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The T-cell receptor (TCR) determines the specificity of a T-cell
towards an epitope. As of yet, the rules for antigen recognition
remain largely undetermined. Current methods for grouping
TCRs according to their epitope specificity remain limited
in performance and scalability. Multiple methodologies have
been developed, but all of them fail to efficiently cluster large
data sets exceeding 1 million sequences. To account for this
limitation, we developed clusTCR, a rapid TCR clustering
alternative that efficiently scales up to millions of CDR3 amino
acid sequences. Benchmarking comparisons revealed similar
accuracy of clusTCR with other TCR clustering methods.
clusTCR offers a drastic improvement in clustering speed,
which allows clustering of millions of TCR sequences in just a
few minutes through efficient similarity searching and sequence
hashing.

clusTCR was written in Python 3. It is available as an
anaconda package (https://anaconda.org/svalkiers/clustcr) and
on github (https://github.com/svalkiers/clusTCR).

T-cell receptor (TCR) | CDR3 sequence | Unsupervised clustering

Correspondence: pieter.meysman@uantwerpen.be

Introduction

T cells constitute a key component of the adaptive immune
system and are one of the primary determinants of distin-
guishing self from non-self. The T-cell receptor (TCR) is
responsible for the recognition of peptide antigens presented
by the major histocompatibility complex (MHC). The TCR
complex is a heterodimer consisting of two distinct chains
(α and β) that both contribute to the recognition of the cog-
nate antigen and is expressed on the T-cell surface. High-
throughput targeted sequencing technology enables sequenc-
ing of the unique and diverse TCR α and/or β nucleotide se-
quences in a sample, allowing quantitative mapping of the
immune receptor repertoire. One of the major goals of quan-
titative immunology is the identification of groups of T cells
with common specificity towards an antigen. Exactly deter-
mining a TCR’s epitope-specificity requires knowledge about
the epitope and demands for time-consuming in vitro experi-
ments such as MHC multimer assays (1). An alternative way
of characterising specificity groups is unsupervised cluster-
ing of TCR sequences. This does not require prior knowl-
edge of specific epitopes and allows interrogation of com-
plete repertoire data sets by searching for sequentially simi-
lar TCRs. It has been illustrated previously that TCRs shar-
ing similar CDR3 sequences often target the same epitope
(2). Hence, an effective approach for TCR clustering is de-

termining the sequence-based similarity within a set of TCR
sequences. However, in spite of being a powerful approach
to drastically reduce the repertoire complexity, sequence-
based clustering has various complications. The most pro-
nounced bottleneck of clustering sequence data is the scal-
ability of pairwise distance calculations. Calculating pair-
wise distances scales quadratically with the number of in-
put sequences (O(n2)). Current methods for TCR cluster-
ing rely on a pairwise distance matrix to determine the clus-
ters. Consequently, these algorithms have limited applicabil-
ity towards extremely large RepSeq data sets. With clusTCR,
we created a clustering procedure that can efficiently classify
large sets of CDR3 sequences into specificity groups by dras-
tically limiting the number of required pairwise comparisons.

Methods
Data.

Epitope-labeled data. We used TCR sequences with known
epitope specificity to benchmark the clustering quality of our
method. For this we downloaded all human TRB sequences
from the VDJdb (3). This provided us with a list of 28,576
unique CDR3 sequences. Each TCR-epitope pair in VDJdb is
annotated with a quality score, which ranges from 0 to 3 (with
3 indicating the highest quality database entries). The VDJdb
quality score reflects the confidence of the antigen specificity
annotation. The two subsamples contained sequences that
satisfied quality scores of ≥ 1 and ≥ 2. The subsamples con-
sisted of 2851 and 495 unique CDR3 sequences respectively.

Unlabeled data. Due to the limited availability of epitope-
labeled TCR sequencing data, unlabeled TCR repertoire
data was used to evaluate the speed of clusTCR and other
TCR/CDR3 clustering methods. The data set by Emerson et
al. (2017) (4) contains a large amount of unique CDR3 se-
quences and is therefore well suited for performance bench-
marking. The data was downloaded from the immuneAC-
CESS database. From this data set we randomly sampled a
fixed number of unique sequences to construct ’metareper-
toires’. These metarepertoires may therefore contain CDR3
sequences that originate from different repertoire samples.
For the performance benchmarking, different metarepertoires
were sampled (see table S1).
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clusTCR workflow.

