

“improv: A flexible software platform for neuroscience.” Draelos et al. 2021

 10

Fig. 3 | Performance & benchmarking of "#$%&'.

a, improv parallelizes operations wherever possible. Real-time fluorescence image preprocessing, analysis, and
visualization can be performed by improv in a total cycle time well below the time budget of 33 ms for data
acquisition at 30 Hz. Executing each process in a standard offline processing sequence exceeds this benchmark,
rendering online analysis impossible. Error bars show standard deviation for total average cycle times.

b, Timestamps for acquisition and preprocessing show stable processing time per frame. While some frames
take longer than others to process (inset) the difference in data acquired and data processed does not
accumulate.

c, Processing time per frame does not appreciably increase throughout the experiment. Even if frames are
dropped or corrupted, actors can resume processing when data acquisition recovers.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 23, 2021. ; https://doi.org/10.1101/2021.02.22.432006doi: bioRxiv preprint

“improv: A flexible software platform for neuroscience.” Draelos et al. 2021

 11

Methods and Supplemental Information

A. Improv configuration

Configuration in improv is streamlined and simple, requiring only that a user define (1) what processing

steps (i.e., actors) are part of the pipeline, and (2) in what order they should be executed. The pipeline definition

is lightweight: DAGs are specified by text-based configuration files with two sections (Supplementary Fig. S1):

In the first section, actors are specified by the names of their respective Python classes, with any additional

information passed as keyword arguments to class constructors. In the second section, connections among

actors are specified by listing the consumers for each actor's outputs. On startup, improv handles construction

for each of these queues and links them with their respective actors. improv can handle both single and multiple

output queues.

Importantly, all instantiation, memory-sharing, execution flow, and logging are handled by improv,

leaving the user free to focus on code within an actor. Furthermore, any Python code (or code executable in a

Python environment) is acceptable within an actor: we do not supply a library of functions or require that a user

follow particular implementation. Thus, almost anything a user wants to compute or run within an actor is

available, including integration with other software tools (see below, section G).

Figure S1b illustrates this for a simple MeanAnalysis class. Here, users define the run method, which

receives a data store ID, called the key, from the input queue, uses it to retrieve the datum (in this example, an

array, called estimates, of neural activity estimates), computes single-neuron and population activity averages,

and places the results back into the data store. The keys to identify those results are then published in the

supplied output queue self.q_out. In our example pipeline, these are retrieved for display by the visual actor

(the graphical user interface; see section I).

improv only specifies the semantics of data pipelines, freeing users from the need to manage

implementation details. This is facilitated by two key components: a shared, in-memory data store, discussed

above, and a central controller program, dubbed Nexus. Once users have defined each processing step in the

pipeline and the dependency relationships between them, Nexus is responsible for the actual orchestration of

experiments. At runtime, Nexus instantiates each actor, configures information and execution flow, and handles

both error signaling and user interactions. On startup, it takes in a list of desired actors and associated attributes

from the configuration file, instantiates each class, and provides it access to the shared data store. improv's user

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 23, 2021. ; https://doi.org/10.1101/2021.02.22.432006doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.22.432006
http://creativecommons.org/licenses/by-nc-nd/4.0/

“improv: A flexible software platform for neuroscience.” Draelos et al. 2021

 12

contract is thus both extensible and simple: users write custom Python classes for any new analyses they

require, but they do not need to know the internals of classes implementing other pipeline steps.

Once the experimental pipeline is started, Nexus executes each class in a separate process and monitors

its progress. Each process corresponding to an actor is kept alive continuously, waking as data become available

in its input queue. In this way, the system leverages concurrency to overcome delays due to serial processing or

input/output overhead. Communication is handled asynchronously, using a custom class combining Python's

asyncio and multiprocessing libraries. As a result, the entire pipeline is robust to failures: no one actor or

internal task can suspend the system, which would effectively cause the experiment to terminate. In addition,

each object placed into the data store and every parameter change can be logged to disk, effectively creating a

snapshot of the system state at each moment in the experiment. This ensures a robust audit trail, such that any

data or associated analysis can be reproduced by later offline analyses.

