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Abstract12

After several pandemics over the last two millennia, the wildlife reservoirs of plague13

(Yersinia pestis) now persist around the world, including in the western United States.14

Routine surveillance in this region has generated comprehensive records of human cases15

and animal seroprevalence, creating a unique opportunity to test how plague reservoirs16

are responding to environmental change. Here, we develop a new method to detect17

the signal of climate change in infectious disease distributions, and test whether plague18

reservoirs and spillover risk have shifted since 1950. We find that plague foci are asso-19

ciated with high-elevation rodent communities, and soil biochemistry may play a key20

role in the geography of long-term persistence. In addition, we find that human cases21

are concentrated only in a small subset of endemic areas, and that spillover events are22

driven by higher rodent species richness (the amplification hypothesis) and climatic23

anomalies (the trophic cascade hypothesis). Using our detection model, we find that24

due to the changing climate, rodent communities at high elevations have become more25

conducive to the establishment of plague reservoirs—with suitability increasing up to26

40% in some places—and that spillover risk to humans at mid-elevations has increased27

as well, although more gradually. These results highlight opportunities for deeper in-28

vestigation of plague ecology, the value of integrative surveillance for infectious disease29

geography, and the need for further research into ongoing climate change impacts.30
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Introduction31

The distribution and burden of infectious diseases will be entirely reshaped by global envi-32

ronmental change. Scientific consensus suggests that over the next century, the combined33

effect of climate change, land degradation and transformation, and increasing human-34

wildlife contact will bring about a massive increase in the spillover of pathogens that35

originate in wildlife (zoonotic diseases)1,2 and the burden of infections transmitted by36

arthropods (vector-borne diseases)3,4. While there is substantial research efforts working37

to project these future changes, the impacts of current environmental change on infectious38

disease burden in the world today is underexplored. Based on current evidence, land use39

change is the best-supported leading driver of zoonotic emergence5,6; much less is known40

about climate change impacts to date. This is due, in large part, to methodological limita-41

tions: the “detection and attribution” methods that are best suited to this problem require42

substantial data on disease prevalence or incidence over extensive periods, as well as com-43

plicated model designs (e.g., counterfactual climate scenarios without climate change)7,8.44

Instead, many projections of climate change impacts rely on ecological niche models45

(also known as species distribution models), a set of regression and machine learning ap-46

proaches that relate climate to the geographic range of a species9,10. Usually, these ap-47

proaches are an oversimplification of reality, especially for pathogens: for example, a map48

of anthrax (Bacillus anthracis) may classify west Texas as an endemic zone, even though49

the system is characterized by epizootics that are sometimes years apart11. Ecological50

niche models are therefore an imperfect tool for exploring climate change impacts. These51

methods work well for mapping current distributions, for projecting single-time-slice distri-52

butions under future climates, and – in some recent work – for projecting continuous-time53

change12. Retrospective work to reconstruct climate change impacts is much rarer, and is54

usually restricted to work that builds two species distribution models for contrasting time55

intervals and compares them13,14,15. This approach is less than ideal, forcing researchers56

to violate the assumption that species’ geographic ranges are at equilibrium16,17; to ag-57

gregate data into somewhat arbitrary time periods; and to compare models trained on58

non-independent but non-overlapping datasets, which will generate different biological re-59

sponse curves simply because of model uncertainty. In this framework, it is also difficult60

to eliminate alternate hypotheses for why a species’ apparent distribution might change,61

like noise in the detection process or shifting abundance patterns.62

Recently, a growing set of tools have tried to grapple with the temporal variability ex-63

hibited by the distribution of infectious diseases. Though most disease maps are treated as64

the long-term average of temporally-dynamic processes, time-specific ecological niche mod-65

eling has been proposed as an alternative that captures the dynamic nature of transmission.66

Almost always, though, these methods have been implemented at the finest temporal scales:67

monthly18 or seasonal19,20. As of yet, this approach has been mostly untested as a way68

of understanding disease distributions over multiple years—and ideally, of contextualizing69

the impacts of environmental change over decades (but see15).70
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Few systems provide a better opportunity to test this approach than plague, a globally-71

cosmopolitan zoonotic infection caused by the bacterium Yersinia pestis. The global distri-72

bution of plague has been far from stable over the past two centuries; the Third Pandemic73

(late 18th to mid-20th Century)21,22,23,24,25 in particular was responsible for the introduc-74

tion of Y. pestis into many new regions that were environmentally suitable but otherwise75

uncolonized, particularly the Americas26,27,28. In some of these regions, outbreaks have76

faded over time, while in others, plague foci have persisted and the pathogen has become77

endemic, maintained by a sylvatic cycle in rodent reservoirs and flea vectors28. Rodent78

biodiversity hotspots may be particularly conducive to the formation of these reservoirs29,79

a possible case of biodiversity amplification effects30,31, where the diversity of competent80

hosts allows a virulent pathogen to be maintained at more stable levels. Though under-81

explored, emerging evidence also suggests that plague may persist in the soil, possibly by82

acting as an endosymbiont with amoebas32, from which it sporadically can reinfect burrow-83

ing rodents33. Soil conditions may therefore further constrain the distribution of plague84

reservoirs34,35,36,37. Like other pathogens that can persist in the soil38,39, provisionary ev-85

idence suggests that plague may be limited by soil salinity40,41, soil organic carbon, and86

alkalinity42. Though these factors may have limited influence in the short-term dynamics87

of plague in any one location, at continental scales, they could reasonably be expected to88

shape where plague foci have become established.89

Both experimental and ecological analysis suggests that plague dynamics are also highly90

sensitive to climatic conditions. The disease’s sensitivity to bioclimatic conditions has been91

documented throughout its life cycle, but is particularly pronounced on the arthropod level,92

where temperature (and to a lesser degree humidity) influence the rate at which various93

flea species move through their life cycle43. Flea species differ in their temperature sensi-94

tivities43, making the local composition of flea communities an important consideration,95

as well as in their ability to transmit plague, either through early-phase transmission or96

blockage-induced transmission44,43,45. The bacterium appears able to rapidly evolve its97

ability to favor one over the other transmission mode46 (or maintains a standing varia-98

tion in its extended phenotype within populations). Temperature also directly influences99

biochemical aspects of the transmission efficiency of the plague bacterium, particularly100

when temperatures rise above 27°C44, presumably by negatively influencing the stability101

of the biofilm that the bacterium forms in fleas. Temperature also finally influences rodent102

populations, including through a mechanism generally referred to as a trophic cascade: cli-103

matic anomalies influence primary productivity, driving changes in rodent density, which104

in turn change the density and biting preferences of fleas47,48. The combination of these105

environmental sensitivities, when playing out across the scale of ecosystems, can lead to106

widespread synchronicities in plague epizootic periods49.107

All of these lines of evidence suggest that plague should be broadly sensitive to en-108

vironmental change, and that in systems where trends in plague occurrence have been109

tracked, an anthropogenic signal might be detectable. The United States is the perfect110

system to test this approach, as data in this region are particularly abundant; human case111
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data goes back over a century, to plague’s first introduction on the Pacific coast in early112

