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17 ABSTRACT   
18 Recombinant  protein  production  is  a  key  process  in  generating  proteins  of  interest  in  the                
19 pharmaceutical  industry  and  biomedical  research.  However,  about  50%  of  recombinant  proteins             
20 fail  to  be  expressed  in  a  variety  of  host  cells.  To  address  this  problem,  we  modified  up  to  the  first                      
21 nine  codons  of  messenger  RNAs  with  synonymous  substitutions  and  showed  that  protein  levels               
22 can  be  tuned.  These  modifications  alter  the  ‘accessibility’  of  translation  initiation  sites.   We  also                
23 reveal  the  dynamics  between  accessibility,  gene  expression,  and  turnovers  using  a             
24 coarse-grained   simulation.   
25   
26   
27 INTRODUCTION   
28 Recombinant  protein  expression  has  numerous  applications  in  biotechnology  and  biomedical            
29 research.  Despite  extensive  refinements  in  protocols  over  the  past  three  decades,  half  of  the                
30 experiments  fail  in  the  expression  phase  ( http://targetdb.rcsb.org/metrics/ ).  Notable  problems           
31 are  the  low  expression  of  ‘difficult-to-express’  proteins  such  as  those  found  in,  or  associated                
32 with,  membranes,  and  the  poor  growth  of  the  expression  hosts,  which  may  relate  to  toxicity  of                  
33 heterologous  proteins   (Kimelman  et  al.,  2012)  (see   (Berlec  and  Strukelj,  2013;  Rosano  and               
34 Ceccarelli,  2014)  for  detailed  reviews).  Despite  these  issues,  mRNA  abundance  can  only              
35 explain  up  to  40%  of  the  variation  in  protein  abundance,  due  to  the  complexity  of  translation  and                   
36 turnover  of  biomolecules   (Abreu  et  al.,  2009;  Bernstein  et  al.,  2002;  Hanson  and  Coller,  2018;                 
37 Lim  et  al.,  2018;  Schwanhäusser  et  al.,  2011;  Stevens  and  Brown,  2013;  Taniguchi  et  al.,  2010) .                 
38 Furthermore,  strong  promoters  used  in  expression  vectors  do  not  always  lead  to  a  desirable                
39 level   of   protein   expression   because   of   leaky   expression    (Rosano   and   Ceccarelli,   2014) .   
40   
41 For   Escherichia  coli ,  mainstream  models  that  may  explain  the  lower-than-expected  correlation             
42 between  mRNA  and  protein  levels  are  codon-usage and  mRNA  structure.  Codon  analysis  is               
43 based  on  the  frequency  of  codon  usage  in  highly  expressed  proteins  using  codon  adaptation                
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44 index  (CAI)   (Sharp  and  Li,  1987)  or  tRNA  adaptation  index  (tAI)   (Reis  and  d.  Reis,  2004;  Sabi                   
45 and  Tuller,  2014) ,  whereas  mRNA  folding  analysis  predicts  the  stability  of  mRNA  secondary               
46 structures.  Codon  usage  bias  is  thought  to  correlate  with  tRNA  abundance,  translation  efficiency               
47 and  protein  production   (Brule  and  Grayhack,  2017;  Gutman  and  Hatfield,  1989;  Osterman  et  al.,                
48 2020;  Reis  and  d.  Reis,  2004;  Sabi  and  Tuller,  2014;  Sharp  and  Li,  1987;  Verma  et  al.,  2019)  but                     
49 its  usefulness  has  been  questioned   (Boël  et  al.,  2016;  Cambray  et  al.,  2018;  Kudla  et  al.,  2009;                   
50 Plotkin  and  Kudla,  2011) .  More  recent  studies  show  stronger  support  for  models  based  on               
51 mRNA  folding,  in  which  the  stability  of  RNA  structures  around  the  Shine-Dalgarno  sequence               
52 and  translation  initiation  sites  inversely  correlates  with  protein  expression   (Cambray  et  al.,  2018;               
53 de  Smit  and  van  Duin,  1990;  Dvir  et  al.,  2013;  Kudla  et  al.,  2009;  Plotkin  and  Kudla,  2011;  Tuller                     
54 and  Zur,  2015) .  We  recently  proposed  a  third  model  in  which  the  avoidance  of  inappropriate                 
55 interactions  between  mRNAs  and  non-coding  RNAs  has  a  strong  effect  on  protein  expression               
56 (Umu  et  al.,  2016) .  The  roles  of  these  models  in  protein  expression  is  an  active  area  of                   
57 research.   
58   
59 The  algorithms  for  gene  optimisation  sample  synonymous  protein-coding  sequences  using            
60 ‘fitness’  models  based  on  CAI,  tAI,  mRNA  folding,  and/or  G+C  content  (%)   (Chung  and  Lee,                 
61 2012;  Raab  et  al.,  2010;  Salis  et  al.,  2009;  Terai  et  al.,  2016;  Villalobos  et  al.,  2006) .  However,                   
62 these  ‘fitness’  models  are  usually  based  on  some  of  the  above  findings  that  rely  on  either                  
63 endogenous  proteins,  reporter  proteins,  or  a  few  heterologous  proteins  with  their  synonymous              
64 variants.  It  is  unclear  whether  these  features  are  generalisable  to  explain  the  expression  of  all                 
65 heterologous  proteins.  To  address  this  question,  we  studied  multiple  large  datasets  across              
66 species  in  order  to  extract  features  that  allow  us  to  predict  the  outcomes  of  11,430  experiments                  
67 of  recombinant  protein  expression  in   E.  coli .  With  this  information,  we  propose  how  such                
68 features   can   be   exploited   to   fine-tune   protein   expression   at   a   low   cost.     
69   
70 RESULTS   
71 Accessibility   of   translation   initiation   sites   strongly   correlates   with   protein   abundance   
72 To  identify  a  better  energetic  model  for  mRNA  structure  that  explains  protein  expression,  we                
73 examined  an E.  coli  expression  dataset  of  green  fluorescent  protein  (GFP)  fused  in-frame  with  a                 
74 library  of  96-nt  upstream  sequences  (N=244,000)   (Cambray  et  al.,  2018) .  We  removed  the               
75 redundancy  of  these  96-nt  upstream  sequences  by  clustering  on  sequence  similarity,  giving  rise               
76 to  14,425  representative  sequences.  We  calculated  the  accessibility  (also  known  as  ‘opening              
77 energy’  based  on  unpairing  probability)  for  all  the  corresponding  sub-sequences  (see  Methods).              
78 We  examined  the  correlation  between  the  opening  energies  and  GFP  levels.  We  found  that  the                 
79 opening  energies  of  translation  initiation  sites,  in  particular  from  the  nucleotide  positions  −30  to                
80 18  (−30:18),  shows  the  highest  correlation  with  protein  abundance  (Fig  1A;  Spearman’s              
81 correlation,  R s =−0.65,  P<2.2×10 −16 ).  This  is  stronger  than  the  highest  correlation  between  the              
82 minimum  free  energy  −30:30  and  protein  abundance,  which  was  previously  reported  as  the               
83 highest  ranked  feature  (Fig  1A;  R s =0.51,  P<2.2×10 −16 ).  To  account  for  multiple-testing,  the             
84 P-values  were  adjusted  using  Bonferroni's  correction  and  reported  to  machine  precision.  The              
85 datasets   used   and   results   are   summarised   in   Supplementary   Table   S1.   
86   
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87 We  repeated  the  analysis  for  a  dataset  of  yellow  fluorescent  protein  (YFP)  expression  in                
88 Saccharomyces  cerevisiae   (Dvir  et  al.,  2013) .  This  dataset  corresponds  to  a  library  of  5′UTR                
89 variants,  in  which  the  10-nt  sequences  preceding  the  YFP  translation  initiation  site  were               
90 randomly  substituted  (N=2,041).  In  this  case,  the  opening  energy  −7:89  showed  a  stronger               
91 correlation  with  protein  abundance  than  that  of  the  minimum  free  energy  −15:50  reported               