B. Zebrafish

For all experiments, we used 6 days post-fertilization (dpf) zebrafish in a nacre -/- (also known as mitfa-/-)

background; nacre -/- mutants lack dark skin pigmentation but retain wild-type eye pigmentation, vastly

increasing imaging quality across the brain while maintaining normal visual functioning. Adult zebrafish were

maintained on a 14 hrs. light /10 hrs. dark cycle and fertilized eggs were collected and raised at 28.5 °C.

Embryos were kept in E3 solution (5 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl2, 0.33 mM MgSO4). All

experiments were approved by Duke University’s standing committee on the use of animals in research and

training. All new imaging experiments in this study were performed on transgenic zebrafish

Tg(elavl3:GCaMP6s) a generous gifts from Dr. Misha Ahrens (Vladimirov, 2014).

C. Two-photon imaging

In vivo two-photon fluorescence imaging was performed using a custom-built two-photon laser-scanning

microscope, equipped with a pulsed Ti-sapphire laser tuned to 950 nm (Spectra Physics, USA). In order to

minimize movement artifacts, larvae were embedded in low melting point agarose (2% w/v). However, their

tails were freed to allow for observation of behavioral responses. In addition, viability monitoring was

supplemented by observing the heartbeat and blood flow through brain vasculature before and after imaging.

All data acquisition were performed using custom Labview and Python codes (National Instruments, USA).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 23, 2021. ; https://doi.org/10.1101/2021.02.22.432006doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.22.432006
http://creativecommons.org/licenses/by-nc-nd/4.0/

“improv: A flexible software platform for neuroscience.” Draelos et al. 2021

 13

Typically, the images were obtained in raster scanning mode with 512x512 pixels scanned at 400 kHz, and frames

were acquired at 3.6 Hz. Visual stimuli were projected from below with the red LED of a DLP projector (AAXA

Technologies P300), which allowed for simultaneous visual stimulation and detection of green fluorescence. Full

contrast square wave gratings drifting in 8 directions moving at 1 mm/cm for 8.5 seconds were interleaved in

duration. Details for previously acquired data shown in Fig. 2 can be found in (Naumann, 2016).

The integration of improv into this experimental setup required only a method for transferring streaming

data from the acquisition system to our analysis system in real time. We ran improv on a separate computer,

but in general a separate computer is not required, and analysis can be done on the same machine. While many

networking solutions exist, we chose to use ZeroMQ, a widely used universal messaging library that has

interfaces in many languages, including Python and LabVIEW. Images obtained in LabVIEW were thus directly

streamed via ZeroMQ to our Acquirer actor in Python. Similarly, messages and timestamps for the visual

stimulus being displayed were also streamed directly from the Python script running the visual stimuli to the

same Acquirer actor. And with improv’s flexibility, should we want to run a simulated experiment using data

streamed from disk (rather than live via ZeroMQ), only the Acquirer actor would need to be changed, leaving

the rest of the pipeline intact.

D. Two-photon calcium fluorescence analysis

Spatial and temporal traces were extracted from the calcium images using the CaImAn Online algorithm

within CaImAn (Giovannucci, 2019), modified with custom code to allow for single frame-by-frame processing

of incoming data streams without prespecifying the data length. Parameters supplied to CaImAn Online for

motion correction and source extraction are specified in a configuration file to the preprocessing actor and are

available in our codebase. Our analyses utilized both the estimated fluorescence traces as well as the extracted

spike counts for subsequent model fitting. Extracted spatial traces were used for visualization in the user

interface (Supplementary Fig. S4) with openCV to fill in and color each neuron by its responses to visual stimuli.

