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Abstract

Motivation: The widely-used high-throughput RNA-sequencing technologies (RNA-seq) usually pro-

duce paired-end reads. We explore if full fragments can be computationally reconstructed from the

sequenced two ends—a problem here we refer to as bridging. Solving this problem provides longer,

more informative RNA-seq reads, and hence benefits downstream RNA-seq analysis such as transcrip-

tome assembly and expression quantification. However, bridging is a challenging and complicated task

owing to alternative splicing, transcript noises, and sequencing errors. It remains unclear if the data itself

provides sufficient information for accurate bridging, let alone proper models and efficient algorithms

that characterize and determine the true bridges.

Algorithmic Results: We studied this problem in two settings: reference-based bridging, which assumes

reads alignments are available and reconstructs the alignments of full fragments, and de novo bridging,

which reconstructs sequences of entire fragments from sequences of the two ends. We proposed a novel

mathematical formulation that works for both settings—to seek a path in an underlying graph data struc-

ture (i.e., splice graph for reference-based bridging, and compacted de Bruijn graph for de novo bridging)

such that its bottleneck weight is maximized. This formulation characterizes true bridges and is efficient

in filtering out false bridges. This formulation admits optimal substructure property, and hence efficient

dynamic programming algorithms can be designed. For reference-based bridging, we designed such an

algorithm to calculate the top N bridging paths, followed by a voting approach to select one using the
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distribution of fragment length. For de novo bridging, we designed a new truncated Dijkstra’s algorithm.

To further speed up, we proposed a novel algorithm that reuses the shortest path tree to avoid running

the truncated Dijkstra’s algorithm from scratch for all vertices. These innovations result in scalable al-

gorithms that can bridge all paired-end reads in a compacted de Bruijn graph with millions of vertices.

Experimental Results: We showed that paired-end RNA-seq reads can be accurately bridged to a large

extend. Our reference-based bridging tool could correctly bridge more than 79.6% of reads. For de

novo bridging, high precision was observed with varied sensitivity. We also showed that bridging can

improve reference-based transcript assembly: the improvement was significant (up to 14.4% measured

with adjusted precision), and universal in all combinations with different aligners and assemblers.

Availability: Implementations of the algorithms for reference-based and de novo bridging are available

at https://github.com/Shao-Group/rnabridge-align and https://github.com/Shao-Group/rnabridge-denovo,

respectively. Scripts, datasets, and documentations that can reproduce the experimental results in this

manuscript are available at https://github.com/Shao-Group/rnabridge-test.

1 Introduction

The established high-throughput RNA sequencing technologies (RNA-seq) enables global and accurate mea-

surement of isoform-level gene activities. The second generation short-reads RNA-seq, which remains de

facto standards for most expression studies, produces paired-end reads. Such data reports sequences of the

two ends of a fragment of a RNA molecule, but misses the middle portion of the fragment. The fact that the

two ends are from the same molecule and that the length of fragments follows a certain distribution (through

fragment size selection) provides valuable long-range information in determining complicated splicing vari-

ants, and has been incorporated into various RNA-seq analysis tools and software to improve accuracy,

including splicing-aware alignment (e.g., STAR [4], HISAT2 [10], SpliceMap [1]), expression quantifica-

tion (e.g., Salmon [16], kallisto [2], RSEM [11]), transcript assembly (e.g., StringTie [18], TransComb [13],

Scallop [19]), fusion detection (e.g., FuSeq [20], STAR-Fusion [6], SQUID [15]), and alternative splicing

quantification (e.g., DARTS [21], leafCutter [12]), among many others.

We explore computationally inferring full fragments from given paired-end RNA-seq reads, a problem we

refer to as bridging. We study this problem in two settings, namely reference-based bridging and de novo

bridging. For reference-based bridging, we assume that the alignments of the paired-end reads are avail-
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able (which can be obtained using RNA-seq aligners such as STAR and HISAT2), and we aim to reconstruct

the alignments of entire fragments. For de novo bridging, we aim to reconstruct the sequences of the full

fragments from the sequences of paired-end reads.

We believe solving this problem could benefit various downstream RNA-seq analysis such as transcript

assembly, isoform-level expression quantification, and splicing quantification. The inferred full fragments

likely contain more splicing junctions than individual reads, and hence provide additional long-range infor-

mation that helps resolve more complicated splicing variants in transcript assembly. Longer sequences will

be less ambiguously located to transcripts expressed from the same gene or homologous genes, and hence

improves isoform quantification. The reconstructed full fragments may reveal missing junctions in the un-

sequenced portion, which may lead to more accurate estimation of junction abundance, and hence improves

splicing quantification.

