least-connected sets (but overlap was unconstrained between most-connected- 242 

and most-activated voxel sets).  243 

Signal-to-noise-ratio analysis 244 
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 To test whether subtle differences in signal-to-noise-ratio (SNR) might explain 245 

a potential decoding advantage in most-connected- relative to least-connected voxel 246 

sets – that is, higher SNR in most-connected voxel sets might partially account for 247 

higher decoding compared to least-connected voxel sets – we directly compared 248 

SNR between voxel sets as follows.  249 

 Whole brain maps that describe the voxel-wise temporal SNR (i.e. mean 250 

signal amplitude / SD; e.g. Triantafyllou et al., 2005) for each run of task data, were 251 

generated, for each subject. Mean SNR values for most-connected- and least-252 

connected voxel sets were then obtained for each subject across all 6 runs of data 253 

(within each target area, and averaged across voxel sets from all 3 data splits), and 254 

entered into 2-way ANOVA (voxel selection type x region).  These analyses revealed 255 

an effect in the opposite direction – that is SNR was slightly higher in least-256 

connected- than most-connected voxel sets (main effect of voxel selection: (F(1,19) 257 

= 25.51, p < .001, ηp
2 = .573; most-connected > least connected (post-hoc contrast): 258 

t(19) = -5.05, p < .001), indicating that any potential decoding advantage in most-259 

connected voxel sets relative to least-connected voxel sets, is not attributable to 260 

higher SNR in most-connected voxel sets.   261 

Multivoxel pattern decoding  262 

Decoding was implemented with the CoSMoMVPA Toolbox (Oosterhof et al., 263 

2016). A split-half Pearson‟s r correlation decoding approach was used (e.g. see 264 

Haxby et al., 2001) as a measure of discriminability between each relevant pair of 265 

conditions. This is a powerful decoding approach that performs equivalently to 266 

commonly-used linear classifiers (Misaki et al., 2010).  267 

Decoding was performed across 3 decoding folds (i.e. voxels selected with 1 268 

data split and decoding performed with the 2 left-out data splits, with a different data 269 
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split used for voxel selection for each decoding fold). 2 decoding comparisons were 270 

run for each category to ensure the generalizability of effects (i.e. tool-preferring 271 

regions: tools vs. faces & tools vs. places; face-preferring regions: faces vs. tools & 272 

faces vs. places; place-preferring regions: places vs. tools & places vs. faces). For 273 

each decoding comparison pair (e.g. tools vs. faces), patterns for each condition 274 

were correlated across the 2 designated decoding splits of data (i.e. 2 runs per split), 275 

yielding a 2 (split) x 2 (category) confusion matrix, where the mean between-276 

category correlation (off-diagonal cells) was subtracted from the mean within-277 

category correlation (on-diagonal cells); thus, a positive decoding accuracy denotes 278 

greater within-category than between-category decoding (e.g. [tools-to-tools 279 

correlation + faces-to-faces correlation] > tools-to-faces correlations, across splits). 280 

Subjects‟ decoding accuracy values were mean-averaged across decoding folds and 281 

entered into 3-way repeated measures ANOVAs (i.e. voxel selection type x region x 282 

decoding comparison), for each set of category-preferring regions, separately.  283 

For conciseness, only ANOVA terms involving the factor „voxel selection type‟ 284 

are reported here; specifically, we only report these effects at the highest descriptive 285 

level (i.e. for significant interactions involving voxel selection type, we report the 286 

corresponding post-hoc test; in the absence of a significant interaction term, we 287 

report the main effect of voxel selection type). A Bonferroni-corrected threshold was 288 

calculated for each set of post-hoc t-tests (two-tailed) involving voxel selection type, 289 

and all reported tests survive correction unless otherwise stated.  290 

Matched-activation analyses 291 

To ensure that any differences between most-connected- and least-connected 292 

voxel sets were not confounded by local activation to category information (e.g. 293 

differences between the two voxel sets in FFA might result from differences in mean 294 
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activation differences to faces), a series of „matched-activation‟ analyses were 295 

performed. This entailed selecting strongly-connected- and weakly-connected voxel 296 

sets under the constrained that they did not statistically differ by their average 297 

activation (t-values; e.g. for face regions, t-values were matched for each 298 

corresponding decoding analysis (e.g. faces > tools t-values were used for faces vs. 299 

