bioRxiv preprint doi: https://doi.org/10.1101/706986; this version posted February 23, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1 Crystal structure of Sulfolobus solfataricus topoisomerase III

2 reveals a novel carboxyl-terminal zinc finger domain essential

3 for decatenation activity

- 4 Hanqian Wang^{1,+}, Junhua Zhang^{2,+}, Zengqiang Gao³, Xin Zheng¹, Keli Zhu^{1,4}, Zhenfeng
- 5 Zhang², Zhiyong Zhang⁵, Yuhui Dong^{1,3}, Li Huang^{2,6,*} and Yong Gong^{1,*}
- ⁶ ¹ Multi-discipline Center, Institute of High Energy Physics, Chinese Academy of Sciences,
- 7 Beijing, 100049, China
- 8 ² State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of
- 9 Sciences, Beijing, 100101, China
- ³Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of
- 11 Sciences, Beijing, 100049, China
- ⁴ Institute of Physical Science and Information Technology, Anhui University, Anhui, 230601,
- 13 China
- ⁵ CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Key
- 15 Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy
- 16 Physics, Chinese Academy of Sciences, Beijing, 100049, China
- ⁶ College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- 18 * Correspondence to: Yong Gong, Multidiscipline Research Center, Institute of High Energy
- 19 Physics, Chinese Academy of Sciences, Beijing 100049, China; Tel: +86 10 8823 5257; Fax:
- 20 +86 1088 2352 57; Email: yonggong@ihep.ac.cn
- 21 to Li Huang, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese
- 22 Academy of Sciences, Beijing, 100101, Tel: +86 10 6480 7606; Fax: +86 10 6480 7429; Email:
- 23 huangl@im.ac.cn
- ⁺ These authors contributed equally to the paper as the first authors.
- 25
- 26
- 27
- 28 Running title: Crystal structure of an archaeal DNA topoisomerase III
- 29 ABSTRACT

30	DNA topoisomerases are essential enzymes for a variety of cellular processes
31	involved in DNA transactions. Mechanistic insights into type IA DNA
32	topoisomerases have come principally from studies on bacterial and
33	eukaryotic enzymes. A structural understanding of type IA topoisomerases in
34	Archaea is lacking. Here, we present a 2.1-angstrom crystal structure of
35	full-length Sulfolobus solfataricus topoisomerase III (Sso topo III), an archaeal
36	member of type IA topoisomerases. The structure shows that Sso topo III
37	adopts a characteristic torus-like architecture consisting of a four-domain core
38	region and a novel carboxyl-terminal zinc finger domain (domain V).
39	Structure-based mutation analyses reveal that a novel zinc-binding motif in
40	domain V is essential for the DNA decatenation activity of Sso topo III. Our
41	data indicate that Sso topo III represents a subclass of Type IA
42	topoisomerases capable of resolving DNA catenates using a domain
43	V-dependent mechanism.
44	
45	
46 47	
48	
49	
50	
51	
52	
53	
54	
55	
56 57	
58	IMPORTANCE
59	Type IA topoisomerases are omnipresent in all cellular life forms and serve

60	pivotal roles in cellular processes involved in DNA transactions. While
61	considerable insights have been gained into Type IA topoisomerases from
62	bacteria and eukaryotes, a structural understanding of type IA topoisomerases
63	in Archaea remains elusive. we first determined the crystal structure of
64	full-length Sulfolobus solfataricus topoisomerase III (Sso topo III), an archaeal
65	member of type IA topoisomerases. Our structure provides the first molecular
66	view of this archaeal topoisomerase, which removes negative supercoils and
67	decatenates DNA catenane. Our findings manifest that Sso topo III may serve
68	as an alternative prototype of type IA topoisomerases, whose decatenation
69	mechanism differs from that of known bacterial and eukaryotic topoisomerases
70	III such as Escherichia coli topoisomerase III (EcTOP3).
71	
72	
73	
74	
75	
76 77	
77 78	
79	KEYWORDS
80	Archaea, DNA topoisomerase, crystal structure, zinc finger, decatenation
81	activity, enzyme mutation
82	
83	
84	
85	
86	INTRODUCTION

87 The overall topological state of DNA in cells is altered by DNA

88	topoisomerases. In all three domains of life, conserved DNA topoisomerases
89	are essential for a wide variety of cellular processes involved in DNA
90	transactions (1-4). There are two types of topoisomerases (1). Type I
91	topoisomerases cut only one strand of DNA, while type II topoisomerases
92	cleave both strands of the DNA duplex. Type I enzymes can be further
93	classified into three different families, types IA, IB and IC, on the basis of
94	transiently formed covalent intermediates formed (5'- or 3'- covalent
95	intermediate) (5). Escherichia coli topoisomerase I (EcTOP1) and
96	topoisomerase III (EcTOP3) are the best-characterized bacterial type IA
97	enzymes to date.
98	A conserved toroidal fold formed by four domains (I-IV) has been found in
99	the structures of type IA enzymes including EcTOP1 (6), EcTOP3 (7),
100	Thermotoga maritima topoisomerase I (TmTOP1) (8), Mycobacterium
101	tuberculosis topoisomerase I (MtTOP1) (9), Mycobacterium smegmatis
102	topoisomerase I (MsTOP1) (10), human topoisomerase III α (HsTop3 α) (11),
103	human topoisomerase III β (HsTop3 β) (12) and a reverse gyrase (13) from
104	Archaeoglobus fulgidus, a hyperthermophilic archaeon. Structural studies
105	(14-16) as well as biochemical (17-20) and single-molecule (21-24)
106	experimental data have provided abundant evidences in support of an
107	enzyme-bridged strand passage model for type IA enzymes. According to this
108	model, a type IA topoisomerase nicks one DNA single-strand, and remains
109	attached to the two ends of the nick. That is, the enzyme is not only covalently

110	attached to one end of the nick, but also noncovalently bound to the other end
111	to generate a bridge through which another single-strand or the DNA duplex is
112	passed. The following step is the resealing of the nick and the release of the
113	enzyme. In this process, the OH group of the aromatic ring of the Tyr residue in
114	the enzyme nucleophilically attacks the scissile phosphodiester bond,
115	producing a transient 5' phosphotyrosine covalent bond.
116	Members of the type IA subfamily are further divided into two
117	mechanistically distinct subclasses based on their biochemical specificity for
118	substrates (2). EcTOP1 and EcTOP3 are the prototypes of these two
119	subclasses of type IA enzymes. EcTOP3 catalyzes the DNA catenates more
120	effectively than it relaxes negatively supercoiled DNA, whereas the converse is
121	true for EcTOP1 (23, 25-28). EcTOP3, but not EcTOP1, contains a unique
122	loop located close to the central hole (29). This positively charged loop, known
123	as the decatenation loop, is essential for the decatenation activity of EcTOP3
124	(24, 29).
125	Previous studies have characterized topoisomerase III (hereafter, Sso topo
126	III) from Sulfolobus solfataricus, a hyperthermophilic archaeon, as a member
127	of the type IA topoisomerase family (30, 31). A phylogenetic analysis of Sso
128	topo III, and the observation that Sso topo III inefficiently catalyzes the

- relaxation of negatively supercoiled DNA, led to the suggestion that *Sso* topo
- 130 III is more similar to EcTOP3 than to EcTOP1 (30). More recently, Bizard et al.
- 131 provided convincing biochemical data in support of notion that Sso topo III is a

132	genuine decatenase that can efficiently unlink covalently closed catenanes
133	alone at temperatures up to 90° C (32). However, little is known about the
134	structure of type IA topoisomerases (except for reverse gyrase) from the
135	Archaea. The structural basis for the decatenase activity of Sso topo III is
136	unclear.
137	Here, we have determined the crystal structure of full-length Sso topo III.
138	Sso topo III adopts a classical elongated toroidal-like shape with four domains
139	(I-IV) forming the protein core and a novel carboxyl-terminal zinc finger domain
140	(domain V) tethered to the core against domain II. Furthermore, domain V is
141	conserved among DNA topoisomerases III from the TACK superphylum of the
142	Archaea. In addition, structure-based mutational analyses show that, whereas
143	the zinc-binding motif of domain V was required for efficient DNA relaxation by
144	Sso topo III, its depletion nearly abolished the DNA decatenation activity of the
145	enzyme. These findings indicate that Sso topo III may represent as a novel
146	type of topoisomerases III which employ a decatenation mechanism distinctly

147 different from that of known bacterial and eukaryotic equivalent.