However, bridging is a challenging task. It remains unclear if the reads themselves contain sufficient in-

formation to enable accurate bridging. Due to the complicated mechanism of alternative splicing and the

dynamic nature of transcription and mRNA degradation, different types of splicing junctions will be cap-

tured by RNA-seq reads. According to our experiments, in many gene loci, thousands of different splicing

junctions can be observed (a majority of them are with low abundance though). For those loci the possible

ways of bridging a pair of reads will be enormous, and it’s unclear what signal can be used to determine the

true bridge. Besides, sequencing errors and alignment errors also produce false bridges, making this task

more challenging to solve.

We explore modeling above bridging problem as a graph problem. Alignments or sequencing reads can be

organized by a graph data structure, for instances, the splice graph for alignments and de Bruijn graph (dBG)

or compacted de Bruijn graph (cdBG) for sequencing reads [3]. Naturally, the sequenced two ends of a

fragment can be mapped to the graph and then represented as a pair of paths (two lists of vertices or edges)

in the graph. Therefore, the bridging task becomes to find a path that connects the two paths. (Our work

follows this framework for bridging; see Section 2.) However, the resulting graphs are often erroneous due

to transcript noises and sequencing/alignment errors. It remains open that what is a good characterization

of the true path in bridging—in other words, what objective function should be in formulating bridging as

a graph optimization problem. In de novo bridging, the resulting dBG or cdBG may contain millions of

vertices. This urges scalable algorithms for de novo bridging.

3

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.26.433113doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.26.433113
http://creativecommons.org/licenses/by/4.0/


Although many existing RNA-seq analysis tools use paired-end information, limited efforts have been made

to directly reconstruct full fragments. Existing method for reference-based bridging includes MapPER [8].

MapPER implemented a probabilistic framework: starting from splicing junctions of all end reads, Map-

PER constructed potential splicing paths connecting paired-end reads; an expectation maximization method

then assigned likelihood values to all splice junctions and assigned the most probable alignment for each

fragment. (However, we were not able to compare with MapPER; see Appendix.) To our best knowledge,

no available tool for de novo RNA-seq bridging exists.

2 Algorithms

We formulate bridging as a new optimization problem (Section 2.1). We then design efficient algorithms for

reference-based bridging and de novo bridging in Section 2.2 and Section 2.3 respectively.

2.1 Formulation

In either setting, the given RNA-seq data can be organized by a graph data structure, i.e., splice graph for

reads alignments and compacted de Bruijn graph (cdBG) for sequencing reads (see Sections 2.2 and 2.3 for

their constructions). Let G = (V,E) be the underlying graph. Let f be a fragment, for which we know its

two sequenced ends. Each end of f can be represented as a path in G, and f can then be represented as a

pair of paths in G. Note that multiple fragments may correspond to the same pair of paths in G; we cluster

them into equivalent classes. Formally, an equivalent class is a pair of paths (p1, p2) in G that represent all

fragments with two ends being corresponding to p1 and p2 respectively.

Let F =(p1 =(a1,a2, · · · ,am), p2 =(b1,b2, · · · ,bn)) be an equivalent class, where path p1 is represented as a

list of vertices (a1, · · · ,am) in the graph (the same for p2). The problem of bridging fragments in F becomes

to find a path in G from am to b1; we call such path as a bridging path. We assume that, all fragments in

an equivalent class have the same true bridging path. This is because fragments in an equivalent class are

similar, as their two ends are mapped to exactly the same list of vertices in the graph. Algorithmically, this

assumption allows us to reduce computational load, as all fragments can be bridged in a single run. In the

case of reference-based bridging (see Section 2.2), this also enables a robust voting approach to select the

best bridging path from a set of candidates by integrating the distribution of fragment length.
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We explore what’s a good formulation to find the best bridging path. The main signal we have is the

abundances (i.e., the numbers of reads that support vertices/edges of the graph, modeled as weights of

vertices/edges; see Sections 2.2 and 2.3). Intuitively, a bridging path supported by more reads are more

likely to be the true bridge. We determined that, a formulation that seeks a bridging path with maximized

bottleneck weight is appropriate for both reference-based bridging and de novo bridging, and performs well

on experimental comparisons (see Results). Below we describe this formulation.

We define a full ordering of all bridging paths w.r.t. an equivalent class F = (p1 = (a1,a2, · · · ,am), p2 =

(b1,b2, · · · ,bn)). Let q1 and q2 be two arbitrary paths from am to b1 in G. Let wi
1 (resp. wi

2) be the ith

smallest weight in path q1 (resp. q2). We say q1 is more reliable than q2, if there exists an integer k such

that wi
1 = wi

2 for all 1 ≤ i < k, and wk
1 > wk

2. We now formulate the bridging problem as to find the most

reliable path. Intuitively, we seek a path q from am to b1 in G such that the smallest weight in this path is

maximized, and in case there are multiple paths with maximized smallest weight, among them we seek the

one whose second smallest weight is maximized, and so on.