tools decoding). This was achieved with a permutation approach as follows.  300 

Voxels in each target region were median-split by their mean connectivity 301 

values (i.e. mean connectivity-correlation value to all seed voxels). 2 random subsets 302 

of 100 voxels – one each from the highest- and lowest half-splits – were then drawn 303 

and compared to ensure that their average activation values – voxel t-values – did 304 

not differ when compared via an independent t-test. 10,000 subset comparisons 305 

were performed but, crucially, only subset-pairs with non-significant independent t-306 

test statistics were retained. Decoding was then performed with these „non-differing 307 

activation‟ voxel sets, and averaged to create stable decoding estimates for the 308 

strongly-connected- and weakly-connected voxel sets, respectively.  309 

This analysis was repeated across statistical 3 thresholds, retaining voxel set 310 

pairs that did not differ: 1) At a liberal threshold (i.e. two tailed independent t-test p-311 

values > .10); 2) At an intermediate threshold (i.e. independent t-test statistics within 312 

the range t = +0.5 to -0.5), and; 3) At a strict threshold, where voxel set pairs were 313 

only accepted when the average activation was lower in strongly-connected sets (i.e. 314 

independent t-test statistics within the negative range of t = 0 to -0.5).  315 

We initially ran 3-way repeated measures ANOVAs (voxel selection x 316 

decoding comparison x region) for tools, faces, and places separately, as in the main 317 

analyses to test these results. However, we observed reduced degrees of freedom 318 

for these analyses, indicating that these constraints were not always met in all 319 
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subjects and regions (e.g. connectivity and activity were less independent of each 320 

other for some region in some subjects, such that mean activation always differed 321 

between voxel sets). To preserve statistical power, we ran follow-up 2-way repeated 322 

measures ANOVAs (voxel selection x decoding comparison) for each region 323 

separately, if the initial 3-way ANOVA indicated that at least 3 subjects did not meet 324 

this constraint; as such, if the constraint was met in one region but not the other in a 325 

given subject, this would allow for their data to be retained when testing the 326 

„surviving‟ region. Specifically, 3-way ANOVA results are reported for face regions as 327 

only 1 subject failed to meet this constraint (across all 3 matched-activation analysis 328 

thresholds). Due to higher subject drop-out for the other 3-way ANOVAs (i.e. for 329 

tools & places, respectively), region-wise 2-way ANOVA results are reported for the 330 

2 more conservative thresholds (but 3-way ANOVA results are reported at the most 331 

liberal threshold, where only 2 subjects failed to meet this constraint). The number of 332 

remaining subjects per analysis is reported in the results section. 333 

‘Good seed’ searchlight analysis 334 

To complement the main analyses that used a-priori seed regions, we ran a 335 

searchlight analysis to determine which regions across the entire brain constituted 336 

„good seeds‟ (i.e. regions with connectivity that yields higher decoding in most-337 

connected-, compared to least-connected target region voxels). For each target 338 

region (e.g. MFus), a searchlight consisting of approximately 100 contiguous voxels 339 

was centred on each given grey matter voxel of the brain (excluding the given target 340 

region), and the mean time-course for those voxels was correlated with the target 341 

region for voxel selection. Decoding was performed and accuracy values were then 342 

assigned to the central voxel of the corresponding searchlight. This was performed 343 
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for each subject, across all analysis variants (i.e. for each category, 2 target regions 344 

x 2 binary decoding comparisons x 2 voxel sets (i.e. most- & least-connected)).  345 

The same decoding approach as in the main analyses (i.e. with a-priori 346 

seeds) was adopted here, except that decoding was performed with all 6 runs of 347 

data in a single decoding fold (i.e. where run-averaged patterns between the 3 odd 348 

and 3 even runs were correlated), rather than adhering to the data split scheme 349 

imposed in the previous analyses (i.e. 3 decoding folds). This was done for two 350 

reasons: 1) Because activation was not used for comparative voxel selection here, 351 

data circularity problems do not apply; and 2) this demonstrates the generalizability 352 

of the distal connectivity decoding effect with a different decoding scheme (we also 353 

ran these analyses with the same split-scheme as in the main analyses and 354 

observed virtually identical results).  355 

For group-level inference, paired t-tests with threshold-free cluster 356 

enhancement (TFCE; see Smith & Nichols, 2009) based on 10,000 Monte-Carlo 357 

simulations were run with subjects‟ most-connected- and least-connected voxel 358 

selection searchlight maps (maps were normalised and smoothed with a 6mm 359 

FWHM kernel, beforehand). The resulting group-level maps were thresholded at Z > 360 