20th Century50,51,26. Moreover, the U.S. Department of Agriculture has collected plague113

seropositivity data from wildlife for multiple decades through the USDA National Wildlife114

Disease Program52. Combined, these national datasets include more records than many115

global studies of pathogen distributions38, making this system an ideal testing ground. To-116

gether, these data also cover nearly a century of environmental change, a temporal scope117

that allows time-specific ecological niche modeling to be implemented. This also allows us118

to revisit one of the only previous attempts at this approach, which compared models of119

plague risk in the western U.S. based on case data in three multiyear time slices (1965-69,120

1980-84, and 1995-99), and concluded that plague risk had expanded since 1950 and would121

continue to do so in the future15.122

In this study, we revisit this prediction by using two independent data streams (human123

cases and wildlife serology) in a machine learning model called Bayesian additive regression124

trees (BART)53 (see Methods for a detailed explanation). Climatic reconstructions are125

readily available for the duration of our study (1950–2017), allowing us to use annual126

climate layers (including long-term anomalies) corresponding to the year of each plague127

case. This pairing allows us to improve model precision relative to long-term averages,128

to differentiate areas of ephemeral versus persistent risk, and to identify the fingerprint129

of environmental change in risk trends. We also test whether the distribution of plague130

in this region is responsive to rodent biodiversity or soil chemistry and macronutrients,131

offering detailed insights into the factors that maintain plague risk. Finally, we propose132

a new approach that harnesses BART with random intercepts (riBART) to account for133

historical variability in detection and sampling, allowing us to confidently identify the134

signal of changing environmental conditions in plague prevalence over time. In doing so,135

we propose the first extension of ecological niche modeling that nods towards the ultimate136

aim of detection and attribution of anthropogenic climate change impacts on the geographic137

distribution of infectious diseases.138

Results139

The distribution of plague140

We generated two primary models of plague over time. The first covered 9,761 animals141

sampled for plague (2000 to 2017), and performed well (training AUC = 0.836; Extended142

Data Figure 1). The second covered a total of 430 human cases of plague (1950 to 2005), and143

performed very well (training AUC = 0.909; Extended Data Figure 2). When both models144

were rerun with an overlapping “test period” of 2000 to 2005 withheld, they performed145

adequately, with the human model (AUC = 0.820) performing better than the wildlife146

model (AUC = 0.775). As both models performed well in temporal cross-validation, we147

used both to make annual predictions from 1950 to 2017, and split predictions into binary148

presence or absence risk maps for each year using the true skill statistic.149
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Both models found that the majority of plague risk in the western United States is, as150

expected, found west of the 100th meridian (Figure 1). The human model mostly predicts151

risk in the “Four Corners” region (Utah, Colorado, Arizona, and New Mexico), where that152

risk is relatively stable across years. In contrast, the wildlife model predicts risk fairly153

expansively west of 100◦, including at much higher latitudes than the human risk model.154

Risk varies much more across years in this model, but several areas are predicted to be155

environmentally suitable across years from Montana to west Texas. The suitable areas156

identified by the wildlife model in the southwest are less uniform than the human model,157

likely reflecting a finer-scale differentiation of risk. There are two main reasons the human158

model might discriminate less in this region: human cases may be reported in different159

locations than the site of initial spillover, and occurrence points were randomly resampled160

at the county level (as data have been previously de-identified).161

For the most part, we found that risk areas identified in the human model were a162

subset of the much broader predictions made by the wildlife model (Figure 2), with three163

major exceptions. The human model identified much broader risk in southern Arizona and164

New Mexico, likely due to how the cases were randomized at county levels. The human165

model also predicted areas of risk further east, in regions like east Texas or Oklahoma166

where plague is not known to be endemic (and, in this regard, the wildlife model better167

captures the known distribution), but conditions may be broadly favorable. Finally, and168

most notably, the human model predicted plague risk throughout California, in places169

that have previously been identified as high-risk54. This likely reflects a deficit of data170

from Californian sources in our wildlife model, as state wildlife surveillance is curated171

independently. Together, our findings indicate the value of comprehensive surveillance,172

and the possibility that zoonotic reservoirs may be more expansive than areas of known173

spillover.174

Ecological insights175

Our models identified a number of intersecting factors that maintain plague reservoirs and176

create the right conditions for spillover, many of which have been previously identified177

by ecological and epidemiological models (Extended Data Figures 3, 4, 5, 6, 7, 8, 9). A178

handful of factors are important in both animal and human spillover models, and have179

similar response profiles: elevation, with higher risk at higher elevations; rodent species180

richness, with a similar positive effect; and the sodium (Na) and calcium (Ca) content of181

the soil, both with a negative effect on plague risk. As these factors are shared between182

the models, we can tentatively conclude that these factors relate to what happens in the183

wildlife, and are not substantially altered by the additional spillover process that the hu-184

man model incorporates. A fourth environmental factor that is significant in both models185

is temperature, but with different response profiles in how means, maxima and anomalies186

in temperature affected the risk of plague. Finally, we found strong effects of clay and iron187

content of the soil, which are shared between the two models but follow different profiles,188
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as well as the sandiness of the soil (wildlife model only) and the variability in annual pre-189

cipitation within the area (human model only). A list of all variables and abbreviations is190

given in Extended Data Table 1.191

192

Elevation: Both models indicate that plague risk increases at higher elevations, particu-193

larly above 2,000 meters, compatible with previous findings in this system54,55,56,57. Using194

spatial partial dependence plots, we were able to show that the abrupt transition in plague195

suitability at the 100th meridian (100◦ W) was driven by the elevational layer in both mod-196

els, and not suitably explained by any bioclimatic factors (Extended Data Figures 10, 11).197