We believe this formulation is appropriate for bridging paired-end RNA-seq reads. First, by maximizing

bottleneck weight, the weakest point of the bridging path is supported strongest, which avoids being dom-

inated by vertices/edges with large weights. Second, through this formulation, false paths coming from

sequencing/alignment errors can be efficiently excluded, as they usually exhibits low bottleneck abundance.

We also explored formulations such as maximizing the sum of weights in a path but they didn’t perform as

well as this one.

We emphasize that this formulation satisfies the optimal substructure property. Specifically, if am→ vi1 →

vi2 → ···→ vik → b1 is the most reliable path, then am→ vi1 → vi2 → ···→ vik is the most reliable path from

am to vik . This implies that polynomial-time dynamic programming algorithms can be designed to find the

optimal solution.

We use this formulation for both reference-based bridging and de novo bridging. For reference-based bridg-

ing, instead of just picking the most reliable path, we design an efficient dynamic programming algorithm

that finds top N paths, and then incorporate the fragment-length distribution to select the best one. For de

novo bridging, we propose novel, scalable algorithms to identify the most reliable path in large cdBGs with

millions of vertices.
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The bottleneck weight (smallest weight of the optimal path) in this formulation can be used as a filtering

criterion to decide if a bridging path is true. We set this threshold as 1 (i.e., don’t filter) in reference-based

bridging but explicitly use this parameter to balance sensitivity and precision in de novo bridging (see Table 3

and Table 4).

2.2 Reference-based Bridging

2.2.1 Constructing Splice Graph

The input for reference-based bridging is standard RNA-seq alignment in sam/bam format. We first group

fragments into gene loci: reads that overlap on their alignment coordinates will be assigned to the same gene

locus. We make sure that the two ends from the same fragment will be assigned to the same gene locus.

Each gene locus will be treated as independent instances and solved independently.

In each gene locus, junctions will be extracted from spliced reads. The collected set of splicing coordinates

will be used to partition the reference genome into continuous segments, called partial exons. We use the

well-known splice graph to represent the partial exons and junctions in a single gene locus (see Figure 1):

each partial exon corresponds to a vertex, and each junction corresponds to a direct edge that connects its

two corresponding exons. Two additional vertices, source s and sink t, are added and connected to possible

starting and ending partial exons. The weight of an edge is calculated as the number of reads that contain

the corresponding junction; the weight of a vertex is calculated as the average coverage of the corresponding

partial exon.

1 2 3 4 5 6

s 1 2 3 4 5 6 t
5 3 3 4 2 2 3

2 1 2

Figure 1: Example of the reads alignment in a gene locus (upper part). Reference genome are portioned into
partial exons (numbered from 1 to 6) using the splicing coordinates. Lower part shows the corresponding
splice graph; the weight of each edge is given close to it.
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2.2.2 Bridging Algorithm

Our core algorithm to bridge all fragments in an equivalent class F =(p1 =(a1,a2, · · · ,am), p2 =(b1,b2, · · · ,bn))

consists of two steps: nominating and voting. The nominating step computes the N most reliable paths from

am to b1 in G (in our implementation, N is a parameter with default value of 10), and the voting step selects

one through a consensus approach using the fragment length distribution.

We implemented a dynamic programming algorithm for nominating. Specifically, let (v1,v2, · · · ,vn) be a

topological sorting of all vertices of the splice graph G (this is possible because splice graph is a directed

acyclic graph). Given a particular vi, we can use a single run to find N most reliable paths from vi to v j for

every j > i. To compute these N paths for v j, we examine all vertices vk that directly connects to v j, and

compare all paths stored in these vertices (each vk already stores N most reliable paths from vi to vk at this

time point). The best N of them will be kept and after concatenating v j they become the N most reliable

paths from vi to v j. We run this subroutine for all vi, 1 ≤ i ≤ n, which gives N most reliable paths for all

pairs of vertices in G. The overall running time of this algorithm is O(N · |V |2 · |E|).

Above algorithm guarantees finding the most reliable path. To scale better on giant instances with tens of

thousands of vertices, we designed a heuristic variant. Instead of maintaining the full list of weights for

each path, whose length is O(|V |), we only store the smallest M edge weights (M is another parameter with

default value of 5) for each path. This gives an improved time complexity of O(N ·M · |V | · |E|). Although

optimality may not be guaranteed, experimental studies show that this heuristic rarely affects the bridging

accuracy.

We now describe the voting step. Let (q1,q2, · · · ,qN) be the N candidates for an equivalent class F . Assume

that these N paths are sorted (i.e., qi is more reliable than qi+1). We now examine each fragment f in F .

