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SUMMARY 

The unbiased identification of brain circuits responsible for behavior and their local cellular computations 
is a challenge for neuroscience. We establish here a hierarchical cross-scale approach from behavioral 
modeling and fMRI in task-performing mice to cellular network dynamics to identify how reward 
predictions are represented in the forebrain upon olfactory conditioning. fMRI identified functional 
segregation in reward prediction and error computations among olfactory cortices and subcortical 
circuits. Among them, the olfactory tubercle contributed both to dynamic reward predictions and 
prediction error. In this region, cellular recordings revealed two parallel neuronal populations for 
prediction coding. One population produced stabilized predictions as distributed stimulus-bound 
transient network activity; the other evolved during anticipatory waiting and fully reflected predicted value 
in single-units, dynamically integrating the recent cue-specific history of uncertain outcomes. Thus, the 
cross-scale approach revealed regional functional differentiation among the distributed forebrain circuits 
with a limbic hotspot for multiple non-redundant reward prediction coding. 
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INTRODUCTION 

Complex functions like stimulus-outcome learning involve a chain of cognitive processes comprising the 
recognition of unexpected outcomes and the updating of reward predictions (RP) (Dayan and Niv, 2008, 
Schultz, 2000). These processes are thought to be computed across distributed human forebrain 
networks (Daw et al., 2005, De Martino et al., 2006, Ferenczi et al., 2016, Li et al., 2011, O'Doherty et 
al., 2004). While enormous insights have emerged concerning a limited number of intensely studied 
brain regions in small rodents (Cohen et al., 2012, Sul et al., 2010, Takahashi et al., 2016, Tian et al., 
2016), it remains incompletely clear whether rodents employ similar distributed circuits for reward 
prediction error computations that have been identified by whole-brain imaging in humans.  

A more unbiased systems perspective in translational models would require structured approaches that 
parametrize behavior and identify brain regions functionally involved. The identified circuits can then be 
examined at finer granularity to disentangle the underlying neural codes and circuit mechanisms. Within 
such a hierarchical approach, fMRI is an attractive tool to assess, at mesoscopic scale and in an 
unsupervised fashion, the contributions of cortical and subcortical regions to task computations. Recent 
developments demonstrate the potential of fMRI for dissecting reward and fear circuits in awake, passive 
mice (Harris et al., 2015, Lee et al., 2016) or connectivity during resting state in mouse mutants 
(Tsurugizawa et al., 2020). Even though fMRI has become a standard tool to assess task-related brain 
activity in humans, to date, only very few fMRI studies exist in rodents during task performance (Han et 
al., 2019). 

Here we developed a hierarchical approach, from mesoscale fMRI to cellular recordings, to dissect 
olfactory reward prediction coding in the context of stimulus-outcome learning. During such 
reinforcement learning, an initially neutral sensory stimulus (called a conditioned stimulus; CS) is paired 
repeatedly after a waiting interval with reward (an unconditioned stimulus; US) (Flagel et al., 2011, Oettl 
et al., 2020, Schultz, 2000, Setlow et al., 2003, Takahashi et al., 2016). Midbrain dopamine neurons 
(DAN) show firing responses to the CS and US. In crude terms, these responses code a temporal 
difference prediction error (PE) signal, which computes the mismatch between the value of the received 
reward and the RP (Montague et al., 1996, Schultz et al., 1997). These signals change with learning. 
Initially, when stimulus-outcome associations are uncertain, DAN mainly fire bursts at US, reflecting the 
positive surprise about the obtained rewards (Schultz et al., 1997). Then, during learning, an additional 
response evolves at CS, reflecting the reward probability associated with the sensory stimulus (Fiorillo 
et al., 2003). A pioneering study in mice examined how the RP and PE are formed in DAN by their 
monosynaptic inputs from subcortical regions (Tian et al., 2016). Nonetheless, much of the connectivity 
in the distributed cortical and subcortical reward networks is polysynaptic (Ikemoto et al., 2015), and an 
unbiased assessment of the distributed RP computations in the rodent forebrain is still missing. 
Specifically, it is not entirely clear to which extent the different olfactory cortices, the attached higher 
regions, as well as the subcortical circuits, contribute respectively to the multiple facets of value 
estimation.  

To assess the differential contributions of olfactory forebrain regions to the distributed RP and PE 
computations, mice were trained in an olfactory stimulus-outcome learning task with different reward 
probabilities. We first modeled the behavior to formulate specific predictions about RP and PE signals 
during the task and regress them on fMRI data from mice performing the task in the scanner to identify 
key forebrain regions. We then studied the underlying computations with single-unit recordings in two 
fMRI-identified cortical and striatal regions. With this hierarchical approach, we revealed functional 
differentiation of olfactory cortices in value coding and multiple non-redundant parallel computations of 
the RP in an fMRI-identified region, the olfactory tubercle of the ventral striatum. 
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RESULTS 

Reward prediction and its updating by the recent outcome-history 

To disentangle the regions involved in distributed computations of reward prediction and error in the 
mouse forebrain, a cohort of 23 animals, examined later with fMRI, was habituated to a head-fixed set-
up and trained on stimulus-outcome pair associations. Mice were conditioned to odor stimuli that 
signaled different probabilities of upcoming reward (100%, 50%, or 0%, hereafter these trial types are 
labeled CS100, CS50, or CS0, respectively) (Fig. 1A). The odor stimulus was presented for 1 s followed 
by a 1.7 s wait interval before the water drop was delivered with the given reward probability (Fig. 1A). 
The water port was positioned so that mice had to actively lick to sense and retrieve the reward. After 
training, mice performed above criterion and licked in more than 80% of CS100 and CS50 trials, but not 
in the CS0 trials (Fig. S1A). Lick intensities in the waiting window correlated with the probability of 
reward to that odor cue (Fig. 1B-C). In 10 trained mice, we monitored pupil responses as a second 
proxy for the animals’ reward expectation (Fig. 1D; see also Fig S1B,C). Pupil dilation equally reflected 
the stimulus-specific RP (Fig. 1E). Thus, mice learned to predict reward outcomes upon CS 
presentation.  

We used reinforcement learning modeling to parametrize the RP value associated at CS with each odor 
(‘𝑉 𝐶𝑆 ’), and the PE at US (‘𝛿 𝑈𝑆 ’). We built a temporal difference (TD) model with the learning rate 
(‘𝛼’) set as a free parameter and optimized on the pupil responses of the behavioral sessions. The 
average of the learning rates was used to build a TD model applied throughout the study. Exploiting the 
generative power of the TD model, we simulated 100 sessions and observed that the average of 𝑉 𝐶𝑆  
across sessions approached the true reward frequencies associated with each CS (Fig. 1F). As 
expected, the absolute value of 𝛿 at the time of potential reward became small in CS100 and CS0, but 
remained large for CS50 trials (Fig. 1G). In CS50 trials, the reward probability was at chance level 
throughout the session. Yet, the RP value was dynamically updated at each trial to integrate local 
fluctuations on the outcome probabilities. According to the TD model, the RP associated with a CS at 
each time instance t results from the integration of the whole history of rewards paired (or not) with each 
instance of CS. Each obtained reward will increase the RP associated with CS50 while the absence of 
reward will diminish it. Consistently, when dividing CS50 trials according to the outcome of the preceding 
CS50 trial, the recent outcome-history was reflected in the state values of the TD model (Fig. 1H-I) and 
confirmed behaviorally by the pupil responses during the waiting interval (Fig. 1J). Thus, animals 
learned to predict reward outcome at CS modulating RP by the recent outcome-history of uncertain 
rewards as predicted by the TD model.  

 

Distributed forebrain representations of the reward prediction error  

We employed fMRI to localize forebrain regions involved in the olfactory RP, its modulation by the recent 
outcome-history, and the PE. A Bruker 9.4T rodent MR-scanner was used to image mice during task 
performance. A mouse MRI cradle was designed with odor and lick ports, connectors for head bars, and 
a cover over the back of the mouse (Fig. 2A). Mice were habituated to the cradle and head fixation in 
mock scanners, progressively adding the task paradigm, and then increasing levels of MRI sound 
recorded during an fMRI session. After completion of this training (Fig. S1D), the cohort of 23 mice 
underwent fMRI. Each individual performed up to four sessions in the scanner on separate days. To 
reduce stress and assure task performance, mice performed 20-30 preparatory trials before 
commencing the BOLD imaging sequence. In order to maintain comparable levels of satiety and 
motivation as the 150-trial-sessions outside the scanner, the task-related session comprised only 120 
trials following the preparatory trials. Sessions where animals did not lick at reward were stopped and 
the animals were not used for further sessions. Of the 67 completed scanning sessions, 51 sessions in 
18 animals performed above criterion (> 80% correct hits and rejections per session) (Fig. S1E-G).  

We imaged a larger olfactory network comprising the main olfactory bulb (MOB), the primary olfactory 
and prefrontal cortices, and the ventral and dorsal striatum (Fig. 2B). Upon preprocessing (see Methods 
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section and Fig. S2A-C), we computed a general linear model (GLM) on the BOLD time series of the 
51 sessions, modeling CS and US timepoints as events, which were parametrically modulated as 
described below, and convolved with a previously determined mouse hemodynamic response function 
(Lebhardt et al., 2016). When parametrically modulating the CS regressor with the model-estimated RP 
value at CS, 𝑉 𝐶𝑆 , we observed broad recruitment of brain regions (Fig. 2C) with positive signals in 
the MOB, the prefrontal cortices, specifically the medial prefrontal cortex (mPFC) and the orbitofrontal 
cortex (OFC), the insular cortex, and parts of the posterior piriform cortex (pPC). Negative BOLD signals 
to 𝑉 𝐶𝑆  were found in the olfactory primary cortices, namely the anterior olfactory nucleus (AON) and 
partially also the anterior piriform cortex (aPC). The dorsal striatum and the two ventral striatal brain 
regions, consisting of the olfactory tubercle (Tu) and nucleus accumbens (NAc), were also correlated to 
𝑉 𝐶𝑆 . 

Importantly, the applied GLM is not primarily designed to distinguish between a monotonic computation 
(CS100 > CS50 > C0) of 𝑉 𝐶𝑆  and a simple binary differentiation between presence and absence of 
reward expectation (e.g., CS100 = CS50 > CS0). Indeed, CS100 and CS50 recruited similar brain 
regions, unlike CS0 (Fig. S2D-G). Therefore, we computed a separate GLM where the three CS types 
were modelled with individual regressors, and we determined monotonic RP correlates by the 
intersection of CS contrasts (CS100 > CS50 and CS50 > CS0, or vice versa for negative contrasts, Fig. 
S2H,I). Within the 𝑉 𝐶𝑆 -significant regions, monotonic RP was expressed primarily in a network 
comprising prefrontal regions (mPFC, OFC, anterior insular cortex), striatal circuits (Tu, parts of NAc 
and lateral striatum) as well as primary olfactory regions, namely the MOB-AON loop and partially the 
pPC (Fig. 2D). This monotonic RP network was largely determined by the narrow contrast between the 
two rewarded stimuli CS100 and CS50 (Fig. S2H). Again, the AON and Tu displayed monotonic RP 
with negative contrasts. We then investigated, among the regions representing 𝑉 𝐶𝑆 , which brain 
regions participated in the RP updating based on the recent outcome-history, as predicted by the TD 
model (cf. Fig. 1H-J). To this end, the CS50 regressor was parametrically modulated by the binary 
outcome of the preceding CS50 trial. Among the regions representing 𝑉 𝐶𝑆 , the three striatal regions 
and the MOB-AON loop reflected the cue-specific outcome-history updating (Fig. 2E). 

In the TD model, the PE 𝛿 at US is 𝑟 𝑉 𝐶𝑆 . In humans, forebrain regions contribute to either one of 
the two PE-at-US components (𝑟 or 𝑉 𝐶𝑆 ), and only few regions compute both (Hare et al., 2008, Niv 
et al., 2012). To test for BOLD correlates of the PE at US, we parametrically modulated the US regressor 
with 𝑉 𝐶𝑆  and with 𝑟 in the same GLM. We found correlates of 𝑟 (Fig. 2F) in the lateral NAc, the 
posterior Tu, the dorsal striatum and, additionally, also in some cortices including the OFC, the insula, 
and, among the olfactory cortices, prominently the AON. In contrast, 𝑉 𝐶𝑆  at US (Fig. 2G) involved 
broadly a ventral stream of olfactory and striatal regions and additionally the OFC. The intersection of 𝑟 
and 𝑉 𝐶𝑆  (Fig. 2H) was prominent in the lateral NAc, but comprised also the posterior Tu, the AON 
and lateral OFC; thus, providing a relatively confined network involved in the PE at US for olfactory 
stimulus-outcome learning.   

In summary, monotonic RP and the PE components were encoded in partially overlapping networks of 
olfactory, prefrontal and striatal brain circuits. Among them, few regions including the Tu also displayed 
RP updating by the recent cue-specific outcome-history. Notably, the contribution of the aPC to these 
computations was relatively restricted compared to other olfactory regions and mainly contributed to the 
PE value component.  

 

Task-related neuronal population coding in the olfactory cortex and striatum 

fMRI had revealed unexpected contributions of the two olfactory brain circuits, aPC and Tu, to the value 
computations in the forebrain circuit. To dissect the local cellular coding underlying these distributed 
value computations, we performed single-unit’ recordings in a separate cohort of 11 mice with a chronic 
custom-designed tetrode array. Dual site recordings with up to 64 channels per brain region were 
performed in the aPC and Tu (Fig. 3A; Fig. S3A-E). We examined trained animals that performed the 
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task above criterion (Fig. S3F-H) and obtained 169 putative striatal projection neurons with baseline 
firing below 5 Hz in the Tu (Fig. S3E). Additionally, we obtained 486 regular-firing neurons in the aPC 
with baseline firing below 10 Hz. To capture coherent positive and negative changes in the population 
firing rate, we computed the deflection from baseline of the population vector during the trial (Fig. 3B). 
We computed the Euclidean distance between the population vector at each time instance and at 
baseline, to detect changes in angle or rate of the population activity. Tu population activity coded for 
the predicted reward value of the stimulus at CS and during the waiting period (Fig. 3C-D). We quantified 
then to which extent different odors and outcomes recruited the same units. By computing the Pearson 
cross-correlation between the average instantaneous population vectors associated with different CS, 
we found progressive recruitment of units encoding cross-stimulus reward anticipation during the waiting 
period of CS50 and CS100 trials, and progressive decorrelation between the rewarded and non-
rewarded CS trials (Fig. 3E). At US, population trajectories during CS50 trials diverged according to the 
outcome and, in case of reward, were pushed closer to the trajectory of CS100 trials (Fig. 3F).  

The aPC displayed different population responses (Fig. 3G-J). In contrast to the Tu, aPC population 
activity was most pronounced during CS (Fig. 3G), as expected for a primary sensory cortex, and did 
not reflect RP (Fig. 3G-H). The CS onset triggered a correlated detection response across all trial types 
in aPC (Fig. 3I). This was also seen in the initial upshot of the population trajectories common to all 
stimuli (Fig. 3J, contrary to the Tu cf. Fig. 3F). Thus, while aPC had a pronounced detection response 
to olfactory stimuli, the Tu population coded for monotonic RP both during odor presentation as well as 
during the anticipatory waiting in trained animals.  