1.65 and projected to a surface rendered brain in SPM12 for visualization. In short, 361 

these maps show regions that constitute „good seeds‟, yielding a significant decoding 362 

effect (i.e. seeding from these regions results in higher decoding for the most-363 

connected- than least-connected voxel sets in the corresponding target region).  364 

Results 365 

 366 

Across all 6 target regions, higher decoding accuracy was observed for most-367 

connected- than least-connected voxel sets (see fig. 1, upper row bars). This effect 368 

was shown for both tool regions (i.e. MFus & PMTG; main effect of voxel selection 369 
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Figure 1. Mean decoding accuracy for most-connected- (MC), least-

connected- (LC), & most-activated (MA) voxel sets, for (a) tool, (b) face, & 

(c) place regions. Upper row bar charts: MC vs. LC decoding. Lower row 

bar charts: MC vs. MA decoding. Tool regions: MFus = medial fusiform 

gyrus; PMTG = posterior middle temporal gyrus. Face regions: FFA = 

fusiform face area; OFA = occipital face area. Place regions: PPA = 

parahippocampal place area; OPA = occipital place area. Decoding 

comparisons: Tools vs. faces (TvF); tools vs. places (TvP); faces vs. tools 

(FvT); faces vs. places (FvP); places vs. tools (PvT); places vs. faces 

(PvF). * = significant MC > LC effect (Bonferroni-corrected p < .05). Error 

bars are SEM. Target region search spaces are shown on a surface brain, 

along with example stimuli in the upper portion of the figure. 

type: F(1,19) = 46.85, p < .001, ηp
2 = .711), both face regions (i.e. FFA & OFA; voxel 370 

selection type x decoding comparison (interaction): F(1,19) = 14.64, p < .001,  ηp
2 = 371 

.435; faces vs. places (post-hoc): t(24.30) = 5.79, p < .001; faces vs. tools (post-372 

hoc): t(24.30) = 3.09, p = .005), and both place regions (i.e. PPA & OPA; voxel 373 

selection type x decoding comparison (interaction): F(1,19) = 12.11, p = .003,  ηp
2 = 374 

.389; places vs. faces (post-hoc): t(28.32) = 7.69, p < .001; places vs. tools (post-375 

hoc): t(28.32) = 4.52, p < .001). Thus, decoding accuracy is consistently higher in 376 

voxel sets that are most- rather than least- distally connected.  377 

 378 

 379 

 380 

 381 

 382 

 383 

 384 

 385 

 386 

 387 

 388 

 389 

 390 

 391 

 392 

 393 

 394 
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Previous evidence shows that distal functional connectivity is correlated with 395 

task-based activation in OTC (e.g., Chen et al., 2017; Amaral et al., under review). It 396 

is therefore possible that most-connected voxels are effectively the same as those 397 

showing the strongest local activation, and therefore might yield equivalent decoding 398 

performance. We tested this by comparing decoding accuracy in most-connected 399 

voxel sets with those that were most-activated by their „preferred‟ stimulus category 400 

(both sets were free to overlap). Interestingly, decoding accuracy was never 401 

statistically lower in most-connected- relative to most-activated voxel sets; indeed, 402 

decoding in most-connected voxel sets was almost always equal or higher than 403 

decoding in most-activated voxel sets (see fig. 1, lower row bars). For tool-preferring 404 

regions, decoding accuracy was significantly higher for most-connected-, relative to 405 

most-activated voxel sets (voxel selection x decoding comparison x region 406 

interaction: F(1,19) = 5.04, p = .037, ηp
2 = .210) in MFus (tools vs. faces (post-hoc): 407 

t(74.31) = 3.16, p = .002; tools vs. places (post-hoc): t(74.31) = 4.45, p < .001), but 408 

this trend was not significant in PMTG (tools vs. faces (post-hoc): t(74.31) = 1.99, p = 409 