92 previously   (Fig   1B;   R s =−0.55   versus   0.46).   
93   
94 To  examine  the  usefulness  of  accessibility  in  complex  eukaryotes,  we  analysed  a  dataset  of                
95 GFP  expression  in   Mus  musculus   (Noderer  et  al.,  2014) .   The  reporter  library  was  originally                
96 designed  to  measure  the  strength  of  translation  initiation  sequence  context,  in  which  the  6-  and                 
97 2-nt  sequences  upstream  and  downstream  of  the  GFP  translation  initiation  site  were  randomly               
98 substituted,  respectively  (N=65,536).  Here  the  opening  energy  −8:11  showed  a  maximum             
99 correlation  with  expressed  proteins,  which  again,  is  stronger  than  that  of  the  minimum  free               

100 energy   −30:30   (Fig   1C;   R s =−0.28   versus   0.12).     
101   
102 Taken  together,  our  findings  suggest  that  the  accessibility  of  translation  initiation  sites  strongly               
103 correlates  with  protein  abundance  across  species.  Interestingly,  our  findings  also  suggest  that              
104 the  Shine-Dalgarno  sequence   (Shine  and  Dalgarno,  1974)  at  −13:−8  should  be  accessible  to               
105 recruit   ribosomes.   
106   
107 Accessibility   predicts   the   outcome   of   recombinant   protein   expression   
108 We  investigated  how  accessibility  performs  in  the  real  world  in  prediction  of  recombinant  protein                
109 expression.  For  this  purpose,  we  analysed  11,430  expression  experiments  in   E.  coli  from  the                
110 ‘Protein  Structure  Initiative:Biology’  (PSI:Biology)   (Acton  et  al.,  2005;  Chen  et  al.,  2004;  Seiler  et                
111 al.,  2014) .  These  PSI:Biology  targets  were  expressed  using  the  pET21_NESG  expression             
112 vector   that   harbours   the    T7lac    inducible   promoter   and   a   C-terminal   His   tag    (Acton   et   al.,   2005) .   
113   
114 We  split  the  experimental  results  of  the  PSI:Biology  targets  into  protein  expression  'success'  and                
115 'failure'  groups  (N=8,780  and  2,650,  respectively;  see  Supplementary  Fig  S2).  These             
116 PSI:Biology  targets  span  more  than  189  species  and  the  failures  are  representative  of  various                
117 problems  in  heterologous  protein  expression.  Only  1.6%  of  the  targets  were   E.  coli  proteins,                
118 which   is   negligible   (N=179;   see   Supplementary   Fig   S2).   
119   
120 We  calculated  the  opening  energies  for  all  possible  sub-sequences  of  the  PSI:Biology  targets  as                
121 above  (Fig  2,  positions  relative  to  initiation  codons).  For  each  sub-sequence  region,  we  used  the                 
122 opening  energies  to  predict  the  expression  outcomes  and  computed  the  prediction  accuracy              
123 using  the  area  under  the  receiver  operating  characteristic  curve  (AUC;  see  Fig  2C).  A  closer                 
124 look  into  the  correlations  between  opening  energies  and  expression  outcomes,  and  AUC  scores               
125 calculated  for  the  sub-sequence  regions  reveals  a  strong  accessibility  signal  of  translation              
126 initiation  sites  (Fig  2B&C,  Cambray’s  GFP  and  PSI:Biology  datasets,  respectively).  We  matched              
127 the  correlations  and  AUC  scores  by  sub-sequence  regions  and  confirmed  that  sub-sequence              
128 regions  that  have  strong  correlations  are  likely  to  have  high  AUC  scores  (Fig  2D).  In  contrast,                  
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129 the  sub-sequence  regions  that  have  zero  correlations  are  not  useful  for  predicting  the               
130 expression   outcomes   (AUC   approximately   0.5).   
131   
132 We  then  asked  how  accessibility  manifests  in  the  endogenous  mRNAs  of   E.  coli ,  for  which  we                  
133 studied  a  proteomics  dataset  of  3,725   proteins  available  from  PaxDb   (Wang  et  al.,  2015) .  As                 
134 expected,  we  observed  a  similar  accessibility  signal,  with  the  region  −25:16  correlated  the  most                
135 with  protein  abundance  (Fig  2E).  However,  the  correlation  was  rather  low  (R=−0.17,              
136 P<2.2×10 −16 ),  which  may  reflect  the  limitation  of  mass  spectrometry  to  detect  lower  abundances               
137 (Nilsson  et  al.,  2010;  Tabb  et  al.,  2009) .  Furthermore,  the  endogenous  promoters  have  variable                
138 strength,  which  gives  rise  to  a  broad  range  of  mRNA  and  protein  levels   (Delvigne  et  al.,  2017;                   
139 Deuschle  et  al.,  1986) .  Taken  together,  our  results  show  that  the  accessibility  signal  of                
140 translation  initiation  sites  is  very  consistent  across  various  datasets  analysed  (Supplementary             
141 Fig   S1   and   Fig   2).   
142   
143 Accessibility   outperforms   other   features   in   prediction   of   recombinant   protein   expression   
144 To  choose  an  accessibility  region  for  subsequent  analyses,  we  selected  the  top  200  regions               
145 from  the  above  correlation  analysis  on  Cambray’s  dataset  (Fig  2B)  and  used  random  forest  to                 
146 rank  their  Gini  importance  scores  in  prediction  of  the  outcomes  of  the  PSI:Biology  targets.  The                 
147 region  −24:24  was  ranked  first,  which  is  nearly  identical  to  the  region  −23:24  with  the  top  AUC                   
148 score  (Fig  2C,  AUC=0.70).  We  therefore  used  the  opening  energy  at  the  region  −24:24  in                 
149 subsequent   analyses.   
150   
151 We  asked  how  the  other  features  perform  compared  to  accessibility  in  prediction  of               
152 heterologous  protein  expression,  for  which  we  analysed  the  same  PSI:Biology  dataset.  We  first               
153 calculated  the  minimum  free  energy  and  avoidance  at  the  regions  −30:30  and  1:30,  respectively.                