Overview. clusTCR is a two-step clustering algorithm that
combines the speed of the Faiss library, combined with the
accuracy of the Markov clustering algorithm (MCL). Dur-
ing the first clustering step we use Faiss’ efficient K-means
implementation to rapidly subdivide data sets of CDR3 se-
quences into superclusters. In the next step, MCL is applied
on each individual supercluster to identify groups of epitope-
specific CDR3 sequences.

Sequence vectorization. First, CDR3 amino acid sequences
are converted to n-dimensional vectors. n must be prede-
fined and will be the same for every sequence. Therefore,
the default number of dimensions is equal to the length of
the longest sequence in the input data. The vectorized se-
quences reflect the physicochemical properties of the amino
acids. Different combinations of physicochemical properties
were tested and the resulting clustering quality and speed
were evaluated (for an exhaustive list of the combinations,
see fig. 2). All vectors are stored in one large vector matrix
with shape (n,m), where n is the size of a single vectorized
sequence and m is the total number of sequences in the input
data.

Computing superclusters. Roughly dividing the sequence
data into groups of approximate neighbours drastically
speeds up the total clustering process by minimizing the num-
ber of direct comparisons between sequences. clusTCR com-
putes a number of superclusters s. This number s corre-
sponds to m/θ, the total number of sequences in the data
set (m) divided by the average number of sequence in a su-
percluster (θ). The latter is set to 5000 by default. To re-
trieve the superclusters, we use the rapid K-means imple-
mentation from the Facebook artificial intelligence similar-
ity search (Faiss) Python library (5). First, an index is con-
structed (’trained’), which will be used to efficiently search
large sets of CDR3 sequences. During this step m/5000 cen-
troids are computed. Next, we use Faiss’ efficient K-means
implementation to assign each vector to its most similar cen-
troid (as defined by the Euclidean or L2 distance between the
vector the centroids).

Sequence hashing to speed up graph construction. Net-
works are effective structures for representing relationships
between objects or processes, such as biomolecular interac-
tions. Likewise, networks can be used to represent the se-
quence similarity landscape of CDR3 amino acid sequences.
These similarity networks are undirected graphs G(V,E),
consisting of a set of nodes or vertices (V ) represented by
the CDR3 sequences, which are connected by a set of edges
(E) representing (dis)similarity between nodes. In the case
of amino acid sequences, dissimilarity can be described by
an edit distance. Here, edit distance was defined as the Ham-
ming distance (HD) between two strings. Given two strings
u and v, the HD between them (d(u,v)) is defined as the
number of positions where u and v differ. Additionally, HD
implicitly assumes that both strings have an identical length.

Thus HD only allows substitutions, and no deletions or inser-
tions. The graph describes the adjacency matrix A of pair-
wise HDs between the CDR3 amino acid sequences:

A=

 0 · · · HD1,m
...

. . .
...

HDm,1 · · · HDm,m

 . (1)

HD = 1 was chosen as a criterion for drawing an edge
between two sequences. Hence A will be a binary matrix
that can be compressed into a sparse matrix format for
efficient memory allocation.

To determine all pairs of CDR3 sequences with HD
= 1, a simple hash function was used to convert each
sequence into hashes that contain either the odd or even
positions of the original sequence. By doing this, only
sequences that are assigned to the same hash need to be
compared against each other. This drastically reduces the
total amount of pairwise comparisons. This hashing method
correctly identifies all sequence pairs with a HD of 1, while
being much faster than brute-force comparison methods.