148 149

150 **RESULTS**

Overall structure of intact *Sso* topo III To obtain crystals of *Sso* topo III, we overproduced and purified sufficient quantities of the mutant enzyme (Y318F) in which the catalytic residue Tyr318 was replaced with Phe (Fig. 1 A). The structure of the full-length enzyme was determined at 2.1 Å

155	resolution using molecular replacement (Table 1). The full-length protein
156	formed an asymmetric unit comprising four Sso topo III molecules. The four
157	molecules had essentially the same architecture. For convenience, one
158	molecule was chosen for the following structural analyses.
159	Our analysis showed that the overall structure of Sso topo III comprises four
160	domains (I–IV) (residues 1–593), forming the conserved core, and a novel
161	carboxyl-terminal domain V (residues 594–668) (Fig. 1A, 1B and S1). The
162	enzyme adopts a canonical toroidal-like elongated configuration with a large
163	hole (Fig. 1B and 1C), which is shared by all known type 1A topoisomerases
164	(33). The enzyme-bridged strand passage model proposes that the hole
165	accommodates single or double-stranded DNA (34).
166	Domain I (residues 1–219) exhibits a topoisomerase-primase fold (2), which
167	is found in type IA, IIA, and IIB topoisomerases, as well as in bacterial
168	primases. Within domain I, a disulphide bridge crosslinks Cys4 of a loop
169	(residues 1–10) and Cys34 of an α/β fold consisting of six parallel β strands
170	sandwiched with four α helices (Fig. S1). This connection results in tight
171	packing of domain I and stabilizes its architecture. In Domain II (residues
172	220–277, 408–474), the hinge region (residues 218–224, 471–480) is
173	composed of two loops linking domains I and II, and II and IV, respectively (Fig.
174	1B). The hinge is believed to serve as the principal pivot point for opening and
175	closing of the DNA gate in the strand passage reaction (6, 11, 35).

176	A long loop (residues 594–616) leads from helix $\alpha 18$ of domain IV to
177	domain V (residues 594–668), thus linking the core of the enzyme to domain V $% \left({{\left[{{\left[{{\left[{\left[{\left[{\left[{{\left[{{\left[$
178	(Fig. 1B and S1). Domain V attaches to the top of the topoisomerase (domain
179	II) against the hinge region (Fig. 1B and 1C). Three antiparallel α -helices,
180	including helix $\alpha 19$ (residues 616–636), helix $\alpha 20$ (residues 640–649), and
181	helix $\alpha 21$ (residues 655–666), are coiled around each other to constitute the
182	bulk of domain V (Fig. 1B). Interestingly, four residues (Cys602, Cys605,
183	Cys615 and His618) coordinate with a zinc atom to generate a novel
184	zinc-binding motif (Fig. 1D and S1). Among them, the three Cys residues come
185	from the long loop connecting domains IV/V and the His residue is from helix
186	$\alpha 19.$ The presence of the znic-binding site was confirmed by an analysis of the
187	anomalous difference Fourier map (Fig. 1D). The recently characterized
188	mesophilic archaeal topoisomerase, Methanosarcina acetivorans topo III α
189	(<i>Mac</i> topo III α), also has one znic-binding site (36). However, the zinc-binding
190	motif of Sso topo III is the Cys3His1 type, whereas that of Mac topo III α is
191	tetraCys type. For Sso topo III, the zinc finger motif may contribute to the
192	stabilization of domain V. As revealed by sequence alignment, the
193	carboxyl-terminal zinc finger motif of the Cys3His1 type is highly conserved
194	among topoisomerases from the Crenarchaeota (Fig. S2A), suggesting that
195	this motif plays an important role. Intriguingly, small proteins homologous to
196	domain V are also found in Thaumarchaeota and Bathyarchaeota, both of
197	which are phyla within the TACK superphylum where Crenarchaeota also

198	belong, as well as Euryarchaeota and Thorarchaeota (Fig. S3). Homologues of
199	Sso topo III are present in Thaumarchaeota, Bathyarchaeota, Euryarchaeota
200	and Thorarchaeota, but these enzymes almost lack the carboxyl-terminal
201	domain similar to domain V in Sso topo III. It would be of interest to determine
202	if the domain V-like small proteins physically and functionally interact with the
203	type IA topoisomerases in these organisms. Notably, no structural elements
204	similar to domain V of Sso topo III is found in the Protein Data Bank, as
205	detected by DALI (37). These results suggest that the carboxyl-terminal fold of
206	Sso topo III, also found in several archaeal lineages, is unique.
207	Interface of domains II and V A distinguishing feature of the overall
208	structure of Sso topo III compared with that of other known available type IA
209	topoisomerases is the presence of three belices in domain V located close to
210	the hinge region of domain II (Fig. 1B). Two flexible loops, each about five
210 211	the hinge region of domain II (Fig. 1B). Two flexible loops, each about five residues long, link these three helices. This arrangement causes the three
210 211 212	the hinge region of domain II (Fig. 1B). Two flexible loops, each about five residues long, link these three helices. This arrangement causes the three helices to pack against each other so that their movement is highly
210 211 212 213	the hinge region of domain II (Fig. 1B). Two flexible loops, each about five residues long, link these three helices. This arrangement causes the three helices to pack against each other so that their movement is highly coordinated, but they maintain a degree of flexibility. Additionally, within the
210 211 212 213 214	the hinge region of domain II (Fig. 1B). Two flexible loops, each about five residues long, link these three helices. This arrangement causes the three helices to pack against each other so that their movement is highly coordinated, but they maintain a degree of flexibility. Additionally, within the long linker loop (about 20 residues) connecting domains IV and V, there are
210 211 212 213 214 215	the hinge region of domain II (Fig. 1B). Two flexible loops, each about five residues long, link these three helices. This arrangement causes the three helices to pack against each other so that their movement is highly coordinated, but they maintain a degree of flexibility. Additionally, within the long linker loop (about 20 residues) connecting domains IV and V, there are three successive turns, which maintain free space between the two domains.
 210 211 212 213 214 215 216 	the hinge region of domain II (Fig. 1B). Two flexible loops, each about five residues long, link these three helices. This arrangement causes the three helices to pack against each other so that their movement is highly coordinated, but they maintain a degree of flexibility. Additionally, within the long linker loop (about 20 residues) connecting domains IV and V, there are three successive turns, which maintain free space between the two domains. The novel zinc-binding motif, located on the carboxyl-end of the long loop,
210 211 212 213 214 215 216 217	the hinge region of domain II (Fig. 1B). Two flexible loops, each about five residues long, link these three helices. This arrangement causes the three helices to pack against each other so that their movement is highly coordinated, but they maintain a degree of flexibility. Additionally, within the long linker loop (about 20 residues) connecting domains IV and V, there are three successive turns, which maintain free space between the two domains. The novel zinc-binding motif, located on the carboxyl-end of the long loop, contributes to the stabilization of the loop (Fig. 1D). By analogy to the other

