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Abstract 42 

Background: The study of biological age acceleration may help identify at-risk individuals and 43 

contribute to reduce the rising global burden of age-related diseases. Using DNA methylation 44 

(DNAm) clocks, we investigated biological aging in schizophrenia (SCZ), a severe mental 45 

illness that is associated with an increased prevalence of age-related disabilities and 46 

morbidities. In a multi-cohort whole blood sample consisting of 1,090 SCZ cases and 1,206 47 

controls, we investigated differential aging using three DNAm clocks (i.e. Hannum, Horvath, 48 

Levine). These clocks are highly predictive of chronological age and are known to capture 49 

different processes of biological aging. 50 

  51 

Results: We found that blood-based DNAm aging is significantly altered in SCZ with age- and 52 

sex-specific effects that differ between clocks and map to distinct chronological age windows. 53 

Most notably, differential phenotypic age (Levine clock) was most pronounced in female SCZ 54 

patients in later adulthood compared to matched controls. Female patients with high SCZ 55 

polygenic risk scores (PRS) present the highest age acceleration in this age group with +4.30 56 

years (CI: 2.40-6.20, P=1.3E-05). Phenotypic age and SCZ PRS contribute additively to the 57 

illness and together explain up to 22.4% of the variance in disease status in this study. This 58 

suggests that combining genetic and epigenetic predictors may improve predictions of disease 59 

outcomes. 60 

  61 

Conclusions: Since increased phenotypic age is associated with increased risk of all-cause 62 

mortality, our findings indicate that specific and identifiable patient groups are at increased 63 

mortality risk as measured by the Levine clock. These results provide new biological insights 64 

into the aging landscape of SCZ with age- and sex-specific effects and warrant further 65 

investigations into the potential of DNAm clocks as clinical biomarkers that may help with 66 

disease management in schizophrenia. 67 

 68 

 69 
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Introduction 70 

As the population continues to age, reducing the burden of age-related disability and 71 

morbidity is timely and important, particularly for mental illnesses [1,2]. Ranked as one of the 72 

most disabling illnesses globally[3], schizophrenia (SCZ) has significant impact on patients, 73 

families, and society. SCZ is associated with a two- to threefold increased risk of mortality[4–74 

6] and a 15 year reduction in life expectancy compared to the general population[7,8]. Despite 75 

elevated rates of suicide and other unnatural causes of death, most morbidity in SCZ is 76 

attributed to age-related diseases, such as cardiovascular and respiratory diseases and 77 

diabetes mellitus[5,9,10]. Processes of biological aging may therefore be accelerated in 78 

patients diagnosed with SCZ, either through an increased prevalence of age-related 79 

conditions or as a more integrated part of the illness [11]. Quantification of biological aging 80 

can help with identification of at-risk individuals or even prevention of age-related diseases 81 

[12,13]. While different aging biomarkers have been studied in SCZ, no clear demonstration 82 

of altered biological age has been shown [14]. The recent development of DNA methylation 83 

(DNAm) age predictors however offers new opportunities to study the phenomenon of aging 84 

in SCZ. 85 

DNAm age predictors, or “epigenetic clocks'', are biomarkers of ageing that generate 86 

a highly accurate estimate of chronological age, known as DNAm age [15–17]. The difference 87 

(Δage) between predicted DNAm and chronological age is associated with a wide-range of 88 

health and disease outcomes, including all-cause mortality [18–21], socioeconomic adversity 89 

and smoking[22], metabolic outcomes, such as body mass index (BMI) and obesity [23,24], 90 

and brain-related phenotypes, such as Parkinson's disease, posttraumatic stress disorder, 91 

insomnia, major depressive disorder, and bipolar disorder [25–29]. As epigenetic signatures 92 

can be modifiable [30], DNAm-based predictors may have significant clinical utility. Studies of 93 

DNAm aging so far found limited to no evidence for altered biological age in either brain or 94 

blood in SCZ [31–34]. These studies, however, (i) consisted of small sample sizes and thus 95 

limiting the ability to detect a biological signal, (ii) used a single DNAm clock that may have 96 

not been most informative for aging studies of mental illnesses, and (iii) did not consider aging 97 
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differences across the lifespan of patients. As morbidities in the SCZ population differ between 98 

older and younger individuals, and females and males [5], analyses of both age- and sex-99 

specific effects is warranted and could identify differential aging patterns, nevertheless. 100 

To investigate DNAm aging in SCZ, we used three independent DNAm age estimators; 101 

the Hannum [16], Horvath [15], and Levine clock [17]. Each clock is designed using different 102 

training features and captures distinct characteristics of aging [35]; (i) the Hannum age 103 

predictor was trained on whole blood adult samples, (ii) the Horvath predictor was trained 104 

across 30 tissues and cell types across developmental stages, and (iii) the Levine combines 105 