 

Task-inhibited value responses dominate aPC  

We then aimed to better understand what cellular activity patterns underlie the negative BOLD correlates 
of value in the aPC. In trained mice, after an initial positive response to CS detection, negative mean 
population rate changes prevailed during waiting and upon US for all trial types (Fig. 4A-B). 
Interestingly, this negative rate change encoded predicted stimulus value during waiting, but not at CS, 
and responded to different reward outcomes at US (Fig. 4B, right). The forebrain imaging and the so 
far examined population coding were obtained from animals trained for at least two weeks in the specific 
task. As learning may modify the proportions between excited and inhibited responses (Bamford et al., 
2018), we wondered whether the predominance of task-inhibited responses emerged with training. We 
thus analyzed the first session the animal ever faced the task with the three stimuli CS100, CS50 and 
CS0 (Fig. 4C, S4A-C). In this initial training session, the net population rate response was relatively 
balanced (Fig. 4C). With training, the fraction of units with task-excited responses did not change. Yet, 
their relative contribution in the CS50 and CS100 trials markedly dropped due to the increase of task-
inhibited responses, especially at US (Fig. S4D-E).  

The development of value coding at the single-unit level would require an acquired generalization in the 
unit responses to rewarded stimuli. In line with a lack of value coding, aPC units with task-excited 
responses did not change their selectivity with learning (Fig. 4D-F). Compatible with inhibitory value 
coding, however, the number of units with task-inhibited responses to two stimuli increased in trained 
animals (Fig. 4D-F). Learning thus appeared to affect units negatively modulated by the task. To confirm 
this observation and account for a potential heterogeneity of aPC subpopulations contributing to RP 
coding, we clustered neurons of trained animals according to their task activation profiles (Fig. 4G). 
Units clustered in a variety of subpopulations and fell into three main groups according to their dominant 
characteristics. The main subpopulations consisted of transient CS-excited units (Fig. 4H) and a large 
group of task-inhibited units (Fig. 4J). Moreover, an additional smaller group of units displayed 
heterogenous sustained activity during waiting (Fig. 4I). Neither of the two task-excited cluster groups 
showed monotonic RP in their average response (Fig. S4F-G), which was, however, again reflected in 
the task-inhibited population (Fig. 4J, S4H). Thus, with training, aPC shifted towards task-inhibited 
responses that contributed to value coding. 
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Parallel populations encode reward prediction in Tu 

We then examined the cellular dynamics underlying the RP and PE correlates in the olfactory striatum 
revealed by fMRI (Fig. 5). In trained mice, the mean population firing responses encoded RP at CS and 
during waiting, as well as reward surprise at US (Fig. 5A-B). As expected, during the first session, 
reward surprise, but not RP, dominated task responses (Fig. 5C). Value coding began to emerge during 
the first session with the stimulus responses to the fully-rewarded CS100 differentiating from the other 
stimuli (Fig. S5A). Notably, the mean rate changes to CS0 were still positive in this first training session. 
With subsequent learning, the fraction of units with task-excited responses dropped in CS0 trials and 
increased in the rewarded trial types. As in aPC, training increased the fraction of units with task-inhibited 
responses across trial types (Fig. S5B-C). Contrary to aPC, the number of Tu units responding to more 
than one CS increased both for task-excited and task-inhibited responses (Fig. 5D-F). As expected for 
learned categorization of stimuli according to their predicted outcome value, the increase was caused 
by shared responsiveness to both CS50 and CS100 (Fig. 5G-I). This trend characterized all task 
epochs. However, we found some notable differences in the responsiveness of Tu units during the CS 
and the subsequent waiting interval. At CS, the total number of units with shared responsiveness to 
CS50 and CS100 was smaller than the sum of units responsive selectively to CS50 or CS100 (Fig. 5G). 
During waiting, instead, the large majority of recruited units shared responsiveness to CS50 and CS100 
(Fig. 5H). This difference could suggest the presence of distinct functional Tu subpopulations active at 
different task epochs, and heterogeneity in the RP coding scheme during stimulus presentation and the 
subsequent anticipation of reward while waiting.  

To investigate the existence of distinct functional subpopulations in Tu, we clustered neurons of trained 
animals according to their task activation profiles (Fig. 5J). Tu units divided into three major groups. 
Task-excited units with transient activity at CS (transient-cluster, Fig. 5K), task-excited units with 
ramping activity during the waiting window (ramping-cluster, Fig. 5L), and units with task-inhibited 
responses (inhibited-cluster, Fig. 5M). The transient-cluster encoded monotonic RP at CS, which 
decayed shortly after the odor presentation had ceased (Fig. 5K; Fig. S5D). Within the ramping-clusters, 
instead, monotonic RP coding evolved only during waiting (Fig. 5L; Fig. S5E). In contrast to the task-
excited clusters, the average firing rate of the inhibited-cluster did not significantly encode a monotonic 
RP (Fig. 5M; Fig. S5F). These findings suggest that stimulus-triggered and anticipatory RP were 
encoded by parallel task-excited neuronal populations in the Tu. 

To better understand the coding mechanisms employed by such functionally distinct neuronal clusters, 
we examined whether the RP was computed in single neurons, whose rate response reflects the full set 
of reward probabilities, or only at the population level (Fig. 6). While more than half of the units in the 
ramping-clusters displayed a monotonic RP coding (Fig. 6A-B), in the transient-cluster only a quarter 
did so, and exclusively during odor presentation (Fig. 6A-B, Fig. S6A). Considering that the CS-bound 
value coding units are reinforced from pre-existing odor-specific responses (Oettl et al., 2020), we 
wondered whether the single-units not encoding monotonic RP still contributed collectively to it. Indeed, 
upon removal of all units with monotonic RP coding in the transient-cluster, the cumulative firing rate of 
the remaining units still reflected a robust population coding of the monotonic RP (Fig. 6C). This was 
not the case in the ramping-cluster (Fig. S6B). Thus, while the ramping-cluster encoded the full 
information at the single-unit level, the transient-cluster employed largely a distributed coding scheme. 
Only few task-inhibited units individually encoded a monotonic RP (Fig. 6A; see also Fig. S6A). In 
contrast to Tu, only a small fraction of all aPC units encoded monotonic RP above chance level (Fig. 
S6C), with the exception of a few units from the task-inhibited cluster. In fact, the occurrence of units 
with response intensities monotonically ordered (CS100 > CS50 > CS0 and CS0 > CS50 > CS100) 
passed chance level for all cluster groups in Tu (while no other intensity permutation did), but only for 
the task-inhibited cluster groups in aPC. 

To understand whether the Tu units with transient CS-bound value coding and those with ramping 
anticipation are differentially involved in PE computations at US, we tested if single-units encoded 
reward surprise and if they differentiated outcomes between reward and non-reward in CS50 trials (Fig. 
6D). Reward surprise was defined by a larger rate change in rewarded CS50 than in CS100 trials from 
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the waiting period to the US response. Note that negative surprise for unrewarded CS50 trials was not 
tested because phasic negative responses to US from the wait plateau cannot be distinguished from 
the progressive passive return to baseline. Approximately half of the units in both the transient- and 
ramping-clusters significantly encoded either reward surprise or outcome discrimination, with a large 
fraction of them significant for both discrimination and surprise. It is important to note that ramping 
neurons had a more sustained and pronounced response to reward than transient neurons (Fig. 5K-L), 
both relative to baseline (Fig. S5D-E) and to the anticipatory ramp (Fig. S5G). In the task-inhibited 
cluster, only a minority of units displayed surprise or outcome discrimination at US (Fig. 6D). In the aPC, 
roughly a quarter of units in all response clusters uniformely encoded outcome discrimination or reward 
surprise (Fig. S6D).  

In summary, two parallel populations in the Tu - both encoding the PE - distinguished for the coding of 
RP in different task components: The CS-bound RP was computed with information distributed in single 
neurons responsive to specific CS, while anticipatory RP was computed as full information already in 
single neurons with ramping activity in anticipation of reward.  

 

Reward prediction is updated by its recent outcome-history 

We finally examined how the multiple circuits encoding RP in the limbic system updated according to 
the recent outcome-history (Fig. 7). We divided the CS50 trials based on the outcome of the preceding 
CS50 trial (Fig. 7A). To compare this effect with the unselective effect of recent rewards associated with 
other CS (termed here ‘satiety’), we also examined the modulation of expected value in CS50 trials 
depending on whether the previous trial was CS100 or CS0 (Fig. 7B). We found that during waiting, 
anticipatory licking following CS50 was positively modulated if the previous CS was rewarded, 
integrating information of at least four prior CS50 trials (Fig. 7C-E), even though other trial types were 
interspersed (Fig. S7A). Satiety had, instead, the opposite effect on the licking behavior. The prior 
experience of either a CS0 or a CS100 trial increased or decreased, respectively, the intensity of 
anticipatory licking in CS50 trials (Fig. 7C,F).  

We then tested whether the task-related global population activity would also reflect such outcome-
history. Confirming the results from the analysis of the BOLD responses, we observed that the recent 
CS50 outcome-history was encoded by enhanced responses in the Tu (Fig. 7G, left), but not in the aPC 
(Fig. 7G, right). In contrast, satiety did not change the population response in Tu (Fig. 7H, left) but 
negatively modulated the response to CS50 in the aPC (Fig. 7H, right; see also Fig. S7E-F). While 
monotonic RP was encoded by both transient and ramping Tu populations (cf. Fig. 5), RP updates by 
the cue-specific outcome-history were significant only in the ramping population during waiting (Fig. 7I; 
see also Fig. S7C-F). Notably, in the ramping population, satiety had the opposite effect of the cue-
specific history (Fig. S7D).  

In summary, the ventral striatal circuit performed parallel computations of the RP in two neuronal 
populations. One population responded to CS and provided a stable representation of the RP. The 
second population encoded the anticipated RP during the waiting period before US and integrated the 
expectation update based on the recent cue-specific outcome-history. Cue-specific updating of the RP 
differed in its direction from satiety that modulated more prominently the aPC.  

 

 

DISCUSSION 

Mesoscale fMRI in the hierarchical approach 

The hierarchical approach developed in this study may serve as a discovery strategy for key circuits in 
complex behavioral tasks and to reconcile findings in selected brain regions at the system level. The 
hierarchical approach starts from behavioral modeling to then identify task-relevant circuits in an 
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unbiased fashion with functional imaging. Upon such regional identification, the cellular and network 
coding mechanisms are studied at finer grain resolution by means of electrophysiological recordings; 
thereby providing a systematic cross-scale integration from behavior, over mesoscale networks, to 
cellular functions.  

Functional MRI in awake rodents offers the opportunity to assess the functional recruitment of deep and 
superficial circuits during task performance. Several aspects are critical when interpreting BOLD 
responses. Seminal work has provided insights into the neuronal basis of BOLD responses to isolated 
sensory stimuli in animals (Bartels et al., 2008, Logothetis et al., 2001, Nir et al., 2007). Even though 
BOLD changes reflect activity patterns of projection neurons, in some regions, such as the striatum, 
BOLD and rate changes can have an inverse relation (Mishra et al., 2011, Sloan et al., 2010). Moreover, 
little is known about the relation between population rate coding and BOLD signals during complex 
tasks. BOLD responses correlate with regional blood flow that is regulated for instance through nitric 
oxide synthesized by interneurons in an activity-dependent fashion (Cauli et al., 2004, Enager et al., 
2009, Lee et al., 2020). These interneurons can, but do not need to, be positively correlated with principal 
neuronal activity (Cauli et al., 2004). It is, therefore, possible that inputs from sensory or reward coding 
regions may differentially innervate and drive these interneurons. These factors may eventually generate 
the observed opposing BOLD contrasts for the RP and PE, even though principal neurons responded 
to both with the same direction of firing rate changes. Therefore, when using fMRI as a localizer for task-
related activity as in this study, both positive and negative BOLD associations are informative but, at 
present, cannot serve to predict the specific character of the underlying neuronal activity.  

Even though the mouse hemodynamic response function is several fold faster than in primates, it will 
only partially separate sequential task events that occur typically in the range of seconds, and should, 
therefore, be corroborated by neurophysiology with millisecond temporal resolution. Further, fMRI has 
a relatively low signal-to-noise-ratio even at high field strength, which we compensated with repeated 
imaging and an optimized training scheme to generate sufficient cohort sizes. As an additional source 
of noise, movement is of particular concern especially in behavioral rodent fMRI. We employed a 
combination of denoising methods to minimize head-motion effects, but cannot fully exclude a residual 
impact of such artifacts (see Methods section ‘Functional MRI denoising’ for a detailed discussion). 
Notably, in the two brain regions that were also examined with electrophysiology, the task information 
contained in fMRI was confirmed in the neuronal population activity. Taken together, this study supports 
fMRI as a powerful tool in the localization of distinct subnetworks involved in complex cognitive functions 
at the system level.  

 

Forebrain circuits in olfactory reinforcement learning 

Through the mesoscale fMRI approach, we identified different contributions to RP and PE among the 
primary olfactory cortices, subcortical circuits and higher brain regions. While forebrain regions broadly 
contributed to value-related information, the complete monotonic RP involved a more narrow network. 

In the olfactory cortices, monotonic RP was represented primarily in the AON, and partially also in the 
pPC. AON provides massive cortical top-down inputs to the MOB, it may therefore not be surprising that 
MOB also represented monotonic RP. This MOB-AON loop dynamically updated value by the recent 
outcome-history. A stark functional segregation among olfactory cortices was found for the aPC, despite 
its reciprocal connection with the AON and the dense input from the MOB. As detailed by single-unit 
recordings, aPC encoded at CS primarily stimulus detection, but no monotonic RP. During the waiting 
period, however, task-inhibited monotonic RP responses emerged, that reflected in equally negative 
BOLD correlates in the aPC. At US, all primary olfactory cortices uniformly contributed to the value 
computation and little to the reward component of the PE, except for partial involvement of the AON. 

Functional segregation was also observed in higher-order cortices. The mPFC, OFC, and anterior 
insular cortex all contributed to monotonic RP, but differed in their contribution to the PE. While the OFC 
correlated both to the value and reward components of the PE at US, the insula contributed mainly to 
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its value component, and the mPFC did not correlate significantly to PE assessment in our task. 
Prefrontal and insular regions prominently project to the lateral striatum and NAc as well as the Tu 
(Gehrlach et al., 2020, Zhang et al., 2017). In the Tu, additional direct inputs from the olfactory cortices 
and the MOB converge (Gehrlach et al., 2020, Zhang et al., 2017). Tu and NAc represented all RP and 
PE aspects in the olfactory reinforcement learning task, including dynamic value updating. In line with 
anatomical input gradients from sensory and reward regions (Ikemoto et al., 2015), posterior parts of 
the Tu correlated with the reward component of the PE at US. Also, PE correlates localized in the lateral 
NAc shell, consistent with its contribution to positive reinforcement (Yang et al., 2018). Finally, the dorsal 
striatum similarly reflected all aspects of RP, but was dominated by the reward components of the PE 
at US.   