Elevation has also been previously associated with plague on other continents42,58,59,60,61,62,198

and while the general trend is that there is a lower threshold elevation (and an upper limit,199

at the extreme altitudes in the Himalayas), that threshold differs substantially between200

countries. For example, Brazil’s plague reservoirs start at 500 meters above sea level, and201

are limited by the landscape to no more than 1,000 meters63, while Madagascar’s urban202

plague reservoir in Mahajanga is at sea level64, as are the plague reservoirs surrounding203

the Caspian Sea in Central Asia65. Elevation therefore seems to represent the local ecology204

and distributional limits of fleas and rodents, rather than a global proxy for a bioclimatic205

or atmospheric variable (e.g. partial CO2 pressure).206

207

Rodent richness: Likewise, both models found a higher suitability for plague in areas208

with higher rodent richness, with the factor being only second to elevation in importance209

in the human plague-risk model. This points to the possibility that high-elevation hotspots210

of rodent biodiversity may help maintain enzootic plague transmission, a possible case of211

the biodiversity amplification effect that has also been found by similar work in China29.212

As in China, it is unclear whether the increased biodiversity itself has a positive effect213

on plague maintenance, or whether it merely signals an increased chance that certain key214

rodent species (particularly synanthropic ones) are locally present. If there are positive,215

general associations between rodent diversity and plague risk, this would be an exception216

to widespread evidence of biodiversity dilution effects for other vector-borne diseases66.217

Most theoretical models of the dilution effect rely on a skewed distribution of host com-218

petence, where higher host diversity leads to reduced transmission in the narrow subset of219

competent hosts67,68,69; plague is perhaps uniquely capable of infecting and causing dis-220

ease in hundreds of host species70, and therefore may not exhibit these dynamics, though221

only a limited number of species develop a high enough viremia to infect a feeding flea.222

Alternately, it may be that scale underlies this pattern; theory suggests that dilution ef-223

fects are strongest at small scales, while amplification effects may be normal at continental224

scales30,71. Finally, it might simply be that plague behaves differently than other vector-225

borne diseases because plague can also spread through pneumonic transmission and prey226

consumption, which produce different dynamics.227

228

Climate: Temperature was a universally-important predictor across all models, while229
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surprisingly, precipitation only minimally influenced predictions. In the wildlife model,230

we found a negative relationship between mean temperature and plague risk–an unusual231

response curve for a vector-borne disease72. Plague across the globe occurs in a wide variety232

of ecosystems, from the tropics in Africa, to semi-arid deserts in Kazakhstan and the high233

mountains in Central Asia, and appears able to persist across a large temperature range.234

Its apparent association with colder locations in the United States may therefore not be235

directly related to some temperature threshold, but possibly to the ecological niche of key236

maintenance hosts or key vector species. For human plague risk, we see a sharp increase237

as the mean and maximum annual temperature falls between 5◦ and 14◦, respectively,238

matching previous findings from empirical work on North American fleas73,74 and global239

models of the Third Pandemic spread75. This may reflect the underlying thermal ecology240

of the pathogen72, or potentially some combination of rodent habitat and human behavior241

(e.g., these thresholds might delineate the general type of wilderness areas in the Rocky242

Mountains where people live alongside plague reservoirs).243

In addition to the effect of long-term climatic averages, the temporal structure of the244

model allowed us to detect a strong effect of interannual variability. In the wildlife model,245

we observed an increase in plague prevalence during anomalously warm years, a result that246

has been previously reported for semi-arid desert ecosystems76, as well as for human cases247

in the United States51. Warmer years are likely to increase rodent density, both directly248

through mild winters77 and indirectly through higher primary productivity; flea popula-249

tions in turn tend to follow rodent density, with some degree of lag77,78,79. In contrast, in250

the human model, spillover was most likely in anomalously wet, cold years. This matches251

previous findings in other systems78,79,80, which have been attributed to another kind of252

tropic cascade: when seasonal fluctuations become unfavorable to rodent populations after253

a recent high, and these rodent populations contract, fleas aggregate on the remaining254

rodents, both facilitating the dissemination of plague between rodents, and making fleas255

more eager to seek secondary hosts to feed on, thus leading to increased spillover risk.256

257

Soil: Finally, we found that both models provided evidence that the long-term persistence258

of plague foci is related to properties of the soil. Our modeling suggests that in vivo, soils259

with higher proportions of sand and intermediate proportions of clay (∼20-30%) (Extended260

Data Figure 8), low sodium and calcium contents, and mid-to-low concentrations of iron261

seem to be most conducive to plague. Although not included in either model after variable262

set reduction, we also found that soil pH may limit persistence, with more alkaline soils263

favored in the wildlife model. The observed response curves are somewhat unusual, given264

that both human and wildlife cases peaked in the raw data around a soil pH of 8.2-8.4265

(Extended Data Figure 12); it may be that this reflects colinearities with other soil traits,266

or simply a smaller effect of pH compared to other soil characteristics.267

The role of a soil compartment in the maintenance of plague reservoirs has been under268

consideration for more than a century, and various aspects of a soil-cycle of plague have269

been independently confirmed in laboratory settings. These include survival in the soil for270
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months to years in a laboratory setting, either in association with amoebas (Acanthamoeba271

castellanii and Dictyostelium discoideum) or independently34,32,36,81; the existence of Y.272

pestis in soil in wildlife plague foci40; the sporadic return from soil into a rodent popula-273

tion33; and geographic correlations between plague foci and various soil properties42,59,40.274

Mechanisms through which these factors affect plague foci may be directly related to the275

bacterium, or through soil factors that influence the vector or the host. Fleas living in276

burrows, for example, are negatively affected in all aspects of their lifecycle (fecundity, de-277

velopment, survival, and activity) in environments with a 100-fold higher level of fractional278

CO2 than the atmospheric fraction82. This link to ventilation can explain the role of soil279

characteristics: a poorly ventilated burrow (impermeable, non-sandy soil) may reach up280

to 65-fold higher level of fractional CO2, whereas a unventilated permeable (sandy) soil281

would only reach up to 25-fold higher levels, and a well-ventilated permeable soil would282

only reach up to 7-fold higher83. Likewise, soil mineral content could have downstream283

effects on the homeostasis of virulence-related minerals in the body of the host. As a par-284

allel, one study in Brazil found that cattle grazing on iron-rich soil would lead to highly285

lethal infections of normally non-pathogenic Yersinia pseudotuberculosis, presumably by286

perturbing the ability of the host to bind iron away from being utilized by the bacterium287

during an infection84. Both iron85,86,87 and calcium88,89 are virulence factors of Y. pestis,288

and we tentatively hypothesize that plague foci persist better in regions where Y. pestis is289

not facilitated by the environment to be highly virulent.290

Detecting environmental impacts on change over time291

We found a strong temporal trend in both climate and plague risk since 1950 (Figure292

3). To test whether this signal might be confounded by exogenous factors, we used a293

novel approach where we trained BART models with random intercepts (riBART) for each294

year, and projected the model again without random effects over the 68 year period (see295