154 These  are  the  local  features  associated  with  translation  initiation  rate.  We  also  calculated  CAI                
155 (Sharp  and  Li,  1987) ,  tAI   (Tuller  et  al.,  2010) ,  codon  context  (CC)   (Ang  et  al.,  2016) ,  G+C                   
156 content,  and  Iχnos  scores   (Tunney  et  al.,  2018) .  CC  is  similar  to  CAI  except  it  takes  codon-pairs                   
157 into  account,  whereas  the  Iχnos  scores  are  translation  elongation  rates  predicted  using  a  neural                
158 network  model  trained  with  ribosome  profiling  data  (Supplementary  Fig  S3).  These  are  the               
159 global  features  associated  with  translation  elongation  rate.  We  built  a  random  forest  model  to                
160 rank  the  Gini  importance  scores  of  these  local  and  global  features.  The  local  features  ranked                 
161 higher  than  the  global  features  (Fig  3A).  We  then  calculated  and  compared  the  prediction                
162 accuracy  of  these  features.  The  AUC  scores  for  the  local  features  were  0.70,  0.67  and  0.62  for                   
163 the  opening  energy,  minimum  free  energy  and  avoidance,  respectively,  whereas  the  global              
164 features  were  0.58,  0.57,  0.54,  0.54  and  0.51  for  Iχnos,  G+C  content,  CAI,  CC  and  tAI,                  
165 respectively  (Fig  3B).  The  local  features  outperform  the  global  features,  suggesting  that  effects               
166 on  translation  initiation  are  a  major  predictor  of  the  outcome  of  heterologous  protein  expression.                
167 We  further  examined  the  local  G+C  contents  corresponding  to  the  local  features              
168 (Supplementary  Fig  S4).  The  G+C  contents  in  the  regions  −24:24  and  −30:30  weakly  correlate                
169 with  opening  energy  and  minimum  free  energy,  respectively.  The  AUC  scores  for  these  local                
170 G+C  contents  are  also  lower  than  the  corresponding  local  features,  suggesting  that  these  local                
171 G+C  contents  are  not  good  proxies  for  the  corresponding  local  features.  Overall,  our  findings                
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172 support  previous  reports  that  the  effects  on  translation  initiation  are  rate-limiting   (Kudla  et  al.,                
173 2009;  Tuller  and  Zur,  2015)  which,  interestingly,  correlate  with  the  binary  outcome  of               
174 recombinant  protein  expression  (Fig  3C).  Importantly,  accessibility  outperformed  all  other            
175 features.   
176   
177 To  identify  a  good  opening  energy  threshold,  we  calculated  positive  likelihood  ratios  for  different                
178 opening  energy  thresholds  using  the  cumulative  frequencies  of  true  negative,  false  negative,              
179 true  positive  and  false  positive  derived  from  the  above  receiver  operating  characteristic  (ROC)               
180 analysis  (Supplementary  Fig  S5,  top  panel).  Meanwhile,  we  calculated  the  95%  confidence              
181 intervals  of  these  positive  likelihood  ratios  using  10,000  bootstrap  replicates.  We  reasoned  that               
182 there  is  an  upper  and  lower  bound  on  translation  initiation  rate,  therefore  the  relationship               
183 between  translation  initiation  rate  and  accessibility  is  likely  to  follow  a  sigmoidal  pattern.  We  fit                 
184 the  positive  likelihood  ratios  into  a  four-parametric  logistic  regression  model  (Supplementary  Fig              
185 S5).  As  a  result,  we  are  95%  confident  that  an  opening  energy  of  10  kcal/mol  or  below  at  the                     
186 region  −24:24  is  about  two  times  more  likely  to  belong  to  the  sequences  which  are  successfully                  
187 expressed   than   those   that   failed.   
188   
189 Accessibility   can   be   improved   using   a   simulated   annealing   algorithm   
190 The  above  results  suggest  that  accessibility  can,  in  part,  explain  the  low  expression  problem  of                 
191 heterologous  protein  expression.  Therefore,  we  sought  to  exploit  this  idea  for  optimising  gene               
192 expression.  We  developed a  simulated  annealing  algorithm  to  maximise  the  accessibility  at  the               
193 region  −24:24  using  synonymous  codon  substitution  (see  Methods).  Previous  studies  have             
194 found  that  full-length  synonymous  codon-substituted  transgenes may  produce  unexpected           
195 results,  such  as  a  reduction  in  mRNA  abundance,  RNA  toxicity,  and/or  protein  misfolding               
196 (Ben-Yehezkel  et  al.,  2015;  Mittal  et  al.,  2018;  Tunney  et  al.,  2018;  Umu  et  al.,  2016) .  Therefore,                   
197 we  sought  to  determine  the  minimum  number  of  codons  required  for  synonymous  substitutions               
198 in  order  to  achieve  near-optimum  accessibility.  For  this  purpose,  we  used  the  PSI:Biology               
199 targets  that  failed  to  be  expressed.  We  applied  our  simulated  annealing  algorithm  such  that                
200 synonymous  substitutions  can  happen  at  any  codon  of  the  sequences  except  the  start  and  stop                 
201 codons,  although  the  changes  may  not  necessarily  happen  to  all  codons  due  to  the  stochastic                 
202 nature  of  our optimisation  algorithm  (see  Methods).  Next,  we  constrained  synonymous  codon              
203 substitution  to  the  first  14  codons  and  applied  the  same  procedure  (Supplementary  Fig  S6A).                
204 Therefore,  the  changes  may  only  occur  at  any  or  all  of  the  first  14  codons.  We  repeated  the                    
205 same  procedure  for  the  first  nine  and  also  the  first  four  codons.  Thus  a  total  of  four  series  of                     
206 codon-substituted  sequences  were  generated.  We  then  compared  the  distributions  of  opening             