Supporting the translatability of these fMRI findings in mice, conditioning in human fMRI studies recruited 
homologous prefrontal and ventral striatal regions involved across stimulus modalities (Daw et al., 2005, 
Ferenczi et al., 2016, Hare et al., 2008, Li et al., 2011, Niv et al., 2012, O'Doherty et al., 2004, O'Doherty 
et al., 2003) as well as modality-specific correlates in olfactory cortices or insular regions (Gottfried et 
al., 2002, Howard et al., 2016, Li et al., 2006, Zelano et al., 2007, Zelano et al., 2011). The largely non-
overlapping forebrain representations of reward and value components of the PE at US match their 
distributed computations in humans (Hare et al., 2008, Niv et al., 2012). Consistent with humans (Hare 
et al., 2008, Niv et al., 2012), the mouse NAc represented both reward and value of the PE at US. Other 
brain regions that also represented both PE components at US, specifically Tu and the MOB-AON loop, 
have not been explicitly examined in human whole-brain fMRI due to their comparatively small volume 
in humans in contrast to macrosmatic species. Among the densely interconnected network revealed by 
mouse fMRI, the Tu is uniquely positioned at the junction between the olfactory and reward system and 
sticks out because of its contribution to multiple facets of stimulus-outcome learning.  

 

Non-redundant parallel coding of reward prediction  

Recent studies have revealed that Tu neurons are recruited by stimuli that predict rewards upon 
conditioning (Gadziola et al., 2020, Millman and Murthy, 2020, Murata et al., 2015, Oettl et al., 2020, 
Zhang et al., 2017). In these studies, the duration of the conditioned stimulus partially overlaps with US. 
To better capture reward anticipation, in the present study we separated the CS and US by a waiting 
gap. Upon learning, we observed the evolution of two prominent task-excited populations of Tu units 
computing either a transient stimulus-bound RP or a ramping anticipatory RP during the waiting period.  

The transient stimulus-bound RP signal was encoded by the sum of distributed odor responses of 
multiple units, many of which were selective for only one odor, but that collectively encoded monotonic 
RP. This RP signal emerged at CS after cross-session learning and was little influenced by the recent 
outcome-history or satiety; consequently generating a stabilized representation of the RP. The stability 
of the RP representation at CS may relate to its formation through synaptic plasticity (Wieland et al., 
2015). In fact, the stimulus response potentiation evolves gradually upon repeated pairing of the odor 
with phasic dopamine in awake mice (Oettl et al., 2020). Once emerged, these RP-coding CS signals 
in the Tu drive downstream the equivalent RP responses of VTA DAN (Oettl et al., 2020). 

In contrast to this CS-bound signal, the ramping anticipatory RP signal evolved during the waiting 
interval after the stimulus has ceased. Ventral striatal anticipatory ramping activity is also found during 
waiting in head-fixed primates (Schultz et al., 1992) and thought to reflect anticipatory timing to reward 
(Gershman and Uchida, 2019, Mello et al., 2015) informing prefrontal cortices (Meck et al., 2008). Within 
the Tu, the ramping RP signal was encoded redundantly, with multiple single-units responding to all 
rewarded odors proportionally to their associated value. Value update was fast and stimulus-specific, in 
line with the modeled RP. The faster value updating of the ramping population could be interpreted as 
a neuronal implementation of the TD model, where values more proximal to the PE at US are more 
quickly updated than the distal ones at CS. While stimulus-bound RP responses drive DAN at CS, this 
is not the case for Tu ramping activity. In fact, DAN do not express anticipatory ramping in head-fixed 
trace conditioning (Cohen et al., 2012, Kim et al., 2020) but only when animals approach rewards in 
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space (Howe et al., 2013, Kim et al., 2020, Mohebi et al., 2019). Finally, the enhanced responsiveness 
to reward of the anticipatory ramping population compared to the CS-bound RP population adds to their 
differentiation. Potentially, such differentiations could map on the anterior-posterior gradients for PE 
value and reward representations found here, different olfactory and reward-related projection gradients 
(Ikemoto et al., 2015, Wesson, 2020), or direct- and indirect-pathway Tu neurons (Murata et al., 2015). 
Taken together, the different coding strategies, the non-overlapping neuronal clusters, the functional 
dissociation of the two RP signals and VTA, and the different responsiveness to reward, support the 
presence of parallel networks for stabilized and dynamic reward prediction in Tu.  

The hierarchical approach presented here, with its cross-scale analysis, can be applied broadly to reveal 
the computations in distributed brain networks and can foster the discovery of key brain regions and 
mechanisms in cognitive and translational sciences. Here, the approach identified the olfactory tubercle 
of the ventral striatum as one of the key circuits to compute multiple non-redundant olfactory reward 
predictions in parallel networks of projection neurons. While the CS-bound stabilized RP signal provides 
an initial safe estimate to drive dopamine midbrain neuron coding, the subsequent anticipatory RP 
dynamically integrates recent experiences in preparation of reward retrieval. This olfactory prediction 
coding hub operates within a network identified by fMRI of functionally-segregated olfactory and higher-
order regions. 
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MAIN FIGURE LEGENDS 

 

 

 
Figure 1. Trained mice display differential anticipatory responses to olfactory stimulus-outcome pairs and dynamic value 
update by recent reward history. 
(A) Mice were trained to learn stimulus-outcome pairs: Three different odors (CS) were applied for 1 s followed by a fixed waiting 
period of 1.7 s before a drop of water was delivered (US). Licking behavior and pupil diameter were monitored simultaneously. 
Stimulus CS100 and CS50 predicted US with different reward probabilities (100% and 50%). Stimulus CS0 was never rewarded. 
(B) Evolution of average lick rates ± SEM differentiated trial types (n = 69 sessions in 23 animals).  
(C) Average lick rate ± SEM in the waiting window differentiated the respective trial types with CS100>CS50>CS0 (one-way 
ANOVA with Tukey post-hoc comparisons).  
(D) Video frames illustrating pupil image 1 s before and 5 s after onset of CS100 (left). Average change ± SEM of the baseline 
subtracted pupil diameter also differentiated trial types (right; n = 10 sessions in 10 animals). 
(E) The average change ± SEM of the baseline subtracted pupil diameter revealed similar pupil responses in the waiting period 
to the lick responses (one-way ANOVA with Tukey post-hoc comparisons).  
(F) Averaged RP values 𝑉 𝐶𝑆  of the three CS from the TD model (n = 100 simulated CS-US sequences, learning rate 𝛼 = 0.28 
optimized from pupillary data, initial conditions set to zero). The values approached the true reward probabilities associated with 
each CS.  
(G) The TD PE  at US approached zero in CS100 and CS0 trials, while it remained large in CS50 trials as shown for an exemplary 
session.  
(H) Scheme illustrating the subdivision of CS50 trials for recent outcome-history analysis. CS50 trials were grouped according to 
the outcome of the previous CS50 trial (rewarded: lastCS50→R; unrewarded: lastCS50→N).  
(I) Average modeled 𝑉 𝐶𝑆  for CS50 trials divided according to lastCS50→R and lastCS50→N predicts a dynamic update of RP 
based on the recent outcome-history.  
(J) Average change ± SEM of the normalized pupil diameter in CS50 trials split for lastCS50→R and lastCS50→N. The change 
in pupil diameter during waiting followed the recent history update (two-tailed paired t-test).  
In the figure: * indicates p < 0.05 (see Table S1 for exact p-values and test details) and n indicates the number of units. 
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Figure 2. Distributed brain circuits code for monotonic reward prediction and the prediction error. 
(A) Illustration of the MRI compatible behavioral setup with MRI coil (left) comprises an odor port, a lick port, respective supply 
tubes, an infrared beam breaker, a head-fixation system, and a back cover (middle and right). 
(B) Anatomical regions of interest (ROI) definitions based on Paxinos atlas (location from Bregma indicated in mm). Abbreviations: 
anterior olfactory nucleus (AON), anterior piriform cortex (aPC), dorsal striatum (dStr), insular cortex (IC), main olfactory bulb 
(MOB), medial prefrontal cortex (mPFC), motor cortex (M), nucleus accumbens (NAc), olfactory tubercle (Tu), orbitofrontal cortex 
(OFC), posterior piriform cortex (pPC), sensory cortex (S). 
(C) Group-level Z-statistical maps showing BOLD correlates of RP values 𝑉 𝐶𝑆  from the TD model (n = 51 sessions in 18 
animals). Statistical threshold was set to p < 0.025 false discovery rate (FDR)-corrected, for two-sided testing (as for the other 
maps unless otherwise indicated). Red color spectrum indicates areas with positive correlations to RP values, while blue colors 
indicate negative correlations. The regression revealed recruitment of olfactory and striatal brain regions with opposing effects on 
BOLD. Note that amongst the sections shown, the postero-ventral parts of pPC have signal dropout preventing detection of (de-) 
activation. 
(D) Within the regions associated with 𝑉 𝐶𝑆  from (C), monotonic RP (CS100>CS50>CS0, red or CS100<CS50<CS0, blue) was 
represented mainly in prefrontal, insular, striatal regions, and MOB. Maps were created by intersecting contrast maps 
CS100>CS50 and CS50>CS0, each thresholded at p < 0.025 FDR-corrected; and vice versa: CS100<CS50 and CS50<CS0 (see 
the respective contrast maps in Fig. S2H-I). 
(E) Recent outcome-history modulating the BOLD response to CS50. Within the 𝑉 𝐶𝑆  regions from (C), we tested for a CS50 
response enhancement by the reward in the previous CS50 trial. In olfactory and striatal regions, the CS50-associated response 
was indeed strengthened by a positive outcome-history.   
(F-H) In the TD model, the PE at US is 𝑟 –  𝑉 𝐶𝑆 . We identified brain regions correlating with PE by intersecting the regressor 
maps of (F) r and (G) -V(CS) at US, each thresholded at p < 0.05 FDR-corrected. The intersection, shown in (H), was largely 
confined to the lateral NAc, the posterior Tu, the AON, and lateral OFC.   
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Figure 3. Task-related neuronal population coding in the olfactory cortex and striatum.  
(A) Configurations of the dual-site single-unit recordings. Custom-made tetrode arrays were implanted into the Tu and aPC. Mice 
performed the same stimulus-outcome associated task as in head-fixed configuration outside the scanner.  
(B) Population vectors were constructed by concatenating the firing rate of individual single units during bins of 250 ms and pooled 
across sessions.  
(C) The Euclidean distance of Tu population vectors from baseline displayed an RP coding at CS and during the waiting period, 
as well as reward coding at US. Displayed mean ± SEM, 500 ms bins slid in steps of 125 ms. 
(D) Euclidean distance from baseline during CS (from 0 to 1 s) and waiting window (from 1 to 2.5 s). One-way ANOVA with Tukey 
post hoc comparisons performed separately in each window.  
(E) Pearson correlation between Tu population vectors displayed as mean across pairs of trials ± SEM. The population responses 
to CS100 and CS50 became more similar during wait, suggesting a partial overlap in Tu units coding for the two stimuli.  
(F) First three principal components of the time-embedded averaged trajectories of Tu during different trial types. The arrow marks 
the direction of the temporal evolution. Reward delivery abruptly deflected the population trajectories of CS50→R and CS50→N.  
(G-H) Same as (C-D) for aPC. aPC population displayed a dominant response to all CS, but no monotonic RP coding.  
(I) Same as (E) for aPC. The similarity between aPC population response to all stimulus onsets is consistent with a sensory 
detection signal.  
(J) Same as (F) for aPC. Also aPC population trajectories reflect an initial indiscriminate sensory detection signal. 
In the figure: * indicates p < 0.05 (see Table S1 for exact p-values and test details) and n indicates the number of units. 
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Figure 4. Task-inhibited value responses dominate aPC  
(A) Example of single-unit firing activity in aPC in trained animals. Peri-stimulus time histogram (PSTH) and spike raster plots 
showed stable task-related responses. 
(B) Task-related mean firing rate evolution ± SEM in aPC units. After a first detection peak at CS, aPC displayed monotonic RP 
during the waiting period as a progressive decrease in firing rate (one-way ANOVA with Tukey post-hoc comparisons). 
(C) Box plots showing median aPC firing rate for CS and waiting period (one-way ANOVA with Tukey post-hoc comparisons). 
Solid bars indicate the 25th and 75th percentiles. 
(D-F) The fraction of either task-excited (+) or inhibited (-) responses to either one, two, or three trial types at (D) CS, (E) during 
wait, and (F) at US in the aPC. Unit responsiveness was tested against baseline with a Friedman test, p < 0.05 with Benjamini-
Hochberg correction. The fraction of task-inhibited units increased after training together with their shared responsiveness to 
different CS. The fraction of excited units, as well as their level of selectivity to one or more trial types, remained relatively stable. 
(G) Classification of aPC units into functional clusters. Unit responsiveness during different trial types was quantified by the area 
under the receiver operating characteristic curve (auROC, left). The auROC was computed for each time bin by comparing the 
distribution of firing rates of the bin with that of baseline. The values 0, 0.5 and 1 indicate respectively lower, equal, and higher 
firing rate than during baseline, respectively. Hierarchical clustering (right) was performed on the first five principal components 
(center, gray-scale) of the auROC traces and revealed 8 prominent task-response clusters. 
(H-J) The task-response clusters identified in (G) were grouped according to their responsiveness at CS and during the waiting 
period. We identified three major groups with (H) task-excited transient activity at CS, (I) task-excited sustained activity during 
waiting, and (J) task-inhibited responses. Displayed mean firing rate ± SEM. The color of the titles matches the cluster color in the 
dendrogram in (G). Unlike the task-inhibited cluster, none of the task-excited clusters displayed a monotonic RP (see Fig. S4F-
H). 
In the figure: * indicates p < 0.05 (see Table S1 for exact p-values and test details) and n indicates the number of units. 
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Figure 5. Tu units form transient and ramping task response clusters. 
(A-C) Same as Fig. 4A-C for Tu. After training, the task-related mean firing rate evolution ± SEM in Tu units reflected monotonic 
RP and reward surprise.  
(D-F) Same as Fig. 4D-F for Tu. The fraction of either task excited (+) or inhibited (-) responses in multiple SOP increased with 
training at (D) CS, (E) during wait, and (F) at US.  
(G-I) Fractions of selective and shared unit responses to different trial types (G) at CS, (H) during wait, and (I) at US in the Tu. 
The size of the spheres corresponds to the respective fraction of units. Green color indicates task-excited responses (+), while 
red color stands for task inhibited responses (-). Note the shared coding of rewarded trial types during wait and at US.  
(J) Same as Fig. 4G for Tu. In the Tu, PCA based hierarchical clustering revealed 4 task-response clusters. 
(K-M) Same as Fig. 4H-J for Tu. Mean firing rate ± SEM for each cluster identified in (J). According to their responsiveness at CS 
and during wait, single units were grouped into three functional clusters composed of units with: (K) task-excited, transient activity 
at CS, (L) task-excited, ramping activity during waiting, and (M) task-inhibited responses. Both the transient- and ramping-clusters 
displayed a monotonic RP (see Fig. S5D-F). 
In the figure: * indicates p < 0.05 (see Table S1 for exact p-values and test details) and n indicates the number of units. 
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Figure 6. Transient and ramping units differently encode monotonic RP. 
(A) Pie chart (top) showing the percentage of the Tu units in the three major response clusters from Fig. 5K-M. The bar graphs 
(bottom) indicate the percentage of units in each cluster coding monotonic RP or showing a dominant response to one of the CS 
(the test window is indicated below each bar). Note that more than half of the units in the ramping-cluster displayed monotonic 
RP during wait while only a quarter from the transient-cluster did so at CS. Tests for monotonic RP and CS coding were performed 
via two-tailed t-test with significance threshold at p < 0.05. Dashed white lines indicate that the task-inhibited cluster was tested 
for reduction in firing rate (see Methods and Fig. S6A). 
(B) Average firing rate of example single units illustrating (upper left) monotonic RP coding or (upper right) dominant CS50 
activation at CS in two units from the transient-cluster, and (lower left) monotonic RP coding during waiting of a unit in the ramping-
cluster.  
(C) Average firing rate ± SEM at CS of the units in the transient-cluster that encoded monotonic RP individually (left) or not (right) 
(one-way ANOVA with Tukey post-hoc comparisons). Also units not individually coding monotonic RP displayed a robust 
monotonic RP as a population. Thus, the transient cluster displayed monotonic RP by distributed coding. For ramping-clusters 
see Fig. S6B.  
(D) Scheme illustrating reward surprise and outcome discrimination (top). Units were categorized as coding for reward surprise if 
during CS50 rewarded trials their increase in firing rate from before to after reward delivery (d50→R) was positive and bigger than 
that in CS100 trials (d100). Units were categorized as coding for outcome discrimination if the firing rate at US was higher for 
rewarded than for unrewarded trials (d50→R vs. N > 0). Tests were performed via two-tailed t-test with significance threshold at p < 
0.05. Dashed white lines indicate that the task-inhibited cluster was tested for reduction in firing rate (see Methods). (Bottom) 
Fraction of units from the three Tu clusters with reward surprise or outcome discrimination or both.  
In the figure: * indicates p < 0.05 (see Table S1 for exact p-values and test details) and n indicates the number of units. 
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Figure 7. Reward prediction updating through the recent cue-specific outcome-history. 
(A) Scheme illustrating the division of CS50 trials based on their recent reward outcomes to test for dependence from outcome-
history. CS50 trials were grouped according to the outcome of the previous CS50 trial being rewarded (lastCS50→R) or not 
(lastCS50→U).  
(B) To assess how the dynamic value updating in CS50 trials is influenced by reward outcomes paired to other stimuli, we 
separated CS50 trials depending on whether the preceding trial was CS0 or CS100.  
(C) Mean lick rate ± SEM during wait in CS50 trials was modulated by the outcome of the preceding trial (n = 88 in 11 animals; 
two-tailed paired t-test). Note that receiving a reward has a differential effect on the lick rate during the next trial depending on the 
stimulus identity. 
(D) Licking intensities differentiated CS50 trials throughout the waiting interval depending on the outcome of the previous CS50 
trial (two-tailed paired t-test). Displayed average lick rates ± SEM. 
(E) Multiple Poisson regression with anticipatory licks in CS50 trials (during delay window) as dependent variable and the outcome 
of the previous six CS50 trials as independent variables (one-sample t-test on the resulting beta, n = 88 sessions in 11 animals). 
Anticipatory licking in CS50 trials was positively modulated by the outcome of the last four CS50 trials.  
(F) Same as (E) but with the outcome of the previous six CS100 and CS0 trials as independent variables. Anticipatory licks in 
CS50 trials were negatively modulated by the outcome of the prior non-CS50 trials.  
(G) Mean Euclidean distance from baseline ± SEM of the population vector during the lastCS50→R and lastCS50→N trials. If the 
previous CS50 trial had been rewarded, Tu population displayed a stronger response than if it had been unrewarded (left). In 
contrast, no recent outcome-history effect was observed in the aPC population (right). Two-tailed paired t-test at CS and during 
waiting. 
(H) Same as (G) but dividing CS50 trials based on whether the prior trial was CS100 or CS0. Satiety did not change the population 
response of Tu at CS and during wait (left), but reduced the population responses of aPC (right). Two-tailed paired t-test. 
(I) Recent outcome-history analysis for the transient- and ramping-clusters of Tu. Displayed: mean firing rate ± SEM during 
lastCS50→R and lastCS50→N trials for the two clusters. The ramping-clusters encoded outcome-history, while the transient-
cluster showed no effect. See Fig. S7C-F for a systematic analysis of outcome-history and satiety in all response-clusters of Tu 
and aPC. 
In the figure: * indicates p < 0.05 (see Table S1 for exact p-values and test details) and n indicates the number of units. 
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MAIN TABLES  