Graph clustering. For each individual supercluster, a graph
is constructed from its CDR3 sequences. The goal is to
resolve clusters of sequences with high similarity (∼ epitope-
specificity). MCL is particularly appropriate for this task (6).
MCL is a graph clustering algorithm that identifies dense
network substructures in a graph or network by simulating
stochastic flow. The algorithm performs a random walk on
the graph, which is calculated using Markov chains. MCL
performs two operations on the stochastic matrix: expansion
and inflation. Expansion is taking the power of the stochastic
matrix using the normal matrix product. This determines
how much flow is allowed between different regions of the
graph. This effect is further exaggerated by the inflation
parameter, taking entrywise powers of the ’expanded’
matrix, followed by a rescaling step so that the matrix
elements correspond to probability values (i.e. making the
matrix stochastic again). Inflation further strengthens current
between (already) strong neighbours, while at the same time
weakening current between weak or distant neighbours.
This process of alternating between expansion and inflation
operations is repeated until the graph is partitioned into
individual substructures (while paths between substructures
no longer exist). We evaluated different thresholds of the
expansion and inflation parameters, as illustrated in fig. S2.

clusTCR applies the Python 3 implementation of MCL
(see github). To further increase performance, clusTCR also
applies multiprocessing to parallelise MCL for different
superclusters at the same time.

GPU support & batch clustering. To enhance the clustering
performance for extremely large data sets, clusTCR offers
GPU support for CUDA-compatible GPUs and implements
batch clustering to prevent memory overflow. GPU support
is provided for the calculation of superclusters. To allow the
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use of the GPU, the user must ensure having installed the re-
quired cudatoolkit (installation instructions available in the
software documentation). For extremely large data sets that
do not regularly fit into RAM, clusTCR provides a batch clus-
tering functionality. Here, cluster centroids are computed
from a subset of the complete data set. We recommend a
subset of size 1000× m

θ , where m is the size of the complete
data set to be clustered, and θ is the average size of the super-
clusters (a standard parameter of clusTCR, which is 5,000 by
default). Next, vectors are assigned to the closest centroid, in
batches. During this step, intermediate results are stored on
disk, with a file for each supercluster. Next, the second clus-
tering step is also performed in batches. Using a generator
function, data is loaded and clustered batch per batch. To op-
timize this process further, multiple superclusters are loaded
at once and clustered using multiprocessing.

Clustering evaluation.

Evaluation metrics. Evaluating the quality of clustering re-
sults is not a trivial task, even when ground truth labels (in
this case, the epitope to which the TCR sequence is specific)
are available. Important factors to consider when evaluat-
ing TCR clustering results are the coverage of the clustering
method, the extent to which epitope-specific sequences are
clustered together and how consistent this process is. The
following metrics for the evaluation clustering quality were
set out to evaluate these criteria: retention, purity and consis-
tency. Although each metric has its limitations, collectively
they offer a good means of evaluating an unsupervised clus-
tering approach like clusTCR.

Retention. Not all input sequences end up in the final clus-
tering results. clusTCR only considers those sequences that
share at least one neighbour with a hamming distance (HD)
of 1. We define retention as the number of TCR/CDR3 se-
quences s that participate to any cluster c divided by the size
of the data set.

retention =
∑
|s ∈ c|∑
|s|

(2)

Purity. Purity is a simple and interpretable metric to describe
the extent to which clusters contain a single epitope. Purity
is calculated as the fraction of sequences within one cluster
targeting the same epitope. For each cluster c, we count the
number of sequences s specific for the most common epitope
γ, sum the values and divide them by the total number of
sequences in any cluster. Formally, purity is computed as

purity =
∑
|γ(s ∈ c) = γmax(c)|∑

|s ∈ c|
. (3)

Since clustering methods that return very small clusters (i.e.
cluster size = 2-3) automatically achieve high purity, we also
calculated the fraction of clusters with purity> 90% as an al-
ternative metric for clustering quality. Thereby, more weight
is assigned to larger clusters.

Consistency. Consistency describes the fraction of epitope-
specific CDR3 sequences that are assigned to a single cluster.
In the case of having multiple epitopes assigned to one clus-
ter, the largest epitope (i.e. with the most sequences specific
to it) is given preference. Also, if two or more clusters con-
tain sequences specific for that epitope, the cluster containing
the most epitope-specific CDR3 sequences is assigned as the
true cluster. Formally, we computed consistency as:

consistency =
∑
|γ(s ∈ c)γtrue(c)|

|s|
(4)

Benchmarking clusTCR.