DNAm from adult blood samples with clinical blood-based measures. As the Levine estimator 106 

is trained on chronological age and nine clinical markers, its output is referred to as DNAm 107 

PhenoAge or “phenotypic age”. The Hannum estimator is said to capture measures of cell 108 

extrinsic aging in blood, whereas the Horvath clock measures more cell intrinsic aging as it 109 

was trained across multiple tissues and therefore is less dependent on cell type composition. 110 

All three clocks, in different but complementary ways, capture the pace of biological aging that 111 

is associated with various age-related conditions and diseases, including all-cause mortality 112 

[19,35]. 113 

DNAm clocks were implemented across four European case-control cohorts, 114 

representing a sample of almost twice the size of the largest SCZ DNAm age study conducted 115 

so far. Analyses are performed across the full sample and stratified by age and sex. We then 116 

integrated DNAm age with age of onset, duration of illness, and SCZ polygenic risk. DNAm 117 

smoking scores and blood cell type proportions were used to gain further insights into 118 

differential aging patterns. This study overall reports an in-depth investigation of the DNAm 119 

aging landscape in schizophrenia.  120 

 121 

 122 

 123 

 124 
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Results 126 

Figure 1 shows a schematic overview of the study design and analysis framework used 127 

to investigate DNAm aging in SCZ. After data pre-processing and quality control, 1,090 SCZ 128 

cases and 1,206 controls (2,296 subjects of 2,707 initial samples) were included in our 129 

analysis. The overall sample has a mean age of 40.3 years (SD=14.4) and consists of 34.5% 130 

women (Table S1 and Figure S1). 131 

 132 

Figure 1. Overview of study design and analysis framework. DNA methylation (DNAm) data was 133 

available for a total of 2,735 samples across four European cohorts. See Table S2 for more details on 134 

samples. DNAm age estimates were generated using three DNAm clocks, each designed to capture 135 

different features of aging (box 2). To investigate differences in aging between cases and controls, Δage 136 

was computed (box 3) and analyzed according to the step-wise framework shown in box 4. SCZ = 137 

schizophrenia, NLD=Netherlands, SCT=Scotland, SWD=Sweden, UK=United Kingdom, 138 

PRS=polygenic risk scores. 139 
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Across cohorts, all three clocks produce a high correlation with chronological age 140 

(Pearson’s r = 0.92-0.94; Figure 2A and S2). Using duplicates in the Dutch cohort, we 141 

assessed consistency between pairs of technical replicates, i.e. samples for which blood was 142 

collected at the same time but DNA processed at different times and DNAm data obtained on 143 

different arrays. Comparing Δage estimates between these pairs, we find a significant 144 

correlation for each clock (Figure S3); Hannum (rho = 0.79, n = 10), Horvath (rho = 0.53, 145 

n=118), Levine (rho = 0.67, n=118). Δage directionality (i.e. age deceleration or acceleration) 146 

is concordant in 90%, 73%, and 86% of pairs for Hannum, Horvath, and Levine, respectively, 147 

highlighting that the obtained estimates of DNAm age are reproducible for all three clocks. 148 

Comparing Δage estimates between clocks using all samples, we find a moderate 149 

concordance (Pearson’s r = 0.39-0.43; Figure S4), demonstrating that a significant proportion 150 

of the variation in Δage is clock-specific. As these three estimators were trained on different 151 

features of biological aging, investigating them in conjunction may thus yield broader insights 152 

into differential aging. 153 

DNA methylation age is altered in an age-dependent manner 154 

Across the full sample, patients with SCZ are on average 1.53 years older in 155 

phenotypic Δage (Levine clock) compared to controls (Pmeta= 3.45E-08) (Figure 2B). The 156 

intrinsic cellular age (Horvath) predictor revealed an opposite pattern, with SCZ cases 157 

appearing 0.47 years younger compared to controls (Pmeta= 0.06). No differences were 158 

observed between cases and controls when applying the blood-based Hannum DNAm age 159 

predictor. Within the analysis of each clock, we observed no evidence of heterogeneity 160 

between the four cohorts (Phet > 0.05, Table S5). 161 

Modelling the interaction effect between disease status and chronological age on Δage 162 

reveals a differential rate of aging between cases and controls (Figure 2C). That is, the slope 163 

of Δage across chronological age is 0.05- and 0.06-years steeper in cases compared to 164 

controls for the Horvath (Pmeta=2.3E-03) and Levine clocks (Pmeta=7.1E-03), respectively,  165 
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 166 

Figure 2. DNA methylation aging is altered in schizophrenia and conditional on chronological 167 

age. Presented are results visualizing DNAm aging in SCZ for each clock; Hannum (left), Horvath 168 