219	domains IV and I in Sso topo III are conserved and far-ranging. However, the
220	interface between domains II and V within the enzyme is unique.
221	The longest one of the three helices in domain V, helix α 19, acts as the
222	major binding platform for the interface between domains II and V. The
223	interface is mostly, but not exclusively, hydrophobic (Fig. 1E). Extensive
224	hydrophobic interactions mainly occur between the side chains of Leu219,
225	Phe220, Ile221, Pro222, Leu223, Pro224 and Phe226 in the hinge region,
226	which connects helix $\alpha 6$ of domain I with strand $\beta 9$ of domain II, and the side
227	chains of Ala621, Leu625, Ala628, Leu631, Trp632 in helix $\alpha 19$ and Tyr656,
228	Val657 in helix $\alpha 21$ of domain V (Fig. 1E). Moreover, the main chain amides of
229	Gly654 and Lys655 in domain V form hydrophilic interactions with the
230	backbone carbonyl groups of Phe220 and Asn218 in the hinge region,
231	respectively, while the amide of Tyr656 makes hydrophilic interaction with the
232	backbone carbonyl groups of Asn218 (Fig. 1F). In addition, the NH group on
233	an indole group of Trp632 makes a hydrogen bond with the backbone carbonyl
234	group of Pro222. These interactions further stabilize the attachment of domain
235	V to domain II. Most importantly, the main chain carbonyl group and side chain
236	amide of Arg635 in the carboxyl-end of helix $\alpha 19$ in domain V form hydrogen
237	bonds with the main chain amide of Ile250 at the amino-end of helix $\alpha 7$ and the
238	carbonyl group of Pro224 at the amino-end of strand $\beta 9$ in domain II,
239	respectively (Fig. 1F). Domain V and the main part of domain II are connected
240	by a single interaction, that is, double hydrogen bonds involving Arg635. This

241	may allow for independent and coordinated movements of domain V relative to
242	domain II at different stages during catalysis. Noticeably, Glu608 from domain
243	V forms salt bridge with Lys592 from domain IV on the other end of the
244	interface. Alignment of the sequences of type IA topoisomerases from the
245	Crenarchaeota shows that most of the above-mentioned residues contributing
246	to the interaction between domains II and V are highly conserved (Fig. S2B).
247	This implies that the interaction between domains II and V may be essential for
248	the functional role of domain V of the archaeal topoisomerases.
249	Comparison of the interactions around the hinge region
250	among type IA topoisomerases The studies on EcTOP3 (7, 14, 29)
251	indicated that the decatenation loop on domain IV is critical for efficient DNA
252	decatenation (Fig. 2A). A recent report on Sso topo III provides strong
253	biochemical evidence that the enzyme is a true decatenase (32). Surprisingly,
254	the structural equivalent of the decatenation loop is absent from Sso topo III
255	(Fig. 2A), suggesting that DNA decatenation by Sso topo III may differ
256	mechanistically from that by EcTOP3.
257	It is believed that the highly conserved hinge region joining domains II and IV $% \mathcal{O}(\mathcal{O})$
258	appears to be important for strand passage during catalysis (6). To understand
259	the decatenation mechanism of Sso topo III, we performed a structural
260	analysis of the potential interactions within the available type IA
261	topoisomerases between the hinge region and the carboxyl-terminal domain or
262	an additional subunit of the topoisomerase complex. No direct interactions

263	exist between the hinge regions and the C-terminus in TmTOP1 (8), MtTOP1
264	(9) and MsTOP1 (10). However, there are direct interactions between the
265	hinge region and parts of the carboxyl-terminal domain in several
266	topoisomerases or the other subunit of a topoisomerase complex (Fig. 2B).
267	The interactions may influence the opening state of their gates. The human
268	BLM helicase, topoisomerase III α (HsTop3 α) and RMI1 proteins form a
269	minimal protein complex, which catalyses the dissolution of double-Holliday
270	junctions (dHJ) to produce non-crossover products (38). A structural analysis
271	of the Top3a–RMI1 complex showed that the hinge region makes intimate
272	contacts with the decatenation loop of the RMI1 subunit by hydrophobic
273	interaction, suggesting that this contact contributes to the modulation of the
274	opening-closing state of the gate in Top3 α (11) (Fig. 2B). Similar to the
275	Top3a–RMI1 complex, Top3 β forms a complex with the TDRD3 subunit. A
276	structural analysis of the complex indicated that the hinge region of Top3 β is a
277	little bit apart from the insertion loop of TDRD3 (12) (Fig. 2B). In the case of
278	EcTOP1, the interaction between a unique α helix in domain VI of the
279	carboxyl-terminal domain and the hinge region mediates the major direct
280	contact between the carboxyl-terminal domain and the catalytic core (39) (Fig.
281	2B). The conformational changes of the carboxyl-terminal domain are
282	potentially transferred to the hinge region through the unique helix in domain
283	VI at some points in the catalytic cycle, thereby regulating the opening-closing
284	state of the gate. In Sso topo III, major contacts between the hinge region and

285	the longer helix $\alpha 19$ of domain V occur through stable and extensive
286	hydrophobic interactions (Fig. 2C), and several hydrogen bonds, located at the
287	two ends of the interface between domains II and V, are involved in the
288	interaction between domain V and the bulk of domain II and domain IV,
289	respectively (Fig. 1F). This network of interactions may allow domain V to
290	adhere to the hinge region mainly by the $\alpha 19$ helix during the strand passage
291	reaction, and possibly make the bulk of domain II and domain IV to move
292	relative to the hinge region at some points during the catalysis.
293	Deletion of the zinc-binding motif reduces the relaxation
294	activity of Sso topo III To explore the role of the carboxyl-terminal domain,
295	the zinc-binding motif in particular, in DNA relaxation by Sso topo III, a
296	carboxyl-terminally truncated mutant (597 Δ C), which lacked whole domain V,
297	and a quadruple mutant (CCCH/4A), in which the four residues (Cys602,
298	Cys605, Cys615 and His618) coordinating with the zinc atom were all replaced
299	with Ala, were generated by mutagenesis (Table S1). In the CCCH/4A, the
300	mutation of the zinc-binding motif (3Cys1His type) resulted in the elimination of
301	the zinc atom (Fig. 1D). These two mutant proteins were overproduced in <i>E</i> .
302	coli and purified to homogeneity. The two mutant proteins showed the same
303	optimal temperature as the wild-type enzyme (75 $^{\circ}$ C) in DNA relaxation (Fig.
304	S4). 597 Δ C possessed about 50% of the wild-type activity (Fig. 3, compare top
305	and middle panel), whereas CCCH/4A retained about 15% of the wild-type

306	activity (Fig. 3, compare top and bottom panel). These results indicated that
307	the zinc-binding motif is necessary for efficient relaxation by Sso topo III.
308	To compare DNA relaxation reactions catalysed by wild-type and mutants
309	of Sso topo III, a time-course assay was performed (Fig. 4). The wild-type
310	protein displayed a profile of topoisomers indicative of a distribute mechanism
311	of relaxation (Fig. 4, top panel), as described recently (32). However, both
312	597 Δ C and CCCH/4A exhibit a relaxation profile differently from the wild-type
313	Sso topo III (Fig. 4, compare top, middle, and bottom panel). The DNA
314	relaxation reaction catalysed by 597 Δ C appeared to more distributive than that
315	by the wild-type protein. Interestingly, the relaxation reaction becomes more
316	distributive, when the unique zinc-binding motif was eliminated, than that as
317	the carboxyl-terminal domain of Sso topo III was wholly deleted (Fig. 4).
318	Together, these results indicated that domain V, especially the zinc-binding
319	motif, facilitates the relaxation of negatively supercoiled DNA by Sso topo III.
320	To probe the potential roles of domain V in SsoTopo III, we also
321	determined ssDNA binding by the domain V-deletion mutant protein 594 Δ C
322	(residues 1-594). The mutant protein showed a ~ 5-fold lower affinity than
323	wild-type SsoTopo III for a 32-nt ssDNA containing the preferred cleavage site
324	(designated C32) than the wild-type protein (Fig. S5). Therefore, it appeared
325	that domain V contributes significantly to template binding by SsoTopo III.
326	The novel zinc-binding motif is essential for DNA
327	decatenation by Sso topo III To explore the role of the novel domain V