.050; tools vs. places (post-hoc): t(74.31) = -0.97, p = .335). By contrast, this effect 410 

was significant in both FFA and OFA (main effect of voxel selection type: F(1,19) = 411 

10.62, p = .004, ηp
2 = .358), but was not significant in either place region (all voxel 412 

selection ANOVA terms: p > .115).  413 

These results show that decoding performance is not equivalent in most-414 

connected- and most-activated voxel sets in several areas. Nevertheless, we further 415 

sought to test the relative independence of the effects observed in the original 416 

analysis by looking at whether the decoding differences between most-connected 417 

and least-connected voxel sets remain when potential differences in average 418 

activation between sets are controlled; that is, does greater decoding in most-419 
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Figure 2. Mean decoding accuracy for most-connected- (MC) & least-

connected (LC) voxel sets for „matched activation‟ analyses: (a) tool-, 

(b) face-, & (c) place regions. Upper row bars: Liberal „non-different 

activation‟ threshold (p>.10). Lower row bars: Strictest „non-different 

activation‟ threshold (negative t-values between 0 to -0.5). Tool regions: 

MFus = medial fusiform gyrus; PMTG = posterior middle temporal 

gyrus. Face regions: FFA = fusiform face area; OFA = occipital face 

area. Place regions: PPA = parahippocampal place area; OPA = 

occipital place area. Decoding comparisons: Tools vs. faces (TvF); tools 

vs. places (TvP); faces vs. tools (FvT); faces vs. places (FvP); places 

vs. tools (PvT); places vs. faces (PvF). * = significant effect (Bonferroni-

corrected p < .05). x = trend non-significant/underpowered analyses 

(PMTG N=8; OPA N=13). Error bars are SEM. 

connected- than least-connected voxel sets remain when average activation (t-420 

values) between the two sets is closely controlled?  421 

To test this, we ran a „matched activation‟ permutation analysis where we 422 

median split each target area by voxel connectivity values, and randomly drew 423 

subsets of 100 strongly-connected- and 100 weakly-connected voxels but, crucially, 424 

only compared decoding performance in sets that did not statistically differ by their 425 

average activation (i.e. t-values; see methods for full details). In the first variant of 426 

this analysis, we retained pairs of voxel sets that did not statistically differ at a 427 

relatively liberal threshold (i.e. two-tailed p>.10) when running an independent t-test 428 

between the 2 voxel sets‟ activation values (t-values)).  429 

 430 

 431 

 432 

 433 

 434 

 435 

 436 

 437 

 438 

 439 

 440 

 441 

 442 

 443 
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As before, decoding accuracy was significantly higher for most-connected- 444 

than least-connected voxel sets (see fig 2; upper row bars) in both tool regions (main 445 

effect of voxel selection: F(1,17) = 52.04, p < .001, ηp
2 = .754), both face regions 446 

(voxel selection type x decoding comparison (interaction): F(1,19) = 23.22, p < .001, 447 

ηp
2 = .550; faces vs. places (post-hoc): t(23.57) = 6.60, p < .001; faces vs. tools 448 

(post-hoc): t(23.57) = 3.43, p = .002) and both place regions (voxel selection type x 449 

decoding comparison (interaction): F(1,17) = 10.39, p = .005, ηp
2 = .379; places vs. 450 

faces (post-hoc): t(25.9) = 7.81, p < .001; places vs. tools (post-hoc): t(25.9) = 4.79, 451 

p < .001).  452 

We next repeated this analysis under 2 stricter thresholds by only retaining 453 

voxel set pairs where: 1) Average activation was more closely matched between the 454 

2 sets (i.e. independent t-tests that yielded t-statistics with the range of +0.5 to -0.5), 455 

and; 2) average activation was lower in most-connected voxel sets (i.e. independent 456 

t-tests that yielded negative t-statistics with the range of 0 to -0.5). Given these 457 

conservative criteria, we anticipated that these constraints would not be met in all 458 

subjects, and therefore the number of „surviving‟ subjects are reported for each 459 

analysis. 460 

Under the intermediate threshold (i.e. t-statistics between +0.5 to -0.5), higher 461 

decoding accuracy was observed for most-connected- than least-connected voxel 462 

sets in all regions. For MFus, FFA, OFA, and, PPA, 19 out of 20 subjects met this 463 

constraint (MFus: F(1,18) = 19.30, p < .001, ηp
2 = .517; FFA & OFA: F(1,18) = 23.59, 464 

p < .001, ηp
2 = .567; PPA: F(1,18) = 43.46, p < .001, ηp

2 = .707). These effects were 465 

also significant in PMTG and OPA where 13 and 14 subjects remained, respectively 466 