Methods). The random intercepts identified interannual variation in prevalence (Extended296

Data Figures 13,14), detrended the data, and allowed the models to identify climate signal297

minus the confounder without substantially changing overall predictions (Extended Data298

Figure 15). Subsequently, we predicted how suitability changed using the same model299

without random intercepts; this allowed us to be confident that the changing suitability300

we identified in these “detection models” was the consequence of constant relationships301

between temperature, precipitation, and plague transmission.302

Both detection models identified a meaningful signal of temporal variation. The random303

intercepts identified a signal of rising prevalence through the wildlife dataset, particularly304

increasing after 2011 when the diagnostics were changed (Extended Data Figures 13,14).305

In the human model, we identified a much more subtle long-term quadratic trend peaking306

in the 1980s, matching a pattern that has been previously attributed to climate cycles like307

the Pacific Decadal Oscillation.51 Surprisingly, the “detection” models identified an even308

stronger pattern of change over time (Extended Data Figure 16). In the wildlife model,309
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suitability increased an average of 4.8%, and 4.9% in the detection model, with a much310

fatter tail to the distribution as well. In the human model, suitability increased an average311

of 1.7% from 1950 to 2017, and 2.1% in the detection model. In much of the region, we312

found that plague suitability increased by 30 to 40% over the entire interval. We found that313

suitability rose most substantially in the wildlife model at high elevations, while spillover314

risk increased more gently, and peaked at mid-elevations (Figure 4, Extended Data Figure315

17). Because the detection models only predict change across years based on temperature316

and precipitation, we are confident that the increase in the long term signal of warming317

(roughly 0.8◦ in the region since 1950) and higher anomalous precipitation are responsible318

for these predicted changes (see Extended Data Figures 18,19). We conclude that, even319

with several confounding factors, environmental change since the 1950s may have helped320

plague reservoirs become established at higher elevations, and slightly increased the risk of321

spillover into human populations at mid-elevations. Over the coming half-century, previous322

work suggests that the shift towards higher elevations is likely to continue in this region54.323

Discussion324

Our study shows that human and wildlife data can be used together to map plague reser-325

voirs and spillover risk in the United States, and to make meaningful inferences about326

ecological drivers of transmission. We found support for two major hypotheses: the biodi-327

versity amplification effect and the trophic cascade hypothesis. Support for these patterns328

has increasingly been found across systems, and points to a view of plague risk where329

weather conditions (and their impact on flea vectors) in rodent biodiversity hotspots are330

the primary driver of transmission and spillover. We further found strong evidence that the331

North American distribution of plague is heavily influenced by soil conditions. The global332

distributions of soil-persistent bacteria like anthrax (Bacillus anthracis), tularemia (Fran-333

cisella tularensis), and botulism (Clostridium botulinum) are known to be constrained by334

the biochemical properties of soil. Less is known about plague, which is not spore-forming,335

and until recently was mostly thought to behave like a typical vector-borne zoonosis. It336

may be that soil properties affect the suitability of burrows for higher flea densities, or337

determine host homeostasis for minerals that impact the virulence of the infection; plague338

foci might therefore fall in the narrow range of conditions that can harbor higher densities339

of fleas, but do not substantially increase the lethality of the infection. However, increasing340

evidence also suggests that the bacterium can persist in the soil, possibly through symbi-341

otic relationships with amoebas, for weeks to months—and possibly even years37,35. These342

complexities underscore the importance of a One Health approach while studying the ecol-343

ogy of plague, which—like anthrax and many other bacterial pathogens—circulates easily344

among fleas, rodents, other wildlife, humans, and the environment as one interconnected345

system90.346

Developing a better understanding of plague in well-studied systems like the American347
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West will help develop a broader picture of its ecology. At present, all global maps of plague348

foci have been compiled from expert knowledge; modeled products in the English language349

are limited to the western United States, China, and Africa (see Extended Data Table 2).350

In part, this reflects the challenges of sharing, aggregating, and consolidating surveillance351

data. It may also likely reflects concerns about model transferability, given that the complex352

multispecies dynamics of plague reservoirs differ greatly across ecosystems and continents.353

However, other pathogens with regional host communities and complex environmental354

persistence have been globally mapped through multinational coordination38, and the same355

synthesis is possible for plague. In the more immediate term, our model also strongly356

suggests that wildlife reservoirs extend up to both national borders, and could plausibly357

extend beyond them (recently confirmed for the northern border91), but the official World358

Health Organization map of plague (last updated 2016) includes no reservoirs in Mexico359

or Canada. Collaborating with national surveillance infrastructure in both countries may360

help resolve the boundaries of plague transmission more clearly, and reveal foci currently361

overlooked by global monitoring efforts.362

Beyond plague, our study highlights the opportunity for medical geographers to de-363

velop new methods that are suited to a rapidly changing world. Here, we proposed two364

methodological advances that build on existing best practices in infectious disease map-365

ping. First, time-specific covariates allowed us to train machine learning models on nearly366

a century’s worth of data, improving precision compared to coarsely-averaged predictors,367

and capturing the effects of environmental change. If this approach is integrated with oth-368

ers at finer temporal scales, such as those that consider seasonal aspects of transmission369

or spillover risk19,20, this could begin to set the foundation for an early warning system.370

Second, the use of random intercepts to remove data and detection biases, such as the371

serology method change in our data sample in 2011, is an important step towards testing372

climate change impacts using continuous-time data (similar to how econometric approaches373

resolve these problems in similar spatiotemporal analyses7). We propose that when this374

approach can be taken, it may be used as a first principles method for detecting the signal375

of environmental change in species’ habitats. This could be a particularly important step376

towards synthesizing the impacts of climate change on the shifting presence and absence377

of disease data, especially in cases where prevalence and incidence data are lacking and378

panel regression approaches cannot be applied. However, this work will still need to be379

followed by proper “attribution” work that compares predicted patterns to counterfactual380

scenarios without climate change; at present, all we can conclude with certainty is that381

weather conditions have changed in a way that trends favorably for plague risk.382

Our study also points to a number of gaps in our understanding of environmental change383

(and consequently, potential methodological limitations). The PRISM data offers a fairly384

comprehensive view of the recent climate in the United States, and allowed us to identify385

the role of temperature and precipitation in plague transmission. However, we held both386

soil and rodent predictor variables constant, and neither are stationary in reality. Soil has387

changed over the last century due to a combination of climate change and land use change,388
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and unfortunately time-specific covariates are unavailable; in many cases, our soil layers had389

to be generated custom to this study, and for the rest of the world these data are even more390

sparse. Similarly, evidence is strong that most terrestrial species have responded to recent391

climate change by undergoing range shifts, especially along elevational gradients. If rodents392

have undergone range shifts, they may have encountered novel vector communities, and the393

relationship between richness and transmission could change. Similarly, if elevation acts in394

our models as a proxy for specific rodent-flea assemblages, range shifts could decouple the395

observed relationships between elevation and transmission. As other studies have pointed396

out, these challenges highlight the need to begin integrating zoonotic surveillance and397

biodiversity monitoring1.398
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Methods399