(middle), Levine (right). Cases are shown in blue and controls in black. (A) The correlation between 169 
DNAm age and chronological age. The Pearson’s correlation estimate and corresponding p-value are 170 

shown in the bottom corner. (B) Boxplots of Δage between cases and controls with the meta-analytic 171 

effect size and p-value across cohorts shown. β represents the mean change in Δage in cases 172 

compared to controls. (C) Δage is visualized across chronological age with a regression line fitted 173 

separately for cases and controls and the meta-analytic interaction effect and p-value shown. β 174 

represents the change in Δage in cases per year of chronological age compared to controls. P-values 175 

are adjusted for multiple testing across clocks (n=3). 176 

 177 

with no evidence of heterogeneity between cohorts (Figure S5 and Table S6). As no significant 178 

effects were observed for the Hannum Δage, we decided to focus our downstream analysis 179 

on the phenotypic (Levine) age and intrinsic cellular (Horvath) age only. To further disentangle 180 

the relationship between Δage in SCZ conditional on chronological age, we estimated 181 

differential aging by 10-year intervals, with years 18 and 19 included in the first age group. We 182 

observe significant DNAm age deceleration in early adulthood (18-30 years) with patients 183 
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estimated at -1.23 years younger (Pmeta=3.9E-03) in intrinsic cellular age with no significant 184 

difference at later ages (Figure 3A). In phenotypic age, SCZ patients displayed significant 185 

DNAm age acceleration from 30 years and older (Figure 3B), with the most pronounced age 186 

acceleration between 50-60 years (2.29 years, Pmeta=9.0E-03). We again find no evidence 187 

of heterogeneity within age groups between cohorts (Figure S6 and Table S7-8). 188 

189 
Figure 3. Differential DNAm aging in schizophrenia maps to specific age windows between 190 

sexes. (A-B) Shown are Δage differences between cases and controls across age groups for the 191 

Horvath (A) and Levine clock (B). For each age group, number of cases and controls, and meta-analytic 192 

effect size (β) and p-value (P) are presented. P-values are corrected for multiple testing (2 clocks x 5 193 

groups = 10 tests). See Table S5 for more details on results and corresponding statistics. (C-H) Sliding 194 

age- windows, using 5-year bins with steps of 1-year, were used to estimate differential aging (β) at 195 

finer resolution across the range of chronological age. Significant shifts in Δage between cases and 196 
controls, defined by the standard error of β deviating from zero for at least 3 steps, are highlighted by 197 

the shaded areas on the graph with the dotted vertical lines indicating the respective ages of the 198 

intervals. Identified age intervals for the Horvath and Levine clock are shown in C-E and F-H, 199 

respectively. Results for women (middle) and men (right) are presented in blue and red, respectively. 200 

The effects in the total sample are displayed in black (left).  201 
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 Age- and sex-specific effects contribute to DNAm aging 202 

To quantify the overall contribution of age- and also sex-specific effects, we estimated 203 

the gain in variance explained of Δage by adding the interaction terms of age and sex with 204 

disease status to a baseline model and assessed the gain in model performance. For both 205 

measures of aging, inclusion of interaction terms presented a significantly better fit, with the 206 

three-way interaction model (i.e. disease status, age and sex) explaining the most variance in 207 

Δage (Table 1 and S9). We observe a larger gain in model fit for the three-way interaction for 208 

phenotypic aging (P=0.01) than for intrinsic cellular aging (P=0.24), suggesting that sex-209 

specific effects are more pronounced for Levine Δage. 210 

 211 

Table 1. Age- and sex-specific effects significantly contribute to DNAm aging in schizophrenia. 212 

Shown are the contributions of interaction effects between disease status and age and sex on Δage. 213 
The baseline model corresponds to Δage ~ dataset + ethnicity + platform + age.continuous + sex. For 214 

other models, the variable(s) in addition to the baseline variables are shown with the corresponding 215 

variance explained (R2) in Δage. Interaction terms with chronological age are modeled as a continuous 216 

variable (age.continuous) or a categorical variable (age.groups). The latter uses previously defined 217 

decades. Model comparison is performed to assess if the contribution of an interaction term is significant 218 

compared to a model without that term. The chi-square test is used to test two models with 219 

corresponding p-value presented. The results of these analysis are shown for both the Horvath and 220 
Levine clock. P-values are corrected for the number of tests performed (2 clocks x 4 comparisons = 8). 221 

 222 

Estimating and mapping windows of differential aging in schizophrenia 223 

As our categorical age groups in the previous analyses were chosen somewhat 224 

arbitrarily, we conducted an exploratory analysis to refine age-dependent aging effects to 225 

identify specific age windows that are associated with differential aging. We implemented a 226 

sliding window approach across chronological age, both in the full sample and within each sex 227 
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separately. Using 5-year bins and sliding steps of 1 year, we tested cases versus age-matched 228 

controls and constructed a more precise picture of differential aging across chronological age 229 

in SCZ. At this finer resolution, we mapped changes in Δage to specific ages with different 230 

patterns between men and women. For intrinsic cellular age, we observe a deceleration effect 231 

during early adulthood from 29 years and younger across all samples, with the shift in 232 

differential aging occurring earlier in women (<25) (Figure 3C). For both men and women, we 233 

observe age deceleration in mid-forties and for women we also find age acceleration between 234 