 To compute each neuron’s responses to visual stimuli, a running mean was kept for the responses to

each of the 8 directions of grating drift. A window of 10 frames prior to onset of each stimulus was used for

baseline subtraction, and a window of 15 frames was used to compute an average response after the onset of

each stimulus. These average responses were then used with a custom coloring scheme to visually label

directional tuning in the graphical user interface (Fig. 2a, see arrow wheel for color code).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 23, 2021. ; https://doi.org/10.1101/2021.02.22.432006doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.22.432006
http://creativecommons.org/licenses/by-nc-nd/4.0/

“improv: A flexible software platform for neuroscience.” Draelos et al. 2021

 14

E. LNP model fitting

We used a form of the well-known linear-nonlinear-Poisson model to estimate functional connections

among all observed neurons. Our generalized linear model included terms for: (1) the stimulus responses, simply

modeled as a vector of length 8 corresponding to the current stimuli, without using any spike-triggered averages

(STA); (2) the self-history effect, modeled using a history vector of activity up to 4 frames prior to the current

frame; and (3) weighted functional connections to all other neurons, modeled using the prior frame activity

information. An exponential nonlinear term was used to compute firing rates.

To fit this model online, we used stochastic gradient descent with windows of data ranging from 10 –

100 frames of prior data held in memory. Step sizes were chosen based on data, but in general a value of 1e-5

was used successfully. For visualization purposes, each neuron’s top 10 connections (determined by magnitude)

were sorted and displayed in the graphical user interface as both a matrix (right) and green lines (center, if a

neuron is selected).

F. Benchmarking

Our example implementation has been tested on three main computers: (1) a 2015 Macbook laptop

with 8 GB of RAM and a 2 core 2.2 GHz Intel i7 processor; (2) a 2018 custom-built (total cost < $4k) Ubuntu

desktop machine with 128 GB of RAM and a 14 core 3.1 GHz Intel i9 processor; and (3) a 2019 custom-built (<

$4k) Windows desktop machine with the same specifications as (2). All benchmarking data presented in the

main text were taken from (2). The software has been confirmed to be operational with all major operating

systems (Windows 10, Ubuntu, Mac OS X).

G. Interoperability with other tools

While improv represents the only fully extensible tool dedicated in the online setting, there are a host of

excellent tools available for offline analysis, as well as two that offer some online functionality (Table S1). As a

first step toward integration with these tools, we have implemented proof-of-concept interfaces between

improv and both Suite2p (via its Python command-line interface) and ScanBox (via the MATLAB execution

environment) (Supplementary Fig. S2).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 23, 2021. ; https://doi.org/10.1101/2021.02.22.432006doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.22.432006
http://creativecommons.org/licenses/by-nc-nd/4.0/

“improv: A flexible software platform for neuroscience.” Draelos et al. 2021

 15

Other pipeline or workflow generating software packages have also tackled this problem of efficient

pipelining, even specifically for the neuroscience community (Gorgolewski, 2011). Our system by contrast does

not attempt to directly bundle collections of applications for a multi-use toolbox, but instead is a lightweight

scaffolding approach that provides containers (actors) to accommodate most any application the user needs.

This also ensures our code does not fall into maintenance traps, but rather easily enables updates or adding

new functionality.

H. Julia computations

Both Python and Julia have packages designed for interfacing with one another. Using the Python

package PyJulia, we can compile and execute a piece of Julia code from within a Python program. Combining

this with the Julia package PyCall to do the reverse, we can flexibly transfer data from improv to Julia for quick

analysis (e.g., gradient descent of an LNP model) and transfer the results back into improv once again. Notably,

this transfer between languages can be accomplished with time-efficient no-copy wrappers if using NumPy

arrays. For an example implementation using Julia see the julia branch at github.com/pearsonlab/improv.

I. Graphical interface

For our specific experimental integration of improv with a two-photon calcium imaging setup, we also

constructed a simple graphical user interface (GUI) to provide user control and real-time updates of all images

and analyses (Supplementary Fig. S4). For the paradigm described in the main text, we plot fluorescence or

extracted spikes as a function of the last 500 frames (scrolling window) for both the population average and a

user-selected neuron. Response profiles are plotting as circular tuning curves adjacent to those line plots. Below,

raw images acquired from the setup are shown to the left, and the processed and analyzed frame is shown to

the right. Neurons in the processed frame are colored by their tuned responses and can be selected via mouse

click by a user to display its data above. On the right side we display the online results of the LNP model fit. The

top plot shows the negative log-likelihood function being minimized as more frames are analyzed, and the

bottom plot displays the inferred weight matrix of connections among the top 10 most connected neurons.