207 energy  −24:24  for  these  series  using  the  Kolmogorov-Smirnov  statistic  (D KS ;  see  Supplementary              
208 Fig  S6B).  The  distance  between  the  distributions  of  the  nine  and  full-length  codon-substituted               
209 series  was  significantly  different  yet  sufficiently  close  (D KS =0.087,  P=3.3 10 -8 ),  suggesting  that          ×    

210 optimisation  of  the  first  nine  codons  is  sufficient  in  most  cases  to  achieve  an  optimum                 
211 accessibility  of  translation  initiation  sites.  We  named  our  software   T ranslation   I nitiation  coding              
212 region  des igner  (TIsigner),  which  by  default,  allows  synonymous  substitutions  in  the  first  nine               
213 codons.   
214   
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215 We  asked  to  what  extent  the  existing  gene  optimisation  tools  modify  the  accessibility  of                
216 translation  initiation  sites.  For  this  purpose,  we  first  submitted  the  PSI:Biology  targets  that  failed                
217 to  be  expressed  to  the  ExpOptimizer  web  server  from  NovoPro  Bioscience  (see  Methods).  We                
218 also  optimised  the  PSI:Biology  targets  using  the  standalone  version  of  Codon  Optimisation              
219 OnLine  (COOL)   (Chung  and  Lee,  2012) .  We  found  that  both  tools  increase  accessibility               
220 indirectly  even  though  their  algorithms  are  not  specifically  designed  to  do  so.  In  fact,  a  purely                  
221 random  synonymous  codon  substitution  on  these  PSI:Biology  targets  using  our  own  script              
222 resulted  in  similar  increases  in  accessibility  (Supplementary  Fig  S6C).  These  results  may              
223 explain  some  indirect  benefits  from  the  existing  gene  optimisation  tools  (i.e.  any  change  from                
224 suboptimal   is   likely   to   be   an   improvement,   see   below).   
225   
226 Low  protein  yields  can  be  improved  by  synonymous  codon  changes  in  the  vicinity  of                
227 translation   initiation   sites   
228 To  demonstrate  that  heterologous  protein  expression  is  tunable  with  minimum  effort,  we              
229 designed  and  tested  a  series  of  GFP  reporter  gene  constructs.  We  tested  29  plasmids                
230 harbouring  GFP  reporter  genes  with  synonymous  changes  within  the  first  nine  codons  (opening               
231 energies  of  5.56-21.68  kcal/mol;  Supplementary  Table  S2  and  Supplementary  Methods).  GFP             
232 expression  is  controlled  by  an  IPTG  inducible   T7lac  promoter.  In  addition,  all  plasmids  harbour  a                 
233 second  reporter  gene,  i.e.  mScarlet-I,  which  is  controlled  by  the  constitutive  promoter  from  the                
234 nptII   gene  for  aminoglycoside-3'-O-phosphotransferase  of   E.  coli  transposon  Tn5   (Bindels  et  al.,              
235 2017;  Schlechter  et  al.,  2018) .  mScarlet-I  expression  was  measured  to  correct  for  plasmid  copy               
236 number  and  as  a  proxy  for  bacterial  growth   (Schlechter  et  al.,  2020).  As  expected,  the  GFP                  
237 level  significantly  correlates  with  accessibility  (i.e.,  anti-correlates  with  opening  energy,            
238 R s =−0.53,  P=3.4×10 −3 ;  Fig  6A).  Curiously,  we  observed  a  diminishing  return  with  opening              
239 energies  lower  than  that  of  the  wild-type  sequence  (11.68  kcal/mol).  To  investigate  this,  we                
240 simulated  a  protein  production  experiment  by  modelling  cell  growth,  transcription,  translation,             
241 and  turnovers  (see  Methods).  We  assumed  that  opening  energies  of  12  kcal/mol  or  below  is                 
242 favourable  in  this  model,  based  on  our  analysis  of  8,780  PSI:Biology  'success'  group               
243 (Supplementary  Fig  S6).  Interestingly,  our   in  silico  coarse-grained  model  shows  a  similar  protein               
244 production   trend   as   the   actual   experiment   (Fig   6B).   
245   
246 We  then  tested  this  finding  using  the  luciferase  reporter  of   Renilla  reniformis  (RLuc).  Similarly,                
247 we  designed  a  series  of  RLuc  variants,  but  with  opening  energies  below  that  of  the  wild-type                  
248 sequence  (5.77-10.38  kcal/mol;  Fig  6C  and  Supplementary  Table  S2).  In  addition,  we  tested               
249 commercially  designed  sequences,  in  which  sequence  optimisations  were  performed  in            
250 full-length  rather  than  the  first  9  codons.  We  observed  that  TIsigner  (9.9  kcal/mol)  and                
251 commercially  optimised  luciferase  reporter genes  produced  significantly  higher  luminescence           
252 than  the  wild-type  (Fig  6C),  although  RLuc  is  poorly  soluble  in  the   E.  coli  host  (Supplementary                  
253 Fig  S8).  We  also  found  that  the  levels  of  wild-type  luciferase  and  many  variants  with  lower                  
254 opening   energies   (5-7   kcal/mol)   were   not   significantly   different.   
255   
256 As  both  wild-type  GFP  and  RLuc  genes  are  strongly  expressed  in   E.  coli ,  we  asked  whether                  
257 poorly  expressed  proteins  can  be  improved  by  increasing  accessibility  of  translation  initiation              
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258 sites.  We  performed  densitometric  analysis  of  previously  published  Western  blots,  which  include              
259 the  results  of  a  cell-free  expression  system  using  constructs  harbouring  a  wild-type  antibody               
260 fragment  or  archaebacterial  dioxygenase  and  its  synonymous  variants  (within  the  first  six              
261 codons)   (Voges  et  al.,  2004) .  Indeed,  variants  with  opening  energies  lower  than  the  wild-type                
262 sequences   were   expressed   at   higher   levels   (Fig   6D).   
263   
264 DISCUSSION   
265 Our  findings  show  that  the  accessibility  of  translation  initiation  sites  is  the  strongest  predictor  of                 
266 heterologous  protein  expression  in   E.  coli.  Whereas  previous  studies  have  largely  used              
267 minimum  free  energy  models  to  define  the  accessibility  of  a  region  of  interest   (Bhattacharyya  et                 
268 al.,  2018;  Nieuwkoop  et  al.,  2019;  Pelletier  and  Sonenberg,  1987;  Salis  et al.,  2009;  Voges  et                  
269 al.,  2004) .  However,  Terai  and  Asai  (2020)  and  ourselves  have  independently  discovered  that               
270 the  opening  energy  is  a  better  choice  for  modelling  accessibility   (Bhandari  et  al.,  2019;  Terai  and                  
271 Asai,  2020)  (see  Fig  1A  for  example).  Opening  energy  is  an  ensemble  average  energy  that                 
272 accounts  for  suboptimal  RNA  structures  that  are  not  reported  by  minimum  free  energy  models                
273 by  default   (Bernhart  et  al.,  2011;  Mückstein  et  al.,  2006) .  Currently,  the  modelling  of  accessibility                 
274 using  opening  energy  is  largely  used  for  the  prediction  of  RNA-RNA  intermolecular  interactions,               
275 for  example,  as  implemented  in  RNAup  and  IntaRNA   (Lorenz  et  al.,  2011;  Mann  et  al.,  2017) .                  
276 Our  study  has  shown  that  this  approach  can  be  used  to  identify  the  key  accessibility  regions  that                   
277 are  consistent  across  multiple  large  expression  datasets.  We  have  implemented  our  findings  in               
278 TIsigner  web  server,  which  currently  supports  recombinant  protein  expression  in   E.  coli  and   S.                
279 cerevisiae  (optimisation  regions  −24:24  and  −7:89,  respectively;  see  Fig  1).  An  independent  yet               
280 similar  implementation  is  available  in  XenoExpressO  web  server  with  the  purpose  of  optimising               
281 protein  expression  for  an   E.  coli  cell-free  system   (Zayni  et  al.,  2018) .  The  authors  showed  that                  
282 an  increase  in  accessibility  of  a  30  bp  region  from  the  Shine-Dalgarno  sequence  enhances  the                 
283 expression  level  of  human  voltage  dependent  anion  channel,  which  further  supports  our              
284 findings.   
285   
286 The  strengths  of  our  approaches  are  five-fold.  Firstly,  the  likelihood  of  success  or  failure  can  be                  
287 assessed  prior  to  running  an  experiment.  Users  can  compare  the  opening  energies  calculated               
288 for  the  input  and  optimised  sequences  and  the  distributions  of  the  'success'  and  'failure'  of  the                  
289 PSI:Biology  targets.  We  also  introduced  a  scoring  scheme  to  score  the  input  and  optimised                
290 sequences  based  upon  how  likely  they  are  to  be  expressed  (Supplementary  Fig  S5;  also  see                 
291 Methods). Secondly,  optimised  sequences  can  have  up  to  the  first  nine  codons  substituted  (by                
292 default),  meaning  that  gene  optimisation  using  a  standard  PCR  cloning  method  is  feasible.  For                
293 cloning,  we  propose  a  nested  PCR  approach,  in  which  the  final  PCR  reaction  utilises  a  forward                  
294 primer  designed  according  to  the  optimised  sequence   (Sambrook  and  Russell,  2001)            
295 (Supplementary  Fig  S6D).  Thirdly,  the  cost  of  gene  optimisation  can  be  reduced  dramatically  as                
296 gene  synthesis  is  replaced  with  PCR  using  our  approach.  This  enables  high-throughput  protein               
297 expression  screening  using  the  optimised  sequences,  generated  at  a  low  cost.  Fourthly,  tunable               
298 expression  is  possible,  i.e.  high,  intermediate  or  even  low  expression  5′  codon  sequences  can                
299 be  designed,  allowing  for  more  control  over  heterologous  protein  production,  as  demonstrated              
300 by  our  experiments  (Fig  4).  Finally,  our  fast,  lightweight,  coarse-grained  simulation  approach              
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301 has  opened  up  new  avenues  to  study  several  aspects  of  gene  expression,  such  as  transcription,                 
302 translation,  cellular  growth,  and  turnovers,  which  give  good  proxies  to  how  cellular  systems               
303 behave.   
304   
305 MATERIALS   AND   METHODS   
306 Sequence   features   analysis   
307 Datasets  used  in  this  study  are  listed  in  Supplementary  Table  S1.   Representative  sequences              
308 were  chosen  using  CD-HIT-EST   (Fu  et  al.,  2012;  Li  and  Godzik,  2006) .  Minimum  free  energies,                 
309 opening  energies  and  avoidance  were  calculated  using  RNAfold,  RNAplfold  and  RNAup  from              
310 ViennaRNA  package  (version  2.4.11),  respectively   (Bernhart  et  al.,  n.d.,  2011;  Bompfünewerer             
311 et  al.,  2008;  Hofacker  et  al.,  1994;  Lorenz  et  al.,  2016,  2011;  Mückstein  et  al.,  2006) .  RNAfold                   
312 was  run  with  default  parameters.  For  RNAplfold,  sub-sequences  were  generated  from  the  input               
313 sequences  to  calculate  opening  energies  (using  the  parameters  -W  210  -u  210).  For  RNAup,  we                 
314 examined  the  stochastic  interactions  between  the  region  1:30  of  each  mRNA  and  54  non-coding                
315 RNAs  (using  the  parameters  -b  -o).  RNAup  reports  the  total  interaction  between  two  RNAs  as                 
316 the  sum  of  energy  required  to  open  accessible  sites  in  the  interacting  molecules   and  the               GΔ u    