For each candidate path qi, 1 ≤ i ≤ N, we calculate the actual sequence length of fragment f , denoted as

| fi|, assuming that f is bridged with qi. This can be done because once the bridging path of f is given, the

alignment of the entire fragment f is fixed and hence the length of its entire sequence can be calculated. If

| fi| is within a reasonable range (precomputed by sampling 100,000 paired-end reads with unique bridging

path, and an empirical distribution of fragment length is then estimated; the value from percentile 2 to

percentile 98 will be used as the reasonable range), then fragment f votes for path qi; otherwise, we try next

best path (i.e., qi+1) and check whether | fi+1| is within the reasonable range. In other words, each fragment
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votes for the best candidate that leads to a fragment length within the reasonable range. Candidate path with

the largest number of votes will be accepted as the bridging path for the equivalent class, and all fragments

in it will be bridged using this path. If none of the candidate paths receives any vote, then this equivalent

class fails bridging.

2.2.3 Correcting Alignment Errors

We implemented a method to use paired-end information to correct one type of alignment errors while

bridging. See Figure 2. Reads that span a junction but flank one side shortly are prone to alignment

errors (left red read in Figure 2). Information of paired-end can be used to detect and correct such er-

rors. Let F = ((a1,a2, · · · ,am),(b1,b2, · · · ,bn)) be an equivalent class that fails bridging. If the length of

the aligned portion on am is small (a parameter with default value of 10 base-pairs), we will then try to

bridge F1 = ((a1,a2, · · · ,am−1),(b1,b2, · · · ,bn)). Symmetrically, if b1 is flanked tinily, we will examine

if F2 = ((a1,a2, · · · ,am),(b2,b3, · · · ,bn)), or F3 = ((a1,a2, · · · ,am−1),(b2,b3, · · · ,bn)) in case both qualify,

can be successfully bridged. If so, the corrected and bridged alignments will be reported. In experimental

studies (see Table 1), we show that this method could rescue about 1.6–1.9% of the wrongly aligned reads.

1 2 3 4 5 6

s 1 2 3 4 5 6 t
5 3 3 3 3 5 5

2

Figure 2: Example of correcting alignments while bridging. One fragment (in red) is in equivalent class
((1,2),(6)). The only bridging path is (2,3,4,5,6), which is most likely beyond the reasonable range of
fragment length. As the aligned portion on segment 2 of the first-end is short, we will shorten (1,2) as (1)
and then try to bridge it in equivalent class ((1),(6)), for which there is an additional candidate (1,5,6),
which likely gives this fragment a sequence length within the reasonable range.

2.3 De Novo Bridging

2.3.1 Constructing Compacted de Bruijn Graph (cdBG)

We use cdBG to represent the given paired-end RNA-seq reads. See Figure 3. In the de Bruijn graph (dBG),

each vertex represents a distinct k-mer, and its weight equals to the number of appearance this k-mer in the
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reads. The corresponding cdBG is defined as concatenating each simple path (i.e., every vertex in it except

the first and the last one has in-degree of 1 and out-degree of 1) of the dBG as a single vertex (the resulting

sequence is called a unitig). To comply with our formulation of finding the most reliable path, we assign the

weight of each vertex in cdBG as the smallest weight of the corresponding simple path in dBG.

(paired-end RNA-seq reads)

TAGC -- TCAT (2)

AGCT -- CATG (1)

AGCA -- CATG (2)

TAGG -- GCAT (1)

GCTC -- TCAT (2)

TAGG -- GGCA (1)

(de Bruijn graph)

TAG AGC GCT CTC TCA CAT ATG

AGG GGC GCA

4 5 3 2 4 8 3

2 3 4

(compacted de Bruijn graph)

TAG AGC GCTCA CAT ATG

AGGC GCA

4 5 2 8 3

2 4

Figure 3: Example of a cdBG constructed from paired-end RNA-seq reads.

In implementation, we directly construct the cdBG and calculate vertex weights, instead of explicitly con-

structing dBG as an intermediate. Specifically, we use library Bifrost [7] to build the cdBG. In order to

assign vertex weights, we first build a hashing table that stores the frequency of each k-mer; we then exam-

ine all k-mers in this vertex (a unitig of length l contains l−k+1 k-mers) and assign the smallest frequency

as the weight of the vertex.