Despite recent interest in modeling the distribution of major infectious diseases92,10, there400

is no definitive global map of plague reservoirs. All existing global plague maps have been401

derived from expert opinion93; all modeled products so far have been produced for national402

or continental scales (see Extended Data Table 2). Plague ecology is regionally variable403

enough that this patchwork approach has the advantage of being tailored to relevant local404

predictors. However, the mix of modeling methods, variables, and spatiotemporal scales405

makes it nearly impossible to compare these models and develop any consensus on the406

biological or geological factors that determine where plague reservoirs can exist, and where407

not. In this study, we adapt predictors that have previously worked in other similar work408

on plague, and develop novel models of spatiotemporal risk patterns in the western United409

States based on human and wildlife data spanning 1950 to 2017.410

Data411

Our study is designed around two independently-collected datasets, with only a small412

amount of temporal overlap. Together, they provide as comprehensive a picture of plague413

in the United States as possible.414

Human case data (1950-2005)415

Human cases of plague occur sporadically but consistently in the Western United States,416

driven partially by exposure to infected cats and dogs that have acquired the infection out-417

side of the home. The vast majority of cases are bubonic, though a handful of pneumonic418

and septicemic cases occur. Confirmed plague cases are mandatorily reported to the U.S.419

Centers for Disease Control and Prevention (CDC) Emergency Operations Center. CDC420

surveillance data is actively maintained on plague, and has been previously published in421

summary form as county totals51. We re-used these data, which have been anonymized422

by previous researchers, and had case geolocations aggregated to county totals. To geo-423

reference them, we randomly sample a number of locations within each county equivalent424

to annual case totals. A total of 860 plague cases are recorded over the interval, with an425

average of 7.7 cases per year, across 490 counties in the American west.426

Wildlife serology data (2000-2017)427

Wild animals are routinely exposed to Y. pestis in endemic regions, including the United428

States. Infection leads to substantial morbidity and mortality in some species (e.g., prairie429

dogs), but other species (e.g., coyotes) readily survive infection, with antibodies to Y.430

pestis being the only indication of exposure. This is especially true for predators, which431

can be exposed through consumption of plague-positive rodents or through bites from432

plague-positive fleas. These predator species do not necessarily play a direct role in plague433
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transmission and dynamics, but instead act as sentinels of plague activity on the land-434

scape94,95. Correspondingly, the USDA National Wildlife Disease Program tests wildlife435

for evidence of plague exposure throughout much of the western U.S . Testing was con-436

ducted using a hemagglutination assay96 at the Centers for Disease Control and Prevention437

until 2011. A majority of samples collected after 2011 were tested using a bead-based flow438

cytometric assay with a lower limit of detection97. In total, the version of the dataset we439

used spanned February 13, 2000 to January 29, 2018, with a total of 41,010 records, in-440

cluding 5,043 animals that tested positive. Of those records, the vast majority are coyotes441

(32,825 animals including 4,812 that tested positive).442

Environmental covariates443

The transmission ecology of plague shares features with both vector-borne systems (e.g.,444

malaria or dengue fever) and soil-borne pathogens (e.g., anthrax or melioidosis). The445

predictors we have chosen here are informed by predictors that have performed well for446

other plague mapping projects (see Extended Data Table 2), and were all expected to be447

informative as drivers of host ecology, vector competence and/or soil persistence.448

Most studies that map infectious diseases with machine learning methods (i.e. eco-449

logical niche models) use long-term climate averages, paired with occurrence data that450

sometimes span decades of unstable environmental conditions. In contrast, we used time-451

specific climate data paired with—and extracted for—the year of each data point in the452

occurrence data. This allowed us to make yearly spatial predictions of the distribution453

of plague risk, and consider the extent of transmission risk as a dynamic process rather454

than a static surface. We held non-climate predictors constant, assuming them to either be455

invariant (elevation) or long term averages (soil and rodent richness); in a more advanced456

retrospective, it might be possible to reconstruct the impacts of land use change by adding457

yearly resolution to these covariates, but these data do not currently exist.458

Climate459

We derived all climate data (1950–2017) from PRISM, a historical reconstruction of cli-460

mate in the continental United States, derived from a mix of weather station data and461

climatologically-aided interpolation.98 From the PRISM dataset, we used cumulative an-462

nual precipitation and annual mean, minimum, and maximum temperatures. We also463

generated two “anomaly” variables, given on a pixel-by-pixel basis as the difference be-464

tween the annual value and the long-term average, divided by the variance. These data465

were downloaded in 2.5 arcminute grids (∼4.5 km at the equator), which was used as the466

standard resolution for the rest of the project.467
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Soil468

We assembled a set of seven predictor layers for soil persistence of plague that were informed469

by both laboratory experiments on plague transmission, and previous efforts mapping soil-470

borne pathogens like anthrax (Bacillus anthracis) and botulism (Clostridium botulinum).471

We aimed to develop a cohesive set of predictors characterizing the C layer (∼ 1m depth);472

rodent burrows in the American west can go up to two meters deep in the soil, but macronu-473

trient data is limited at this depth. We used the most recent version of the ISRIC SoilGrids474

global dataset at 250 meter resolution99, and selected gridded layers of soil pH, cation ex-475

change capacity (base saturation), and the concentration of sand, clay, and organic content476

in the top 60-100 mm layer of soil. Sodium, calcium, and iron concentrations were derived477

from a national survey of soil geochemical properties, published in raw form as USGS data478

series 801.100,101 We extracted all point samples of mineral concentration in the C horizon,479

given in weight percent, and then developed a rasterized layer for these macronutrients by480

kriging the point data, using the autoKrige function in the automap package.481

Additional covariates482

Rodent species richness was derived by stacking species IUCN expert range maps for the483