317 energy  gained  by  subsequent  hybridisation   (Mückstein  et  al.,  2006) .  For  the  interactions       GΔ h        

318 between  each  mRNA  and  54  non-coding  RNAs,  we  chose  the  most  stable  mRNA:ncRNA  pair  to                 
319 report  an  inappropriate  mRNA:ncRNA  interaction,  i.e.  the  pair  with  the  strongest  hybridisation              
320 energy,   .   ΔG ) ( h min   

321   
322 CAI,  tAI  and  CC  were  calculated  using  the  reference  weights  from  Sharp  and  Li   (Sharp  and  Li,                   
323 1987) ,  Tuller  et  al.   (Tuller  et  al.,  2010)  and  Ang  et  al.   (Ang  et  al.,  2016) ,  respectively.  Translation                    
324 elongation  rate  was  predicted  using  Iχnos (Tunney  et  al.,  2018)  trained  with  ribosome  profiling               
325 data   (SRR7759806   and   SRR7759807)    (Mohammad   et   al.,   2019) .   
326   
327 Coarse-grained   simulation   
328 Our  experiments  showed  a  diminishing  trend  on  protein  production  beyond  a  certain  opening               
329 energy  (Fig  4).  To  explain  this,  we  performed  a  coarse  grained  simulation  using  constructs  with                
330 increasing  opening  energy  on  a  simulated  cellular  system.  Despite  being  less  precise  than  fine                
331 grained  methods  such  as   ab  initio  and  molecular  dynamics,  coarse  grained  simulations  often               
332 give   similar   results,   with   an   added   advantage   of   being   scalable   to   very   large   systems.   
333   
334 To  set  the  simulation,  we  binned  the  opening  energies  between  2  and  32  in  intervals  of  two,  with                    
335 each  bin  representing  a  ‘reporter  plasmid  construct’  whose  opening  energy  is  the  mean  of  the                 
336 bin.  For  each  construct,  the  ‘technical  replicates’  were  generated  by  allowing  slight  variations  on                
337 the  mean  opening  energy  of  the  bin.  This  is  to  model  variation  between  replicates,  and  the                 
338 discrepancies  between  the  estimated  and  the  actual  opening  energies   in  vivo .  For  each  round  of                 
339 transcription, mRNA copies were randomly generated from 30 to 60 plasmid DNA copies
340 (Gomes  et  al.,  2020;  Held  et  al.,  2003;  Rosano  and  Ceccarelli,  2014) .  We  chose  an  optimum                  
341 opening  energy  of  12  kcal/mol  or  less  for  translation.  However,  this  is  probabilistic  which                
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342 occasionally  allowed  protein  production  from  higher  opening  energy  transcripts.  We  allowed             
343 mRNA   to   decay   probabilistically   when   a   mRNA   molecule   is   translated   for   more   than   10   rounds.   
344   
345 We  also  set  a  threshold  of  protein  tolerance  to  be  1,000,000  copies  where  the  copy  numbers  of                   
346 endogenous  proteins  are  usually  less  than  10,000   (Taniguchi  et  al.,  2010) ,  beyond  which  there                
347 is  a  sporadic  death  of  cells.  However,  in  this  simulation,  the  chances  of  staying  viable  and                  
348 reproducing  are  higher  than  death,  and  cells  grow  steadily.  This  threshold  also  simulated               
349 random   but   low   cell   deaths   in   the   experiment,   without   setting   an   extra   variable.   
350   
351 To  limit  the  computational  complexity,  our  coarse-grained  simulations  used  lower  constants  and              
352 iterations.  Initialising  with  100  cells,  the  algorithm  was  set  to  terminate  either  after  10,000                
353 iterations  or  when  the  total  number  of  cells  becomes  zero.  After  termination,  the  total  number  of                  
354 proteins  and  cells  for  each  construct  were  taken  from  the  endpoints.  To  imitate  ‘biological                
355 replicates’,  we  repeated  the  above  simulation  three  times  with  different  random  numbers,  which               
356 provides   slightly   different   initial   conditions   for   each   experiment.   
357   
358 TIsigner   development   
359 Finding  a  synonymous  sequence  with  a  maximum  accessibility  is  a  combinatorial  problem  that               
360 spans  a  vast  search  space.  For  example,  for  a  protein-coding  sequence  of  nine  codons,                
361 assuming  an  average  of  3  synonymous  codons  per  amino  acid,  we  can  expect  a  total  of  19,682                   
362 unique  synonymous  coding  sequences.  This  number  increases rapidly  with  increasing  numbers             
363 of  codons.  Heuristic  optimisation  approaches  are  preferred  in  such  situations  because  the              
364 search   space   can   be   explored   more   efficiently   to   obtain   nearly   optimal   solutions.     
365   
366 To  optimise  the  accessibility  of  a  given  sequence,  TIsigner  uses  a  simulated  annealing  algorithm                
367 (Brownlee,  2011;  Ingber,  2000;  Keith  et  al.,  2002;  Kirkpatrick  et  al.,  1983) ,  a  heuristic                
368 optimisation  technique  based  on  the  thermodynamics  of  a  system  settling  into  a  low  energy                
369 state  after  cooling.  Simulated  annealing  algorithms  have  been  used  to  solve  many  combinatorial               
370 optimisation  problems  in  bioinformatics.  For  example,  we  previously  applied  this  algorithm  to             
371 align  and  predict  non-coding  RNAs  from  multiple  sequences   (Lindgreen  et  al.,  2007) .  Other               
372 studies  use  this  algorithm  to  find  consensus  sequences   (Keith  et  al.,  2002) ,  optimise  ribosome                
373 binding  sites   (Salis  et  al.,  2009)  and  predict  mRNA  foldings   (Gaspar  et  al.,  2013)  using  minimum                  
374 free   energy   models.   
375   
376 According  to  statistical  mechanics,  the  probability   of  a  system  occupying  energy  state        pi         ,E i

377 with  temperature  follows  a  Boltzmann  distribution  of  the  form  ,  which  gives  a  set  of   ,T         e−E /Ti       