TCR clustering algorithms. To benchmark the perfor-
mance of clusTCR, it was compared against existing methods
for clustering TCR sequences. For each method, the perfor-
mance and clustering accuracy were evaluated using the same
data. Quality benchmarking was performed using different
subsets of the VDJdb, while the performance of the different
algorithms was evaluated on artificially large metarepertoires
of different sizes (see table). Note that all methods, exclud-
ing clusTCR, additionally require V gene information, hence
this was also provided.

• iSMART: The code for the iSMART algorithm was
downloaded from github (link). Although iSMART
implements parallel CPU processing, we encountered
fatal kernel errors when using this feature. Therefore,
iSMART was used at 1 CPU. Additionally, a kernel er-
ror appeared when trying to cluster> 200K sequences.

• GLIPH2: We downloaded the .centos executable ver-
sion of GLIPH2 from the website and installed it in
the clusTCR repository. Each GLIPH2 input TCR in-
cluded a CDR3 sequence, V gene, subject id and fre-
quency. We wrote a python wrapper that provided
GLIPH2 with the appropriate data and executed the al-
gorithm.

• tcrdist3 (+ DBSCAN): Pairwise distances between
TCR sequences were calculated using the tcrdist3
python package (github). Since tcrdist3 does not offer
clusteringing procedures, we used density-based spa-
tial clustering of applications with noise (DBSCAN)
from the python scikit learn library, which was previ-
ously shown to be an appropriate method for clustering
CDR3 sequences [(2)]. Another reason why we used
DBSCAN is that the algorithm, like MCL, does not re-
quire to define the number of clusters in advance (un-
like e.g. K-means). The minimum amount of items
per cluster was set to two. We used different simi-
larity thresholds, thereby evaluating the trade-off be-
tween retention and purity/consistency. Ultimately, the
threshold was set to 18. This threshold best reflected
the outcome of the other clustering methods used for
benchmarking.
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Downstream cluster analysis.

Cluster features. To allow downstream machine learning ap-
plications of the clustering results, clusters were represented
numerically by calculating a feature matrix describing multi-
ple properties of the CDR3 amino acid sequences in a cluster.

• CDR3 length: Length of CDR3 sequences (number
of amino acids) in the cluster. Since clusTCR handles
with an exact similarity criterion of HD = 1, all se-
quences within one cluster have an equal length.

• Cluster size: The number of sequences in a cluster.

• Cluster entropy: Cluster entropy describes the posi-
tional variation within a cluster. It is calculated as the
average information content within a cluster by deter-
mining the Shannon entropy at each position (exclud-
ing positions 0 and -1) and taking the average across
all positions. Additionally, small-sample correction is
applied to account for differences in cluster size (7).
Since all sequences within a single cluster have an
equal size, multiple sequence alignment is not neces-
sary. Formally, we compute the average information
content R of a cluster:

R= 1
l

l∑
i=1

(log2 20− (Hi+en)) , (5)

where l equals the length of the sequences in the clus-
ter and n represents the number of sequences in the
cluster. Hi is the Shannon entropy at a given position
i:

Hi =
n∑
i=1

f(xi) · log2 f(xi). (6)

en is a correction factor that accounts for differences
in cluster size. It is calculated as folows:

en = 1
ln2 ·

s−1
2n , (7)

where s is the size of the alphabet. Because we are
handling amino acid sequences, s= 20.

• Physicochemical features: clusTCR calculates the
average and variance of following physicochemical
features basicity, hydrophobicity, helicity and muta-
tion stability. Physicochemical features provide a func-
tional encoding of the sequences within a cluster.

• Generation probability: Generation probability
(Pgen) is the probability by which a TCR or CDR3
sequence is generated through the V(D)J recombina-
tion process. This probability is estimated through
stochastic modelling of V(D)J recombination. Pgen
values were calculated using the Optimized Likelihood
estimate of immunoGlobulin Amino-acid sequences
(OLGA) algorithm (8).