2.3.2 Bridging Algorithms

Following our formulation, we aim to find the most reliable bridging path for all equivalent classes. As the

cdBG constructed from a typical RNA-seq sample may consist of millions vertices (see Table 5), it is simply

not affordable to run a standard dynamic programming algorithm for every possible starting vertices (note

that a single run of dynamic programming algorithm starting from a vertex will find the most reliable path

connecting it to all other vertices). We propose two algorithmic innovations to address this main challenge in

de novo bridging. First, we implemented a truncated Dijkstra’s algorithm to find the most reliable bridging

path starting from a starting vertex am to any other vertex up to a certain length D (default value is 400+2L
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where L is read length). This is to incorporate the prior knowledge that fragment length follows an empirical

distribution and an upper bound of fragment length can be assumed. In our truncated Dijkstra’s algorithm,

for each vertex v we maintain the total length of the most reliable path from the current starting am to v, and

when such length for v reaches D, we won’t extend v in the Dijkstra’s algorithm. Similar to the algorithm in

reference-based bridging, a list that stores the smallest M weights also needs to be maintained.

am

a

b

f

g

h

i

j

k

w

l

c

d

v

e

m

n

p

Figure 4: Illustrating the shortest path tree starting from vertex am. Consider subtree rooted at v. Then for
any vertex in it, say w, the path from v to w in this subtree is the most reliable path from v to w in the cdBG.

The second algorithmic innovation is that we reuse the optimal solutions obtained for the current starting

vertex am to construct the optimal solutions for next starting vertex a′m. This allows us to avoid running

above truncated Dijkstra’s algorithm from scratch for all possible starting vertices. Specifically, for the

current starting vertex am, we maintain a shortest path tree, denoted as T (am), to store the most reliable

paths from am to all other vertices (up to length D), i.e., the unique path in T from root am to any vertex

v gives the most reliable path from am to v in the cdBG. See Figure 4. This tree can be constructed in

linear time with a tracing back procedure after running the truncated Dijkstra’s algorithm. We note that,

again according to the property of optimal substructures, any subtree of T (am), say the one rooted at u,

also gives the most reliable path from u to any other vertex w in the subtree. This suggests we can reuse

the subtree rooted at u to calculate all reliable paths starting from u (and then construct the corresponding

shortest path tree). More specifically, in implementation we directly load the subtree rooted at u to the

priority queue (recall that the core data structure of Dijkstra’s algorithm is a priority queue that gets updated

iteratively). In other words, for next starting vertex u we run the truncated Dijkstra’s algorithm in the middle

rather than from scratch, as we already know the optimal solutions for a subset of vertices (i.e., those in the

subtree of T (am) rooted at u). To benefit from this property to the largest extent, we determine the starting

vertex whose subtree is largest as the next one to bridge.
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3 Results

3.1 Resulting Tools

We developed a tool for reference-based bridging, available at https://github.com/Shao-Group/rnabridge-

align. The input for this tool is the alignments of paired-end reads, in standard sam/bam format. The output

is the alignments of entire fragments, again in sam/bam format. The algorithms for de novo bridging were

implemented as another tool, available at https://github.com/Shao-Group/rnabridge-denovo. The input for it

is sequencing reads in fasta format, and it generates sequences of full fragments again in fasta format.

3.2 Datasets

We use 2 datasets to evaluate the accuracy of bridging and its effectiveness in improving downstream RNA-

seq analysis. The first dataset includes 80 paired-end RNA-seq samples simulated using Flux-Simulator [5].

We vary two parameters in the simulation: the average length of fragments (300 and 500 were used) and

the read length (75 and 100 were used). For each combination of parameters, we independently simulated

20 samples. The number of reads in samples with fragment length being 300 and 500 are roughly 150M

and 90M, respectively. The second dataset was previously used in the Scallop paper [19]: it contains 10

biological RNA-seq samples.

3.3 Accuracy of Reference-based Bridging

We evaluate the bridging accuracy of rnabridge-align using simulation data, for which the ground-truth (i.e.,

full fragments) are available. We define a bridged fragment is correct only if it’s exactly the same as the

ground-truth fragment. As the input for rnabridge-align is the alignments produced by another aligner (we

use STAR here), which may not be perfect, we evaluate the bridging accuracy separately on the fragments

that are correctly and wrongly aligned.

The averaged accuracies for each simulation type are summarized in Table 1. Overall the bridging accuracy

is high with 85.8–86.2% being correctly bridged when the average fragment length is 300. For fragment

length of 500 the accuracy slightly drops to 79.6–81.2%. This is expected as longer fragments are harder to

bridge and the coverage of these samples are lower. Notice that rnabridge-align also correctly bridges 1.6–

1.9% fragments even when the paired-end alignments are wrong, thanks to the procedure in Section 2.2.3.
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Table 1: Bridging accuracy on the simulated RNA-seq samples in dataset 1 aligned with STAR. The numbers
are normalized by the total number of correctly aligned and wrongly aligned fragments, and averaged over
20 samples for each type. “flen” = average length of fragments; “rlen” = read length.

flen rlen
correct alignments wrong alignments

correct wrong unbridged correct wrong unbridged

300 75 83.9% 7.1% 3.4% 1.9% 3.0% 0.6%
300 100 84.6% 7.1% 2.9% 1.6% 3.0% 0.8%
500 75 77.7% 11.7% 4.4% 1.9% 3.5% 0.8%
500 100 79.6% 11.8% 2.8% 1.6% 3.3% 0.8%

3.4 Improving Reference-based Transcript Assembly

Reference-based bridging infers the alignment of full fragments, which provides longer alignments with en-

hanced long-range information. Such information is particularly useful in assembling complicated splicing

variants. Below, we evaluate the effectiveness of reference-based bridging in improving transcript assembly.