378 probability  mass  functions  along  every  point   in  the  solution  space.  Using  a  Markov  chain        i          

379 sampling,  these  probabilities  are  sampled  such  that  each  point  has  a  lower  temperature  than                
380 the previous one. As the system is cooled from high to low temperatures ( , the samples)T → 0

381 converge  to  a  minimum  of  ,  which  in  many  cases  will  be  the  global  minimum   (Keith  et  al.,      E              

382 2002) .  A  frequently  used  Markov  chain  sampling  technique  is  Metropolis-Hastings  algorithm  in              
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383 which  a  ‘bad’  move from  initial  state   such  that  ,  is  accepted  if  ,     E2    E1    E2 > E1     (0, ) p / pR 1 ≥  2 1  

384 where     is   a   uniformly   random   number   between   0   and   1.  (0, )R 1  

385   
386 In  our  implementation,  each  iteration  consists  of  a  move  that  may  involve  multiple  synonymous                
387 codon  substitutions.  The  algorithm  begins  at  a  high  temperature  where  the  first  move  is  drastic,                 
388 synonymous  substitutions  occur  in  all  replaceable  codons.  At  the  end  of  the  first  iteration,  a  new                 
389 sequence  is  accepted  if  the  opening  energy  is  smaller  than  that  of  the  input  sequence.  However,                  
390 if  the  opening  energy  of  a  new  sequence  is  greater  than  that  of  the  input  sequence,  acceptance                  
391 depends  on  the  Metropolis-Hastings  criteria.  The  accepted  sequence  is  used  for  the  next               
392 iteration,  which  repeats  the  above  process.  As  the  temperature  cools,  the  moves  get  milder  with                 
393 fewer  synonymous  codon  changes (Supplementary  Fig  S6A).  Simulated  annealing  stops  upon             
394 reaching   a   near-optimum   solution.     
395   
396 For  the  web  version  of  TIsigner,  the  default  number  of  replaceable  codons  is  restricted  to  the                  
397 first  nine  codons.  However,  this  default  setting  can  be  reset  to  range  from  the  first  four  to  nine                    
398 codons,  or  the  full  length  of  the  coding  sequence.  Since  the  accessibility  of  a  fixed  region  is                   
399 optimised,  this  process  only  takes  O(1)  time  (Supplementary  Fig  S7).  Furthermore,  TIsigner              
400 runs  multiple  simulated  annealing  instances,  in  parallel,  to  obtain  multiple  possible  sequence              
401 solutions.   
402   
403 When  users  select   T7lac  promoter  as  the  5′UTR,  they  can  adjust  ‘Expression  Score’,  that  is                 
404 calculated  based  on  the  PSI:Biology  dataset  (see  below).  This  allows  them  to  tune  the                
405 expression  level  of  a  target  gene.  In  contrast,  when  users  input  a  custom  5′UTR  sequence,  they                  
406 only   have   the   option   to   either   maximise   or   minimise   expression.   
407   
408 To  implement  ‘Expression  Score’,  the  posterior  probabilities  of  success  for  input  and  optimised               
409 sequences   are   evaluated   using   the   following   equations   from   Bayesian   statistics:   
410   
411 ositive posterior odds prior odds f itted positive likelihood ratiop =  ×  (1)   

412 ositive posterior probability p =  positive posterior odds
(1 + positive posterior odds) (2)   

413   
414 The  fitted  positive  likelihood  ratios  in  equation  (1)  were  obtained  from  the  following  4-parametric                
415 logistic   regression   equation:   
416   

417 f itted positive likelihood ratio d  =  +  a−d
1+( ) c

positive likelihood ratio b (3)   

418   
419 with  parameters  a,  b,  c,  and  d.  The  prior  probability  was  set  to  0.49,  which  is  the  proportion  of                     
420 ‘Expressed’  (N=21,046)  divided  by  ‘Cloned’  (N=42,774)  of  the  PSI:Biology  targets  reported  as  of               
421 28  June  2017  ( http://targetdb.rcsb.org/metrics/ ).  Posterior  probabilities  were  scaled  as           
422 percentages   to   score   the   input   and   optimised   sequences.   
423   
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424 The  presence  of  terminator-like  elements   (Chen  et  al.,  2013)  in  the  protein-coding  region  may                
425 result  in  expression  of  truncated  mRNAs  due  to  early  transcription  termination.  Therefore,  we               
426 implemented  an  optional  check  for  putative  terminators  in  the  input  and  optimised  sequences  by                
427 cmsearch  (INFERNAL  version  1.1.2)   (Nawrocki  and  Eddy,  2013)  using  the  covariance  models  of               
428 terminators  from  RMfam   (Gardner  and  Eldai,  2015;  Kalvari  et  al.,  2018) .  We  also  allow  users  to                  
429 filter  the  output  sequences  for  the  presence  of  restriction  sites. Restriction  modification  sites               
430 (AarI,   BsaI,   and   BsmBI)   are   avoided   by   default.   
431   
432 Besides   E.  coli ,  users  can  choose  S.  cerevisiae ,  M.  musculus  or  ‘Other’  as  the  expression  host.                  
433 The  regions  for  optimising  accessibility  are  −7:89,  −8:11  and  −24:89  for   S.  cerevisiae ,   M.                
434 musculus  and  ‘Other’,  respectively  (Fig  1  and  Supplementary  Fig  S1).  When  users  choose               
435 ‘Custom’   for   expression   host,   the   region   for   optimising   accessibility   becomes   customisable.   
436   
437 Sequence   optimisation   
438 We  submitted  the  PSI:Biology  targets  that  failed  to  be  expressed  (N=2,650)  to  the  ExpOptimizer                
439 web  server  from  NovoPro  Bioscience  ( https://www.novoprolabs.com/tools/codon-optimization ).        
440 A  total  of  2,573  sequences  were  optimised.  The  target  sequences  were  also  optimised  using  a                 
441 local  version  of  COOL   (Chung  and  Lee,  2012)  and  TIsigner  using  default  settings.  We  also  ran                  
442 a   random   synonymous   codon   substitution   as   a   control   for   these   2,573   sequences.   
443   
444 GFP   assay   
445 Plasmids  were  constructed  using  the  MIDAS  Golden  Gate  cloning  system  (Supplementary             
446 Methods)   (van  Dolleweerd  et  al.,  2018) .  BL21(DE3)pLysS  competent   E.  coli   cells  (Invitrogen)              
447 were  transformed  with  plasmids  and  grown  overnight  on  Luria-Bertani  (LB)  agar  plates              
448 containing  spectinomycin  (50  µg/ml)  and  chloramphenicol  (25  µg/ml).  Single  colonies  were             
449 picked  and  inoculated  into  3  ml  LB  broth  containing  the  same  antibiotics,  and  cultures  were                 
450 grown  for  18  hours  at  37°C,  200  rpm.  Cultures  were  diluted  with  fresh  media  at  1:20  and  grown                    
451 at  37°C,  200  rpm,  until  reaching  the  mid-logarithmic  growth  phase  (optical  densities  at  600  nm                 

