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Supplementary Figure 1. Results of SVM classification approach. (A-C) Confusion matrices are 
computed by summing the confusion matrices across all 100 cross-validation runs and 
normalizing per class. As in the (superior) nested approach mentioned in the main text, the 
combined approach improved prediction of MCI participants. (D) Boxplots of mean F1-scores 
for three different feature spaces.  



 
Supplementary Figure 2. Results of RF classification approach. (A-C) Confusion matrices are 
computed by summing the confusion matrices across all 100 cross-validation runs and 
normalizing per class. (D) Boxplots of mean F1-scores for three different feature spaces.  
 
Tables and detailed methods. 
 
Supplementary Table 1. 
Best hyperparameter settings for each feature set for SVM only. 

Parameter Empirical Simulated Combined Searched parameter space 
Kernel RBF RBF Polynomial 

(d=3) 
Radial basis function (RBF), 

polynomial functions 
Gamma 0.01 0.1 n.a. Gamma ∈ {10-3, 10-2, 10-1, 1} 

C 1000 100 1000 C ∈ {10-2, 10-1, 1, 10, 102, 103} 
Number of 
features K 

30 10 40 X ∈ {5, 10, 15, 20, 25, 30, 35, 40} 



Explanations of SVM hyperparameters: 
 
Kernel:  
The kernel of an SVM is the function that is used for the transformation of the feature space. A 
kernel is an invertible function 𝑘#𝑥! , 𝑥"& = 𝑟(𝑥!) ⋅ 𝑟#𝑥"& used to transform data points 𝑥! , 𝑖 ∈
1…𝑁 in such a way as to preserve the relationships between datapoints so that the SVM can 
learn a linear classification rule in the feature space of 𝑟(𝑥!) that corresponds to a non-linear 
classification rule in the feature space of 𝑥!. The classification rule is learned in the transformed 
space and then projected back down into the original data space to obtain a non-linear 
classification boundary. I.e., the kernel is the function that transforms the original feature space 
into a higher dimensional (artificial) feature space to separate data points, while it defines also 
the rule for its back-projection. 
We explored two types of kernels. The Gaussian radial basis function (RBF) kernel is the most 
commonly used kernel for non-linear problems for a variety of reasons (e.g., the kernel is 
stationary, smooth, and tunable with only a single isotropic parameter). The kernel is defined as 

follows: 𝑘#𝑥! , 𝑥"& = 𝑒𝑥𝑝 2−γ 56𝑥! − 𝑥"65
#
7 for γ > 0. The polynomial kernel instead raises the 

degree of the data space using, i.e., quadratic or cubic transforms: 𝑘#𝑥! , 𝑥"& = #𝑥! , 𝑥"&
$

. Here 
we only explored 𝑑 ∈ 2,3,4 to avoid overly complex decision functions. 
 
Gamma:  
The scaling parameter as defined in the RBF kernel (see above). It scales the distance of 
datapoints to the decision boundary that are used for its calculation.  This must typically be 
tuned empirically using cross validation, as it can take any value over zero, including values less 
than one to shrink the norms between points, or values much larger than 1, to expand those 
norms, depending on how the data are clustered. 
 
C:  
The soft-margin parameter C controls whether the solution emphasizes a wide margin (i.e., a 
decision boundary as far away as possible from the closest points), which can lead to some 
underfitting, versus a narrow margin that can result in some overfitting. E.g., an extremely 
narrow margin around zero could still perfectly separate datapoints of the training set, but as 
the decision boundary almost crosses the most similar datapoints between the classes, it will be 
not very adaptable to new data.  Like Gamma, it must be tuned empirically. 
 
Number of Features:  
Since our list of candidate features is very high compared to the number of subjects, to find a 
more robust and interpretable solution (Bellman and Collection 1961, Trunk 1979) , we greatly 
limit the number of selected features prior to classification.  
 
For the SVM parameters Gamma and C, these are fairly standard search ranges (Chapelle and 
Zien 2005, Ben-Hur and Weston 2010). Typically a search will span different orders of 



magnitude, for example in base 10 or in base 2. We used a coarse grid in our hyperparameter 
search so as to not overdetermine our model to our relatively small sample. 
 
 
Supplementary Table 2. 
Best hyperparameter settings for each feature set for RF only. 

Parameter Empirical Simulated Combined Searched parameter space 
Class weight balanced balanced balanced None or balanced 

Number of Estimators  10 10 10 n ∈	{10,	50,	100,	200} 
Min. samples per split 2 2 4 n ∈	{2,	3,	4,	5} 
Min. samples per leaf 1 3 2 n ∈	{1,	2,	3} 

Max. features √𝑃 none √𝑃 n ∈	{P-1/2,	log2P} 
 
Explanations of RF hyperparameters 
 
Class Weight:  
Simply whether or not the model should take into account the imbalanced class representation 
in the training set. When balanced, incorrect class labels during the training process are 
penalized more or less depending on whether the correct class is under- or over-represented in 
the training set. This aims to overcome biases that arrive from different frequencies of classes 
in the underlying training data. 
 
Number of Estimators:  
The number of decision trees to train, i.e. the class estimates of which are aggregated in the 
final model. In other words, the size of the ensemble. 
 
Min. samples per split:  
The minimum number of divergent samples required to split a branch of a tree into two new 
branches. A lower value means a more detailed tree that can be more precise. E.g., the lowest 
value would be 1, meaning that even a single subject can be separated by a decision rule of one 
tree. Lower values are typically required when the number of samples are low, especially 
compared to the number of features. 
 
Min. samples per leaf:  
The minimum number of samples required at the end of each leaf node (the last node of each 
path down the tree). Similar to min. samples per split, this influences how detailed the tree can 
become, and lower values are typically required for a low sample setting with many features. 
When a branch reaches this number, it can no longer be split further.  
 
Max. features:  
The maximum number of features to consider when evaluating the best split for each branch. 
Lower values typically mean better generalization but reduced flexibility. 
 



For the RF parameters, we kept to low values for splitting criteria so that more detailed trees 
could be learned (as mentioned, this is more important for our N<<P scenario, since 
generalization is much harder).  
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