Superclusters CDR3 network

(a.) (b.) (c.) c

Complex repertoire

a CSARGQGNEQYF

b CASSYWDRITSGNTIYF

c CASSEKGDTQYF

d CSARKQGNEQFF

⁞

w CSARDRGAANTGELFF

x CASSHWDRETSGNTIYF

y CSARDRGAENTGELFF

z CASSEEGDTQYF

ASWRTGTY

AALATTY

CSEGTY

⁞

SRRANGLF

SRQNQF

CSEIGWEF

keys hash function hashes edges

a - x

a - s

⁞

w - y

x - d

Clusters

Fig. 1. Workflow of clusTCR. a. Sequences are first roughly categorized into super-
clusters through an efficient nearest-neighbor search. b. Within each supercluster,
a hash function is applied to sort sequences. Sequence pairs with a maximum
edit distance of 1 are selected from each hash. These sequence pairs are used to
construct a graph. c. MCL is used to find dense network substructures.

Predicting cluster quality. To analyse clusTCR’s clustering
output, a binary classification system was constructed that
predicted the whether a cluster is of high quality or not. Clus-
ter quality was here defined as having at least 0.90 purity.
Labels and features were generated by performing clusTCR
two-step clustering on all unique CDR3 sequences from the
human TRB sequences in the VDJdb. Purity of each indi-
vidual cluster was calculated and these purity values were
discretized according to the defined purity cut-off. Clusters
with purity > 0.90 were assigned 1, every cluster with lower
purity was assigned 0. Next, cluster features were calculated
according to the procedure described in the previous section.
We used Python’s scikit learn library to train a random for-
est classifier consisting of 100 decision trees using the cluster
features and labels. The classifier was evaluated through 10-
fold stratified cross-validation. We used the receiver operat-
ing characteristic (ROC) and the area under the ROC (AUC)
to express the performance of this classification model.

Results
Choosing hyperparameters. clusTCR is a two-step
clustering approach that combines the speed of the Faiss
library with the accuracy of MCL (fig. 1). The first step
drastically scales down the search space by subdividing the
data into large sets of sequences sharing some degree of
similarity. We refer to these groups as superclusters. Faiss’
efficient K-means implementation is used to generate these
superclusters. Because Faiss efficiently handles vectors,
sequences were first encoded as numerical vectors reflecting
their physicochemical properties. Next, n centroids were
predefined to which the vectorized sequences are assigned.
The number of centroids n is a function of the average
supercluster size. Although the limited availability of
epitope-labeled CDR3 data prevents us from exactly deter-
mining an optimal supercluster size, 5000 gave consistent
results while maintaining high performance (fig. S1). Next,
the effect of sequence encoding was assessed by evaluating
different combinations of features. No specific combination
of physicochemical properties was found to significantly
outperform others (as determined by cluster quality evalu-
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ation, fig. 2A,B). Combinations including isoelectric point
(pI) took significantly longer to compute and were therefore
excluded (fig. 2C). During benchmarking of clusTCR, a
combination of mutation stability and amino acid z-scores
(derived from quantitative structure–activity relationship
studies (9)) was used.

In the second step, clusTCR reclusters each individual
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Fig. 2. Sequence vectorization for efficient K-means clustering. Different combina-
tions of features were used to numerically encode CDR3 sequences to allow vector
clustering with Faiss’ K-means implementation. A. Influence of different features on
cluster purity. B. Influence of different features on cluster consistency. C. Elapsed
time for computing different numerical vectors. Combinations including isoelectric
point (pI) take significantly longer to compute. Abbreviations: ba, basicity; he, he-
licity; hy, hydrophobicity; ms, mutation stability; pI, isoelectric point; z, amino acid
z-scores.

supercluster to accurately identify specificity groups within.
Adaptive immune receptor repertoires can be represented as
graphs in which nodes represent the sequences and the edges
represented similarity between sequences (10). To create this
graph, clusTCR uses efficient sequence hashing to determine
each pair of sequences with an exact Hamming distance of
1. Next, it uses the corresponding similarity-grouped graph
to identify potential epitope-specific clusters. Evaluating the
graph structure allows the interrogation of sequence-based
relationships in the repertoire because similar sequences will
share edges within the graph. To this end, clusTCR applies
MCL for the identification of dense network substructures
(11), representing dense groups of CDR3 sequences with
similar sequential characteristics. MCL simulates stochastic
flow inside the graph by alternating between two operations
performed on the stochastic matrix (this matrix describes the
probabilities of visiting a specific node): expansion and in-
flation. Hereby, MCL identifies dense network substructures
where flow is high. These network substructures represent
the clusters in clusTCR’s output. Different combinations for
expansion and inflation were tested (fig. S2). Increasing the
expansion parameter typically resulted in an overall decrease
in purity, but an increase in consistency and the fraction
of clusters with purity > 0.90. Increasing the inflation