Again, by selecting a neuron in the center processed frame plot, the connections associated with that neuron

are displayed as green lines.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 23, 2021. ; https://doi.org/10.1101/2021.02.22.432006doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.22.432006
http://creativecommons.org/licenses/by-nc-nd/4.0/

“improv: A flexible software platform for neuroscience.” Draelos et al. 2021

 16

Supplemental Figures and legends

Fig. S1 | Code examples

a, Example configuration file defining a set of actors and a set of connections. Actors are defined by Python
classes. Connections form a directed, acyclic graph, specified by listing the children of each actor node.

b, Example class file defining an actor whose operation computes mean activity. The run method fetches data
from the store based on keys passed from other actors; processes these data using custom Python code; and
places the results into the data store.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 23, 2021. ; https://doi.org/10.1101/2021.02.22.432006doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.22.432006
http://creativecommons.org/licenses/by-nc-nd/4.0/

“improv: A flexible software platform for neuroscience.” Draelos et al. 2021

 17

Table S1 | Comparisons to other tools

Comparison of software platforms for calcium image processing. Only CaImAn offers end-to-end online
preprocessing, and it does no subsequent online analysis. Our platform improv fills this gap and offers easy
extensibility and compatibility with many other tools.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 23, 2021. ; https://doi.org/10.1101/2021.02.22.432006doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.22.432006
http://creativecommons.org/licenses/by-nc-nd/4.0/

“improv: A flexible software platform for neuroscience.” Draelos et al. 2021

 18

Fig. S2 | Frame lag over 24 hours.

Total frame lag, the time between processing one frame and acquiring the next frame, shown over more than
24 hours running continuously. On average, there is less than 1 frame of total lag even after running for more
than a day, demonstrating the robustness and feasibility of streaming calcium data analysis.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 23, 2021. ; https://doi.org/10.1101/2021.02.22.432006doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.22.432006
http://creativecommons.org/licenses/by-nc-nd/4.0/

“improv: A flexible software platform for neuroscience.” Draelos et al. 2021

 19

Fig. S3 | Integration with other tools.

a, improv can use suite2p for analysis by using our own batch_processor actor that calls suite2p via its Python
interface. Outputs from suite2p are saved to disk and read back into improv’s data store for further
processing.

b, improv can be used to analyze data acquired by ScanBox via our ext_acquirer actor to monitor the memory-
mapped (mmap) file used by ScanBox to write data to disk. When needed, it can access these data by calling
MATLAB from Python via the MATLAB engine.

A

B

improv Platform suite2p (Python)

ScanBox (MATLAB)

suite2p.run_s2p

output.tiff

batch_processor call suite2p

retrieve result

improv Platform

file.mmap

acquire frame
ext_acquirer monitor output

MATLAB
engine

get frame

convert
frame

1

2

1

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 23, 2021. ; https://doi.org/10.1101/2021.02.22.432006doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.22.432006
http://creativecommons.org/licenses/by-nc-nd/4.0/

“improv: A flexible software platform for neuroscience.” Draelos et al. 2021

 20

Fig. S4 | Example Graphical User Interface.

Top, left controls serve to configure, run, or pause the experiment. Extracted neural activity or spike trains for
both the population average and for user-selected neurons are displayed in real time alongside their polar
tuning curves.

Bottom, raw and processed images are displayed in real time. Processed images include colored neurons
based on their directional tuning curves, and each identified neuron can be selected (via mouse click) to
display their neural activity and tuning curve above, and green lines show their inferred functional
connections.

Right, the model fit (negative log-likelihood) and weight matrix are displayed in real time. The top 10 neurons
with the most connections (rows) and their top connections (columns) are dynamically ordered for
visualization in the matrix, colored by absolute magnitude of the strength of the connection.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 23, 2021. ; https://doi.org/10.1101/2021.02.22.432006doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.22.432006
http://creativecommons.org/licenses/by-nc-nd/4.0/

“improv: A flexible software platform for neuroscience.” Draelos et al. 2021

 21

References

Ahrens, Misha B., Michael B. Orger, Drew N. Robson, Jennifer M. Li, and Philipp J. Keller. "Whole-brain
functional imaging at cellular resolution using light-sheet microscopy." Nature methods 10, no. 5 (2013): 413-
420.