Rodentia, and rasterizing the richness layer using the fasterize package. Elevation data484

was scraped using the elevatr package in R, which pulls gridded elevation data from485

the AWS Open Data Terrain Tiles. We pulled elevation data at resolution “6”, which486

returns elevation rasters in 2,446 meter squared grids at the equator (∼1.3 arcminutes),487

and aggregated to the native resolution of the other grids.488

Modeling489

Dozens of statistical methods have been applied to species distribution modeling in the490

past few decades, with a wide range of performance.102 Over the past few years, clas-491

sification and regression tree methods (CART) – including random forests and boosted492

regression trees – have become especially popular for mapping the geographic distribution493

of infectious diseases103,38,104,105,106,107. Here, we use a fairly new method, Bayesian addi-494

tive regression trees (BARTs), implemented with the R package embarcadero as a species495

distribution modeling wrapper for the dbarts package.53 BART is a powerful new method496

with growing application in computer science, and often performs comparably to other497

CART methods like random forests and boosted regression trees.108 In the embarcadero498

implementation, BARTs have several unique features that make them a powerful tool for499

disease mapping, such as: model-free variable importance measures, and automated vari-500

able selection; posterior distributions on predictions, as a measure of uncertainty; posterior501

distributions on partial dependence plots; two-dimensional and spatially-projected partial502

dependence plots; and various extensions, including random intercept models.503

14

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.26.433096doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.26.433096


Like other CART methods, BART makes predictions by splitting predictor variables504

with a set of nested decision rules (“trees”) that assign estimated values to terminal nodes505

(“leaves”). Predictions are generated based on a sum-of-trees model, where a set of n trees506

with leaves (T1,M1), ..., (Tn,Mn) each make predictions g(·) that are added together, for a507

total estimate:508

Ŷ = f(X) =
m∑
j=1

g(X;Tj ,Mj) + ε; ε ∼ N (0, σ2)

For logistic classification problems (like species distribution modeling), BART uses a logit509

link function:510

Ŷ = f(X) = Φ
[ m∑
j=1

g(X;Tj ,Mj)
]

where Φ is the standard normal cumulative distribution. An initial set of n trees is fit,511

and then altered in an MCMC process based on a set of random changes to the sum-of-512

trees model (e.g., new splits added, levels rearranged, or leaves pruned). An initial burn-in513

period is discarded, and then a set of posterior draws of f∗ create the posterior distribution514

for p(f |y) ≡ p(trees|data).515

BART is easily implemented out-of-the-box, even with a full Bayesian MCMC compo-516

nent. Three priors control the ways decision trees change: the probability each variable is517

drawn for a split, the probability of splitting values tested, and the probability a tree stops518

at a certain depth. In the simplest form, the first two can be set as uniform distributions,519

while the latter is usually set as a negative power distribution; they can also be adjusted us-520

ing a full cross-validation approach. This is handled automatically in the dbarts package,521

for which embarcadero is a wrapper. More advanced implementations with complex prior522

design are sometimes appropriate: for example, a Dirichlet distribution on the variable523

importance prior can help identify informative predictors in high dimensionality datasets524

(dozens or hundreds of covariates). However, in our case, we had confidence all variables525

were biologically plausible based on expert opinion.526

The base models527

We ran two separate baseline models, the first using human data from 1950 to 2005, and528

the second using the wildlife data from 2000 to 2017. For the human model, we used the529

number of cases recorded each year in each county to generate a set of random georeferenced530

pseudopresence points. We then generated seven pseudoabsence points in each year to531

create a roughly balanced design, for a total of n = 430 pseudopresence points and n =532

392 pseudoabsence points. For the wildlife model, we balanced the design by subsampling533

seronegative animals in equal number to seropositive ones, for a final n = 5, 002 true534

presence points and n = 4, 759 true absence points.535
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Both models were run with the full predictor set, followed an automated variable set536

reduction procedure implemented in embarcadero that formalizes the recommendations of537

Chipman et al. (2010).108 In BART, variable importance is “model-free,” measured as the538

number of splitting rules involving a given variable (but incorporating no information on539

the proportional effect on the outcome variable, or proportional improvement of the model540

predictions). In models with fewer trees (small n), informative variables tend to be selected541

more often, while uninformative variables are selected rarely or drop out entirely. This542

property of BART establishes a rubric that can be used to identify an informative variable543

set. First, an initial model is fit with all variables 100 times each for six different settings544

of ensemble size (n = 10, 20, 50, 100, 150, and 200 trees). Plotting the average importance545

of variables at each level offers a qualitative diagnostic of how informative each predictor546

is. Next, an initial set of 200 models with n = 10 trees are run, and variable importance is547

recorded and averaged across models. Models are run again (200 times) without the least548

informative variable from the first fit, and this is performed iteratively until only three549

variables remain; the variable set with the lowest average model root mean square error550

(RMSE), and therefore highest accuracy on the training data, is selected. Finally, we plot551

variable importances (including standard deviations based on model permutations).552

Final models were run with the reduced variable set, with recommended BART model553

settings (200 trees, 1000 posterior draws with a burn-in of 100 draws) and hyperparameters554

(power = 2.0, base = 0.95 for the tree regularization prior, which limits tree depth). We555

then used the retune function in embarcadero to run a full cross-validation panel on the556

three prior parameters. retune runs a full cross-validation across the k hyperprior (values557

of 1, 2, and 3), the base parameter (0.75 to 0.95 in increments of 0.05), and the exponent558

parameter (1.5 to 2 in increments of 0.1), and returns the model with the parameter559

combination that generates the minimum root mean squared error.560

For the wildlife model, the final variable set included: temperature mean, maximum,561

and anomaly; rodent richness; elevation; and five soil traits (calcium, sodium, iron, clay,562

and sand). The model validated well on training data (AUC = 0.836). For the human563

model, the final variable set included a similar subset: precipitation anomaly; temperature564

mean, maximum, and anomaly; rodent richness; elevation; and four soil traits (sodium,565

iron, clay, and calcium). The model also validated well on training data (AUC = 0.909).566

Alternate formulations567

As a final check of model performance, we ran a separate model with the same predictor568

sets that withheld the years 2000–2005 from both. On the test dataset for humans (n =569

64), the model performed very well by the standards of external cross-validation (AUC =570

0.820); on the test data for wildlife (n = 796), the model also performed well (AUC =571

0.775). This indicated that both models were performing adequately.572

We also recognize that model design can have a substantial effect on machine learn-573

ing performance, and the downstream biological inference made by using ecological niche574
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models. Given that BART is a relatively new method, it has been comparatively un-575

derexplored in this regard, and so a standard panel of “best practices” has not yet been576

recommended in the literature. However, for transparency about model uncertainty and577

the influence of subjective decisions on model outputs, we produced four major alternate578

formulations. First, we produced models that included all variables, rather than using the579

variable set reduction procedure, for both the human data (Extended Data Figures 20,21,580