parameter had an opposite effect. Individual application of
MCL allows efficient and accurate clustering of relatively
small sets of CDR3 sequences (up to 50,000). Combined
with the first step, the clustering can be made efficient for
any TCR dataset.

Benchmarking. In order to effectively validate clusTCR,
we compared it against existing TCR/CDR3 clustering
approaches. These approaches included iSMART (12),
GLIPH2 (13) and tcrdist3 (14). Both iSMART and GLIPH2
have illustrated evidence for being suitable approaches
for clustering TCR sequences. tcrdist was developed as a
method for defining (dis)similarity between TCR sequences.
The latter does not directly generate clusters, rather a
pairwise distance matrix. Consequently, we used DBSCAN
to perform clustering based on the pairwise distances
determined by tcrdist3. The DBSCAN algorithm requires
a predefined distance threshold to cluster a set of items.
We evaluated a range of similarity thresholds (fig. S3). A
similarity threshold of 18 was selected, as this reflected
the clustering results of the other algorithms. Indeed, this
has previously been shown to be a representative similarity
threshold for tcrdist-based distance matrices (2).
The ability of different clustering methods to group
CDR3/TCR sequences with common epitope-specificity
was tested using a data set of sequences with known
epitope-specificity. From this data set we selected two
subsets of database entries with a VDJdb score of > 1 and
> 2 respectively. This score reflects the confidence of the
antigen specificity annotation. We evaluated each clustering
method on the unfiltered set of human TRBs in the VDJdb,
and the two high-quality subsets. On the smallest subset
(495 sequences), both GLIPH2 and clusTCR achieved near
perfect purity (0.99 and 0.98 respectively), outperforming
iSMART (0.91) and tcrdist3 (0.80) on this metric (fig. S4A).
GLIPH2, clusTCR and iSMART achieved achieved a purity
of ∼ 0.88 on the second subset (2,851) sequences. tcrdist3
performed slightly worse, achieving an overall purity of 0.80.
When clustering the complete data set (28,576 sequences),
both GLIPH2 and iSMART (0.66 both) achieve slightly
higher purity compared to clusTCR (0.60). Since smaller
clusters automatically achieve higher purity, we used the
fraction of clusters with purity > 0.90 as an additional metric
to account for this limitation. Evaluating clustering results
with this metric revealed equal performance of all methods
at every confidence level (S4B). However, tcrdist3-based
clustering underperformed as compared to other methods
(66% versus ≥ 90%). There does exist a trade-off for all
TCR clustering methods between the number of clusters
and the size or quality of the clusters. As illustrated,
clusTCR covers only 20-25% of the input sequences of
the ground truth data set. This is lower compared to
GLIPH2 and tcrdist3, but higher than iSMART (fig. S4C).
However this increased cluster retention comes at the cost
of clustering consistency (S4D). In this regard, clusTCR
comes out on top along with iSMART. Collectively, these
results suggest that there is no single approach that clearly
outperforms all others with regards to the final cluster quality.
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We then evaluated the speed of clusTCR as compared
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Fig. 3. Performance of different TCR/CDR3 clustering methods. At 106 sequences,
clusTCR provides a > 50× speed improvement (with an Intel(R) Core(TM) i7-
10875H CPU @ 2.30GHz, using 8 CPUs) over other methods. *: The runtime
of tcrdist3 only includes the computation of pairwise distances, not clustering.

to existing TCR clustering approaches (fig. 3). Metareper-
toires of various sizes (ranging from 5,000 to 1,000,000
unique sequences) were randomly sampled from a large
immunosequencing data set by Emerson et al. (2017)
(4). For small data sets (5,000 to 100,000 sequences),
clusTCR outperforms all other methods by at least 2.5-
(5,000 sequences) to 23.0-fold (100,000 sequences). From
our testing, both iSMART and tcrdist3 failed to cluster
medium-sized data sets of > 200,000 sequences. At very
large data set sizes, clusTCR achieves up to 50× speed
improvement compared to GLIPH2. In absolute numbers,
clusTCR successfully clusters 1 million sequences in 4
minutes (±30 seconds). GLIPH2 clustered the same amount
of sequences in approximately 2 hours and 45 minutes (±11
minutes).