50-56 years (Figure 3C-E). 235 

For phenotypic age, we mapped the age acceleration effect to 27 years and older 236 

across the whole sample with differences between the sexes (Figure 3F-H). In women, we 237 

find age acceleration between 25-29 years and from 36 years and older (Figure 3G). In men, 238 

we find age acceleration between 27-39 and 49-59 years (Figure 3H). More details on each 239 

age window and corresponding effect sizes are shown in Table S10. Thus far, our results 240 

show that DNAm aging, measured through the Horvath and Levine clock, is significantly 241 

different in SCZ and characterized by age-specific effects with some distinctions between the 242 

sexes, particularly for Levine Δage. 243 

  244 

DNAm aging affects SCZ above and beyond smoking and blood cell types  245 

To investigate the effect of smoking and blood cell type composition, we use DNAm-246 

based smoking and cell type estimations (see Methods) as a proxy to evaluate their 247 

contribution to DNAm aging in SCZ. While DNAm clocks, by design, will encapsulate such 248 

effects, quantifying the contributions of each factor increases interpretability and helps 249 

understand the factors contributing to the differential aging findings. We observe that blood 250 

cell type proportions explain significantly more variance in DNAm aging than DNAm smoking 251 

scores (Supplementary Results S2.1). Inclusion of DNAm smoking score and blood cell 252 

proportions as covariates in our main models explains part but not all of the observed disease 253 

effects (Table S11 and Figure S8-9). Using a penalized regression framework (Table S12), 254 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 23, 2021. ; https://doi.org/10.1101/727859doi: bioRxiv preprint 

https://doi.org/10.1101/727859
http://creativecommons.org/licenses/by/4.0/


11 

we show that Levine Δage independently contributes to the variance in disease status in 255 

women older than 36 above and beyond smoking scores and blood cell type proportions 256 

(Supplementary Results S2.2 and Figure S10). A significant proportion of the Horvath Δage 257 

effect on disease status is reduced by adjusting for smoking (Table S11). However, smoking 258 

is not associated with Horvath Δage in controls (Pearson r=0.01, P=0.95) nor in cases 259 

(Pearson r=-0.08, P=0.28) (Figure S11). As smoking covaries with SCZ disease status, it is 260 

difficult to distinguish these signals. 261 

  262 

Age deceleration by multi-tissue Horvath clock is not present in brain 263 

We investigated DNAm aging in frontal cortex postmortem brain samples of 221 SCZ 264 

cases and 278 controls. The multi-tissue Horvath clock accurately predicts DNAm age in the 265 

brain as well (r=0.94, P < 2.2e-16). We, however, find no difference in DNAm aging between 266 

cases and controls (ß=-0.29, P=0.46) and no evidence of age-dependent aging. More details 267 

are shown in the Supplementary Results (S2.3). 268 

  269 

Phenotypic age acceleration is associated with SCZ polygenic risk in women 270 

To further decipher the factors underlying the signal of differential aging in SCZ, we 271 

examined the possible role of SCZ polygenic risk, age at onset, and illness duration (Figure 272 

S12). We first focus on the phenotypic age acceleration in female SCZ patients of age 36 273 

years and older, as these individuals showed the most consistent and pronounced aging 274 

effect. We find stronger age acceleration in cases with both low and high SCZ genetic risk 275 

(Table 2). More specifically, patients in the highest PRS1 tertile are predicted to be 4.30 years 276 

older in phenotypic age compared to controls (P=1.3E-05), patients with median range PRS1 277 

are 1.89 years older (P=4.5E-02), and patients in the lowest quartile are 2.89 years older 278 

(P=2.8E-03). By permutation of PRS1 bins, we find that the effect in the highest PRS1 tertile 279 

is unlikely to occur by chance (P=0.024). For the association between Levine Δage and PRS1 280 

to be most pronounced in the low and high tertile, is even less likely to happen by chance 281 

(P=0.006). At maximum, this group of women carrying high SCZ genetic risk have on average 282 
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7.03 higher phenotypic Δage (95% CI: 3.87-10.18; P=1.7E-05) (Figure 4A). We do not observe 283 

such an association in women age < 36 years, men with age > 36 years, nor across the whole 284 

dataset (Figure 4B and S13). Finally, by permuting the ranks of PRS1 within female cases >36 285 

years, we find a mean maximum phenotypic Δage case-control difference of 3.69 years (95% 286 