328	in Sso topo III-catalysed decatenation, wild-type and mutants of Sso topo III
329	were subjected to a decatenation assay using kinetoplast DNA (kDNA) (40) as
330	the substrate. Wild-type Sso topo III was optimally active in kDNA
331	decatenation at 90°C, in consistent with the observation made previously (32)
332	(Fig. S6A, B, C). The fast-migrating bands, corresponding to closed minicircles,
333	were present when the reactions were performed at very high temperatures
334	(90 $^{\circ}$ C) (Fig. 5A). These closed minicircles were released from the kDNA
335	network by Sso topo III, because the enzyme apparently was unable to relax
336	supercoiled DNA at 90 °C and above, but was still able to decatenate DNA
337	catenanes (32). Therefore, the presence of closed minicircles at very high
338	temperature was considered as a measure of the decatenation activity of Sso
339	topo III. The bands corresponding to closed minicircles were undetectable in
340	reactions containing 597 Δ C (Fig. 5B), suggesting that the mutant protein had
341	no detectable decatenation activity at very high temperature. Similarly,
342	CCCH/4A was nearly inactive in decatenation (Fig. 5C). Taken together, we
343	concluded that domain V, the zinc-binding motif in particular, is essential for
344	the decatenation activity of Sso topo III.

345 **DISCUSSION**

Type IA topoisoerases are found in all three domains of life. Much of current knowledge about the enzymes has come from structural and biochemical studies on the ones from bacterial and eukaryotic origins (41). A structural understanding of type IA topoisomerases (except for reverse gyrase) in the

350	Archaea remains elusive. In this work, we present the crystal structure of Sso
351	topo III, an archaeal type IA topoisomerase, at 2.1 Å resolution. The structure
352	provides the first molecular view of this archaeal topoisomerase, which
353	removes negative supercoils and decatenates DNA catenane (30, 32, 42). Sso
354	topo III is toroidal in shape with a four-domain protein core closely resembling
355	that found in other members of the topoisomerase IA family (6). A striking
356	feature of Sso topo III is the presence at its carboxyl-terminus of a novel zinc
357	finger-containing part that attaches to the hinge region of domain II. Intriguingly,
358	the enzyme lacks the decatenation loop found in some of the known type IA
359	topoisomerases capable of DNA decatenation. As revealed by mutational
360	analysis, the zinc-binding motif is critical for effective decatenation of Sso topo
361	III. Therefore, Sso topo III represents a novel type of topoisomerases which
362	employ a DNA decatenation mechanism different from those of the known
363	bacterial and eukaryotic topoisomerases III.
364	The carboxyl-terminal domain of a type IA topoisomerase varies widely in
365	composition, length and shape (41, 43), as well as in orientations relative to
366	the hinge region of the enzyme. Despite wide variations, the carboxyl-terminal
367	domain exhibits ssDNA-binding activity, and is responsible for the high
368	DNA-binding affinity of the enzyme. In the case of EcTOP1, domain IV extends
369	into the carboxyl-terminal domain consisting of three zinc ribbon domains
370	containing the tetracysteine motif and two zinc ribbon-like domains (39).
371	Among the five domains, four domains bind to ssDNA with primarily π -stacking

372	and cation- π interactions. Similarly, TmTOP1 has a zinc ribbon motif, but
373	without a bound zinc ion, at its C-terminus (8). The deletion of the
374	carboxyl-terminal domain resulted in a significant loss of the relaxation activity
375	of TmTOP1, possibly due to the reduction in DNA-binding by the mutant
376	protein (44, 45). By comparison, the truncation of the carboxyl-terminal domain
377	almost abolished the relaxation activity of EcTOP3 (46), whose C-terminus
378	displayed a partially disordered structure (7, 14). Unlike EcTOP1, MtTOP1 has
379	four tandem novel folds, but not the zinc-binding motif, at the C-terminus (9).
380	Similar to EcTOP3, the partial truncation of the carboxyl-terminal domain
381	abolished the relaxation activity of MtTOP1. It is generally believed that the
382	carboxyl-terminal domains of these two topoisomerases have ssDNA-binding
383	activity, although they lack a zinc-binding motif. Our structure of Sso topo III
384	provides the first molecular view of the carboxyl-terminal domain of an
385	archaeal type IA topoisomerase (Fig. 1B). The carboxyl-terminal domain of
386	Sso topo III is unique, and harbours a zinc-binding motif (3Cys1His type) (Fig.
387	1D) that differs from the tetracysteine zinc-binding motif conserved in
388	prokaryotic type IA topoisomerases such as EcTOP1 (39). A structural
389	analysis of the EcTOP1-DNA complex demonstrated that a zinc ribbon domain
390	or zinc ribbon-like domain, mainly consisting of β -sheets, is capable of binding
391	ssDNA, implying that these domains may not bind double-stranded DNA. In
392	some enzymes involved in DNA transactions, the zinc-finger domains, which
393	contain α -helixes, bind to double-stranded DNA (47). It will be interesting to

394	determine whether the carboxyl-terminal fold of Sso topo III can bind
395	double-stranded DNA. In Sso topo III, the zinc-binding motif is required for
396	efficient relaxation activity (Fig. 3 and 4). By comparison, TmTOP1 (44)
397	remained fully active in DNA relaxation when the zinc ribbon motif was deleted
398	while EcTOP1 (48) was inactive when the zinc ion was removed.
399	The first solved structure of a type IA topoisomerase indicates that domains
400	II and III may move away from domains I and IV in the strand passage reaction
401	(6). Further evidence for this movement has been provided by biochemical (19,
402	21), structural data (14, 15, 35) and single-molecule experiments (22-24). A
403	structural comparison between EcTOP3 and EcTOP1 indicates that there are
404	two unique insertions in EcTOP3 in the vicinity of its central hole (29) (Fig. 2A).
405	One insertion (the decatenation loop) is rich in basic amino acids within
406	domain IV of EcTOP3, and the other (the acidic loop) is abundant in acidic
407	amino acids and is located within domain II (2) (Fig. 2A). Decatenation by the
408	enzyme is driven primarily by the interaction between the decatenation loop
409	and the acidic loop, both of which line the central hole of the topoisomerase,
410	during its gate dynamics. Compared with the interaction in EcTOP1, that in
411	EcTOP3 presumably stabilizes and holds the open state for longer, thus
412	allowing sufficient time for EcTOP3 to catch duplex DNA and pass it through
413	the break in a single strand into the gate (24). In the eukaryotic Top3a-RMI
414	complex, RMI1 coordinates the gate dynamics of Top3a through its unique
415	decatenation loop, which has a functionally equivalent role to that of the