Downstream clustering analysis. After determining clus-
ters of CDR3 sequences, we calculated a range of features
for each cluster. By numerically representing the clustering
results, we can unlock downstream machine learning applica-
tions for repertoire classification or cluster enrichment anal-
yses. Calculated features included cluster entropy, physico-
chemical properties and generation probability. Using these
features, a classification model was constructed that differen-
tiates between high- and low-quality clusters. High-quality
clusters were defined as clusters with purity > 90%. A ran-
dom forest classifier, consisting of 100 decision trees, was fit-
ted with the cluster features and their associated, discretized
labels (1: purity > 90%, 0: < 90%). The classification per-
formance of the model was evaluated through 10-fold strati-
fied cross-validation. An average AUC of 0.84 (±0.07) was
achieved (fig. S5A). Evaluation of the feature importances
revealed a significant contribution of generation probability
to the prediction of clustering quality (fig. S5B). We pro-
pose that this model can aid in filtering out insignificant, low-
quality clusters.

Discussion

We have developed clusTCR, a rapid algorithm for clustering
large sets of CDR3 sequences. clusTCR was benchmarked
by comparing it to three other naive clustering methods
for TCRs or CDR3 sequences: GLIPH2, iSMART and
tcrdist(3) (12–15). Along with clusTCR, these are naive
in the sense that they do not require epitope-specific or
any other additional information about the sequences. We
illustrate that clusTCR offers a 50× performance increase
(at 1 million sequences) compared to GLIPH2, which was
found to be the second fastest clustering algorithm (fig. 3,
table S1). In this study, it was illustrated that no single algo-
rithm outperformed all others in terms of clustering quality.
Therefore, we propose clusTCR as the most favourable
option for clustering medium (> 200,000 sequences) to
large (> 1,000,000 sequences) sized RepSeq data sets.
Additionally, clusTCR provides the unique functionality of
batch clustering, which allows processing of extremely large
data sets, even if they do not fit into RAM. Finally, because
clusTCR implements multiprocessing, it is perfectly suitable
for high-performance computing infrastructures.

Along with clustering functionality, clusTCR provides
tools for downstream analysis of the clustering results.
These include calculation of cluster features such as cluster
entropy, physicochemical properties and generation proba-
bility. Cluster features are particularly useful for downstream
machine learning applications for TCR repertoire data.
To this end, clusTCR may serve as an efficient tool for
generating lower dimensional representations of highly
complex immunosequencing data, while retaining the bulk
of information contained in the original data set. clusTCR
provides a classification model for evaluating the quality of
the obtained clustering results. This model may serve as an
additional tool for lowering the dimensionality of the input
data set. We found that Pgen was the most important feature
towards predicting clustering quality. Indeed, it has been
illustrated previously that Pgen is an important determinant
for TCRs to recognize the same epitope (16). Although our
model already achieves a solid performance (average AUC
= 0.84± 0.07), we expect it to perform better when fitted
with more data. Given the growing interest in TCR analysis,
more ground truth data (i.e. epitope-labeled) is likely to be
generated in the future.

Conclusion

TCR clustering approaches are limited in their ability to scale
up to the often extremely large immunosequencing data sets
generated today (4, 17). clusTCR is a novel sequence-based
CDR3 clustering approach, specifically developed to account
for this limitation. We have illustrated that our approach is
comparable to the current state-of-the-art in terms of cluster-
ing accuracy. At the same time, clusTCR provides a drastic
speed improvement of > 50× over existing alternatives and
allows clustering of large data sets that do not fit into RAM.
To this end, this novel approach may unlock simultaneous
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processing of large RepSeq data sets, providing an effective
tool for searching enriched groups of CDR3 sequences within
a set of TCR repertoires.
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