FIG SAMPLE 
SIZE 

STATISTICAL TEST VALUES 

1C, wait  [69, 69, 
69] 

One-way ANOVA with Tukey post hoc 
comparison 

F(2,204)=80.3, p = 1.9 e-26; post hoc 
comparisons: p(CS0 vs CS50) = 9.6 e-10,  
p(CS0 vs CS100) = 9.6 e-10, p(CS50 vs 
CS100) = 5.6 e-3  

1E, wait [10, 10, 
10] 

One-way ANOVA with Tukey post hoc 
comparison 

F(2,27)=21.2, p = 2.9 e-6; post hoc 
comparisons: p(CS0 vs CS50) = 3 e-3,  
p(CS0 vs CS100) = 1.7 e-6, p(CS50 vs 
CS100) = 0.02 

1J, history [10, 10] two-tailed paired t-test t(9) = 3.5, p = 7.3 e-3 
S1I, history [51, 51] Mann-Whitney U test p = 5.2 e-10 
3D, CS 
(left) 

[25, 25, 
25] 

One-way ANOVA with Tukey post hoc 
comparison 

F(2,72) = 126.5, p = 2.7 e-24; post hoc 
comparisons: p(CS0 vs CS50) = 9.6 e-10, 
p(CS0 vs CS100) = 9.6 e-10, p(CS50 vs 
CS100) = 1.6 e-8 

3D, wait 
(right)  

[25, 25, 
25] 

One-way ANOVA with Tukey post hoc 
comparison 

F(2,72) = 113.8, p = 5.2 e-23; post hoc 
comparisons: p(CS0 vs CS50) = 9.6 e-10, 
p(CS0 vs CS100) = 9.6 e-10, p(CS50 vs 
CS100) = 5.7 e-5 

3H, CS 
(left) 

[25, 25, 
25] 

One-way ANOVA with Tukey post hoc 
comparison 

F(2,72) = 196.2, p = 7.2 e-30; post hoc 
comparisons: p(CS0 vs CS50) = 3.7 e-8, 
p(CS0 vs CS100) = 9.6 e-10, p(CS50 vs 
CS100) = 9.6 e-10 

3H, wait  (right) [25, 25, 
25] 

One-way ANOVA  F(2,72) = 0.8, p = 0.5 

S3H, wait [88, 88, 
88] 

One-way ANOVA with Tukey post hoc 
comparison 

 F(2,261)= 514.7, p = 2.6 e-91; post hoc 
comparisons: p(CS0 vs CS50) = 9.6 e-10,  
p(CS0 vs CS100) = 9.6 e-10, p(CS50 vs 
CS100) = 9.6 e-10 

4B, CS  
(center) 

[50, 50, 
50] 

One-way ANOVA with Tukey post hoc 
comparison 

F(2,147) = 17.7, p=1.3 e-7; post hoc 
comparisons: p(CS0 vs CS50) = 1.0 e-6, 
p(CS0 vs CS100) = 1.0, p(CS50 vs CS100) 
= 6.2 e-7 

4B, wait 
(right) 

[50, 50, 
50] 

One-way ANOVA with Tukey post hoc 
comparison 

F(2,147)=189.0, p = 2.3 e-41; post hoc 
comparisons: p(CS0 vs CS50) = 9.6 e-10, 
p(CS0 vs CS100) = 9.6 e-10, p(CS50 vs 
CS100) = 9.6 e-10 

4B, CS  
(center) 

[50, 50, 
50] 

One-way ANOVA with Tukey post hoc 
comparison 

F(2,147) = 17.7, p=1.3 e-7; post hoc 
comparisons: p(CS0 vs CS50) = 1.0 e-6, 
p(CS0 vs CS100) = 1.0, p(CS50 vs CS100) 
= 6.2 e-7 

4B, wait 
(right) 

[50, 50, 
50] 

One-way ANOVA with Tukey post hoc 
comparison 

F(2,147)=189.0, p = 2.3 e-41; post hoc 
comparisons: p(CS0 vs CS50) = 9.6 e-10, 
p(CS0 vs CS100) = 9.6 e-10, p(CS50 vs 
CS100) = 9.6 e-10 

S4F, CS 
(left) 

[50, 50, 
50] 

One-way ANOVA with Tukey post hoc 
comparison 

F(2,147) = 242.4, p = 2.9 e-47; post hoc 
comparisons: p(CS0 vs CS50) = 9.6 e-10, 
p(CS0 vs CS100) = 9.6 e-10, p(CS50 vs 
CS100) = 9.6 e-10 

S5D, wait (center) [50, 50, 
50] 

One-way ANOVA with Tukey post hoc 
comparison 

F(2,139) =37.4p = 7.3 e-14; post hoc 
comparisons: p(CS0 vs CS50) = 5.0 e-3, 
p(CS0 vs CS100) = 9.6 e-10, p(CS50 vs 
CS100) = 1.8 e-7 

S4F, wait  
(right) 

[50, 50, 
50] 

One-way ANOVA with Tukey post hoc 
comparison 

F(2,147) = 88.0, p = 7.5 e-26; post hoc 
comparisons: p(CS0 vs CS50) = 9.6 e-10, 
p(CS0 vs CS100) = 9.6 e-10, p(CS50 vs 
CS100) = 1.2 e-7 

S4G, CS 
(left) 
 

[50, 50, 
50] 

One-way ANOVA with Tukey post hoc 
comparison 

F(2,147) = 287.0, p = 1.7 e-51; post hoc 
comparisons: p(CS0 vs CS50) = 9.6 e-10, 
p(CS0 vs CS100) = 9.6 e-10, p(CS50 vs 
CS100) = 0.048 

S4G, wait 
(right) 

[50, 50, 
50] 

One-way ANOVA with Tukey post hoc 
comparison 

F(2,147) = 764.6, p = 2.0 e-78; post hoc 
comparisons: p(CS0 vs CS50) = 9.6 e-10, 
p(CS0 vs CS100) = 9.6 e-10, p(CS50 vs 
CS100) = 1.1 e-9 

S4H, CS  
(left) 

[50, 50, 
50] 

One-way ANOVA with Tukey post hoc 
comparison 

F(2,147) = 156.7, p = 3.6 e-37; post hoc 
comparisons: p(CS0 vs CS50) = 9.6 e-10, 
p(CS0 vs CS100) = 9.6 e-10, p(CS50 vs 
CS100) = 9.6 e-10 

S4H, wait 
(center) 

[50, 50, 
50] 

One-way ANOVA with Tukey post hoc 
comparison 

F(2,147) = 521.6, p = 1.7 e-67; post hoc 
comparisons: p(CS0 vs CS50) = 9.6 e-10, 
p(CS0 vs CS100) = 9.6 e-10, p(CS50 vs 
CS100) = 9.6 e-10 
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S5F, wait (center) [50, 50, 
50] 

One-way ANOVA with Tukey post hoc 
comparison 

F(2,147)=193.7, p=6.3 e-42; post hoc 
comparisons: p(CS0 vs CS50) = 9.6 e-10, 
p(CS0 vs CS100) = 9.6 e-10, p(CS50 vs 
CS100) = 0.3 

S5F, US 
(right) 

[50,21,21,
50] 

One-way ANOVA with Tukey post hoc 
comparison 

F(3,138) =277.2 p = 3.3  e-58; post hoc 
comparisons: p(CS0 vs CS50N) =3.8 e-9, 
p(CS0 vs CS50R) = 3.8 e-9, p(CS0 vs 
CS100) = 3.8 e-9, p(CS50N vs CS50R) = 
3.9 e-8, p(CS50N vs CS100) = 3.8 e-9, 
p(CS50R vs CS100) = 0.02 

5B, CS 
(center) 

[50, 50, 
50] 

One-way ANOVA with Tukey post hoc 
comparison 

F(2,139) = 141.1, p = 3.5 e-34; post hoc 
comparisons: p(CS0 vs CS50) = 9.6 e-10, 
p(CS0 vs CS100) = 9.6 e-10, p(CS50 vs 
CS100) = 1.0 e-7 

5B, wait 
(right) 

[50, 50, 
50] 

One-way ANOVA with Tukey post hoc 
comparison 

F(2,139) = 99.0, p = 1.8 e-27; post hoc 
comparisons: p(CS0 vs CS50) = 9.6 e-10, 
p(CS0 vs CS100) = 9.6 e-10, p(CS50 vs 
CS100) = 3.9 e-7 

S5D, CS 
(left) 

[50, 50, 
50] 

One-way ANOVA with Tukey post hoc 
comparison 

F(2,147)=168.7 p = 8.7 e-39; post hoc 
comparisons: p(CS0 vs CS50) = 9.6 e-10, 
p(CS0 vs CS100) = 9.6 e-10, p(CS50 vs 
CS100) = 9.6 e-10 

S5D, wait (center) [50, 50, 
50] 

One-way ANOVA with Tukey post hoc 
comparison 

F(2,139) =37.4p = 7.3 e-14; post hoc 
comparisons: p(CS0 vs CS50) = 5.0 e-3, 
p(CS0 vs CS100) = 9.6 e-10, p(CS50 vs 
CS100) = 1.8 e-7 

S5D, US  
(right) 

[50,21,21,
50] 

One-way ANOVA with Tukey post hoc 
comparison 

F(3,138) =70.5 p =1.0  e-27; post hoc 
comparisons: p(CS0 vs CS50N) =3.4 e-4, 
p(CS0 vs CS50R) = 3.8 e-9, p(CS0 vs 
CS100) = 3.8 e-9, p(CS50N vs CS50R) = 
3.8 e-9, p(CS50N vs CS100) = 1.8 e-5, 
p(CS50R vs CS100) = 5.0 e-4 

S5E, CS  
(left) 

[50, 50, 
50] 

One-way ANOVA with Tukey post hoc 
comparison 

F(2,147)=281.1, p=5.9 e-51; post hoc 
comparisons: p(CS0 vs CS50) = 9.6 e-10, 
p(CS0 vs CS100) = 9.6 e-10, p(CS50 vs 
CS100) = 0.4 