452 (OD 600 )  of  ~0.3).  Of  each  culture,  20  µl  was  seeded  into  96-well  plates  containing  180  µl  LB                   
453 broth  supplemented  with  antibiotics  and  isopropyl-β-D  thiogalactopyranoside  (IPTG)  (1  mM  final             
454 concentration)  per  well.   Fluorescence  intensities  and  ODs  were  measured  in  a  black,  flat,  clear                
455 bottom  96-well  plate  with  lid  (CELLSTAR,  Greiner)  using  a  FLUOstar  Omega  plate  reader  (BMG                
456 Labtech)  equipped  with  an  excitation  filter  (band  pass  485-12)  and  an  emission  filter  (band  pass                 
457 520)  for  GFP  and  excitation  filter  (band  pass  484)  and  an  emission  filter  (band  pass  610-10)  for                  
458 mScarlet-I.  The  plate  was  incubated  at  3 7°C  with  “meander  corner  well  shaking”  at  300  rpm  for                  
459 7  hours  measuring  fluorescence  and  ODs  every  10  minutes.  Fluorescence  was  measured  in  a  2                 
460 mm  circle  recording  the  average  of  8  measurements  per  well.  Average  values  of  technical                
461 replicates  were  calculated  and  normalised  to  the  mScarlet-I  second  reporter,  and  then  to  the                
462 normalised  value  of  the  GFP  variant  with  the  highest  opening  energy (21.68  kcal/mol).               
463 Normalised  fluorescence  values  were  obtained  from  the  average  values  of  biological  replicates              
464 (Supplementary   Table   S2).   
465   
466 Luciferase   assay   
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467 BL21Star(DE3)  competent  cells  (Invitrogen)  were  transformed  with  plasmids  and  grown            
468 overnight  at  37°C  on  LB  agar  plates  containing  50  µg/ml  spectinomycin.  Single  colonies  were                
469 picked  and  inoculated  into  5  ml  LB  broth  (50  µg/ml  spectinomycin)  and  grown  for  18  hours  at                   
470 37°C,  200  rpm.  Bacterial  cultures  were  diluted  with  fresh  media  at  1:20  and  grown  at  37°C,  200                   

471 rpm,  up  to  a  mid-logarithmic  phase  (OD 600  of  ~0.4).  The  cultures  were  split  and  induced  with                 
472 IPTG  at  a  final  concentration  of  0.25  mM  (or  uninduced  as  controls),  and  seeded  into  a  white,                   
473 flat,  clear  bottom  96-well  white  plate  with  lid  (Costar,  Corning),  150 µl  per  well,  in  triplicates.                  
474 Cells  were  incubated  in  a  FLUOstar  Omega  Microplate  Reader  (BMG LABTECH)  for  90  minutes                

475 at  25°C,  200  rpm,  and  OD 600  was  measured  every  15  minutes  (over  7  cycles).  Cells  were                  
476 harvested  by  centrifugation  at  3000  ×g,  for  10  minutes,  at  20°C.  Supernatants  were  removed.                
477 As  the  substrate  can  penetrate  into  cells,  50  µl  of coelenterazine  h  (Promega)  was  added  to                  
478 living  cells  to  minimise  sample  processing  steps  and  variability   (Fuhrmann  et  al.,  2004;  Lorenz                

479 et  al.,  1996) .  Luminescence  was  measured  (λ em  =  475  nm)  in  a  Clariostar  microplate  reader                 
480 (BMG  LABTECH)  at  25°C  every  2  minutes  (over  11  cycles). Average  values  of  technical                
481 replicates  were  calculated  and  normalised  to  the  wild-type.  Normalised  luminescence  values            
482 were   obtained   from   the   average   values   of   biological   replicates   (Supplementary   Table   S2).   
483   
484 Statistical   analysis   
485 AUC  and  Gini  importance  scores  were  calculated  using  scikit-learn  (version  0.20.2)   (Pedregosa              
486 et  al.,  2011) .  The  95%  confidence  intervals  for  AUC  scores  were  calculated  using  DeLong’s                
487 method   (DeLong  et  al.,  1988) . Spearman’s  correlation  coefficients  and  Kolmogorov-Smirnov            
488 statistics  were  calculated  using  Pandas  (version  0.23.4)   (McKinney,  2010)  and  scipy  (version              
489 1.2.1)   (Millman  and  Aivazis,  2011;  Oliphant,  2007) ,  respectively.  Positive  likelihood  ratios  with            
490 95%  confidence  intervals  were  calculated  using  the  bootLR  package   (Marill  et  al.,  2017;  R  Core                
491 Team,  2019) .  The  P-values  of  multiple  testing  were  adjusted  using  Bonferroni's  correction  and               
492 reported  to  machine  precision.  Plots  were  generated  using  Matplotlib  (version  3.0.2)             
493 (“Matplotlib:  A  2D  Graphics  Environment  -  IEEE  Journals  &  Magazine,”  n.d.)  and  Seaborn               
494 (version   0.9.0)    (Waskom   et   al.,   2018) .     
495   
496 Code   and   data   availability   
497 Our  code  and  data  can  be  found  in  our  GitHub  repository             
498 ( https://github.com/ Gardner-BinfLab/TIsigner_paper_2019 ).  These  include  the  scripts  and        
499 Jupyter  notebooks  to  reproduce  our  results  and  figures.  The  source  code  of  TIsigner  is  available                 
500 at   https://github.com/Gardner-BinfLab/TISIGNER-ReactJS .  The  public  web  version  of  this  tool           
501 runs  at   https://tisigner.com/tisigner .  The  experimental  data,  analysis  and  results  are  available  at              
502 https://github.com/bkb3/TIsignerExperiment/tree/master/Jupyter  and  an  interactive  version  of        
503 results   are   available   at    https://bkb3.github.io/TIsignerExperiment/ .   
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789 Figures   
790 Fig  1.  Correlations  between  the  opening        
791 energies  of  translation  initiation  sites  and        
792 protein  abundance  are  stronger  than  that  of         
793 minimum  free  energy.   (A)  For   E.  coli ,  the         
794 opening  energy  at  the  region  −30:18  shows  the         
795 strongest  correlation  with  protein  abundance       
796 (also  see  Fig  2B  or  Supplementary  Fig  S1A,          
797 sub-sequence  l=48  at  position  i=18).  For  this         
798 analysis,  we  used  a  representative  GFP        
799 expression  dataset from  Cambray  et  al.  (2018).         
800 The  reporter  library  consists  of  GFP  fused         
801 in-frame  with  a  library  of  96-nt  upstream         
802 sequences  (N=14,425).  The  minimum  free       
803 energy  −30:30  shown  was  determined  by        
804 Cambray  et  al.  (right  panel).   (B)  For   S.          
805 cerevisiae ,  the  opening  energy  −7:89  shows        
806 the  strongest  correlation  with  protein       
807 abundance  (also  see  Supplementary  Fig  S1B,        
808 sub-sequence  l=96  at  position  i=  89).  For  this          
809 analysis,  we  used  the  YFP  expression  dataset         
810 from  Dvir  et  al.  (2013).  The  YFP  reporter  library           
811 consists  of  2,041  random  decameric       
812 nucleotides  inserted  at  the  upstream  of  YFP         
813 start  codon.  The  minimum  free  energy  −15:50         
814 was  previously  shown  to  correlate  the  best  with          
815 protein  abundance  (right  panel).   (C)  For   M.         
816 musculus ,  the  opening  energy  −8:11  shows  the         
817 strongest  correlation  with  protein  abundance       
818 (also  see  Supplementary  Fig  S1C,       
819 sub-sequence  l=19  at  position  i=11).  For  this         
820 analysis,  we  used  the  GFP  expression  dataset         
821 from  Noderer  et  al.  (2014).  The  GFP  reporter          
822 library  consists  of  65,536  random  hexameric        
823 and  dimeric  nucleotides  inserted  at  the       
824 upstream  and  downstream  of  GFP  start  codon,         
825 respectively.  The  minimum  free  energy  −30:30        
826 was  shown  (right  panel).  See  also        