22) and wildlife data (Extended Data Figures 23,24, 25). We additionally considered two581

alternate formulations of the wildlife model. In the first, we used pseudoabsences instead582

of the true absences available in the data (Extended Data Figure 26). Though this in-583

creased model AUC (0.929), and allowed slightly different balancing of the data, it lead584

to visually-apparent overfitting. Finally, we ran an alternate model only using the coyote585

data in the NWDP dataset, which also performed adequately (AUC = 0.826; Extended586

Data Figure 27). Both models were ultimately not selected because they left available,587

biologically-meaningful data unused, and both produced predictions that were slightly less588

congruous with the human model.589

Prediction, delineating foci, and measuring change590

Although the models were trained over different intervals, the continuous and standardized591

set of predictors allowed cross-prediction over the entire extent of the study (1950–2017).592

For each layer of annual prediction, we thresholded suitability based on a model-specific593

threshold chosen to maximize the true skill statistic on the test data. We mapped areas594

of “unstable foci” as any region with at least one year of suitability, and “stable foci” as595

any region suitable in every year over the 70-year interval. This allowed us to compare596

long-term spatial patterns between the two models.597

Random effects models for interannual variation598

Prevalence changes year-to-year in both the data and modeled landscapes, but detecting599

the signal of climate change in that fluctuation can be challenging. There are several600

reasons prevalence could vary across years: (1) incidence is stochastic but temporally au-601

tocorrelated; (2) normal climatic variability (e.g. the Pacific Decadal Oscillation) or other602

socioecological trends (e.g., rising human populations) might also contribute to interan-603

nual variation, including non-linear trends over time; (3) anthropogenic climate change is604

directly driving changes in plague risk, or indirectly changing the ecology of the involved605

species; (4) sampling effort varies between years (for wildlife); or (5) detection rates could606

change between years, due to testing or surveillance. The last of these is particularly rele-607

vant as a possible confounder, given that wildlife diagnostics changed in 2011. A positive608

trend in plague risk might be generated by increased climatic suitability for plague tran-609

mission, but could also be generated by a consistent increase in plague detection due to610

improved diagnostics and increased sampling effort, loosely colinear with warming temper-611
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atures on the scale of 20 to 70 years.612

We propose a new method that uses machine learning approaches (i.e., ecological niche613

models) to detect the signal of environmental change while adjusting for confounders at614

a high level. The approach is loosely modeled off the ideas underlying econometric ap-615

proaches to climate change detection and attribution, which usually use fixed effects panel616

regression to control for spatiotemporal confounders in climatic signal. By attributing as617

much variance as possible to spatial, temporal, and other confounders, and then identifying618

climatic signal in the remaining variance, these approaches can pinpoint the signal of envi-619

ronmental change with a high degree of confidence. So far, no analog to these approaches620

exists for ecological niche models. Only a handful of studies have even added temporal621

heterogeneity to ENMs; so far, we know of none that have also independently controlled622

for interannual variation in detection, sampling effort, or species prevalence.623

A solution to temporal confounders is particularly needed in this study, given the chal-624

lenges of the time-specific approach. In default settings, BART predictions converge on625

observed prevalence, i.e., Ŷ = E[Y ] = P (Y = 1). For this reason, we balance the presences626

and absences, so that the model is as close to Ŷ ∼ N (0.5, σ2) as possible. This produces a627

unique challenge for time-dependent modeling. Presences are distributed unevenly across628

years, and consequently, so is positivity. In the human model, this arises artificially, be-629

cause pseudoabsences are generated evenly across years. We chose this approach to avoid630

over-representing years with more cases in the data, which would introduce an additional631

colinearity, but as a result relative prevalence varies substantially. This bias also affects632

the wildlife model more organically; although the number of points per year varies inde-633

pendently of test positivity (cor = 0.113, p = 0.687), because most sampling is passive,634

there is still a wide range in annual prevalence (28% in 2006 versus 80% in 2017, both635

years with several hundred records), with a net trend towards higher positivity over time.636

Because prevalence varies between years in both models, the resulting colinearity with637

environmental change could confound the detection of meaningful signals.638

Inspired by the econometric approach, we propose a use case for the random intercept639

BART model (riBART), which has recently been proposed as an extension of the method640

for clustered outcomes. The approach adds a random intercept term to the model (separet641

from the tree-fitting process) based on the identified K clusters642

Ŷ = f(X) = Φ
[ m∑
j=1

g(Xk;Tj ,Mj)
]

+ αk

where the random intercepts αk (k ∈ 1 : K) are normally distributed around zero (i.e., the643

K groups are assumed to have normally distributed, independent additive effects on the644

outcome variable). The error structure of the random effects and the sum-of-trees model645

are assumed independent. Here, we propose that the model can be fit as usual with a646

random intercept for year, as a way of accounting for temporal heterogeneity as a possible647

confounder. The yearly random intercept absorbs most of the interannual variation in648
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plague prevalence (i.e., the relative ratio of presences and absences in the data), such that649

residual variation in prevalence should be roughly constant across years. Identifying the650

climatic signal in this residual data, and then examining predicted prevalence (without651

random intercepts) based only on environmental change, allows more confident statements652

about how environmental change contributes to shifting disease risk.653

We revisited the two main models, and used riBART to add an annual random intercept654

to our model for each year, which we refer to throughout as the “detection” models. Fit-655

ting climate-plague response curves after this detrending decouples the possible colinearity656

between climate trends and coarse interannual signal in the data, which may be driven657

by natural variation in prevalence or other confounders (e.g, the 2011 change in wildlife658

testing protocols). We fit both detection models with a random intercept for year, plotted659

the random effects, and predicted over the 70 year interval without the random effect in-660

cluded. (All functionality to implement SDMs with riBART is available in embarcadero661

as an updated release.)662

Detecting change over time663

To estimate trends of change over time, we fit a linear slope through each pixel-by-year.664

Multiplying by 68 years, we were able to estimate total percent change in suitability since665

1950 in a given pixel. We did not limit these to pixels with a significant trend, as any666

frequentist significance test iterated over millions of pixels would be mostly meaningless.667

We generated these maps for the two primary models and the two detection models (Figure668

3), as well as (in the supplement) for mean temperature and precipitation (Extended Data669

Figures 18,19).670

Data and code availability671

Human case data in this study is taken from previous studies and is available online for672

researchers to reproduce our study. Wildlife data is available on formal request and673

approval from the United States Department of Agriculture. All code is available at674

github.com/cjcarlson/plague-wna.675
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Figures676