S5E, wait  
(center) 

[50, 50, 
50] 

One-way ANOVA with Tukey post hoc 
comparison 

F(2,147)=486.7, p=1.5 e-65; post hoc 
comparisons: p(CS0 vs CS50) = 9.6 e-10, 
p(CS0 vs CS100) = 9.6 e-10, p(CS50 vs 
CS100) = 6.0 e-4 

S5E, US  
(right) 

[50,21,21,
50] 

One-way ANOVA with Tukey post hoc 
comparison 

F(3,138) =488.4 p = 2.9  e-73; post hoc 
comparisons: p(CS0 vs CS50N) = 3.8 e-9, 
p(CS0 vs CS50R) = 3.8 e-9, p(CS0 vs 
CS100) = 3.8 e-9, p(CS50N vs CS50R) = 
6.8 e-6, p(CS50N vs CS100) = 8.8 e-9, 
p(CS50R vs CS100) = 1.0 

S5F, CS  
(left) 

[50, 50, 
50] 

One-way ANOVA with Tukey post hoc 
comparison 

F(2,147)=7.7, p=6.9 e-4; post hoc 
comparisons: p(CS0 vs CS50) = 0.5, p(CS0 
vs CS100) = 0.02, p(CS50 vs CS100) = 4.2 
e-4 

S5F, wait (center) [50, 50, 
50] 

One-way ANOVA with Tukey post hoc 
comparison 

F(2,147)=193.7, p=6.3 e-42; post hoc 
comparisons: p(CS0 vs CS50) = 9.6 e-10, 
p(CS0 vs CS100) = 9.6 e-10, p(CS50 vs 
CS100) = 0.3 

S5F, US 
(right) 

[50,21,21,
50] 

One-way ANOVA with Tukey post hoc 
comparison 

F(3,138) =277.2 p = 3.3  e-58; post hoc 
comparisons: p(CS0 vs CS50N) =3.8 e-9, 
p(CS0 vs CS50R) = 3.8 e-9, p(CS0 vs 
CS100) = 3.8 e-9, p(CS50N vs CS50R) = 
3.9 e-8, p(CS50N vs CS100) = 3.8 e-9, 
p(CS50R vs CS100) = 0.02 

S5G left [30,27] Two-tailed unpaired Wilcoxon rank-sum 
test 

Z = -2.7, p = 0.007 

S5G right [30,30] Two-tailed unpaired Wilcoxon rank-sum 
test 

Z = -2.9, p = 0.004 

6C, monotonic 
(left) 

[50, 50, 
50] 

One-way ANOVA with Tukey post hoc 
comparison 

F(2,147) = 109.6, p = 7.2 e-30; post hoc 
comparisons: p(CS0 vs CS50) = 9.6 e-10, 
p(CS0 vs CS100) = 9.6 e-10, p(CS50 vs 
CS100) = 1.0 e-9 

6C, 
non-monotonic 
(right) 

[50, 50, 
50] 

One-way ANOVA with Tukey post hoc 
comparison 

F(2,147) = 92.0, p = 1.2 e-26; post hoc 
comparisons: p(CS0 vs CS50) = 9.6 e-10, 
p(CS0 vs CS100) = 9.6 e-10, p(CS50 vs 
CS100) = 4.7 e-6 

S6B, monotonic 
(left) 

[50, 50, 
50] 

One-way ANOVA with Tukey post hoc 
comparison 

F(2,147) = 361.4, p = 1.8 e-57; post hoc 
comparisons: p(CS0 vs CS50) = 9.6 e-10, 
p(CS0 vs CS100) = 9.6 e-10, p(CS50 vs 
CS100) = 9.6 e-10 
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S6B, 
non-monotonic 
(right) 

[50, 50, 
50] 

One-way ANOVA with Tukey post hoc 
comparison 

F(2,147) = 380.8, p = 7.2 e-59; post hoc 
comparisons: p(CS0 vs CS50) = 9.6 e-10, 
p(CS0 vs CS100) = 9.6 e-10, p(CS50 vs 
CS100) = 9.6 e-10 

7C left [88, 88] two-tailed paired t-test t(87) = 8.2, p = 2.4 e-12 
7C right [88, 88] two-tailed paired t-test t(87) = 7.5, p = 4.6 e-11 
7D, history [88, 88] two-tailed paired t-test t(87) = 12.3, p = 0.0 
7E [88] 

[88] 
[88] 
[88] 
[88] 
[88] 

two-tailed one-sample t-test n-1: t(87) = 8.8; p = 1.2 e-13 
n-2: t(87) = 6.2; p = 1.7 e-9 
n-3: t(87) = 4.1; p = 1 e-4 
n-4: t(87) = 2.5; p = 0.01 
n-5: t(87) = 1.7; p = 0.08 
n-6: t(87) = 0.2; p = 0.88 

7F [88] 
[88] 
[88] 
[88] 
[88] 
[88] 

two-tailed one-sample t-test n-1: t(87) = -6.2; p = 2.1 e-8 
n-2: t(87) = -3.9; p = 1.9 e-4 
n-3: t(87) = -1.6; p = 0.10 
n-4: t(87) = -1.5; p = 0.13 
n-5: t(87) = -0.2; p = 0.87 
n-6: t(87) = 0.7; p = 0.48 

7G, left 
7H, left  
(CS) 
 

[10, 10, 6, 
6] 

Joined history and satiety test at CS: 
One-way ANOVA  

F(3,28) = 0.3, p = 0.8;  
 

7G, left 
7H, left 
(wait) 

[10, 10, 6, 
6] 

Joined history and satiety test during 
wait: 
One-way ANOVA with Tukey post hoc 
comparison 

F(3,28) = 10.9, p = 6.4 e-5;  
post hoc comparisons: p(history) = 7.1 e-5, 
p(satiety) = 0.4  

7G, right 
7H, right  
(CS) 

[10, 10, 6, 
6] 

Joined history and satiety test at CS: 
One-way ANOVA with Tukey post hoc 
comparison 

F(3,28) = 8.4, p = 3.7 e-4;  
post hoc comparisons: p(history) = 0.6 
p(satiety) = 3.1 e-4 

7G, right 
7H, right  
(wait) 

[10, 10, 6, 
6] 

Joined history and satiety test during 
wait: 
One-way ANOVA with Tukey post hoc 
comparison 

F(3,28) = 4.4, p = 1.2 e-2;  
post hoc comparisons: p(history) = 0.5 
p(satiety) = 0.01  

7I, top  see statistic S7C,S7D 
 

 

7I, bottom  see stats S7C,S7D 
 

 

S7C, left  
S7D, left 
(CS) 
 

[38,38,38,
38]  

Joined history and satiety test at CS: 
One-way repeated measures ANOVA 
with Greenhouse-Geisser and 
Bonferroni correction 

F(1.2,44.1) = .2, p = 0.7; 

S7C, left  
S7D, left 
(wait) 
 

[38,38,38,
38]  

Joined history and satiety test during 
wait: 
One-way repeated measures ANOVA 
with Greenhouse-Geisser and 
Bonferroni correction 

F(1.6,59.7) = .9, p = 0.4; 

S7C, middle  
S7D, middle 
(CS) 
 

[34,34,34,
34]  

Joined history and satiety test at CS: 
One-way repeated measures ANOVA 
with Greenhouse-Geisser and 
Bonferroni correction 

F(1.9,62.1) = 16.9, p = 2.0 e-6; 
post hoc comparisons: p(history) =0.2, 
p(satiety) = 1.8 e-4 

S7C, middle  
S7D, middle 
(wait) 
 

[34,34,34,
34]  

Joined history and satiety test during 
wait: 
One-way repeated measures ANOVA 
with Greenhouse-Geisser and 
Bonferroni correction 

F(2.3,75.3) = 20.9, p = 1.4 e-8 
post hoc comparisons: p(history) = 2.7 e-7, 
p(satiety) = 0.02 

S7C, right 
S7D, right  
(CS) 

[73, 73, 
73, 73]  

Joined history and satiety test at CS: 
One-way repeated measures ANOVA 
with Greenhouse-Geisser and 
Bonferroni correction 

F(2.5,183.0) = 0.01, p = 1.0 
 

S7C, right 
S7D, right  
(wait) 

[73, 73, 
73, 73]  

Joined history and satiety test during 
wait: 
One-way repeated measures ANOVA 
with Greenhouse-Geisser and 
Bonferroni correction 

F(2.0,145.1) = 0.4, p = 0.6 

S7E, left  
S7F, left 
(CS) 
 

[70, 70, 
70, 70]  

Joined history and satiety test at CS: 
One-way repeated measures ANOVA 
with Greenhouse-Geisser and 
Bonferroni correction 

F(1.8, 126.0) = 0.8, p = 0.4; 

S7E, left  
S7F, left 
(wait) 
 

[70, 70, 
70, 70]  

Joined history and satiety test during 
wait: 
One-way repeated measures ANOVA 
with Greenhouse-Geisser and 
Bonferroni correction 

F(2.3,162.0) = 0.9, p = 0.4; 

S7E, middle  
S7F, middle 
(CS) 

[30, 30, 
30, 30]  

Joined history and satiety test at CS: F(1.7,48.8) = 4.5, p = 0.02; 
post hoc comparisons: p(history) = 1.0, 
p(satiety) = 0.1 
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 One-way repeated measures with 
Greenhouse-Geisser and Bonferroni 
correction  

S7E, middle  
S7F, middle 
(wait) 
 

[30, 30, 
30, 30]  

Joined history and satiety test during 
wait: 
One-way repeated measures ANOVA 
with Greenhouse-Geisser and 
Bonferroni correction 

F(1.8,52.6) = 7.7, p = 0.002; 
post hoc comparisons: p(history) = 1.0, 
p(satiety) = 0.02 

S7E, right 
S7F, right  
(CS) 

[292, 292, 
292, 292]  

Joined history and satiety test at CS: 
One-way repeated measures ANOVA 
with Greenhouse-Geisser and 
Bonferroni correction 
 

F(2.2,646.9) = 5.3, p = 0.004; 
post hoc comparisons: p(history) = 0.06, 
p(satiety) = 0.1; 

S7E, right 
S7F, right  
(wait) 

[292, 292, 
292, 292]  

Joined history and satiety test during 
wait: 
One-way repeated measures ANOVA 
with Greenhouse-Geisser and 
Bonferroni correction 

F(2.1,601.0) = 5.9, p = 0.003; 
post hoc comparisons: p(history) = 0.2, 
p(satiety) = 0.06 

 
Table S1. Statistical tests. 
Description and results of the statistical tests displayed in the manuscript figures. The first column of the table indicates the figure 
number and panel of the corresponding figure. 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 23, 2021. ; https://doi.org/10.1101/2021.02.22.432268doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.22.432268
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22

METHODS  

RESOURCE AVAILABILITY  

Lead Contact 

Further information and requests for resources should be directed to and will be fulfilled by the Lead 
Contact, Dr. Wolfgang Kelsch (wokelsch@uni-mainz.de).  

Materials Availability 

This study did not generate any new animal models nor reagents.  

Data and Code Availability 

At the time of publishing, the behavioral, modeling, fMRI, neurophysiological data will be available upon 
reasonable request from the corresponding author.  

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Animals and Husbandry 

Male C57BL/6N mice were obtained directly from Charles River Laboratories (23 animals for the fMRI 
measurements, 11 animals for single-unit recordings). Mice were housed individually in a standard 12 
hours light-dark-cycle. Food and water were given ad libitum, except when water supply was controlled 
for behavioral training. All procedures were in accordance with the National Institutes of Health Guide 
for the Care and Use of Laboratory Animals and the EU 2010/63 directive, and approved by the local 
animal welfare authority (Regierungspräsidium Karlsruhe).  

 

METHOD DETAILS  

Behavioral Modeling and functional MRI 

Implantation of the head bar  

All surgeries used standard aseptic procedures and conformed to common veterinary practice. 
Analgesia (Metacam, Boehringer Ingelheim) was administered before and after surgery. At least 12-
week-old mice were anesthetized with isoflurane. The animals were then transferred to a stereotactic 
apparatus with non-rupturing ear bars and placed in a custom-built platform of the same dimension as 
the MRI cradle. It was ensured that the fixed licking spout of the MRI cradle was at the same height as 
the animal’s lower lip at a distance of 5 mm. A roughly circular flap of skin was removed from the skull 
and local anesthesia was administered. The lateral and nuchal muscle insertions were left intact. The 
skull was cleaned and disinfected. Tissue adhesive (3M Vetbond) was applied to the margins of the skin 
attached to the circumference of the exposed skull to avoid soft tissue damage and contamination. The 
remaining periost on the exposed skull was removed. A layer of dental glue (C&B Superbond, Sun 
medical) was applied on the (inter)parietal bone, followed by a layer of dental cement (Kulzer Palladur) 
that connected the custom-designed head bar produced with stereolithography (Accura55, 3D-
Systems).  
 
MRI-compatible behavioral setup 

We developed an MRI-compatible setup for the odor-guided reward learning task (see Fig. 2, S1, S2). 
The apparatus comprised of an MRI cradle, an olfactometer, a programmable syringe pump for reward 
delivery (AL4000-220, World Precision Instruments), an optical licking detector, and Arduino 
microcontrollers (Arduino Mega 2560). Odors were delivered using a custom-made olfactometer. Odors 
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were kept in liquid phase (diluted 1:100 in mineral oil) in dark vials and mixed into a nitrogen stream that 
was further diluted by 1:10 into a constant air stream in the olfactometer. The following natural flower 
odors were used: geranium, ylang-ylang and rose (Sigma Aldrich W250813, W311936 and W523704, 
respectively). Water as reward was delivered through an independent tubing system and controlled by 
a high-precision water pump. Odorized air and water were both guided from the setup located in the 
control room to the animal bed through 1/32 inch I.D. inert PTFE tubing (NResearch) connected to the 
odor and lick ports. Considering the 3 m long tubing used to deliver the odorized air to the odor port, the 
steepness of the odor onset (20 ms to max) and its latency after final valve opening (400 ms) was 
regularly controlled by a photo-ionization detector (miniPID, AuroraScientific). Odor valves and syringe 
pump were controlled through Arduino microcontrollers. Licking behavior was measured using a custom-
made MRI-compatible optical lickometer. Infrared light was delivered via fiber optics and miniature roof 
prisms from an LED source (Thorlabs M660F1; 660nm), collimated at the lick port with lenses (Thorlabs 
354140-B) and returned to the control room via another optic fiber to the detector (Thorlabs DET10A2). 
Animals were positioned so that their tongue broke the beam on each lick. Outputs from the 
olfactometer, the optical lick detector, the water pump and TTL pulses from the scanner were recorded 
with the same RHD2000 interface board (Intan Technologies) with a sampling frequency of 1 kHz. For 
training outside the scanner, a custom-made simplified MRI cradle was used. 
 