(PMTG: F(1,12) = 6.97, p = .022, ηp
2 = .367; OPA: F(1,13) = 4.83, p = .047, ηp

2 = 467 

.271). 468 
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Under the strictest constraint (i.e. t-statistics between 0 to -0.5), higher 469 

decoding accuracy was (again) observed for most-connected- than least-connected 470 

voxel sets across all regions (see fig 2; lower row bars). This trend was statistically 471 

significant in all regions where this constraint was met for at least 17 out of 20 472 

subjects: MFus, FFA, OFA, and PPA (MFus (1,18) = 18.66, p < .001, ηp
2 = .509; FFA 473 

& OFA (post-hoc test; faces vs. tools): t(24.97) = 3.26, p = .003; FFA & OFA (post-474 

hoc test; faces vs. places): t(24.97) = 5.04, p < .001; PPA: F(1,16) = 35.00, p < .001, 475 

ηp
2 = .686). In PMTG and OPA, these analyses were underpowered (i.e. only 8 and 476 

13 subjects remained, respectively) and did not reach significance (PMTG: F(1,7) = 477 

1.51, p = .258, ηp
2 = .178; OPA: F(1,12) = 2.81, p = .120, ηp

2= .190). Although these 478 

trends are evident in figure 2 (lower row), these results show a lesser degree of 479 

independence between connectivity and activity measures in PMTG and OPA than 480 

the other regions.  481 

Taken together, these analyses show strong decoding performance in highly-482 

connected voxel sets; importantly, these distally well-connected voxel sets 483 

demonstrate a degree of independence from – and therefore, are not merely 484 

confounded by – local voxel activation (t-values). 485 
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Figure 3. Group searchlight maps showing „good seed‟ areas, for each target region. Z-score 

voxel intensities (threshold-free cluster enhancement paired t-test; Z-threshold > 1.65) show 

regions that seed significantly higher decoding accuracy for most-connected- than least-

connected voxels within a given target region. Decoding comparisons: (a) tools vs. faces (TvF); 

(b) tools vs. places (TvP); (c) faces vs. tools (FvT); (d) faces vs. places (FvP); (e) places vs. tools 

(PvT); (f) places vs. faces (PvF). T ool regions: MFus = medial fusiform gyrus; PMTG = posterior 

middle temporal gyrus. Face regions: FFA = fusiform face area; OFA = occipital face area. Place 

regions: PPA = parahippocampal place area; OPA = occipital place area. 

Finally, we implemented whole-brain searchlight analyses (see fig. 3) for each 486 

target region; these analyses revealed regions (beyond a-priori „seed‟ regions used 487 

in the preceding analyses) that afford „good seeding‟ (i.e. regions with distal 488 

connectivity that yields higher decoding in most-connected- rather than least-489 

connected voxel sets). Diffuse patterns of strong seeding in the wider brain were 490 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 22, 2021. ; https://doi.org/10.1101/2021.02.22.432202doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.22.432202
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

Distal connectivity indexes OTC representations                                                                                           20 
 

shown for all target regions. Notably, good seeding was observed in bilateral 491 

posterior temporal cortex (coincident with category-preferring OTC regions) and 492 

early visual cortex, as well as dorsal attention and task-general cognitive control 493 

regions (e.g. anterior inferior parietal sulcus, frontal eye fields, and pre-central gyrus) 494 

and this coverage comparable with previously observed functional connectivity 495 

patterns between OTC and the wider brain (Hutchison et al., 2014; Vogel et al., 496 

2012).  497 

Discussion 498 
 499 

Here, we emphasize two main findings. First, complex functional responses in 500 

OTC are strongly related to patterns of connectivity to distal brain areas (i.e. grey 501 

matter voxel sets that share strong functional connectivity with the wider brain yield 502 

consistently better pattern discriminability than lesser-connected sets do, across all 503 

tested categories of information). These findings align with previous demonstrations 504 

that local OTC responses are shaped by distal connectivity with the wider brain 505 