decatenation loop in EcTOP3 (11). Hence, a unified loop-mediated

417	decatenation	mechanism f	or prokar	votic and	eukary	otic to	poisomerases I	Ш

418	has been	proposed ((11).
-----	----------	------------	-------

419	Our results demonstrated that the zinc-binding motif is essential for the DNA
420	decatenation activity of Sso topo III (Fig. 5C). We provided the following
421	evidence in support of the notion that the decatenation mechanism of Sso topo
422	III is distinct from the current loop-mediated decatenation mechanism
423	proposed for type IA topoisomerase: (i) The decatenation domain (domain V)
424	of Sso topo III is a novel zinc finger fold (Fig. 1D), whereas the decatenation
425	loop is present in domain IV of EcTOP3 (29) (Fig. 2A). (ii) The decatenation
426	domain (domain V) of Sso topo III is on the outer edge of the topoisomerase
427	gate and attaches to domain II through the hinge region by extensive
428	hydrophobic interactions (Fig. 1D and 2C), whereas the decatenation loop in
429	EcTOP3 lines the DNA gate and is away from the hinge region of the catalytic
430	core (24) (Fig. 2A). (iii) The 594 Δ C mutant lacking domain V showed an
431	approximately 5-fold reduction in ssDNA-binding compared with wild-type Sso
432	topo III (Fig. S5). In contrast, the deletion of the decatenation loop from
433	EcTOP3 did not reduce its ssDNA-binding activity (29). Obviously, further
434	biochemical studies are needed to understand the molecular details of the
435	unlinking of covalently closed catenanes catalysed by Sso topo III.
436	

437 MATERIALS AND METHODS

438	Plasmid and DNA constructs Using the standard PCR cloning
439	strategy, Sso topo III gene from S. solfataricus genome was cloned into the
440	Ndel and Xhol sites of the modified version of vector pET28a (Novagene),
441	which harbored an N-terminal poly-histidine tag followed by a tobacco etch
442	virus (TEV) protease cleavage site (ENLYFQ/G) (where '/' donates the
443	cleavage site). However, the growth of <i>E.coli</i> cells harboring wild-type <i>Sso</i>
444	topo III gene were severely inhibited, possibly due to its toxicity. So, Sso topo
445	III gene was mutated to the Sso topo III Y318F by replacing residue Tyr318
446	with Phe using the QuickChange [™] Site-Directed Mutagenesis Kit (Stratagene)
447	according to the instructions of manufacturer. Site-directed mutagenesis of the
448	other Sso Topo III mutants used in this study was carried out according to
449	modified QuickChange [™] protocol (49). All the plasmid constructs and mutants
450	were confirmed by DNA double strands sequencing. Primers for Sso Topo III
451	site-directed mutagenesis are listed in Table S1.

Protein Expression and Purification The recombination Sso 452 topo III Y318F was overexpressed as a fusion protein with an N-terminal 453 454 poly-histidine tag in *E. coli* strain Rosetta2 (DE3) pLysS (Novagen). For each purification procedure, 10-I E. coli cultures harbouring fusion proteins were 455 456 grown in the shaker at 37°C at 185 r.p.m. When their density reached an OD_{600nm} of 1.2, sodium citrate was added into cultures to a final concentration 457 458 of 100 mM and temperature of the cultures dropped to 25°C, followed by the 459 addition of isopropylb-D-thiogalactoside to a final concentration of 0.5 mM.

460	After growth for further 6 h at 25°C, the cultures were harvested, and the
461	resulting cell sediments were suspended in a solubilization buffer containing
462	20 mM Tris-HCI (pH 8.0), 2 mM potassium citrate, 2 mM MgCl ₂ , 10 mM
463	imidazole and 500 mM NaCl supplemented with DNAase I (55 μ g/ml,
464	Amersco), followed by disruption with a French press at 12,000 p.s.i. for three
465	cycles. To remove cell debris, cell lysates were centrifuged for 40 min at
466	16,000 r.p.m. The resultant supernatant was collected and loaded onto an
467	equilibrated Ni ²⁺ Chelating Sepharose [™] Fast Flow column (GE Healthcare).
468	Purification procedure with the nickel column were performed as described
469	before (50), except the insertion of an additional wash with high-salt of 1 M $$
470	NaCl. After several wash, Sso topo III Y318F protein was eluted with a buffer
471	containing 20 mM Tris-HCI (pH 8.0), 2 mM potassium citrate, and 300 mM
472	NaCl supplemented with 300 mM imidazole. The eluate was digested using
473	TEV protease to remove the poly-histidine tag, and dialyzed against buffer I
474	(20 mM Tris-HCl, pH 7.5, 10 mM potassium citrate, 150 mM NaCl) overnight at
475	4°C. The resultant eluate was filtered through a 0.45 μm filtration membrane
476	and then loaded onto a 5 ml SOURCE 15S column (GE Healthcare)
477	equilibrated with buffer I. The column was eluted with an 80 ml linear gradient
478	from 150 mM NaCl to 500 mM NaCl, both in buffer I. The fractions, eluted at
479	0.45-0.50 M NaCl, were pooled and concentrated to 4 mg ml ^{-1} in a buffer
480	containing 20 mM Tris-HCI (pH7.5), 150 mM NaCI, 10 mM potassium citrate,

481	and 2 mM DTT for later usage. Purified protein was analysed by SDS-PAGE
482	for purity and quantified with Bradford assay using BSA as standards.
483	Expression and purification of the other Sso Topo III mutants (597 Δ C and
484	CCCH/4A) were carried out according to the procedure described above, with
485	the exception of ion-exchange column chromatography in the final purification
486	step. The resultant nickel column eluate was loaded onto a 5 ml SOURCE 15Q
487	column (GE Healthcare), instead of 15S column, equilibrated with buffer I. The
488	column was eluted with an 80 ml linear gradient from 0.150 mM NaCl to 1.0 M
489	NaCl, both in buffer I. The fractions, eluted at 0.55-0.65 M NaCl, were pooled.
490	Crystallization Sso topo III Y318F was crystallized by the sitting-drop
491	vapor diffusion method, with 0.7µl drops of protein or protein-ssDNA complex
492	mixed with an equal volume of reservoir solution. Initial crystallization trials
493	screen clustered-needle-shaped crystals in reservoir solution containing 8%
494	(v/v) Tacsimate (pH 4.4), and 20% (w/v) Polyethyleneglycerol 3,350. Further
495	optimization of the crystallization condition led to the appearance of
496	rod-shaped crystals in the well in which $0.7\mu I$ protein solution was mixed with
497	an equal volume of reservoir solution consisting of 8% (v/v) Tacsimate (pH 4.4),
498	and 13.75% (w/v) Polyethyleneglycerol 3,350 at 12°C. The diffraction-level
499	crystals, by the microseeding method, appeared one week later and reached a
500	maximum size within 2 months. These crystals in the mother liquor were
501	exposed to air for 10 min, and transferred into a drop of paraffin and NVH mix
502	oil before being crycooled by plunging rapidly in liquid nitrogen.

503	Crystallographic Data Collection, Structure determination
504	and Refinement X-ray diffraction data were collected at the BL17U
505	beamline of the Shanghai Synchrotron Radiation Facility, and indexed,
506	integrated and scaled using the HKL2000 package (51). The initial phases
507	were determined by molecular replacement using the program PHASER (52),
508	with the structure of TmTOP1 (PDB ID: 2GAJ) as a searching model. The
509	structure refinement was carried out with phenix.refine (53) and Refmac5 (54).
510	Model building was carried out by iterative rounds of manual building with Coot
511	(55). MolProbity (56) was used to validate the structure. Data collection and
512	refinement statistics are listed in Table 1.
513	Assays of decatenation and relaxation activities DNA
514	relaxation assay was performed as described previously (30), except that the
515	final concentration of MgCl ₂ is 20 mM, instead of 10 mM, in the standard
516	reaction mixture. Decatenation of kinetoplast DNA (kDNA) was carried out by a
517	similar protocol except that 400 ng kDNA (www.topogen.com) was used as
518	substrate in each standard reaction mixture. Reaction mixes were incubated at
519	90 °C for 30 min unless specified temperature otherwise, and the
520	enzyme-catalysed products were examined by electrophoresis in the indicated
521	agarose gels.
522	Data availability Atomic coordinates and structure factors for the
523	crystal structure of Sso topo (apo) have been deposited in the Protein Data

524 bank under accession codes 6K8N.