3.4.1 Pipeline

We follow the workflow illustrated in Figure 5. For each aligned RNA-seq sample, we compare directly

assembling with first bridging using rnabridge-align followed by assembling the bridged alignments. For

each route, we test two recent and leading assemblers StringTie (version 2.1.4; released on 7/7/2020) and

Scallop (version 0.10.5; released at 5/22/2020).

RNA-seq reads

aligner (STAR or HISAT)

reads alignments

bridging

bridged alignments

assembler (StringTie or Scallop)

assembled transcripts

evaluation: gffcompare

adjusting precision and recall

Figure 5: Pipeline of evaluating rnabridge-align in improving transcript assembly.
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3.4.2 Evaluation Measures

Each method assembles a set of transcripts. We define an assembled transcript is known if its intron-chain

coordinates exactly match those of an existing transcript in the reference transcriptome. We use a third-

party tool, gffcompare [17], to compute the number of known transcripts (proportional to sensitivity), and

precision (the ratio between the number of known transcripts and the total number of predicted transcripts).

Notice that one method might assemble more known transcripts but exhibit lower precision, or vise versa,

on certain samples. To enable comparing in these cases, we first balance them in one measure and then

compare the other one. Specifically, let k1 and k2 be the number of known transcripts and p1 and p2 be the

precisions obtained by two methods X1 and X2. Assume that k1 > k2. We sort the assembled transcripts

obtained by X1 based on the expression abundance, and gradually filter out them starting from ones with low

abundance. In this way, the known transcripts of X1 will decrease while its precision will likely increase (as

lowly-expressed ones are more likely to be false positive transcripts). We calculate the two measures for X1,

denoted as k′1 and p′1, as filtering goes, and stop when k′1 = k2. We then report p′1 at this time as the adjusted

precision of X1. Note that the relationship between p′1 and p2 can therefore reflect the overall performance

of the two methods, as their numbers of known transcripts have been adjusted identical. Similarly, we can

compute the adjusted number of known transcripts, through gradually filtering out transcripts with lowest

abundance in the method with lower precision, until their (adjusted) precisions match. This way of adjusting

can be generalized into multiple methods; in our case, we have 4 methods. Such adjusted measures have

been used in evaluating assembly accuracy [19].

3.4.3 Results on Simulated Dataset (Dataset 1)

The average assembly accuracies of the 4 methods on dataset 1 are illustrated in Figure 6 and Figure 7. For

the category with average fragment length being 300 and read length being 75, the average adjusted preci-

sions for StringTie with and without using bridging are 67.3% and 72.7% respectively, and such numbers

for Scallop are 56.2% and 70.6%, respectively; in adjusted known transcripts, StringTie with and without

using bridging assembled 6091 and 6421 known multi-exon transcripts respectively (5.4% increase), and

such numbers for Scallop are 5575 and 6137 respectively (10.1% increase). Similar or less improvements

are noted, but overall bridging improves transcript assembly on all 4 types of simulations using any of the

two assemblers.
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75r.500f

100r.300f

75r.300f

Bridge + Scallop
Scallop
Bridge + StringTie
StringTie

Figure 6: Comparison of the average adjusted precision on 4 types of simulated RNA-seq data. All samples
are aligned with STAR.
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Adjusted # Known

100r.500f

75r.500f

100r.300f

75r.300f

Bridge + Scallop
Scallop
Bridge + StringTie
StringTie

Figure 7: Comparison of the average adjusted number of known transcripts on 4 types of simulated RNA-seq
data. All samples are aligned with STAR.

3.4.4 Results on Biological Dataset (Dataset 2)

The average assembly accuracies over the 10 RNA-seq samples in dataset 2 are shown in Figure 8 and

Figure 9. Again bridging improves assembly in all settings. For examples, when STAR is used, the average

adjusted precisions for StringTie with and without using bridging are 32.9% and 40.6% respectively, and

such numbers for Scallop are 44.0% and 46.1%, respectively; in adjusted known transcripts, StringTie with

and without using bridging assembled 14344 and 13303 known multi-exon transcripts (7.8% increase),

respectively, and such numbers for Scallop are 15590 and 16012 (2.7% increase), respectively. Similar

improvements are noted when HISAT2 is used.
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Adjusted Precision (%)
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Figure 8: Comparison of the average adjusted precision on dataset 2.
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StringTie

Figure 9: Comparison of the average adjusted number of known transcripts on dataset 2.