CI: 1.26-6.12) across 1000 permutations, further demonstrating the significance of the 287 

observed maximum of +7.03 years phenotypic Δage difference. For age at onset and illness 288 

duration, we did not find significant association with Δage across partitioned bins (after 289 

permutation, P > 0.05) (Table 2). 290 

 291 

 292 

Table 2. Integration of Levine Δage with PRS, age of onset, and illness duration in women in 293 
later adulthood. Analyses were performed using women >36 years of age. Only cases with available 294 

information were included in the analyses. Each phenotype was analyzed as both a continuous variable 295 

and as a categorical variable using equal tertiles from low to high bins. Mean values in cases for each 296 
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phenotype are presented along with the association with Δage (β) and corresponding 95% confidence 297 

intervals and p-values. PRS1 = polygenic risk score PC1 (see Supplementary Information) scaled to 298 

mean zero with standard deviation of 1, AOO = age of onset, DUR = illness duration. Asterisk* indicates 299 

that significance (P < 0.05) by permutation analyses. 300 

 301 

This is further confirmed when we integrated these two variables across PRS1 tertiles, 302 

demonstrating that the most pronounced differences in Δage are observed across PRS1 bins 303 

and not across the distribution of age at onset and illness duration in this subset of women 304 

(Figure S14). 305 

We conducted a similar investigation on the observed intrinsic cellular age deceleration 306 

in all SCZ patients aged 29 years and younger but found no significant associations between 307 

Horvath Δage and PRS1, age at onset, or illness duration (Table S13 and Figure S15). While 308 

we did observe the strongest Horvath age deceleration in the high PRS1 tertile (β=-1.58, 309 

P=3.0E-03), this was not significant after permutation analysis (P>0.05). We did not analyse 310 

other identified age windows of differential aging as these either had too few individuals with 311 

genetic or phenotypic information available or more modest disease effects limiting any further 312 

stratification. 313 

Finally, we assessed how Levine Δage and SCZ PRS1 compare in predicting SCZ 314 

disease status in our sample. Across the whole sample, PRS1 and Levine Δage explain 17.0% 315 

and 2.6% of the variance in disease status, respectively. Together, they explain 19.2%. In 316 

women in later adulthood, SCZ PRS1 and Levine Δage explain 11.5% and 9,8% 317 

independently and 22.4% jointly (Figure 4C). 318 

 319 

Figure 4. DNAm aging associates with SCZ PRS and additively contributes to SCZ disease 320 

status. (A) Using a sliding-window approach, Levine Δage difference between cases and controls are 321 
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shown across bins of ranked PRS1. Each bin contains 20 cases and slides from low to high PRS1 per 322 

shifts of one sample. The estimated Δage difference compared to all female controls >36 years is shown 323 

for each sliding bin in blue with the standard error in shaded blue. The most significant bin is highlighted 324 

by the grey vertical bar. (B) A similar analysis but then across all samples. (C) The variance explained 325 
in schizophrenia disease status (y-axis) by SCZ PRS and Levine Δage shown for all samples (left) and 326 

for women in later adulthood (right). The estimates shown are derived on top of the effect of sex, 327 

ethnicity, batch, platform, and chronological age. 328 
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Discussion 352 

We performed a large study of biological aging in schizophrenia using multiple 353 

epigenetic clocks based on whole blood DNA methylation data. We observe significant 354 

patterns of sex-specific and age-dependent DNAm aging in SCZ, a finding consistent across 355 

four European cohorts. The most significant differential aging pattern that we observe is in 356 

females ages 36 years and older in which we detect advanced phenotypic age acceleration, 357 

as measured by the Levine clock. We also observe intrinsic cellular age deceleration in SCZ 358 

patients during early adulthood, as measured by the Horvath clock. Phenotypic age 359 

acceleration in female patients is associated with a higher burden of SCZ polygenic risk. This 360 

high SCZ risk group displays accelerated aging of an average of +4.30 years compared to 361 

age-matched female controls. Phenotypic age and SCZ PRS furthermore contribute additively 362 

to SCZ and explain up to 22.4% of the variance in disease status. Our findings suggest that 363 

specific and identifiable patient groups are at increased mortality risk as measured by the 364 

Levine clock and warrant further research on DNAm clocks to examine its clinical relevance. 365 

The Levine estimator was constructed by predicting a surrogate measure of phenotypic 366 

age, which is a weighted average of 10 clinical markers, including chronological age, albumin, 367 

creatinine, glucose and C-reactive protein levels, alkaline phosphatase and various blood cell 368 

related measures [17]. By design, the Levine estimator is a composite biomarker that strongly 369 

predicts mortality, in particular that of age-related diseases, such as cardiovascular-related 370 

phenotypes. A 1-year increase in phenotypic age is associated with a 9% increased risk of all-371 

cause mortality and a 10% and 20% increase of cardiovascular disease and diabetes mortality 372 

risk, respectively [17,36]. Our findings of multiple year increase in phenotypic age in SCZ could 373 

thus imply an increased mortality in patients that is linked to cardiovascular disease, a 374 

previously well-established epidemiological observation [4,5,37]. A recent study however 375 

found that DNAm age acceleration only predicts mortality in SCZ cases without pre-existing 376 

cancer using the Hannum clock [38]. They did not find such evidence using the Levine clock. 377 