525

526 SUPPORTING INFORMATION

527 Additional supporting information may be found online in the Supporting

- 528 Information section.
- 529
- 530
- 531
- 532
- 533

534 **ACKNOWLEDGEMENTS**

535 We are grateful to Dr. Mei Li and the staff of beamline BL17U at the Shanghai 536 Synchrotron Radiation Facility and of beamline BL5A at the Photon Factory, KEK (Tsukuba, Japan) for technical support. This study was financially 537 538 supported by National Natural Science Foundation of China [U1432241 to 539 Y.G. and Z.Z., 31730001 and 91751000 to L.H., 92051109 to Z.Z.]; Strategic Priority Research Program of the Chinese Academy of Sciences 540 541 [XDB37040302 to Y.D.]; National Basic Research Program of China 542 [2017YFA0504900 to Y.D.]; and Beijing Municipal Science and Technology 543 Commission [Z191100007219007 to Y.D.]. Funding for open access charges was provided by the National Natural Science Foundation of China. 544 545 We declare no conflict of interest. 546

547

548 **REFERENCE**

1. Wang JC. 1996. DNA topoisomerases. Annu Rev Biochem 65:635-92.

550 2. Champoux JJ. 2001. DNA topoisomerases: structure, function, and

mechanism. Annu Rev Biochem 70:369-413.

552	3.	Vos SM, Tretter EM, Schmidt BH, Berger JM. 2011. All tangled up: how
553		cells direct, manage and exploit topoisomerase function. Nat Rev Mol

- 554 Cell Biol 12:827-41.
- Pommier Y, Sun Y, Huang SN, Nitiss JL. 2016. Roles of eukaryotic
 topoisomerases in transcription, replication and genomic stability. Nat
 Rev Mol Cell Biol 17:703-721.
- 558 5. Forterre P. 2006. DNA topoisomerase V: a new fold of mysterious origin.
- 559 Trends Biotechnol 24:245-7.
- Lima CD, Wang JC, Mondragon A. 1994. Three-dimensional structure
 of the 67K N-terminal fragment of E. coli DNA topoisomerase I. Nature
 367:138-46.
- 563 7. Mondragon A, DiGate R. 1999. The structure of Escherichia coli DNA
 564 topoisomerase III. Structure 7:1373-83.
- 5658.Hansen G, Harrenga A, Wieland B, Schomburg D, Reinemer P. 2006.566Crystal structure of full length topoisomerase I from Thermotoga
- 567 maritima. J Mol Biol 358:1328-40.
- 568 9. Tan K, Cao N, Cheng B, Joachimiak A, Tse-Dinh YC. 2016. Insights
 569 from the Structure of Mycobacterium tuberculosis Topoisomerase I with
 570 a Novel Protein Fold. J Mol Biol 428:182-93.
- 571 10. Cao N, Tan K, Zuo X, Annamalai T, Tse-Dinh Y-C. 2020. Mechanistic
 572 insights from structure of Mycobacterium smegmatis topoisomerase I

- 573 with ssDNA bound to both N- and C-terminal domains. Nucleic acids
- ⁵⁷⁴ research 48:4448-4462.
- 575 11. Bocquet N, Bizard AH, Abdulrahman W, Larsen NB, Faty M, Cavadini S,
- 576 Bunker RD, Kowalczykowski SC, Cejka P, Hickson ID, Thoma NH. 2014.
- 577 Structural and mechanistic insight into Holliday-junction dissolution by

topoisomerase Illalpha and RMI1. Nat Struct Mol Biol 21:261-8.

- 579 12. Goto-Ito S, Yamagata A, Takahashi TS, Sato Y, Fukai S. 2017.
- 580 Structural basis of the interaction between Topoisomerase IIIbeta and
- the TDRD3 auxiliary factor. Sci Rep 7:42123.
- 13. Rodriguez AC, Stock D. 2002. Crystal structure of reverse gyrase:
 insights into the positive supercoiling of DNA. Embo j 21:418-26.
- 14. Changela A, DiGate RJ, Mondragon A. 2001. Crystal structure of a
 complex of a type IA DNA topoisomerase with a single-stranded DNA
 molecule. Nature 411:1077-81.
- 587 15. Zhang Z, Cheng B, Tse-Dinh YC. 2011. Crystal structure of a covalent
 588 intermediate in DNA cleavage and rejoining by Escherichia coli DNA
 589 topoisomerase I. Proc Natl Acad Sci U S A 108:6939-44.
- Berger JM, Fass D, Wang JC, Harrison SC. 1998. Structural similarities
 between topoisomerases that cleave one or both DNA strands. Proc
 Natl Acad Sci U S A 95:7876-81.
- 593 17. Brown PO, Cozzarelli NR. 1981. Catenation and knotting of duplex DNA
 594 by type 1 topoisomerases: a mechanistic parallel with type 2

topoisomerases. Proc Natl Acad Sci U S A 78:843-7.

- Kirkegaard K, Wang JC. 1985. Bacterial DNA topoisomerase I can relax
 positively supercoiled DNA containing a single-stranded loop. J Mol Biol
 185:625-37.
- Li Z, Mondragon A, DiGate RJ. 2001. The mechanism of type IA
 topoisomerase-mediated DNA topological transformations. Mol Cell
 7:301-7.
- Cejka P, Plank JL, Dombrowski CC, Kowalczykowski SC. 2012.
 Decatenation of DNA by the S. cerevisiae Sgs1-Top3-Rmi1 and RPA
 complex: a mechanism for disentangling chromosomes. Mol Cell
 47:886-96.
- Leelaram MN, Bhat AG, Godbole AA, Bhat RS, Manjunath R, Nagaraja
 V. 2013. Type IA topoisomerase inhibition by clamp closure. FASEB J
 27:3030-8.
- Dekker NH, Rybenkov VV, Duguet M, Crisona NJ, Cozzarelli NR,
 Bensimon D, Croquette V. 2002. The mechanism of type IA
 topoisomerases. Proc Natl Acad Sci U S A 99:12126-31.
- Terekhova K, Marko JF, Mondragon A. 2014. Single-molecule analysis
 uncovers the difference between the kinetics of DNA decatenation by
 bacterial topoisomerases I and III. Nucleic Acids Res 42:11657-67.
- 615 24. Mills M, Tse-Dinh YC, Neuman KC. 2018. Direct observation of
 616 topoisomerase IA gate dynamics. Nat Struct Mol Biol 25:1111-1118.

617	25.	Liu LF, Wang JC. 1979. Interaction between DNA and Escherichia coli
618		DNA topoisomerase I. Formation of complexes between the protein and
619		superhelical and nonsuperhelical duplex DNAs. J Biol Chem
620		254:11082-8.
621	26.	Tse Y, Wang JC. 1980. E. coli and M. luteus DNA topoisomerase I can
622		catalyze catenation of decatenation of double-stranded DNA rings. Cell
623		22:269-76.
624	27.	DiGate RJ, Marians KJ. 1988. Identification of a potent decatenating
625		enzyme from Escherichia coli. J Biol Chem 263:13366-73.
626	28.	Terekhova K, Gunn KH, Marko JF, Mondragon A. 2012. Bacterial
627		topoisomerase I and topoisomerase III relax supercoiled DNA via
628		distinct pathways. Nucleic Acids Res 40:10432-40.
629	29.	Li Z, Mondragon A, Hiasa H, Marians KJ, DiGate RJ. 2000.
630		Identification of a unique domain essential for Escherichia coli DNA
631		topoisomerase III-catalysed decatenation of replication intermediates.
632		Mol Microbiol 35:888-95.
633	30.	Dai P, Wang Y, Ye R, Chen L, Huang L. 2003. DNA topoisomerase III

- from the hyperthermophilic archaeon Sulfolobus solfataricus with
 specific DNA cleavage activity. J Bacteriol 185:5500-7.
- Gale Couturier M, Gadelle D, Forterre P, Nadal M, Garnier F. 2020. The
 reverse gyrase TopR1 is responsible for the homeostatic control of DNA
 supercoiling in the hyperthermophilic archaeon Sulfolobus solfataricus.