3.4.5 Further Analysis

Transcript assembly has long been recognized as a very challenging but critical task. We think the im-

provement achieved by bridging RNA-seq reads is quite significant: up to 14.4% for adjusted precision and

10.1% for adjusted sensitivity. Although such increase varies, improvements are observed on all settings

with different aligners, assemblers, and simulation parameters. This confirms that our bridging tool is robust

in improving reference-based transcript assembly.

StringTie and Scallop exhibit differently on simulated and biological data. This has also been observed in

other studies. One of the possible reasons is that Scallop has been tailored to identify false positives during

assembly (in general biological RNA-seq data is more noisy than simulated data). Again, the focus here is

to show the improvement when bridging is incorporated, regardless of downstream assembler used.

On biological samples, the adjusted precision (ranging from 30%–50%) is low comparing with simulated

samples with fragment length being 300. This is because we use reference transcriptome as ground-truth (as

for these biological RNA-seq data we don’t know the true expressed transcripts). The current transcrip-

tome has been regarded as incomplete and over-annotated. Therefore, the precision and known transcripts

reported here underestimated the actual performance of all approaches. But these measures are fair for all

methods in comparing their relative performances. The low precision for simulated samples with fragment
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length being 500 are likely due to that they are harder instances and that these samples are with low coverage.

3.5 Running Time of Reference-based Bridging

The running time of rnabridge-align on samples in dataset 2 is given in Table 2. This is faster or comparable

to assemblers like StringTie or Scallop on most biological RNA-seq samples. Simulated samples are less

noisy and rnabridge-align runs even faster on them.

Table 2: CPU time (in minutes) of rnabridge-align when running on the 10 samples in dataset 2 aligned with
STAR or HISAT2.

SRA ID time (STAR) time (HISAT 2)

SRR307903 8.9 7.2
SRR307911 8.9 8.8
SRR315323 7.5 6.2
SRR315334 9.0 7.9
SRR387661 25.0 24.1
SRR534291 23.2 23.9
SRR534307 32.3 33.7
SRR534319 15.3 15.1
SRR545695 25.0 25.4
SRR545723 9.1 8.6

3.6 Accuracy of de novo Bridging

We first evaluate the accuracy of rnabridge-denovo using simulation data, for which the ground-truth are

available. We define a bridged fragment is correct only if it’s exactly the same as the ground-truth fragment.

The sensitivity is defined as the number of correctly bridged fragments divided by the total number of

fragments (i.e., paired-end reads), and precision is defined as the number of correctly bridged fragments

divided by the total number of bridged fragments.

The results are summarized in Table 3. The bottleneck threshold used to filter bridges is set to 5 for all

simulated samples. Overall our tool exhibits high accuracy. The accuracy drops with long fragment length.

This is expected as in this case the missing portion is longer and therefore harder to bridge. This may also

be partly due to that the coverage of these simulated samples is low. Higher accuracy is observed when the

read length is longer at the same fragment length, again as expected.

We then evaluate using the biological data in dataset 2. As we don’t have ground-truth for them, we again
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Table 3: Averaged accuracy of rnabridge-denovo on the simulated RNA-seq samples in dataset 1.

flen rlen bottleneck sensitivity (%) precision (%)

300 75 5 80.7 91.8
300 100 5 85.7 92.5
500 75 5 66.6 85.4
500 100 5 76.3 86.9

use the sequences in the reference transcriptome to evaluate. We align all the bridged fragments to reference

using BLAT [9]. We define a bridged fragment is correct only if it is hit by one of the reference sequences

with at least 95% sequence identity. The sensitivity and precision is defined the same as in evaluating with

simulation data.

The results are summarized in Table 4. Overall the precision keeps high but the sensitivity varies quite a lot.

This is because we prioritize precision by setting a high bottleneck-threshold: 20 for samples with less than

50M paired-end reads and 100 otherwise. Comparing with simulated data, biological data are more noisy

and harder to bridge.

Table 4: The accuracy of rnabridge-denovo on the 10 RNA-seq samples in dataset 2. The number of paired-
end reads are given in unit of million.