Behavioral training 

Mice were trained in a trace conditioning task to learn associations of stimulus-outcome pairs. Three 
days before behavioral training, water-intake was controlled in their home cages (90% of baseline body 
weight was targeted). Body weight was monitored daily and always maintained above 85% of baseline 
body weight. Mice were placed in the head-fixed setup for habituation. The habituation sessions did not 
exceed 15 minutes. In general, mice habituated to head fixation after 2-3 days. Then, conditioning 
sessions started. Each trial started with 1 s of odor presentation followed by a waiting period of 1.7 s. 
Reward (5 l water) was delivered immediately after the waiting window (see Fig. 1A, middle). Reward 
timing and reward size were not varied. Licking responses had no influence on whether reward was 
delivered or not. The inter-trial interval was randomly drawn from a uniform distribution between 10 and 
12 s. The training comprised of two stages. In Stage 1, a single odor was presented and rewarded at 
100%. When mice licked consistently, they progressed to the next stage. Stage 2 corresponded to the 
final paradigm and consisted of three distinct odors delivered pseudorandomly to keep the proportion of 
odors constant between sessions. No stimulus was consecutively applied more than three times in a 
row. No more than three consecutive trials were rewarded. Animals performed 150 trials per session (in 
the MR-environment, 20-30 trials of which were regarded for acclimatization). Odor cues predicted 
reward at 100%, 50% and 0% (hereafter, the odor cues were labeled CS100, CS50 and CS0, 
respectively) (see Fig. 1A). Across sessions, the odor and reward contingency pairs were unchanged. 
The first session of Stage 2 was considered the ‘first training session’ in Fig. 4 and 5. Generally, CS100 
and CS50 were treated as ‘Go’ cues and odor CS0 as a ‘No-go’ cue. If mice licked at least three times 
during the anticipatory window (from 1.5 s to 2.8 s after odor onset) or in the reward window (from 2.8 s 
to 4.1 s), it was considered as a go-response. Fulfilling the lick criterion during ‘Go’ trials was regarded 
as ‘Hit’, while it was assessed as ‘False alarm’ during ‘No-go’ trials. Not meeting the lick criterion was 
regarded as ‘Correct rejection’ for ‘No-go’ trials and as ‘Miss’ for ‘Go’ trials. There was no punishment 
for false choices. The performance within each session was evaluated by calculating the correct rate’: 

 

correct rate  
number of ′Hit' trials  number of ′Correct rejection′ trials 

total number of trials
 

 

After mice designated for functional imaging reliably performed the task above criterion (> 80% correct 
trials, normally after 6 to 12 training sessions), a sham coil was placed above the head and recorded 
MRI pulse sequence noise was replayed in ‘mock scanning sessions’ to acclimate mice to the MRI 
environment. Sound levels in the mock scanner were increased gradually to the noise levels in the 
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scanner bore. In the behavioral analysis, only sessions with a ‘correct rate’ higher than 80% were 
included. 
 
Pupil imaging  

Pupils were imaged unilaterally in trained mice (n = 10 sessions with one session per mouse). Pupil 
data was collected in the recording chamber with ambient light illumination (blue LED, 465 nm). To fully 
capture the pupil dynamics during task performance, the intensity of the LED light was set so that the 
pupil was moderately dilated. DinoCapture 2.0 software was used as video recording system. Videos 
were acquired at 20 frames per second (1280 x 1024 pixel) with a digital infrared USB camera 
(AD4113T-I2V Dino-Lite Pro2 digital microscope) providing infrared illumination by LEDs (940 nm). 
Infrared illumination did not affect pupil diameter. At the beginning and at the end of each session, an 
additional infrared LED was switched on for 1 s in order to generate timestamps. The timestamps were 
then used for post-hoc alignment of pupil and behavioral data. 
 
Pupil diameter analysis 

Pupil diameter was detected frame-wise using in-house developed MATLAB scripts based on a pulse-
coupled neural network (PCNN) algorithm. Briefly, pupil videos were read into MATLAB and converted 
to grayscale. Then, pupil videos were automatically centered and cropped around the pupil. Based on 
the adjusted frames, the PCNN algorithm calculated binary images reliably segmenting the pupil from 
the surrounding tissues. A convex hull was fitted to the contour of the detected pupil area. The pupil 
radius was detected for each frame by calculating the mean distance between all points on the convex 
hull and its midpoint. Outliers in the detection, e.g. during blinks, were excluded from the data by 
removing the entire trial (exclusion criterion: increase or decrease in pupil diameter of more than 5% 
within 2 frames). Accuracy of the algorithmic fit was verified visually for each session. Pupil diameter 
was expressed as a percent change from baseline. Baseline was derived from the average pupil 
diameter in the time window from -2 s to 0 s relative to odor onset. Mean responses were calculated for 

each trial types for each animal and, in turn, averaged to get the group response  SEM. Pupil data 
were tested for normality using a Kolmogorov-Smirnov test. An ANOVA test was performed between 
CS100, CS50 and CS0 trials during the waiting window (from 1 s to 2.5 s relative to odor onset). 
 
Reinforcement learning model 

In probabilistic conditioning tasks, animals attempt to predict future outcomes. This reward prediction 
(RP) signal is adjusted in time through the difference between the predicted and the actual outcome, 
namely the reward prediction error (PE) at US. In order to parametrize the PE and the RP, we modeled 
a temporal difference model TD(0) on a trial basis, with no eligibility trace or discount factor (O'Doherty 
et al., 2003, Seymour et al., 2004).  

For each trial, we considered three  time points: t = 0 for the baseline before the trial started, t = 1 for 
the odor presentation (CS), and t = 2 for the reward delivery (US). The states at time t = 1 and t = 2 were 
defined by the stimulus presented at that time (CS0, CS50 or CS100), each of them having a 
corresponding value 𝑉 s  and an outcome, 𝑟, representing the reward, written as dichotomous variable 
{1,0} (1 for reward, 0 for no reward). At time t = 0, 𝑉 0  represented the prediction before the trial started. 
In the TD(0) model, the PE reflects the internal computation of the difference between two successive 
predictions. Thus, at each time point, t, the PE is defined as: 
 
𝛿 𝑡 𝑟 𝑡 𝑉 𝑠 𝑉 𝑠      (1) 
 
Note that, at the reward time point, we assumed 𝑉 𝑠 0. This is because learning at US is quick, and 
the animals, rather than learning an internal value, react directly to the reward. Thus, at US, the PE was 
computed as: 𝛿 𝑈𝑆 𝑟 𝑉 𝑠 , that is the difference between the predicted and the actual outcome 
at US. At CS time, in contrast, where no reward was delivered, we had 𝑟 0, thus the PE was: 𝛿 𝐶𝑆
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𝑉 𝑠 𝑉 𝑠 . The value of 𝛿 𝑡 0  before the trial start was 0. The state expectation values were 
updated on a trial-by-trial basis through 𝛿 according to the TD learning rule: 
 
𝑉 𝑠 ← 𝑉 𝑠 𝛼𝛿 𝑡 1          (2)    
 
where 𝛼 is the learning rate. Our experiments were not designed to disentangle experimentally 𝑉 from 
𝛿 𝐶𝑆  (Kim et al., 2020).  
 
Parameter estimation and selection 

The learning rate 𝛼 was set as free parameter of the model and estimated using pupillary data from the 
pupil imaging sessions described above (n=10 sessions). The average change in pupil dilation 𝑑 was 
modeled as function of the expected value 𝑉 and the PE 𝛿:  
 
𝑑 𝑡 ∑ 𝑎 𝑉 𝑠

∈ℕ
∑ 𝑏 |𝛿 𝑡 𝜏 |

∈ℕ
         (3) 

 
where 𝑡 0, 1, 2  (0 for the baseline starting point, 1 for the odor presentation and 2 for the reward 
time). 𝑎  and 𝑏  were set as free model parameters. 𝑑 𝑡  indicated the average change in pupil dilatation 
between two successive times in the trial: we defined d(0) as the average change in dilation from before 
the trial start to the odor presentation; then d(1) as the change from the odor presentation to the reward 
delivery, and d(2) as the change after reward delivery. The interval before the trial started, namely the 
interval between t = 0 and t = 1, was defined from -2 s to 0 s relative to odor onset in line with the 
pupillary analysis (see above). It was selected long enough to yield a stable average. The interval from 
t = 1 to t = 2 was defined from 0 to 2.7 s, and, for consistency, the interval after US was chosen to be 
from 2.7 to 5.4 s. The model parameters 𝜗 𝛼, 𝑎 , 𝑏  were estimated minimizing the distance between 
the modeled (eq. 3) and the real average change in pupil dilation.  

After the average learning rate 𝛼 had been estimated on the basis of the 10 sessions with pupil imaging, 
we used this 𝛼 to build a temporal difference model for 151 different trial realizations. Of those, 100 
realizations were simulated on as many CS-US sequences, randomly generated with the algorithm used 
for the behavioral sessions, and used to produce Fig. 1F,I; and 51 were simulated on the actual trial 
sequences of the fMRI sessions and used in the fMRI analyses. We used the learning rules in eq. 2 with 
the PE defined in eq. (1) (cf. Fig. 1F,G) to model the learning. In this way, we formulated specific 
predictions on RP updates and regressed them on fMRI data of mice performing the task in the scanner 
to identify key forebrain regions.  The initial condition of the values of all stimuli was set to 0 in the 
simulations of Fig. 1, and set to 0, 0.5, and 1 for CS0, CS50 and CS100 respectively in the fMRI sessions 
(as the animal were already performing when the fMRI scanning started, c.f. Fig S1F). 
 
Functional MRI acquisition 

Experiments were conducted on a small-animal 9.4 Tesla MRI scanner (94/20 Bruker Biospec, Ettlingen, 
Germany) with Avance III hardware, BGA12S gradient system with the maximum strength of 705 mT/m 
and running ParaVision 6 software. We utilized a whole-body linear volume transmitter coil combined 
with an anatomically shaped 4-channel receive-only coil array. Mice underwent fMRI scans after 
habituation to the MRI environment (see above). Awake mice were head-fixed in the MRI cradle: their 
trunks were gently held within a plastic cylindrical tube to further prevent massive body motion. Once 
positioned inside the scanner bore, the task was initiated, allowing the subject to orient to the task and 
minimize distress. The 20-30 trials presented before onset of the fMRI sequence were not recorded. A 
localizer sequence was used to confirm the correct positioning of the animal and a field map was 
acquired. Before the fMRI scan started, the main magnetic field (B0) was homogenized by automatic 
shimming. The fMRI time series were acquired while mice performed the odor task using an echo-planar 
imaging (EPI) sequence with the following parameters: TR/TE: 1300/17 ms; flip angle: 50°; 21 slices; 
matrix size: 64 x 64; slice thickness: 0.5 mm; interslice gap: 0.1 mm; voxel size: 0.25 x 0.25 x 0.6 mm; 
1400 volume acquisitions. Temporal resolution was increased by restricting the field-of-view to rostral 
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parts of the brain, containing the olfactory, frontal and striatal regions. Each EPI session lasted 24 
minutes. The behavioral session was followed by a high-resolution T2-weighted RARE anatomical 
image acquisition (TR/TE 1200/50 ms, matrix size 96 x 113 x 48, voxel size 0.16 x 0.16 x 0.31 mm, 
RARE factor 16). To increase statistical power, animals were repeatedly measured (up to 4 sessions 
per animal), but not more than once per day. Mice that did not lick at reward in the scanner were 
excluded from further measurements to avoid unnecessary distress. This yielded a dataset of 67 
sessions from 23 animals. Of these, 51 sessions from 18 animals fulfilled the performance criterion 
described above and were included in fMRI group statistics.  
 
Image data processing  

All data were processed using Statistical Parametric Mapping version 12 
(SPM12) (http://www.fil.ion.ucl.ac.uk/spm/) and custom-written MATLAB scripts. fMRI data were 
preprocessed with the following steps (Clemm von Hohenberg et al., 2018): discarding the first five 
volumes in the series to avoid influences of magnetization before the scanner achieves steady state, 
correction for head movement by realignment to the middle volume, correction for geometrical 
distortions using the acquired field maps, slice-timing correction, and spatial normalization to a mouse 
brain template in the Paxinos stereotactic coordinate system, by applying the non-linear normalization 
parameters of the structural images to the functional images. Normalized functional images were 
additionally smoothed with a 0.6 mm isotropic Gaussian kernel.  
 
Functional MRI denoising 

Functional MRI is susceptible to movement artifacts, which is of particular concern given the association 
between the paradigm, licking activity and corresponding head motion. To quantify head motion, 
absolute values of the differentiated realignment parameters’ first derivative were averaged over all 
sessions for the three translations and three rotations (see Fig. S2B). To minimize motion artifacts, we 
explored several denoising methods. Regression of realignment parameters, which is widely applied, 
has several shortcomings, as it depends on the accuracy of the realignment process, does not reliably 
capture non-linear or delayed effects, is anatomically unspecific and does not differentiate between task-
correlated neuronally-based activity and artifacts (Caballero-Gaudes and Reynolds, 2017, Pruim et al., 
2015). The latter effect is of particular concern in the context of task-based fMRI, where motion is 
typically correlated with the effect of interest. Indeed, we found that plausible gray-matter activation in 
response to rewarded CS types (e.g., in dorsal striatum) was substantially decreased (while areas of 
deactivation became more extended) when the six realignment parameters and their derivatives were 
included in the GLM, exclusively or in addition to the other denoising methods described subsequently.  

Removal of high-motion volumes (termed “scrubbing” or “censoring”) has been shown to outperform 
motion regression under certain conditions (Power et al., 2014, Siegel et al., 2014), but again suffers 
from important drawbacks, namely that it is difficult to find valid criteria for frame removal, especially in 
the context of task-based fMRI (Siegel et al., 2014). Further, excessive amounts of data may be removed 
with corresponding loss of temporal degrees of freedom (Patel et al., 2014, Pruim et al., 2015), even 
when delayed movement effects are not addressed. In task-based fMRI, censoring may inherently 
introduce bias and disproportionately affect image frames of certain kinds, such as during rewarded 
trials or in high motivational states. 

Other approaches have been proposed that allow for a more specific removal of presumed motion 
artifacts, by considering their typical spatial and/or temporal characteristics. Among these methods, we 
explored Wavelet Despiking, which exploits the divergent frequency characteristics of motion artifacts, 
and despikes the BOLD timecourse locally in a temporal, spatial and frequency sense (Patel et al., 
2014). However, Wavelet Despiking has not been systematically assessed in task-related fMRI, where 
the frequency spectrum may be more heterogeneous than in resting-state fMRI. Additionally, in rodents, 
the hemodynamic response function (HRF) is faster than in primates (Chen et al., 2020, Lebhardt et al., 
2016, Schlegel et al., 2015) and therefore has a weaker lowpass filtering effect, potentially allowing true 
neuronally-based BOLD signal to contain higher frequencies. In line with this, we found Wavelet 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 23, 2021. ; https://doi.org/10.1101/2021.02.22.432268doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.22.432268
http://creativecommons.org/licenses/by-nc-nd/4.0/


 27

Despiking to introduce implausible temporal “smearing” such that activations started slightly before the 
trial. This would have been of particular concern since events were relatively close in time in our 
paradigm. Yet, the anatomical patterns of BOLD responses were not substantially altered by Wavelet 
Despiking in our data (data not shown).  