Apache Arrow, arrow.apache.org.

Bezanson, Jeff, Stefan Karpinski, Viral B. Shah, and Alan Edelman. "Julia: A fast dynamic language for technical
computing." arXiv 1209.5145 (2012).

Bolus, Michael F., Adam A. Willats, Christopher J. Rozell, and Garrett B. Stanley. "State-space optimal feedback
control of optogenetically driven neural activity." Journal of Neural Engineering (2020).

dal Maschio, Marco, Joseph C. Donovan, Thomas O. Helmbrecht, and Herwig Baier. "Linking neurons to
network function and behavior by two-photon holographic optogenetics and volumetric imaging." Neuron 94,
no. 4 (2017): 774-789.

Deisseroth, Karl, and Mark J. Schnitzer. "Engineering approaches to illuminating brain structure and
dynamics." Neuron 80, no. 3 (2013): 568-577.

Friedrich, Johannes, and Liam Paninski. "Fast active set methods for online spike inference from calcium
imaging." In Proceedings of the 30th International Conference on Neural Information Processing Systems, pp.
1992-2000. 2016.

Giovannucci, Andrea, Johannes Friedrich, Pat Gunn, Jeremie Kalfon, Brandon L. Brown, Sue Ann Koay, Jiannis
Taxidis et al. "CaImAn an open source tool for scalable calcium imaging data analysis." eLife 8 (2019): e38173.

Gorgolewski, Krzysztof, Christopher D. Burns, Cindee Madison, Dav Clark, Yaroslav O. Halchenko, Michael L.
Waskom, and Satrajit S. Ghosh. "Nipype: a flexible, lightweight and extensible neuroimaging data processing
framework in python." Frontiers in neuroinformatics 5 (2011): 13.

Grosenick, Logan, James H. Marshel, and Karl Deisseroth. "Closed-loop and activity-guided optogenetic
control." Neuron 86, no. 1 (2015): 106-139.

Hewitt, Carl, Peter Bishop, and Richard Steiger. “A Universal Modular ACTOR Formalism for Artificial
Intelligence” IJCAI (1973): 235-245.

Issar, Deepa, Ryan C. Williamson, Sanjeev B. Khanna, and Matthew A. Smith. "A neural network for online
spike classification that improves decoding accuracy." Journal of Neurophysiology 123, no. 4 (2020): 1472-
1485.

Kane, Gary A., Gonçalo Lopes, Jonny L. Saunders, Alexander Mathis, and Mackenzie W. Mathis. "Real-time,
low-latency closed-loop feedback using markerless posture tracking." eLife 9 (2020): e61909.

Krakauer, John W., Asif A. Ghazanfar, Alex Gomez-Marin, Malcolm A. MacIver, and David Poeppel.
"Neuroscience needs behavior: correcting a reductionist bias." Neuron 93, no. 3 (2017): 480-490.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 23, 2021. ; https://doi.org/10.1101/2021.02.22.432006doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.22.432006
http://creativecommons.org/licenses/by-nc-nd/4.0/

“improv: A flexible software platform for neuroscience.” Draelos et al. 2021

 22

Lu, Rongwen, Wenzhi Sun, Yajie Liang, Aaron Kerlin, Jens Bierfeld, Johannes D. Seelig, Daniel E. Wilson et al.
"Video-rate volumetric functional imaging of the brain at synaptic resolution." Nature neuroscience 20, no. 4
(2017): 620-628.

Markowitz, Jeffrey E., Winthrop F. Gillis, Celia C. Beron, Shay Q. Neufeld, Keiramarie Robertson, Neha D.
Bhagat, Ralph E. Peterson et al. "The striatum organizes 3D behavior via moment-to-moment action
selection." Cell 174, no. 1 (2018): 44-58.