(Amaral et al., under review; Chen et al., 2017; Garcea et al., 2019; Lee et al., 2019; 506 

Osher et al., 2016; Saygin et al., 2012; Saygin et al., 2016), and the more general 507 

proposal that functional brain responses are strongly determined by the integration of 508 

relevant information shared via structural and functional connectivity to the wider 509 

brain (Mahon & Caramazza, 2011; Osher et al., 2016; Park & Friston, 2013; Ruttorf 510 

et al., 2019; Saygin et al., 2012; Saygin et al., 2016; Sporns, 2004; Sporns & Zwi, 511 

2004; Varela et al., 2001). Ultimately, local computations and the organization of 512 

representational content in OTC are dependent on interactions between connectivity-513 

constrained neural assemblies that are likely dedicated to achieving particular 514 

computational goals (e.g. coordinated tool use, or face-to-face social interaction; 515 

Mahon, 2015; Op de Beeck et al., 2008; Peelen & Downing, 2017).  516 
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Second, most-connected voxels are not merely those that are most-activated, 517 

as shown by higher pattern discriminability for most-connected- relative to most-518 

activated voxel sets in several regions (i.e. MFus, FFA, & OFA, and performed 519 

equivalently in all other regions), and further, the decoding advantage for most- than 520 

least-connected voxel sets remains when average activation (voxel t-values) of the 521 

two sets is constrained. These results are consistent with the observation that even 522 

voxels with weak amplitude responses may contribute meaningfully to pattern 523 

discrimination (e.g. Haxby et al., 2001; Kamitani & Tong, 2005; Weiner & Grill-524 

Spector, 2010); as such, the „informativeness‟ of weakly activated voxels may be 525 

captured via connectivity to the wider brain.  526 

The decoding differences shown here between most-connected- and most-527 

activated voxel sets might, at first glance, seem to conflict with previous evidence 528 

that emphasizes a statistical similarity between connectivity and activity measures; 529 

for example, category-specific activation in fusiform gyrus is correlated with the 530 

degree of functional connectivity to seed areas that share the same „category-531 

preference‟ (e.g. voxel-level activation to tool stimuli correlates with the voxel-level 532 

connectivity to „tool-preferring‟ IPL; e.g. Chen et al., 2017; Amaral et al., under 533 

review). Similarly, while „matched-activation‟ analyses shown here demonstrate a 534 

decoding advantage in most-connected- relative to least-connected voxel sets when 535 

controlling for average activation between the two sets, these analyses also show 536 

that connectivity and activity are certainly related (i.e. activation could not be 537 

matched between sets in all regions, for all subjects). We do not claim that that local 538 

activity and distal connectivity are completely independent (nor that they perfectly 539 

predict each other). Instead, we show that, when considering distributed functional 540 

responses, connectivity is a powerful means of identifying voxels that afford 541 
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discriminability of high-level object representations. Thus, the present findings do not 542 

contradict previous work, but instead describe the relationship between connectivity 543 

and functional responses at a more complex level. Indeed, this is a valuable 544 

theoretical contribution given the widespread emphasis on distributed responses as 545 

a central functional organization principle of OTC and the wider brain (e.g. Haxby et 546 

al., 2001). 547 

Importantly, what exactly might account for the representational differences – 548 

at the level of multivoxel patterns – between most-connected and most-activated 549 

voxel sets? By definition, most-activated sets sample voxels with the highest t-550 

values, potentially sampling from closely-packed patches of voxels, whereas most-551 

connected sets are comprised of a comparatively broader distribution of voxel 552 

responses. We speculate that these sets may differentially sample the 553 

heterogeneous functional responses of OTC. While „patchy‟ organization of OTC is 554 

shown at a relatively coarse-grain (e.g. OTC is comprised of sparsely distributed and 555 

largely non-overlapping cortical patches that respond strongly to different types of 556 

information; Weiner & Grill-Spector, 2010), similar heterogeneous organization is 557 

also reflected at a finer spatial grain. For example, some voxel clusters within FFA 558 

respond preferentially to faces (compared to other objects), while other clusters 559 

show approximately equal tuning to multiple object categories (Çukur et al., 2013; 560 