639 Molecular Microbiology 113:356-368.

- 640 32. Bizard AH, Yang X, Debat H, Fogg JM, Zechiedrich L, Strick TR,
 641 Garnier F, Nadal M. 2018. TopA, the Sulfolobus solfataricus
- topoisomerase III, is a decatenase. Nucleic Acids Res 46:861-872.
- 643 33. Capranico G, Marinello J, Chillemi G. 2017. Type I DNA
 644 Topoisomerases. J Med Chem 60:2169-2192.
- Schoeffler AJ, Berger JM. 2008. DNA topoisomerases: harnessing and
 constraining energy to govern chromosome topology. Q Rev Biophys
 41:41-101.
- 648 35. Feinberg H, Lima CD, Mondragon A. 1999. Conformational changes in
 649 E. coli DNA topoisomerase I. Nat Struct Biol 6:918-22.
- Morales R, Sriratana P, Zhang J, Cann IK. 2011. Methanosarcina
 acetivorans C2A topoisomerase IIIalpha, an archaeal enzyme with
- promiscuity in divalent cation dependence. PLoS One 6:e26903.
- 653 37. Holm L, Sander C. 1995. Dali: a network tool for protein structure
 654 comparison. Trends Biochem Sci 20:478-80.
- 38. Yang J, Bachrati CZ, Ou J, Hickson ID, Brown GW. 2010. Human
 topoisomerase IIIalpha is a single-stranded DNA decatenase that is
 stimulated by BLM and RMI1. J Biol Chem 285:21426-36.
- 39. Tan K, Zhou Q, Cheng B, Zhang Z, Joachimiak A, Tse-Dinh YC. 2015.
- 659 Structural basis for suppression of hypernegative DNA supercoiling by
- E. coli topoisomerase I. Nucleic Acids Res 43:11031-46.

40. Englund PT. 2014. A passion for parasites. J Biol Chem 289:33712-29.

- 41. Baker NM, Rajan R, Mondragon A. 2009. Structural studies of type I
 topoisomerases. Nucleic Acids Res 37:693-701.
- 664 42. Chen L, Huang L. 2006. Oligonucleotide cleavage and rejoining by
 665 topoisomerase III from the hyperthermophilic archaeon Sulfolobus
 666 solfataricus: temperature dependence and strand annealing-promoted
 667 DNA religation. Mol Microbiol 60:783-94.
- 43. Viard T, de la Tour CB. 2007. Type IA topoisomerases: a simple puzzle?
 Biochimie 89:456-67.
- 44. Viard T, Lamour V, Duguet M, Bouthier de la Tour C. 2001.
 Hyperthermophilic topoisomerase I from Thermotoga maritima. A very
 efficient enzyme that functions independently of zinc binding. J Biol
 Chem 276:46495-503.
- 45. Viard T, Cossard R, Duguet M, de La Tour CB. 2004. Thermotoga
 maritima-Escherichia coli chimeric topoisomerases. Answers about
 involvement of the carboxyl-terminal domain in DNA topoisomerase
 I-mediated catalysis. J Biol Chem 279:30073-80.
- 46. Zhang HL, DiGate RJ. 1994. The carboxyl-terminal residues of
 Escherichia coli DNA topoisomerase III are involved in substrate binding.
 J Biol Chem 269:9052-9.
- 47. Krishna SS, Majumdar I, Grishin NV. 2003. Structural classification of
 zinc fingers: survey and summary. Nucleic Acids Res 31:532-50.

683	48.	Tse-Dinh YC. 1991. Zinc (II) coordination in Escherichia coli DNA
684		topoisomerase I is required for cleavable complex formation with DNA.
685		J Biol Chem 266:14317-20.

- 49. Liu H, Naismith JH. 2008. An efficient one-step site-directed deletion, 686 687 insertion, single and multiple-site plasmid mutagenesis protocol. BMC Biotechnol 8:91. 688
- 689 50. Wang H, Liu X, Zhao J, Yue Q, Yan Y, Gao Z, Dong Y, Zhang Z, Fan Y,
- 690 Tian J, Wu N, Gong Y. 2018. Crystal structures of multicopper oxidase
- 691 CueO G304K mutant: structural basis of the increased laccase activity.
- Scientific Reports 8:14252. 692
- Otwinowski Z, Minor W. 1997. Processing of X-ray diffraction data 51. 693 694 collected in oscillation mode. Methods Enzymol 276:307-326.
- 52. McCov AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, 695
- 696 Read RJ. 2007. Phaser crystallographic software. J Appl Crystallogr 40:658-674. 697
- Afonine PV, Grosse-Kunstleve RW, Adams PD. 2005. A robust 698 53. bulk-solvent correction and anisotropic scaling procedure. Acta 699 700 Crystallogr D Biol Crystallogr 61:850-5.
- 701 54. Murshudov GN, Skubak P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F, Vagin AA. 2011. REFMAC5 for the 702 703 refinement of macromolecular crystal structures. Acta Crystallogr D Biol 704 Crystallogr 67:355-67.

705	55.	Emsley P, Cowtan K. 2004. Coot: model-building tools for molecular
706		graphics. Acta Crystallogr D Biol Crystallogr 60:2126-32.
707	56.	Chen VB, Arendall WB, 3rd, Headd JJ, Keedy DA, Immormino RM,
708		Kapral GJ, Murray LW, Richardson JS, Richardson DC. 2010.
709		MolProbity: all-atom structure validation for macromolecular
710		crystallography. Acta Crystallogr D Biol Crystallogr 66:12-21.
711		
712		
713		
714		
715		
716		
717		
718		
719		
720		
721		
722		
723		
724	TABI	LE AND FIGURES LEGENDS

725 Table 1. Data collection and refinement statistics

-

	Native Sso topo III
Data collection	
Space group	P2 ₁
Cell dimensions	
a, b, c (Å)	110.7, 90.0, 156.2

bioRxiv preprint doi: https://doi.org/10.1101/706986; this version posted February 23, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

α, β, γ (°)	90.0, 100.5, 90.0
Wavelength (Å)	0.98
Resolution (Å)	50-2.10 (2.14-2.10) ^a
Rmerge	0.057 (0.942)
< Ι/σ(I)>	25.8 (2.0)
Completeness (%)	98.0 (94.5)
Redundancy	7.0
Refinement	
Resolution (Å)	50-2.10
No. reflections	171,737
Rwork/ Rfree	0.203/0.247
No. atoms	
Protein	21,559
DNA	-
ZN	4
Water	1020
B-factors	46.0

bioRxiv preprint doi: https://doi.org/10.1101/706986; this version posted February 23, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Rmsd bond length (Å)	0.008
Rmsd bond angle (°)	0.9
Ramachandran Plot	
Favoured (%)	97.8
Allowed (%)	2.2
Outliers (%)	0.0