The smaller sample size and predominantly male cohort may have reduced the predictive 378 

power of the study. Our findings warrant a more focused and larger study of DNAm aging in 379 
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female patients in later adulthood, preferably stratified by SCZ genetic risk. Our results align 380 

well with the observation that patients with SCZ, particularly women, are reported to be at high 381 

mortality risk due to cardiovascular disease and diabetes [5,39,40]. Assuming that 382 

cardiovascular risk is modifiable in SCZ [41], phenotypic age could serve as a potential 383 

biomarker to identify at-risk individuals and in this way help with disease management and 384 

improvement of life-expectancy. 385 

In contrast to age acceleration in phenotypic age, we observe age deceleration in 386 

intrinsic cellular age (i.e. the Horvath DNAm age), an effect that is most pronounced in patients 387 

age 29 and younger. Unlike the association findings in females, we did not observe clear 388 

patterns with genetic and phenotypic variables that could help to further decipher the signal. 389 

Horvath Δage furthermore showed strong age-specific effects but less clear sex-specific 390 

effects. We did not observe age deceleration in postmortem brain samples of the human 391 

cortex, indicating that the observed aging signal in SCZ may be blood-specific. Horvath DNAm 392 

aging has been shown to be associated with molecular processes of development and cell 393 

differentiation [15,35], including through blood-based DNAm age measures in human 394 

(neuro)developmental phenotypes [42,43]. Our findings may indicate that patients diagnosed 395 

with SCZ in this age group show evidence of delayed or deficient development and that this 396 

is detectable in blood through the multi-tissue Horvath clock. This however remains 397 

speculative and future work is needed to further dissect how blood-based Horvath age 398 

deceleration is associated with SCZ. 399 

While we did observe aging effects with the Horvath and Levine clock, we did not with 400 

the Hannum clock. The Hannum clock is less predictive of age acceleration effects on mortality 401 

risk than the Levine clock [17], which could explain the lack of findings in our analyses. The 402 

Hannum estimator furthermore cannot be used on first generation 27K DNA methylation 403 

arrays which reduced the sample size of this study with 30% and may have impacted the 404 

statistical power of these specific analyses. This highlights the benefits of designing methods 405 

that are inclusive to all platforms, so all data, both old and new, can be leveraged. 406 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 23, 2021. ; https://doi.org/10.1101/727859doi: bioRxiv preprint 

https://doi.org/10.1101/727859
http://creativecommons.org/licenses/by/4.0/


17 

After publication of the preprint of our manuscript [44], Higging-Cheng et al. also 407 

reported significant DNAm alterations in SCZ [45]. This smaller study included 567 SCZ cases 408 

and 594 non-psychiatric controls with most of the sample (UK and SCT cohorts) also included 409 

in our study. Similar to our finding of 1.53 years of phenotypic age acceleration in 410 

schizophrenia cases, they report a 1.4- to 1.9-year increase in Δage in SCZ cases compared 411 

to controls. In addition, using GrimAge, a newly trained DNAm mortality clock [46], they 412 

observe age acceleration of 2.5- to 5.8-years. Unlike phenotypic age acceleration, this 413 

increase is largely driven by smoking effects. Similar to our work, this work highlights the value 414 

of analysing multiple clocks in conjunction and again suggesting that distinct biological 415 

processes of aging are altered in SCZ. In addition to the larger sample size, there are other 416 

key differences between our study and Higgins-Cheng et al. First, we performed detailed 417 

phenotypic analyses including explicit modelling of age and sex-specific effects. Second, 418 

methodically, we performed meta-analyses across cohorts as opposed to individual analyses 419 

per cohort. This approach, combined with multiple testing correction, is robust to cohort-420 

specific artefacts in the data. Third, we integrated DNAm age with SCZ polygenic risk. Our 421 

PRS analyses yielded important insights into specific patient groups that could be at higher 422 

risk of all-cause mortality and that DNAm Δage and SCZ polygenic risk contribute additively 423 

to the illness. The latter suggests that combining genetic and epigenetic predictors can 424 

augment downstream prediction of outcomes in SCZ, similarly to what was recently shown for 425 