SRA ID #paired-reads bottleneck sensitivity (%) precision (%)

SRR307903 36.0M 20 65.3 91.8
SRR307911 41.4M 20 42.7 91.3
SRR315323 30.3M 20 27.9 87.9
SRR315334 39.5M 20 49.5 93.3
SRR545723 38.9M 20 42.7 81.6
SRR387661 124M 100 58.2 90.1
SRR534291 114M 100 64.3 93.5
SRR534307 165M 100 50.6 74.7
SRR534319 76.6M 100 24.6 69.5
SRR545695 119M 100 37.6 75.5

3.7 Running Time of de novo Bridging

Our tool rnabridge-denovo consists of 3 modules. Module 1 uses Bifrost [7] to build the cdBG; module 2

aligns all paired-end reads to the cdBG and calculates the weight of unitigs; module 3 implements our core

bridging algorithm described in Section 2.3.2. We show the breakdown of the CPU time of the 3 modules

together with the size of the resulting cdBGs on the 10 biological samples in Table 5. Note that module 3
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takes the least CPU time among 3 modules, which proves the efficiency and scalability of the optimized core

bridging algorithms.

Table 5: The size (number of vertices and edges; in unit of million) of the cdBGs and the CPU time (in
minutes) measured for the 3 modules of rnabridge-denovo running on the 10 samples in dataset 2.

SRA ID
size of cdBG CPU time (in minutes)

#vertices #edges module 1 module 2 module 3

SRR307903 5.15M 6.99M 149 57 26
SRR307911 8.11M 10.71M 175 66 75
SRR315323 7.68M 9.45M 120 40 63
SRR315334 6.35M 10.16M 158 67 37
SRR387661 18.71M 27.36M 515 223 141
SRR534291 15.14M 26.67M 685 370 128
SRR534307 34.29M 56.00M 1038 561 281
SRR534319 16.48M 22.09M 311 118 121
SRR545695 19.43M 27.49M 479 201 174
SRR545723 13.47M 16.04M 243 99 159

4 Conclusion

We conclude that the formulation of finding the path with maximum bottleneck weight (breaking ties with

second bottleneck weight, and so on) is an appropriate model for both reference-based bridging and de novo

bridging. This formulation admits optimal substructure, a nice property that leads to polynomial-time, exact

algorithms. The new techniques we introduced in de novo bridging, in particularly reusing shortest path tree

to speed up, are likely of independent algorithmic interests in other applications involved in cdBGs.

On both simulated and biological data, the precision of bridged reads is high (around 80-90%), suggesting

that our tools can be safely combined with other RNA-seq tools and pipelines. The sensitivity, although not

consistent, is quite significant (above 50% for most cases). This suggests a positive answer to the question

that whether the data itself contains enough information for bridging.

We also showed that our reference-based bridging tool could improve reference-based transcript assembly.

Such improvement is universal, regardless of involved aligner, assembler, or simulation parameters.

Both tools are modular, with input and output being standard sam/bam/fasta formats. Therefore they can be

easily incorporated into existing RNA-seq analysis pipeline. We devote to reproducibility: the experimental

results in this manuscript can be reproduced with the scripts available at GitHub.
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5 Discussion

We explored if de novo bridging could improve de novo transcript assembly. To this end we piped the bridged

fragments to one leading assembler TransLiG [14], but only observed marginal improvement. This may be

because TransLiG is not optimized to make use of mixed short and long sequences. (On the contrary, some

reference-based assemblers like Scallop and StringTie does take advantage of reads that thread multiple

vertices to improve assembly accuracy, and hence benefit from bridged fragments.) Developing a new

de novo assembler that can fully use such bridged data is on our research agenda. Experimenting if de

novo bridging could improve isoform quantification and splicing quantification is also an interesting future

research topic for us.

The sensitivity of rnabridge-denovo is low on some biological samples. One reason is that we use a

high bottleneck-threshold to keep high precision, which consequently disconnects paired-end reads in low-

coverage gene loci. We are developing a post-bridging algorithm to use full-range information in the reads

to decide if a bridged fragment is correct (rather than just using a bottleneck-threshold), in a hope of keeping

high precision while improving sensitivity. Specifically, note that the cdBG is not a loss-free representation

of sequencing reads, as it breaks reads into k-mers, and any phasing information beyond (k+1)-mer is not

represented. Let s be the bridged sequence of a fragment f constructed using above algorithm. We can ex-

amine each sliding window of length L, where L is the read length, and determine the number of input reads

that are identical to this L-mer (i.e., these reads support this L-mer). This gives a supporting profile, a vector

of length |s| −L+ 1 for this bridged sequence. Intuitively, a profile with few 0s suggests that the bridged

sequence is likely a true one, while a long consecutive 0s suggests a false bridge. We are experimenting if

such supporting profile could lead to more efficient algorithms in boosting bridging accuracy.
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Appendix

We were not able to compare with MapPER in our experiments. MapPER requires input sam file to be in

a special format (referred to as “PER SAM”). We looked into MapPER’s source code and it seems that
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MapPER only deals with CIGAR fields with “M” (alignment match) and “N” (skipped region), but for

biological samples there are plenty of “S” (soft clipping). On simulated data we observed that MapPER

generated “*” for the CIGAR field in many alignments. We contacted the authors of MapPER but haven’t

get responded.
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