726	
727	a. The values in parenthesis mean those of the highest resolution shell.
728	
729	
730	
731	
733	
734	
735	
736	
737	
738	
739	
740	
/41	
742	FIGURES LEGENDS
743	FIG 1 Overall structure of full-length Sso topo III in apo state.
744	A. Domain organization of Sso topo III. Sso topo III is composed of N-terminal
745	four domains (domain I-IV) and the unique carboxyl-terminal domain V.
746	Domains I-V are colored hotpink, green, cyan, orange, red, respectively.
747	B. C. Two views of Sso topo III. Domains I-V are colored as the legend to
748	Figure 1A. The close-up view (D) is highlighted by the solid box in B. Detailed

749	interactions (E and F) within the domains II/V interface is highlighted by the
750	solid box in C.
751	D. The close-up view shows the anomalous difference electron density map
752	(drawn in cyan mesh) around Zn (II) contoured at 15σ using the diffraction data
753	collected at the Zn absorption peak. The three Cys (C602, C605, C615) and
754	one His residue (H618) coordinating Zn (II) are shown in sticks. Zn (II) is
755	shown as a gray sphere.
756	E. Hydrophobic zipper between domain V residues from helix $\alpha 19$ and domain
757	II residues from the loop linking domain I and II. The hydrophobic interactions
758	are shown in space-filling presentations.
759	F. As in E but describing the corresponding hydrogen-bonding network. The
760	hydrogen bonds are shown as black dashed lines.
760 761	hydrogen bonds are shown as black dashed lines.
760 761 762	hydrogen bonds are shown as black dashed lines.
760 761 762 763	hydrogen bonds are shown as black dashed lines.
760 761 762 763 764	hydrogen bonds are shown as black dashed lines. FIG 2 Comparison of structural elements around the hinge region in <i>Sso</i> topo
760 761 762 763 764 765	hydrogen bonds are shown as black dashed lines. FIG 2 Comparison of structural elements around the hinge region in <i>Sso</i> topo III, EcTOP1, EcTOP3, HsTop3α and HsTop3β.
760 761 762 763 764 765 766	 hydrogen bonds are shown as black dashed lines. FIG 2 Comparison of structural elements around the hinge region in <i>Sso</i> topo III, EcTOP1, EcTOP3, HsTop3α and HsTop3β. A. Overall structural comparison among <i>Sso</i> topo III (hotpink), EcTOP3 (green)
760 761 762 763 764 765 766 767	 hydrogen bonds are shown as black dashed lines. FIG 2 Comparison of structural elements around the hinge region in Sso topo III, EcTOP1, EcTOP3, HsTop3α and HsTop3β. A. Overall structural comparison among Sso topo III (hotpink), EcTOP3 (green) and HsTop3α (cyan). For clarity, the RMI1 subunit of HsTop3α complex (PDB)
760 761 762 763 764 765 766 767 768	 hydrogen bonds are shown as black dashed lines. FIG 2 Comparison of structural elements around the hinge region in Sso topo III, EcTOP1, EcTOP3, HsTop3α and HsTop3β. A. Overall structural comparison among Sso topo III (hotpink), EcTOP3 (green) and HsTop3α (cyan). For clarity, the RMI1 subunit of HsTop3α complex (PDB entry 4CHT) is not shown. Domain V of Sso topo III is indicated. The
760 761 762 763 764 765 766 767 768 769	 hydrogen bonds are shown as black dashed lines. FIG 2 Comparison of structural elements around the hinge region in Sso topo III, EcTOP1, EcTOP3, HsTop3α and HsTop3β. A. Overall structural comparison among Sso topo III (hotpink), EcTOP3 (green) and HsTop3α (cyan). For clarity, the RMI1 subunit of HsTop3α complex (PDB entry 4CHT) is not shown. Domain V of Sso topo III is indicated. The decatenation loop and the acidic loop of EcTOP3 (PDB entry 1D6M) are

arrows.

772	B. The close-up views around the hinge regions of HsTop3 α in Top3 α -RMI1
773	complex (PDB entry 4CHT), HsTop3 β in Top3 β -TDRD3 complex (PDB entry
774	5GVE) complexes, and EcTOP1, mainly showing the hydrophobic interactions.
775	The hydrogen bonds are shown as black dashed lines. For clarity, the ssDNA
776	molecule of EcTOP1 complex (PDB entry 4RUL) is not shown.
777	C. The close-up view around the hinge region of Sso topo III, showing the
778	hydrophobic interactions. For clarity, helix $\alpha 20$ (residues 639-654) of Sso topo
779	III is not shown.
780	
781	FIG 3 Relaxation activity of wild-type and mutant Sso topo III proteins.
782	pUC18 DNA was incubated at 75 $^{\circ}$ C for 30 min in relaxation reaction buffer (50
783	mM Tris-HCI (pH 8.8), 20 mM MgCl ₂ , 1 mM DTT, 0.1 mM EDTA, 90 mM
784	sodium chloride, 30 μgml^{-1} BSA, and 12% (vol/vol) ethylene glycol)) with
785	wild-type Sso topo III (top panel), 597 Δ C (middle panel) and CCCH/4A (bottom
786	panel) at 500, 250, 62.5, 12, 6, 3, 1.5 and o fmol. Reactions were terminated;
787	the DNA products were separated in 1.4% agarose gels and visualized by
788	staining with ethidium bromide. Oc indicates open circle nicked or gapped
789	circular DNA; Sc denotes negatively supercoiled circular DNA; and Rel is the
790	relaxed topoisomers.

791

792 FIG 4 Time-course of DNA relaxation by wild-type and mutants Sso topo III

793 proteins.

794	DNA relaxation by wild-type Sso topo III (top panel), 597 Δ C (middle panel) and
795	CCCH/4A mutant (bottom panel), were carried out over the indicated time
796	periods as described in the FIG 3. The molar ratio of protein to pUC18 DNA
797	was 1:1 in the reaction. Samples terminated at the indicated time-points.
798	Sample at o-min point indicated untreated substrate pUC18 DNA. The reaction
799	products were analyzed in 1.4% agarose gels and visualized by staining with
800	ethidium bromide. Oc indicates open circle nicked or gapped circular DNA; Sc
801	denotes negatively supercoiled circular DNA; and Rel is the relaxed
802	topoisomers.

803

FIG 5 kinetoplast DNA (kDNA) decatenation by wild-type and mutants *Sso* topo III proteins.

806 Decatenation assays were carried out as described for DNA relaxation assay 807 except that kDNA (400 ng) was used as substrate with wild-type Sso topo III, 808 597∆C and CCCH/4A mutant at 1000, 500, 250, 62.5 and 12 fmol. The 809 reactions were performed at 90°C for 30 min and were terminated. Samples were electrophoresed through a 2% agarose gel, and the DNA products were 810 811 visualized by staining with ethidium bromide. Lane CK corresponds to the 812 kDNA control incubated at 90°C without the enzyme. Minicircles denote 813 minicircle DNA released by Sso topo III.

814

815

FIG 1

K592

FIG 2

В

65 267 D650 P98 P82 V263 P216 hinge region F26 Y100 P47 hinge region F214 hinge region ΗςΤορ3α RMI1 ΗsTop3β TDRD3 EcTOPI

FIG 3

bioRxiv preprint doi: https://doi.org/10.1101/706986; this version posted February 23, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder All rights reserved. No reuse allowed without permission.

CCCH/4A 12 6

bioRxiv preprint doi: https://doi.org/10.1101/706986; this version posted February 23, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

bioRxiv preprint doi: https://doi.org/10.1101/706986; this version posted February 23, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. А wildtype 597∆C 12 fmol 12 fmol СК 500 250 62.5 СК 500 250 62.5 1000 1000 kDNA \leftarrow nicked or \leftarrow gapped circles Rel supercoiled \leftarrow closed circles

С