BMI [47]. 426 

         A systematic review of aging biomarkers found that less than a quarter of studies 427 

explored an interaction effect or statistically compared the regression slope between groups 428 

in SCZ [14]. Our findings of sex-specific and age-dependent DNAm aging support their 429 

recommendations to specifically examine interaction effects with age and sex in aging studies 430 

but also more general in epigenetic studies of SCZ, such as epigenome-wide association 431 

studies. Future work should also be extended to integrate nonlinear models to fully capture 432 

the complex relationship between DNAm aging and clinically relevant variables across the 433 
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lifespan of patients. These models will help validate and further refine the most relevant age 434 

intervals. 435 

A limitation of the study is the cross-sectional design of the cohorts used. While we do 436 

find an association with SCZ polygenic risk, dissecting cause-and-effect relationships remains 437 

challenging. Independent replication studies are needed, preferably using longitudinal 438 

prospective cohorts with genomic data and information on symptom recurrence and severity, 439 

comorbidities and other phenotype-related variables. These studies can assess the clinical 440 

relevance of DNAm aging in SCZ above and beyond other known health risk factors and 441 

disease biomarkers, such as medication use. An urgent open question remains whether 442 

DNAm age signatures are modifiable with regards to clinical and lifestyle factors associated 443 

with SCZ. Improvement of existing methodology and/or development of new DNAm age 444 

biomarkers [48,49] may in addition help to better study differential aging in SCZ and related 445 

disorders with increased mortality. Combining blood-based DNAm age with that of other aging 446 

profiles, such as MRI-based brain age [50], may further advance our understanding of aging 447 

and SCZ disease progression, including the increased mortality [51]. Finally, our findings 448 

support an integrative strategy with polygenic disease risk to improve clinical utilization. 449 

Schizophrenia, like other mental illnesses, are associated with a wide-range of 450 

subsequent chronic physical conditions, including many age-related diseases [52]. While 451 

health and life expectancy of the general population continues to improve, the mortality 452 

disparity between patients with schizophrenia and those unaffected continues to increase 453 

[9,10,53,54]. As the burden of age-related diseases continues to rise, early detection and 454 

subsequent opportunities for interventions before disabilities and co-morbidities become 455 

established will be important [1,2]. Molecular biomarkers of aging, such as DNAm clocks, are 456 

now emerging as candidate tools for screening and intervention. Taken together, this study 457 

strengthens the need for more research on DNA methylation aging in SCZ, a population 458 

vulnerable to age-related diseases and excess mortality. 459 

 460 

 461 
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Material and Methods 462 

Cohort and sample description 463 

Details of samples included in this study can be found in the Supplementary 464 

Information. Briefly, unrelated patients with SCZ and ancestry-matched non-psychiatric 465 

controls from four cohorts of European ancestry were included; the Netherlands (N=1,116), 466 

Scotland (N=847), Sweden (N=96), and the United Kingdom (N=675). Cases were selected 467 

on the basis of a clinical diagnosis of SCZ using the Diagnostic and Statistical Manual for 468 

Mental Disorders (DSM-IV), Research Diagnostic Criteria (RDC), or the International 469 

Classification of Diseases 10 (ICD10). Controls were unaffected subjects without a history of 470 

any major psychiatric disorder. Whole blood DNAm data was available for a total of 2,707 471 

samples (1,399 cases and 1,308 controls; Table S1). 472 

                            473 

Genome-wide DNA methylation profiling and data processing 474 

To quantify DNA methylation, DNA was extracted from whole blood and bisulfite 475 

converted for hybridization to the Illumina Infinium Human Methylation Beadchip. Samples 476 

were assayed with either the 27K or 450K beadchip, which contain 27,578 and 485,512 probes 477 

that interrogate CpG sites across the genome, respectively. For each platform, data 478 

processing pipelines were implemented, which includes background correction, color channel 479 

and probe type correction, and normalization of the data, to minimize the effect of technical 480 

variation on the final beta values. Samples with more than 5% of probes detected at P > 0.05 481 

were excluded from further analyses (n=13). Full details are described in the supplementary 482 

methods. 483 

  484 

DNAm-based estimation of biological age 485 

To compute blood-based DNAm age estimates, processed beta values were used as 486 

input to the Hannum[16], Horvath[15], and Levine [17] DNAm clock. These DNAm age 487 

estimators use a set of CpGs that are selected via an optimization algorithm to collectively 488 

minimize the error associated with estimating chronological age (Supplementary Information). 489 
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Horvath DNAm age estimates were calculated using R scripts from the Horvath DNA 490 

Methylation Calculator (https://dnamage.genetics.ucla.edu). Hannum and Levine estimates 491 

were obtained by using the reported set of probes with corresponding regression weights. We 492 

define Δage by subtracting chronological age at the time of the blood draw from the predicted 493 

DNAm age. 494 

  495 

Statistical analyses 496 

To investigate epigenetic aging differences in SCZ, we first removed samples with 497 

discrepant phenotypic sex and predicted sex based on DNAm data (n=9),  as well as samples 498 

with missing chronological age data (n=237), bipolar disorder diagnosis (n=26), and duplicate 499 

samples (n=126). For each epigenetic clock, we regressed Δage on technical principal 500 

components (PCs), using the first components that cumulatively explain >90% of variation in 501 

intensity values of control probes, and added the residuals to mean(Δage) to generate a 502 

measure in the same units as Δage that is adjusted for technical variation (Δage-adjusted). 503 