We therefore, alternatively, employed group-independent component analysis (ICA) for removing 
motion-related noise, using the fastICA toolbox (http://research.ics.aalto.fi/ica/fastica/) (Han et al., 
2019). ICA-based denoising exploits typical anatomical patterns of motion artifacts, and has been 
applied in previous awake rodent imaging (Han et al., 2019, Tsurugizawa et al., 2020). In our group-
ICA, four (out of 25) components were manually identified as motion-related (see Fig. S2C); their 
session-specific timecourses were removed before reconstructing the images. Criteria for component 
removal were typical location at the edges of the brain and/or in and around ventricles. One widespread, 
anatomically unspecific component (C1 in Fig. S2C) was also removed due to high correlations with 
realignment parameters and with the mean CSF timecourse. ICA was performed after other 
preprocessing including smoothing, to maximize signal-to-noise ratio and anatomical overlap between 
sessions/subjects for ICA, and also in accordance with previously described ICA denoising procedures 
(Han et al., 2019, Pruim et al., 2015). As described below, we included cerebrospinal fluid (CSF) 
timecourses in the SPM general linear model, to further account for physiological and non-physiological 
noise. Lick events were also included in the model (see below), which served as an additional control 
for the effects of head motion, which is highly correlated with licking activity.  
 
Functional MRI analysis  

As mentioned, the HRF varies significantly between species, with faster kinetics in mice compared to 
humans (Chen et al., 2020, Lebhardt et al., 2016, Schlegel et al., 2015). We therefore used a mouse-
specific HRF estimated by Lebhardt et al., 2016. In all models, CS and US timepoints were modelled as 
events (“stick functions”, duration 0 s). 

Specifically, we computed three different general linear models (GLM; SPM12) at the session-wise 
analysis level: 

First, to locate the brain regions encoding reward prediction, we modelled all CS timepoints (irrespective 
of trial type) as one event type, and parametrically modulated this with the 𝑉 𝐶𝑆  estimated from the TD 
model. The four event types at the US timepoint (reward after CS100; reward after CS50, non-reward 
after CS50, non-reward after CS0) were each modelled with a separate event regressor. In this model 
as in all other models, lick events were also modelled as events, to disentangle neuronal correlates of 
motor activity from correlates of reward expectation and PE per se. Additionally, time series averaged 
over cerebrospinal fluid voxels were added as a nuisance regressor.  

Secondly, to disentangle more specific components of value coding, especially monotonic RP and 
recent outcome history, we created a separate GLM, where all CS event types (CS100, CS50 and CS0) 
and all US event types (reward after CS100; reward after CS50, non-reward after CS50, non-reward 
after CS0) were each modelled with a separate stick function regressor. The CS50 regressor was 
parametrically modulated by the recent CS50 outcome history (namely whether the last CS50 trial had 
been rewarded or not). Analyses of monotonic RP and outcome-history were restricted to those voxels 
that were significantly associated with 𝑉 𝐶𝑆  at the group-level, based on the first GLM. 

Thirdly, to test which brain regions encode the PE components ( 𝑉 𝐶𝑆 , 𝑟 ), we computed a GLM where 
the three CS event types (CS100, CS50, CS0) were modelled with separate stick regressors, and all 
US event types were modelled by one single regressor, and the latter was parametrically modulated by 

𝑉 𝐶𝑆  and 𝑟 . Of note, we did not orthogonalize one of the two parametric modulators with respect to 
the other, thus ensuring that only the unique variability of each parametric modulator is attributed to it.  

Statistical maps representing the betas of the regressors of interest were then fed into group statistics. 
For this, we used the SPM12-based Sandwich Estimator toolbox (SwE). SwE is specifically designed 
for repeated-measures neuroimaging data and allows the number of sessions per subject to vary 
(Guillaume et al., 2014). The equivalent of one-sample t-tests was used within the SwE framework to 
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test for effects on the group level. Analysis was restricted to gray matter. Unless otherwise stated, 
statistical threshold was set to p < 0.025 false discovery rate (FDR)-corrected, for two-sided testing. 

 

Electrophysiological Recordings  

Recording array 

We used an in-house designed tetrode array for dual-site recordings described in detail in Oettl et al., 
2020. In brief, custom-designed printed circuit boards (PCB) (±10 μm, Würth Electronics) with a soldered 
Molex SlimStack connector served as an electrode interface board (EIB). The tetrodes, spun from 12.5 
μm teflon-coated tungsten wire (California Fine Wire), were placed parallel to each other with the help 
of a guiding scaffold. The tetrodes were fixed to the PCB with a drop of liquid acrylic adhesive. For 
electrical contact, the single wires were soldered to the EIB after threading them through 200 μm vias 
and through-holes. For protection, the single wires were coated with two-component epoxy. The tetrode 
tips were gold-plated with a NanoZ-device (Multi Channel Systems) targeting an impedance of 300 
kOhm. During recordings, the arrays were connected to the IntanRHD2164 head stages using a custom-
built adapter (Molex SlimStack connector to two 36 Omnetics Nano Strip connectors). A custom-built 
titanium head bar was glued to the array. 
 
Implantation of recording array  

Eleven male C57BL/6 mice were implanted with two 16-tetrode arrays, each positioned in Tu and aPC. 
Pre- and post-surgery analgesia was administered. Mice were anesthetized with isoflurane and attached 
to a stereotactic apparatus with non-rupturing ear bars. A roughly circular flap of skin was removed from 
the skull and local anesthesia was administered. The lateral and nuchal muscle insertions were left 
intact. Tissue adhesive (3M Vetbond) was applied to the margins of the remaining skin and holes drilled 
into the skull above the brain regions-of-interest and above the cerebellum for grounding. We then 
coated the skull using Super-Bond C&B (Sun Medical). An insulated copper wire attached to the 
recording array was connected to a small gold pin (Neuralynx) and placed into cerebellum. The tetrodes 
were inserted into the target regions with a motorized 3-axis micromanipulator (Luigs&Neumann) (target 
coordinates relative to the center of the respective array for Tu: 1.6 mm anterior to bregma, 1.3 mm 
lateral from bregma and 4.9 mm ventral from dorsal brain surface; target coordinates for APC: 1.4 mm 
anterior to bregma, 2.3 mm lateral from bregma and 3.8 mm ventral from the medial dorsal brain 
surface). Once the target depth was reached, dental cement (Kulzer Palladur) was applied to fix the 
recording array in the final position. Animals recovered in their home cage and were monitored after 
surgery.  

At the end of recording sessions, mice were euthanized and perfused with paraformaldehyde (4%). Due 
to low levels of scar formation and microglia activation with this tetrode array, we could not reliably detect 
fiber tracts in histological sections with Nissl staining. Therefore, the head was postfixed in PFA 4% for 
at least 2 weeks before sectioning. Rostrocaudal and mediolateral placement in the borders of Tu and 
aPC were confirmed histologically before sectioning (see Fig. S3B). Subsequent removal of the tetrode 
array left visible scars in the tissue so that the recording location could be confirmed by post-hoc 
histological examination (see Fig. S3C).  
 
Electrophysiology head-fixed set-up 

The same olfactometer and behavioral control system setup configuration as in the fMRI was used for 
the electrophysiological study. Single-unit recordings were conducted using two Intan 64 channel RHD 
2164 miniature amplifier boards connected to the RHD2000 interface board. Software provided by Intan 
Technologies was used for data storage. Data were sampled at 30 kHz during neural recordings.  
 
Behavioral paradigm  
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The same training procedure, task, performance criteria, and behavioral analyses were applied to the 
electrophysiology cohort as for the fMRI cohort.  
 
Multiple Poisson regression on the licking data 

To assess whether the anticipatory licking in the delay period of CS50 trials was influenced by (1) the 
cue-specific outcome of the previous CS50 trials (outcome-history) and by (2) the outcome of previous 
CS100 and CS0 trials (satiety), we conducted two separate multiple Poisson regressions on the licking 
data (see Fig. 7E-F). The Poisson model was defined by the equation: log 𝜇 𝛽 ∙ 𝑋 where 𝜇  is the 
expected value of the anticipatory licking in the current CS50 trial, 𝑋 is the regressor matrix and the 𝛽 
are the regression coefficients. The columns of the matrix 𝑋 are the regressor vectors. The elements of 
the regressor matrix assumed values 𝑥  𝜖 1, 1 , where 1 codes for a rewarded trial and -1 for an 

unrewarded trial. In case (1), the regressor vectors 𝑋 were built as described, using the n-back CS50→R 
and CS50→N trials (𝑛 1,2, … , 𝑁 with 𝑁 6). In case (2), the regressor vectors 𝑋 were built as 
described, using the n-back CS100 and CS0 trials (𝑛 1,2, … , 𝑁 with 𝑁 6). 
To better compare the anticipatory licking from different sessions, the coefficients of each regressor 𝑛 

were standardized as follows 𝛽∗ 𝛽 ∙ ∗,  and, for better interpretability, transformed as 𝛽∗ →

𝑒𝑥𝑝 𝛽∗ 1. Thus, a positive 𝛽∗ indicates a positive correlation between the anticipatory licks and the 
𝑛-th regressor when the other regressors are constant. Vice-versa, a negative 𝛽∗ indicates a negative 
correlation. We performed one regression per session and plotted the average standardized coefficients 

(𝛽∗) for each animal (n = 88 sessions in 11 animals). 
 
Data pre-processing for spike detection 

Noise and movement artifacts affecting all recorded channels were reduced by conducting a median 
subtraction. Therefore, we calculated the median voltage trace of all channels from the same recording 
site and subtracted the median from each recorded channel. The resulting signal was passed via a 
band-pass filter (300-5000 Hz, 4th Butterworth filter, built-in MATLAB function). All local maxima 
crossing a certain amplitude threshold (7.5x of the median absolute deviation of the filtered signal) were 
identified as spiking events. To prevent a multiphasic spike from being detected multiple times, the 
minimum distance between threshold crossing peaks was set to 1 ms. If a spiking event was detected 
on more than one channel of the same tetrode, it was assigned to the timestamp of the highest detected 
peak. For each cluster, waveforms were obtained by extracting -10 to +21 sampling points around the 
peak.  
 
Data pre-processing for spike sorting 

We clustered the detected spiking events using a custom-built graphical user interface in MATLAB 
developed by A.Koulakov (CSHL). Single-units were separated based on different metrics including 
peak height or amplitude of the spikes and the respective principal components over channels. When 
spiking events were predominantly recorded on one channel, the first three principal components of the 
waveforms were considered. Single-unit quality was quantified using the mlib toolbox by Maik Stüttgen 
(Version 6, https://de.mathworks.com/matlabcentral/fileexchange/37339-mlib-toolbox-for-analyzing-
spike-data). In particular, we estimated cluster quality through refractory period violations (fraction of 
spikes during the refractory period < 2ms) and waveform variance. Only if clusters had a ratio of 
refractory period violations to the total number of spikes of less than 2%, they were considered as single-
units. In Tu, units with less than 5 Hz baseline firing rate were classified as putative striatal projection 
neurons and considered for subsequent analysis. Single-units with a firing rate > 5 Hz were excluded 
as fast spiking neurons from the Tu or from the neighboring anterior ventral pallidum. A total number of 
169 putative striatal projection neurons were included in the analysis. In aPC, a total of 486 putative 
principal units with less than 10 Hz baseline firing rate were included in the analysis.  
Analysis of single-unit responses 
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We classified single-units according to their task-related spiking activity. We calculated averaged spike 
counts for all trial types for the baseline, CS, waiting and US windows (baseline: from -1.5 to -0.5 s; CS: 
from 0 to 1 s; waiting: from 1 to 2.5 s; US: from 2.7 to 3.7 s relative to odor onset). Single-units were 
considered as responsive during CS, waiting or US, respectively, if they showed a significant difference 
compared to baseline (Friedman test, p < 0.05 with Benjamini correction for multiple comparisons on all 
units tested for each trial type and each task window). Single-units displaying a significant increase in 
spiking activity were defined as ‘task-excited’ while units displaying a decrease were defined as ‘task-
inhibited’ (see Fig. 4D-F, Fig. 5A-F, Fig. S4D-E and Fig. S5B-C). 
 
Population analysis: the population vector 

The session-specific population vector 𝑣  𝑓𝑟 , , … , 𝑓𝑟 ,  is a vector composed of the firing rate of n 
simultaneously recorded neurons during a time-bin centered at time 𝑡 1 … 𝑇, with 𝑇 total number of 
time steps per trial. Given the relatively small cell yield per session, session-specific population vectors 
were concatenated to compose a global population vector 𝑉  𝑣 , … , 𝑣 . Trials of different sessions 
were concatenated by matching CS, trial order, and, for CS50, trial outcome. Since, in CS50 trials, 
reward was delivered with a 0.5 probability, not all sessions had the same number of rewarded CS50 
trials. Population vectors for CS50 were, thus, built by selecting the minimum number of trials available 
among sessions and, in sessions with supernumerary trials, by omitting the last trials.  
 
Population analysis: deviation from baseline 

To investigate the temporal evolution of aPC and Tu responses to CS and US, we computed the 
deviation of the population vector from its baseline configuration. At each time step 𝑡, deviation from 
baseline was computed as Euclidean distance between the population vector 𝑉  and the baseline vector 
𝐵. The 𝐵 vector was composed of the firing rate of each unit in the window -2 to -1.25 s before odor 
onset averaged across all trials. To reduce trial-to-trial variability, such analysis was performed by using 
the population vectors 𝑉 , built by grouping population vectors 𝑉  of consecutive trials in pairs and 
averaging. This procedure reduces the number of samples available but produces more stable 
population responses. For visualization, population vectors were computed on bins of 500 ms, moved 
in time with steps of 125 ms. Statistical tests of changes in population response to different trial types 
were conducted on distances computed with non-overlapping bins of 250 ms.   
 
Population analysis: cross-trial correlation 

To assess if the different trial types recruit overlapping sets of units and to quantify the degree of such 
overlap throughout the trial progression, we computed the Pearson cross-correlation between the 
population vectors of trials with different trial types. Trials were first grouped according to their CS trial 
type. Then, for each time step 𝑡, each vector 𝑉  was cross-correlated, at turn, with the 𝑉  vectors of all 
trials from other CS trial types. For example, to quantify the degree of overlap between the set of units 
supporting the encoding of CS100 and CS0 during the trial we computed, at every time step 𝑡, the 
average Pearson cross-correlation between 𝑉  of all CS100 trials with 𝑉  of all CS0 trials. An increase 
(decrease) in cross-correlation will imply an increase (decrease) in the size of the subpopulation 
commonly recruited by the two stimuli at a certain time 𝑡. As above, such analysis was performed by 
using population vectors 𝑉 , built by grouping population vectors 𝑉  of consecutive trials into groups of 
two and averaging. Population vectors were computed on bins of 500 ms, moved in time with steps of 
125 ms. 
 