Marques, João C., Simone Lackner, Rita Félix, and Michael B. Orger. "Structure of the zebrafish locomotor
repertoire revealed with unsupervised behavioral clustering." Current Biology 28, no. 2 (2018): 181-195.

Marshel, James H., Yoon Seok Kim, Timothy A. Machado, Sean Quirin, Brandon Benson, Jonathan Kadmon,
Cephra Raja et al. "Cortical layer–specific critical dynamics triggering perception." Science 365, no. 6453
(2019): eaaw5202.

McIlroy, Malcolm D., Elliot N. Pinson, and Berkley A. Tague. "UNIX Time-Sharing System: Foreword." Bell
System Technical Journal 57, no. 6 (1978): 1899-1904.

Mitani, Akinori, and Takaki Komiyama. "Real-time processing of two-photon calcium imaging data including
lateral motion artifact correction." Frontiers in Neuroinformatics 12 (2018): 98.

Naumann, Eva A., James E. Fitzgerald, Timothy W. Dunn, Jason Rihel, Haim Sompolinsky, and Florian Engert.
"From whole-brain data to functional circuit models: the zebrafish optomotor response." Cell 167, no. 4
(2016): 947-960.

Pachitariu, Marius, Carsen Stringer, Mario Dipoppa, Sylvia Schröder, L. Federico Rossi, Henry Dalgleish, Matteo
Carandini, and Kenneth D. Harris. "Suite2p: beyond 10,000 neurons with standard two-photon microscopy."
Biorxiv (2017).

Packer, Adam M., Lloyd E. Russell, Henry WP Dalgleish, and Michael Häusser. "Simultaneous all-optical
manipulation and recording of neural circuit activity with cellular resolution in vivo." Nature methods 12, no. 2
(2015): 140-146.

Pégard, Nicolas C., Alan R. Mardinly, Ian Antón Oldenburg, Savitha Sridharan, Laura Waller, and Hillel Adesnik.
"Three-dimensional scanless holographic optogenetics with temporal focusing (3D-SHOT)." Nature
communications 8, no. 1 (2017): 1-14.

Pereira, Talmo D., Diego E. Aldarondo, Lindsay Willmore, Mikhail Kislin, Samuel S-H. Wang, Mala Murthy, and
Joshua W. Shaevitz. "Fast animal pose estimation using deep neural networks." Nature methods 16, no. 1
(2019): 117-125.

Pillow, Jonathan W., Jonathon Shlens, Liam Paninski, Alexander Sher, Alan M. Litke, E. J. Chichilnisky, and Eero
P. Simoncelli. "Spatio-temporal correlations and visual signalling in a complete neuronal population." Nature
454, no. 7207 (2008): 995-999.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 23, 2021. ; https://doi.org/10.1101/2021.02.22.432006doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.22.432006
http://creativecommons.org/licenses/by-nc-nd/4.0/

“improv: A flexible software platform for neuroscience.” Draelos et al. 2021

 23

Sani, Omid G., Hamidreza Abbaspourazad, Yan T. Wong, Bijan Pesaran, and Maryam M. Shanechi. “Modeling
behaviorally relevant neural dynamics enabled by preferential subspace identification”, Nature Neuroscience
24, (2021): 140-149.

Scanbox, Los Angeles, CA, scanbox.org.

Vladimirov, Nikita, Chen Wang, Burkhard Höckendorf, Avinash Pujala, Masashi Tanimoto, Yu Mu, Chao-Tsung
Yang et al. "Brain-wide circuit interrogation at the cellular level guided by online analysis of neuronal
function." Nature methods 15, no. 12 (2018): 1117-1125.

Zhang, Zihui, Lloyd E. Russell, Adam M. Packer, Oliver M. Gauld, and Michael Häusser. "Closed-loop all-optical
interrogation of neural circuits in vivo." Nature methods 15, no. 12 (2018): 1037-1040.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 23, 2021. ; https://doi.org/10.1101/2021.02.22.432006doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.22.432006
http://creativecommons.org/licenses/by-nc-nd/4.0/