Grill-Spector et al., 2006; Grill-Spector et al., 2007; Hanson & Schmidt, 2011); 561 

however, such responses may partially reflect responses to visual features that 562 

covary with certain categories rather than tuning to the categories themselves (e.g. 563 

Grill-Spector et al., 2006; Hanson & Schmidt, 2011; e.g. similar responses to faces 564 

and round-shaped objects, such as clocks or apples, for both voxels and single-cell 565 

recordings in macaque inferior temporal cortex; Moeller et al., 2017; Tsao et al., 566 
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2006). As such, distributed cortical representations are comprised of heterogeneous 567 

voxel responses that reflect sensitivity to a diverse array of visual or semantic 568 

features, and such sparse encoding may allow for an exhaustive representational 569 

capacity of OTC via complex response patterns (Grill-Spector et al., 2006; 570 

Olshausen & Field, 2004).  571 

Accordingly, we suggest that most-connected voxel sets may, in some cases, 572 

advantageously sample relatively more-diverse information than most-activated 573 

voxel sets. At a cognitive level, the connectivity-based voxel selection approach may 574 

better-exploit computations occurring within heterogeneous patches dedicated to 575 

different types of domain-specific information. For instance, subsets of FFA voxels 576 

with strong connectivity to OFA may reflect greater tuning to face-parts, while voxels 577 

that are well-connected to STS may be preferentially tuned to dynamic-emotion 578 

related information – potentially indexing the integration of information between 579 

different patches within a domain-specific network. Thus, voxel selection by 580 

connectivity recruits voxels that are highly connected with distal areas, bringing 581 

about a diverse set of object-related information. Contrastingly, selection by local 582 

activity targets voxels with strong amplitude responses that are potentially very 583 

important for the particular computations at play within that region. At the neural 584 

level, the connectivity-based approach may sample widely from functionally discrete 585 

patches, while the activity-based approach may draw more from spatially clustered 586 

set of voxels with very similar (i.e., less informationally diverse) response profiles 587 

(Bell et al., 2009; Çukur et al., 2013; Grill-Spector et al., 2006; Grill-Spector et al., 588 

2007).  589 

For example, given 5 functionally discrete patches within a given target area, 590 

most-connected voxel sets may be more likely to sample from each patch than most-591 
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activated sets that may draw more heavily (and potentially, more redundantly) from 592 

fewer patches that exhibit strong, clustered amplitude responses. Thus, most-593 

activated voxel sets may, in some cases, suffer from a higher degree of 594 

„informational redundancy‟.  595 

In the current study, we demonstrate higher decoding in most-connected- 596 

than least-connected voxel sets when using a-priori seed regions (e.g. tool-preferring 597 

PMTG, IPL, & SPL, were used as seeds for voxel selection and tool decoding in 598 

MFus), as motivated by highly correlated resting-state activity between areas that 599 

share category preferences (Kamps et al., 2020; Stevens et al., 2015; Zhang et al., 600 

2009; Zhu et al., 2011). However, searchlight analyses revealed that regions outside 601 

of these designated areas also afford similar effects, perhaps with some of these 602 

connections sub-serving both bottom-up and top-down modulations of local signal. 603 

These results are consistent with previous research showing that OTC sub-regions 604 

(e.g. FFA) show strong functional connectivity to regions that sub-serve more 605 

domain general (and task-relevant) processing, that are often considered key nodes 606 

(e.g. posterior parietal cortex and inferior frontal gyrus) among attention- or cognitive 607 

control networks (Cole et al., 2010; Hutchinson et al., 2014; Vogel et al., 2012).  608 

We note that our central claim in this paper (i.e. that local computations are 609 

influenced by connectivity to – and presumably via computations within – distal brain 610 

areas) is directionally agnostic; that is, from the present data, we cannot claim that 611 

local computations are causally influenced by connectivity to distal brain areas (or 612 

vice versa). Instead, future research may address the causal nature of this 613 

relationship with neural disruption measures (e.g. transcranial magnetic stimulation) 614 

or brain lesion studies. We also note that the connectivity-based voxel selection 615 
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approach used here is potentially generalizable to most other fMRI decoding 616 

experiments.  617 

In conclusion, the current data shows that high-level multivariate 618 

representations in OTC can be reliably indexed by functional connectivity, 619 

demonstrating the importance of connectivity constraints on the functional 620 

organization of OTC. 621 
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