Population analysis: population trajectories 

To visualize the differences between the temporal evolution of the population vectors in response to 
different CS and trial types, we averaged the population vectors 𝑉  across all trials to obtain, for each 
trial type, a matrix of size N x T. To improve the reconstruction of the neuronal dynamics (Balaguer-
Ballester et al., 2011), we applied time embedding on the multivariate time series obtained. We used 
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m = 4 delayed coordinates with a delay constant of 1 bin. Finally, for visualization, we reduced with PCA 
the space dimensionality to 3. 
 
Identification of functional unit-clusters  

To identify functional unit-clusters within aPC and Tu populations we used a clustering approach 
adapted from Cohen et al., 2012. Functional clusters were established according to the similarity in unit 
responses to different trial types. We first quantified the deviation at time 𝑡 of the response of each unit 
to its baseline distribution by computing the area under the receiver operating characteristic curve 
(auROC). The baseline distribution was computed by pooling the firing rate of the unit in the window 
from -1.8 to -1.4 s before odor onset. The distribution of the unit response at time 𝑡 was computed 
similarly, but pooling from a window of 500 ms shifted along the trial in steps of 125 ms. auROC values 
were computed for each unit and each condition - that is CS0, unrewarded CS50, rewarded CS50, 
CS100 – and concatenated as shown in Fig. 4G and Fig. 5J. We then performed PCA on the 
concatenated profiles and applied hierarchical clustering. Hierarchical clustering was performed on the 
Euclidian distance between vectors comprising of the first 5 PCs of each unit. For aPC and Tu, we used 
a cutoff in the linkage tree of 0.45 and 0.5, respectively. Such cutoffs were chosen to balance between 
generality and representativeness of the clusters with respect to their composing units.  

Complete and distributed coding 

To assess if aPC and Tu encoded a monotonic RP in a homogenous or distributed fashion (Fig. 6, S6), 
we tested each unit for monotonic RP coding and single CS dominance. To test monotonic RP coding 
during CS and the waiting period, we computed the unit firing rate in the CS window (0 to 1 s after odor 
onset) and waiting period (1 to 2.5 s after odor onset), respectively. Unit responses were computed for 
each trial 𝑡𝑟 and grouped by CS into 𝑅0 , 𝑅50 , 𝑅100 . Units from the transient-, ramping- and 
sustained-clusters were labeled as monotonic RP coding if 𝑅0 𝑅50  and 𝑅50 𝑅100  
when tested with a two-tailed Wilcoxon rank-sum test (p-value < 0.05). If the test for monotonic RP 
coding failed, units were further tested for CS dominance. CS dominance required that responses to the 
CS with stronger unit response were significantly higher than those to the CS with the second-strongest 
response (two-tailed Wilcoxon rank-sum test, p-value < 0.05). For units from the inhibited-clusters, 
monotonic RP was established by testing 𝑅0 𝑅50  and 𝑅50 𝑅100  while CS dominance 
required that responses to the CS with strongest task-inhibited response dropped to significantly lower 
response rates than those to the CS with the second-lowest response. 
 
Reward surprise 

To test if a unit encoded surprise in receiving an unexpected reward (reward surprise) we tested if the 

rate jump 𝑑 𝑓𝑟 𝑓𝑟  from prior to after US onset was bigger for rewarded CS50 trials than 
for CS100 trials. To encode surprise we enforced two prerequisites: a) the average rate jump for CS50 
rewarded trials had to be positive, 〈𝑑 〉 0; b) the rate jump for CS50 rewarded trials had to be 
bigger than that for CS100 in a two-tailed Wilcoxon rank-sum test (significance fixed at p-value < 0.05), 
𝑑 𝑑 . From visual inspection of the activation profile of Tu and aPC units, two characteristic 

US response profiles emerged, with different latency from US and different duration. Clustering units in 
transient- or ramping-populations did not segregate the two response profiles. To capture both response 
types, we computed reward surprise in two distinct trial windows. To capture short-latency short-duration 

responses, 𝑓𝑟  was computed in the window from 2.7 to 3.2 s after odor onset. To capture longer 

latency responses with longer duration, 𝑓𝑟  was computed in the window from 3.2 to 4.5 s after odor 

onset. In both cases, 𝑓𝑟  was the firing rate of the unit at trial 𝑡𝑟 in the 500 ms window prior US 
delivery. All units were tested in both windows and were flagged as encoding reward surprise if 
significant in either window. The criteria listed here were applied to all units from the transient-, ramping- 
and sustained-clusters. For units from the inhibited-cluster, reward surprise required: a) 〈𝑑 〉 0; 
b) 𝑑 𝑑 . 
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Outcome discrimination 

To assess if a unit encoded outcome discrimination, we used a two-tailed Wilcoxon rank-sum test and 

tested if 𝑓𝑟  for CS50 rewarded trials was bigger than 𝑓𝑟  for CS50 unrewarded trials. We did 

not consider the extremely rare opposite case, thereby focusing on the mechanisms contributing to the 
computation of the PE. Similar to the test for reward surprise, we tested both short- and long-latency 
responses and tested units from the task-inhibited cluster using the opposite inequity sign (see ‘Reward 
surprise’ paragraph). 

Chance level for monotonic RP coding 

We selected all #    units which showed a different response intensity to the three CS. 
This was obtained by requiring a p-value < 0.05 when testing the responses of each unit to different 
pairs of odors with a two-tailed Wilcoxon rank-sum test. Since the number of permutations without 
repetition of 𝑛 3 elements is 𝑛! 6, the number of units with a specific order in odor response (e.g. 
CS100 > CS50 > CS0) expected by chance is #   /6. 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Functional MRI data  

fMRI sessions were analyzed using SPM12 and the SPM12-based Sandwich Estimator toolbox (SwE) 
at the group-level. Unless otherwise stated, the statistical threshold was set to p < 0.025 (for two-sided 
testing), false discovery rate (FDR)-corrected for testing of multiple voxels. 
 
Behavioral and electrophysiological data 

Behavioral and electrophysiological data were analyzed using built-in and custom-made MATLAB 
routines (Mathworks) and SPSS (IBM). Statistical tests: test statistics, sample size, and multiple 
comparison corrections were indicated for each performed test and reported either in the relative method 
sections or in Table S1. Graphical visualization: whenever reporting averaged or collective results, the 
number of units used was reported directly next to the graph (as n); box plots were centered on the 
median, indicated the 25th and 75th percentiles with solid polygons and extended with whiskers to the 
most extreme data points not considering outliers, outliers were indicated with circles; average values 
were always reported with SEM. In all figures, asterisks marked p - values < 0.05 whose exact value 
was reported in Table S1. 
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SUPPLEMENTARY FIGURES 

 

 

 
Figure S1. Trained mice display differential anticipatory responses to olfactory stimulus-outcome pairs and dynamic 
value update by recent outcome-history. Related to Figure 1.  
(A) Percent correct trials for the three CS types in the mouse cohort shown in Fig. 1 (mean ± SEM, n = 69 sessions in 23 animals). 
One trial block had 5 trials of each type. Mice performed consistently above criterion.  
(B) Pupil image processing. Conversion from raw video to binary frames for pupil segmentation and pupil diameter detection.  
(C) Pupil responses to each trial type from one example session. Color indicates an increase (red) or decrease (blue) from 
baseline.  
(D) Standard procedure with surgery and training before the fMRI experiments.  
(E) Schematic of the MRI-compatible setup. Odors were delivered through a custom-built olfactometer. Water was delivered by a 
remote syringe pump. Licks were detected with custom-built optics. The setup was controlled by Arduino microcontrollers. 
(F-G) Performance curves (F) and average lick rates ± SEM (G) for the sessions during fMRI acquisition.  
(H) Same as Fig. 1I but computed with fMRI CS-US sequences. A dynamic update of reward prediction in CS50 trials by the prior 
cue-specific outcome was also reflected in the TD modeling of the fMRI cohort. Since mice already performed 20-30 trials before 
fMRI acquisition started and reached a stable performance (F), initial value conditions were set to the reward probabilities 
associated with each CS. 
(I) Average CS50 value from TD model for lastCS50→R and lastCS50→N (one data point per session) were significantly different 
depending on the outcome of the previous CS50 trial (Mann-Whitney U test). 
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Figure S2. Distributed brain circuits code for monotonic RP and the PE. Related to Figure 2.  
(A) Processing pipeline of fMRI data. See Methods for detailed information.  
(B) Average head motion parameters ± SEM after habituation to the scanner environment for (left) the three translation and (right) 
the three rotation parameters. Motion parameters of n = 51 sessions in 18 animals were considered.   
(C) Z-statistical maps showing four motion-related independent components. Motion-related components were removed before 
first level analysis was conducted. 
(D) Same as Figure 2B. ROI definitions based on Paxinos atlas. 
(E-G) Group-level Z-statistical maps for the (E) CS100, (F) CS50, and (G) CS0 regressor (n = 51 sessions in 18 animals). 
Statistical threshold was set to p < 0.025 false discovery rate (FDR)-corrected, for two-sided testing (as for the other maps unless 
otherwise indicated). Red colors indicate areas activated by the respective CS events, while blue colors indicate deactivation. 
Olfactory and striatal areas were primarily recruited. 
(H) Group-level Z-statistical contrast maps for CS100>CS50 used for the RP intersection. The analysis was restricted to the 
regions associated with 𝑉 𝐶𝑆  from Fig. 2C. 
(I) Same as (H) showing the contrast maps for CS50>CS0. 
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Figure S3. Single-unit recordings in the olfactory tubercle and the anterior piriform cortex. Related to Figure 3.  
(A) Scheme with the anatomical relation between Tu and aPC in sagittal view (top) and an example of a tetrode array connected 
to the breakout board of the head stage connector (bottom). Tetrode arrays were implanted unilaterally.  
(B) Ventral forebrain view of the mouse brain including ROI definitions. The tetrodes tips are visible in the Tu (green) and aPC 
(purple) on the ventral surface of the brain.  
(C) Localization of Tu and aPC on different atlas sections (left). Localization from bregma is indicated for each section. Tetrode 
array tracks are shown in a coronal brain section (right).  
(D) Quality metrics to evaluate spike sorting. Example single unit showing clustered action potential waveforms (left). Only units 
with less than 2% violations of the refractory spike period (middle) were included. Spike autocorrelation (right).  
(E) Baseline firing rate (left) and full width at half maximum (fwhm) of the action potential (right) of the analyzed single units.  
(F) Performance curves of the mouse cohort used in electrophysiology experiments (mean ± SEM, n = 88 sessions in 11 
animals). Only mice were included that performed above criterion. 
(G) Average lick rate ± SEM during different trial types (n = 88 sessions in 11 animals).  
(H) Average lick rate ± SEM in the waiting window differentiated the respective trial types with CS100>CS50>CS0 (one-way 
ANOVA with Tukey post-hoc comparisons).  
In the figure: * indicates p < 0.05 (see Table S1 for exact p-values and test details). 
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Figure S4. Evolution of task-related responses during training. Related to Figure 4.  
(A) Average licking rate ± SEM split by trial types for the first training sessions (n = 11 sessions in 11 animals).  
(B) Percentages of the correct CS100, CS50 and CS0 trials in first training sessions (mean ± SEM). 
(C) Mean firing rate ± SEM of aPC units recorded during the first training sessions. Displayed mean firing rate during the first 50 
trials (left) and the last 50 trials (right) of the session.  
(D-E) The fraction of task-inhibited responses at (D) CS and (E) US increased in aPC with training. 
(F-H) Box plots with median firing rate of the aPC (F) transient-cluster, (G) sustained-cluster and (H) inhibited-cluster during CS 
and waiting period (one-way ANOVA with Tukey post-hoc comparisons).  
In the figure: * indicates p < 0.05 (see Table S1 for exact p-values and test details) and n indicates the number of units. 
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Figure S5. Tu units form transient and ramping task response clusters. Related to Figure 5.  
(A) Same as Fig. S4C for Tu. By the end of the first session, the Tu firing rate started reflecting RP coding by responding more 
strongly to CS100 than CS50 and CS0. Interestingly, at this stage, ramping activity is not yet seen during the waiting period. 
(B-C) Same as Fig. S4D-E for Tu. Also in Tu, the fraction of task-inhibited responses increased with training for all trial types. 
(D-F) Same as Fig. S4F-H for the Tu (D) transient-cluster, (E) ramping-cluster and (F) inhibited-cluster during CS, waiting period, 
and US (one-way ANOVA with Tukey post-hoc comparisons).  
(G) Average reward response ± SEM of units from the transient- and ramping-cluster during the CS100 and the rewarded CS50 
trials. Reward response was computed as the difference in the firing rate after US from before US. Units from the ramping-cluster 
had a stronger reward response than those in the transient-cluster regardless of the certainty or not of the reward (CS100 or 
CS50, respectively) (two-tailed unpaired Wilcoxon rank-sum test).  
In the figure: * indicates p < 0.05 (see Table S1 for exact p-values and test details) and n indicates the number of units. 
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Figure S6. Transient and ramping units differently encode monotonic RP. Related to Figure 6.  
(A) Same as Figure 6A (bottom) but with complementary test windows. Note that coding in the three clusters changed between 
the CS and the waiting period. 
(B) Same as Figure 6C but for the ramping Tu cluster group. No distributed monotonic RP coding was found in the Tu ramping 
group during the waiting period. 
(C) Same as Fig. 6A and (A) for aPC. The percentage of units in the three clusters defined in Fig. 4H-J coding individually for 
monotonic RP or showing a dominant activation for one of the three CS. Right: Complementary test windows. In aPC, only a small 
fraction of units in the inhibited-cluster encoded monotonic RP during the waiting period (in the task-excited clusters such fraction 
was below chance). 
(D) Same as Fig. 6D for aPC. Fraction of aPC units in the three clusters defined in Fig. 4H-J encoding reward surprise, outcome 
discrimination, or both. Note that units from all clusters contributed to some extent to PE coding. 
In the figure: * indicates p < 0.05 (see Table S1 for exact p-values and test details) and n indicates the number of units. 
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Figure S7. Reward prediction updating through the recent cue-specific outcome-history. Related to Figure 7.  
(A) Histograms showing the distribution of the trial-gap between a CS50 trial and the respective last, second to last, and third to 
last CS50 trials, in all recording sessions.  
(B) PSTH and raster plot of an example Tu unit from the ramping-cluster coding for outcome-history.  
(C-D) Difference in mean activity for the three major clusters in Tu for outcome-history (C) and satiety (D). One-way repeated 
measures ANOVA with Greenhouse-Geisser and Bonferroni correction performed for history and satiety separately at CS and 
during waiting. Note that the ramping-cluster encoded both outcome-history and satiety during waiting.  
(E-F) Same as (C-D) for the aPC clusters. No cluster encoded outcome-history in aPC. 
In the figure: * indicates p < 0.05 (see Table S1 for exact p-values and test details). 
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