Figure 1: Suitability for plague across all years (1950-2017), for humans (left) and wildlife
(right). Top panels give mean suitability across all years; bottom panels show areas
identified as suitable in no years, at least one, or all 68 years.
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Figure 2: The wildlife model’s predictions largely encompass the human model’s predic-
tions, except in southern Arizona and California (where predictions extend into other
areas of suspected plague risk) and west Texas (too far east for plague reservoirs).
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Figure 3: Total percent change in plague suitability, 1950 to present, in the human (top)
and wildlife models (bottom), before (left) and after (right) adding random intercepts to
control for interannual variation.
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Figure 4: Environmental suitability for plague has increased substantially at high
elevations for wildlife; risk of spillover has increased mildly at mid-elevations. Lines are
given as generalized additive model smooth fits based on the detection models.
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Supporting Information677

Extended Data Figure 1: Summary model diagnostics for the wildlife plague risk model.
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Extended Data Figure 2: Summary model diagnostics for the human plague risk model.
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Extended Data Figure 3: Variable importance in the wildlife plague risk model.
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Extended Data Figure 4: Variable importance in the human plague risk model.
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Extended Data Figure 5: The variable importance diagnostic for all variables considered
for the wildlife plague risk model.
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Extended Data Figure 6: The variable importance diagnostic for all variables considered
for the human plague risk model.
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Extended Data Figure 7: Full partial dependence plots for the wildlife plague risk model.
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Extended Data Figure 8: Two-dimensional partial dependence plot for sand and clay
in the wildlife model, projected onto the soil composition triangle as a ternary partial
(tertial) plot.
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Extended Data Figure 9: Full partial dependence plots for the human plague risk model.
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Extended Data Figure 10: Spatial partial (spartial) dependence plots for the wildlife
plague risk model. Variables are given in descending order of model importance.
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Extended Data Figure 11: Spatial partial (spartial) dependence plots for the human
plague risk model. Variables are given in descending order of model importance.
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Extended Data Figure 12: Density of positive cases in the wildlife and human case data
relative to recorded pH, modeled using a simple Loess smooth.
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Extended Data Figure 13: Random intercept values for each year in the detection model
for wildlife plague risk.
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Extended Data Figure 14: Random intercept values for each year in the detection model
for human plague risk.
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Extended Data Figure 15: Mean environmental suitability across years in the detection
model (left: human; right: wildlife). Random intercept models have nearly identical
predictions to baseline models; the two are nearly perfectly correlated for humans
(r = 0.992) and wildlife (r = 0.969).
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Extended Data Figure 16: Estimated percent change in plague suitability, 1950 to present,
across pixels and the four main models. Red lines show the mean value.
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Extended Data Figure 17: Estimated percent change in plague suitability, 1950 to present,
versus elevation.
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Extended Data Figure 18: Total estimated change in mean temperature, 1950 to present;
the region as a whole experienced an average warming of 0.84 ◦C.
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Extended Data Figure 19: Total estimated change in precipitation, 1950 to present; the
region as a whole experienced an average increase of 41.7 mm of annual precipitation.

30°N

35°N

40°N

45°N

120°W 115°W 110°W 105°W 100°W

−1500

−1000

−500

0

500

42

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.26.433096doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.26.433096


Extended Data Figure 20: Mean suitability for plague across all years (1950-2017), using
the alternate human model (no variable set reduction).
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Extended Data Figure 21: The variable importance diagnostic for the alternate human
model using the full variables set (no variable set reduction).
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Extended Data Figure 22: Partial dependence plots for the alternate human model using
the full variables set (no variable set reduction).
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Extended Data Figure 23: Mean suitability for plague across all years (1950-2017), using
the first alternate wildlife model (no variable set reduction).
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Extended Data Figure 24: The variable importance diagnostic for the first alternate
wildlife model using the full variables set (no variable set reduction).
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Extended Data Figure 25: Partial dependence plots for the alternate wildlife model using
the full variables set (no variable set reduction).
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Extended Data Figure 26: Mean suitability for plague across all years (1950-2017), using
the second alternate wildlife model (pseudoabsences instead of true absences).
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Extended Data Figure 27: Mean suitability for plague across all years (1950-2017), using
the second alternate wildlife model (only coyote data).
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Extended Data Table 1: Variable name abbreviations used in this study, with full variable
names and descriptions.

Variable Full variable name
rodent Rodent species richness
cec Soil cation exchange capacity
ph Soil pH (acidity)
sand Soil percent sand content by volume
clay Soil percent clay content by volume
org Soil organic carbon content
Fe Soil iron macronutrient concentration
Ca Soil calcium macronutrient concentration
Na Soil sodium macronutrient concentration

(≈ proxy for salinity)
elev Elevation above sea level
tmin Average minimum annual temperature
tmean Mean annual temperature
tmax Average maximum annual temperature
ppt Mean annual precipitation
ppt.n Annual normalized precipitation anomaly

(relative to long-term average)
tmp.n Annual normalized temperature anomaly

(relative to long-term average)
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Extended Data Table 2: Methodologies of previous studies applying ecological niche
modeling to map plague (Yersinia pestis); this excludes studies focused on mapping
individual reservoirs or fleas without any plague data. Abbreviations: PET/AET =
potential and actual evapotranspiration; NDVI = normalized difference vegetation index;
EVI = enhanced vegetation index; CTI = compound topographic index. † Note that this
study also bootstrapped county level human cases in the U.S.

Study Extent Years Algorithm Predictors

15 †
USA 1965-2003? GARP Precipitation, temperature (min, mean,

max), PET, AET, moisture surplus,
moisture deficit, slope, aspect, eleva-
tion, CTI

42
Africa 1970-2007 GARP BIO 1, 2, 5, 6, 12-14, slope, aspect, ele-

vation, CTI, soil pH, soil moisture, soil
carbon, PET, AET, humidity, growing
degree days, NDVI

54
California, USA 1984–2004 MaxEnt BIO 5, 7, 15-18

109
“North America” Unspecified Maxent BIO 1, 2, 5, 6, 12-14

59
Western Usambara
Mountains, Tanzania

1986-2003 GARP EVI (mean, dry/rainy period means,
standard error, seasonality, heterogene-
ity), slope, aspect, elevation, CTI

63
Northeast Brazil 1966–2011 GARP BIO 1, 2, 5, 6, 12-14, NDVI, elevation

110
China 1772-1964 GARP BIO 1, 2, 3, 7, 12, 14, 15

58
Qinghai-Tibetan
Plateau, China

2004-2010 MaxEnt Elevation, land surface temperature
(day & night), NDVI, slope, aspect,
land cover

57
Western USA 2000-2015 MaxEnt BIO 1, 11, 16, 17, distances to grass-

land, shrubland, cropland, sparse vege-
tation, bare soil, artificial surface, prob-
ability of deer mouse, altitude
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