We used the adjusted value for subsequent analyses and refer to it as Δage. 504 

As association analyses of DNAm age between groups are sensitive to the distribution 505 

of chronological age, particularly at older ages, any case older than the oldest control was 506 

excluded from each cohort (n = 5 for NLD, 16 for SCT, 4 for SWD, and 1 for UK). Chronological 507 

age was furthermore included as a covariate in all analyses, as recommended[55]. To 508 

minimize the effect of outlying samples, we excluded samples >3SD from mean Δage across 509 

cohorts (ranging from n=13 to 16 for the three clocks). These are samples for which DNAm 510 

age diverged substantially from chronological age, which are likely artifacts. 511 

For each clock and each cohort, we implemented a multivariable regression model 512 

predicting Δage as a function of schizophrenia status, sex, and age. For the Dutch cohort, 513 

batch and array platform were also included as covariates, as this cohort consists of multiple 514 

datasets from both the 27K and 450K platform. For each clock, regression coefficients with 515 

corresponding standard errors for each of the four cohorts were then supplied to the rma() 516 

function of the metafor package[56] in R to fit a meta-analytic fixed-effect model with inverse-517 
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variance weights and obtain an overall effect size and test statistic. To quantify the significance 518 

of age- and sex-specific effects, we determined the contribution of interaction effects on top of 519 

the main disease effect. We first combined all cohorts to maintain necessary sample sizes 520 

across age and sex groups. Age groups were defined by grouping samples by decades with 521 

ages 18 and 19 included in the first decade (18-30, 31-40, etc.). To quantify the gain in 522 

variance explained in Δage, models with the interaction term were compared to a baseline 523 

model without the interaction term. For each analysis, statistical significance was determined 524 

using Bonferroni correction, i.e. P < 0.05 / number of tests. 525 

  526 

SCZ polygenic risk quantification 527 

Polygenic risk scores (PRS) were obtained from analyses of the SCZ GWAS 528 

conducted by Psychiatric Genomics Consortium (PGC)[57]. Using a leave one out approach, 529 

weights were generated in a training dataset based on all samples minus the target cohort in 530 

which the PRS were calculated. For each individual, weighted single nucleotide 531 

polymorphisms (SNPs) were summed to a genetic risk score that represents a quantitative 532 

and normally distributed measure of SNP-based SCZ genetic risk. To reduce between cohort-533 

variation and maximize statistical power, we used a previously developed analytical strategy 534 

that uses principal component analysis (PCA) to concentrate disease risk across PRSs of ten 535 

GWAS p-value thresholds into the first principal component (PRS1)[58] (Supplementary 536 

Information). PRS1 explains 70.7% of the variance in risk scores and 19.9% of the variance 537 

in SCZ status, which is more than any of the original p-value thresholds (4.9-17.4%). The other 538 

PCs had no explanatory value in disease status (mean R2 = 0.0%), which means that PRS1 539 

captures the majority of SNP-based SCZ polygenic risk. PRS1 was generated for 1,933 540 

individuals, 853 cases and 1080 controls, and modelled as both a quantitative and categorical 541 

variable to predict Δage. 542 

  543 

Defining age at onset and illness duration 544 
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Age at onset is defined as the earliest reported age of psychotic symptoms or by the 545 

Operational Criteria Checklist (OPCRIT), depending on the cohort. This data is available for a 546 

subset of cases (N = 710) across the Dutch, Scottish, and UK cohorts. Illness duration is 547 

defined as the time between age at onset and blood collection. A more detailed description of 548 

each cohort’s definition is available in the Supplementary Information. 549 

  550 

DNA methylation-based smoking scores and blood cell type proportions 551 

Smoking scores and blood cell type proportions were estimated from the data (see 552 

Supplementary Methods) and used as a proxy to further decompose differential aging effects. 553 

  554 

Estimating the contribution of differential aging in schizophrenia 555 

Using a multivariable logistic regression model for disease status, we fitted batch, 556 

cohort, DNAm smoking score, DNAm blood cell type proportions, and Δage as explanatory 557 

variables. We first performed a variable reduction step to select the most contributing variables 558 

to disease status by use of a regularized logistic regression using the glmnet() function in R 559 

(“glmnet” package, v2.13)[59]. Alpha was set to “1” (Lasso) and the lambda parameter 560 

estimated at the optimal value that minimizes the cross-validation prediction error rate using 561 

the cv.glmnet() function. For each selected variable, we then report the variance explained in 562 

SCZ status (glm, family = ”binomial”) for both the individual variable as well as adjusted for all 563 

other selected variables using the NagelkerkeR2() function in the “fmsb” package (v 0.6.3). 564 

The significance of each variable to their contribution was computed by comparing the model 565 

with and without the variable of interest using the likelihood ratio test of the anova() function. 566 

 567 

 568 

 569 

 570 

 571 

 572 
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