827 Supplementary  Table  S1.  R s ,  Spearman’s  rho.        
828 Bonferroni  adjusted  P-values  are  below       
829 machine’s  underflow  level  for  the  correlations        
830 between   opening   energies   and   protein   abundances   shown   in   the   left   panels.   
831   
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832 Fig  2.  Opening  energies  of  regions  surrounding         
833 the  Shine-Dalgarno  and  start  codons  are        
834 predictive  of  protein  expression  in   E.  coli .  (A)          
835 Schematic  representation  of  a  transcript       
836 sub-sequence  l  at  position  i  for  the  calculation  of           
837 opening  energy.  For  example,  sub-sequence  l=10        
838 at  position  i=10  corresponds  to  the  region  1:10.   (B)           
839 Correlation  between  the  opening  energies  for  the         
840 sub-sequences  of  GFP  transcripts  and  protein        
841 abundance.  The  opening  energy  at  the  region  −30          
842 to  18  nt  (sub-sequence  l=48  at  position  i=18,  green           
843 crosshair)  shows  the  strongest  correlation  with        

844 protein  abundance  [R s =−0.65;  N=14,425,  GFP       
845 expression  dataset  of  Cambray  et  al.  (2018)].  For          
846 this  dataset,  the  reporter  plasmid  used  is  pGC4750,          
847 in  which  the  promoter  and  ribosomal  binding  site          
848 are  oFAB1806  inducible  promoter  and       
849 oFAB1173/BCD7,  respectively.   (C)  Prediction     
850 accuracy  of  the  expression  outcomes  of  the         
851 PSI:Biology  targets  using  opening  energy       
852 (N=11,430).  The  opening  energy  at  the  region        
853 −23:24  (sub-sequence  l=47  at  position  i=24,  green         
854 crosshair)  shows  the  highest  prediction  accuracy        
855 score  (AUC=0.70).  For  this  dataset,  the  expression         
856 vector  used  is  pET21_NESG,  in  which  the  promoter          
857 and  fusion  tag  are  T7lac  and  C-terminal  His  tag,           
858 respectively.   (D)  Comparison  between  the       
859 correlations  and  AUC  scores  by  sub-sequence        
860 region  taken  from  the  above  analyses.  The         
861 sub-sequence  regions  that  have  strong  correlations        
862 are  likely  to  have  high  AUC  scores,  whereas  the           
863 sub-sequence  regions  that  have  no  correlations  are         
864 likely  not  useful  in  prediction  of  the  expression          
865 outcomes.   (E)  Correlation  between  the  opening        
866 energies  for  the  sub-sequences  of   E.  coli         
867 transcripts  and  protein  abundance.  The  transcripts        
868 used  for  this  analysis  are  protein-coding  sequences         
869 concatenated  with  50  and  10  nt  located  upstream          
870 and  downstream,  respectively.  The  opening  energy        
871 at  the  region  −25:16  (sub-sequence  l=41  at  position          

872 i=16,  green  crosshair)  shows  the  strongest  correlation  with  protein  abundance  (R s =−0.17;             

873 N=3,725,  PaxDb  integrated  proteomics  dataset).  See  also  Supplementary  Table  S1.  R s ,             
874 Spearman’s   rho.   
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875

  
876   
877 Fig  3.  Accessibility  of  translation  initiation  sites  is  the  strongest  predictor  of              
878 heterologous  protein  expression  in   E.  coli .   (A)  mRNA  features  ranked  by  Gini  importance  for                
879 random  forest  classification  of  the  expression  outcomes  of  the  PSI:Biology  targets  (N=8,780  and               
880 2,650,  ‘success’  and  ‘failure’  groups,  respectively).  The  features  associated  with  translation             
881 initiation  rate  (purple;  opening  energy  −24:24,  minimum  free  energy  −30:30,  and  mRNA:ncRNA             
882 avoidance  1:30)  have  higher  scores  than  the  feature  associated  with  translation  elongation  rate               
883 [blue;  tRNA  adaptation  index  (tAI),  codon  context  (CC),  codon  adaptation  index  (CAI),  G+C               
884 content  (%),  and  Iχnos].  The  Iχnos  scores  are  translation  elongation  rates  predicted  using  a                
885 neural  network  model  trained  with  ribosome  profiling  data  (Supplementary  Fig  S3).   (B)  ROC               
886 analysis  shows  that  accessibility  (opening  energy  −24:24)  has  the  highest  classification             
887 accuracy.  The  AUC  scores  with  95%  confidence  intervals  are  shown.  See  also  Supplementary               
888 Table  S1.   (C)  Accessibility  (opening  energy  −24:24)  is  the  best  feature  in  explaining  the                
889 expression  outcomes.  Relationships  between  the  features  and  expression  outcomes           
890 represented   as   squared   Spearman’s   rho   (R s 

2 ).   
891   
892   
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893

  
894 Fig  4.  The  yields  of  heterologous  protein  productions  are  tunable  by  synonymous  codon               
895 changes  in  the  first  nine  codons.  (A)  GFP  level  strongly  correlates  with  accessibility,  i.e.,                
896 anti-correlates  with  opening  energy  (R s =−0.53,  P=3.4×10 −3 ;  N=29).  The  protein  levels  of  GFP,              
897 Renilla  luciferase  (RLuc),  an  antibody  fragment  and  an  archaebacterial  dioxygenase  were             
898 transformed  using  z-score  method.  The  GFP  and  RLuc  levels  were  derived  from  the  average                
899 values  of  at  least  two  and  three  independent  biological  replicates,  respectively.  Black  outlines               
900 denote  wild-type  sequences.   (B)  Coarse-grained  simulation  of  a  protein  production  experiment             
901 by  modelling  cell  growth,  transcription,  translation,  and  turnovers,  given  that  translation  initiation              
902 sites  with  opening  energies  less  than  or  equal  to  12  kcal/mol  is  optimum.  The   in  silico  model                   
903 shows  a  similar  trend  of  protein  production  as  the  wet-lab  experimental  results.  Unfilled  and                
904 filled  (purple)  circles  denote  the   in  silico  replicates  and  their  corresponding  average  values,               
905 respectively  (R s =−0.75,  P=2.8×10 −9 ).   (C)  The  expression  of  RLuc  can  be  improved,  despite  its               
906 poor  solubility  in   E.  coli  (Supplementary  Fig  S8).  Opening  energies  are  shown  next  to  labels.                 
907 The  luciferase  activities  of  commercially  designed  RLuc  reporter  genes  (full-length  sequence             
908 optimisation)  and  TIsigner  (9.9  kcal/mol)  are  significantly  higher  than  the  wild-type  luciferase              
909 (Mann-Whitney  U  tests,  P=9.1×10 −3 ).  No  significant  differences  were  observed  between  the             
910 commercial  designs  and  TIsigner  (9.9  kcal/mol).  Error  bars  denote  standard  deviation  of  three               
911 independent  biological  replicates.   (D)  Densitometric  analysis  of  previously  published  Western            
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912 blots  shows  that  the  yields  of  an  antibody  fragment  and  an  archaebacterial  dioxygenase  can  be                 
913 improved  by  synonymous  codon  changes  within  the  first  six  codons   (Voges  et  al.,  2004) .  A  RTS                  
914 E.  coli  cell-free  expression  system  was  used.  The  processed  data  are  available  Supplementary               

915 Table   S2.   AU,   arbitrary   unit;   R s ,   Spearman’s   rho;   WT,   wild-type.   
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