Supplementary Materials

Materials and Methods – full report

Computer-aided design (CAD) model creation and slicing for hybrid scaffold fabrication. CAD models of the scaffold structures were created using the open source package Blender¹. The models were converted from Standard Triangulation Language (STL) to numerical control G programming language using the Cura software package, v4.1 (Ultimaker, Utrecht, NL; available from https://www.ultimaker.com/en/products/ultimaker-cura-software) for dual-extrusion 3D printing. For 3D bioprinting an integrated slicing software was applied (CellInk, Gothenburg, Sweden).

3D-Printing of PCL, heparin surface functionalization, growth factor addition for hybrid scaffold. PCL components were fabricated using a dual-extrusion-based 3D printer (UM S5, Ultimaker, Utrecht, Netherlands). Polycaprolactone (PCL) filament (Facilan[™] PCL 100 Filament 2.85 mm, 3D4Makers, Haarlem, Netherlands; MW: 50 000 g/mol) was used for the scaffold structure and polyvinyl alcohol filament (PVA; Ultimaker) as a sacrificial, water-soluble support structure. PCL was extruded with an AA 0.25 mm, PVA with a BB 0.4 mm print head, using the following settings: print speed 20 mm/s, build plate temperature 30 °C, fan speed 100%, AA print head temperature 140 °C, BB print head temperature 215 °C. In order to print PCL at temperatures as low as 140 °C, the g-code was manually edited by prefix code 'M302' to avoid device-specific conformity checks. For heparin surface functionalization, 1% (w/v) heparin (Lot# H0200000, Merck, Darmstadt, Germany) was dissolved in 0.05 m 2-(N-morpholino) ethanesulfonic acid monohydrate (MES) buffer (Lot# K49565026903, Merck) at a pH of 5.5. Quantities of 0.5 m 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) (Lot# E7750, Merck) and 0.5 m Nhydroxysuccinimide (NHS) (Lot# BCBW6640, Merck) were added to the heparin solution. Scaffolds were previously equilibrated for 30 min in MES buffer and subsequently immersed in reaction mixture. The reaction mixture was then stirred for 8 h at room temperature. The reaction was stopped by extensive washing with sterile H₂O to remove unbound heparin. Growth factor addition was performed by immersion of scaffolds in beta fibroblast growth factor (bFGF; 500 ng/ml) or nerve growth factor (NGF; 500 ng/ml) in phosphate-buffered saline (PBS) for 2 h at room temperature. Scaffolds were stored in PBS. Dried PCL scaffolds, heparin-coated PCL scaffolds, and heparin-coated PCL scaffolds after growth factor addition were 10 nm gold/platinum sputtered (Leica EM ACE 600, Leica Microsystems GmbH, Wetzlar, Germany) and qualitatively analyzed by scanning electron microscopy (Zeiss Leo Gemini 1530, Carl Zeiss AG, Oberkochen, Germany). Images were taken at different magnifications with an accelerating voltage of 2.0 kV.

Cell culture. The rat INS-1 832/3 cell line (referred to as INS-1 hereinafter) was obtained from Merck (Darmstadt, Germany). A HUVEC cell line was obtained from the American Type Culture Collection (Manassas, VA, USA). Mycoplasma testing was performed monthly by polymerase cell reaction. INS-1 cells were used until passage 10; insulin-producing function was ensured by selection through Geneticin resistance. INS-1 cells were cultivated in RPMI-1640 (Gibco, Thermo Fisher Scientific, Waltham, MA, USA) supplemented with 10% fetal bovine serum (Gibco), 1% Geneticin (Merck), 1% HEPES 1M (Gibco), 1% sodium pyruvate 100 mM (Merck), and 0.1% 2-mercaptoethanol (Merck). HUVEC cells were cultivated in endothelial cell growth medium (Lot# 211-500, Cell Applications, San Diego, CA,

USA) supplemented with 1% penicillin/streptomycin (Merck) and 5% fetal bovine serum. For co-cultures, culture medium composition was chosen according to cell ratio. Cells were grown in T75 flasks (Falcon®, Corning, NY, USA) at 37 °C and 5% CO₂.

Bioprinting of cell-laden hydrogels for hybrid scaffold. Bioprinting was performed using the BioX from CellInk. Pneumatic extrusion print heads were used for extrusion of bioink. 3x10⁶ cells/ml hydrogel were used for bioprinting. The cells, either INS-1 only or INS-1 with HUVEC cells in 1:2 ratio, were diluted in either RPMI-1640 or a 1:2 mixture of RPMI-1640 and endothelial cell growth medium and gently mixed 1:10 with GeIXA LAMININK-411 hydrogel (Lot# IK-3X2123, CellInk) using female-female Luer-lock-adapted syringes. The INS-1/HUVEC ratio was chosen based on the natural islet microenvironment² and, due to superior results, compared with a 1:5 ratio. The cell-laden hydrogel was transferred to a UV-shielded cartridge and centrifuged at 100 g for 1 min to remove any air. The cartridge (pre-cooled to 4 °C) was loaded into pneumatic print heads. Bioprinting in 24-well plates (Falcon®, Corning) was performed with the following settings for proliferation assays, CAM xenotransplantation, and glucose-stimulated insulin secretion (GSIS): droplet print mode, 2.6 s extrusion time, 30 kPa extrusion pressure, 2 s ultraviolet (UV) crosslinking (405 nm) at 5 cm distance. After printing, the hydrogel domes were incubated in 1 ml of either RPMI-1640 (INS-1 only) or in a 1:2 mixture RPMI-1640 and endothelial cell growth medium (co-culture). Grid-like structures were printed in 24-well plates to perform metabolic assays and total RNA isolation using a 21-gauge conical nozzle, extrusion pressure 23 kPa, print speed 8 mm/s, 50 ms pre-flow delay, infill 15%, 2 s crosslinking at 405 nm with 5 cm distance to printed layer.

Detection of metabolic activity and proliferation. For a visual assessment of metabolic activity, INS-1 cells in bioprinted grid scaffolds were stained with thiazolyl blue tetrazolium bromide (MTT, Merck) after 5 days in culture. A quantity of 100 μ L of 5 mg/ml MTT dissolved in PBS was added to 900 μ L INS-1 culture medium and scaffolds were incubated under cell culture conditions for 2 h. Images were taken using a Leica DMi8 fluorescent microscope. The viability of the bioprinted, encapsulated INS-1 cells was determined using an ATP-based assay with luminescent readout (CTG, CellTiter-Glo® 3D Cell Viability Assay, Promega GmbH, Walldorf, Germany) according to the manufacturer's protocol. In brief, droplets printed in 96-well plates were incubated with 100 μ l INS-1 expansion medium. On days 0, 3, 6, 9, and 12 after printing, blinded sample droplets together with 100 μ l medium were transferred into a 96-well solid white polystyrene microplate (Falcon®, Corning) and 100 μ l CTG reagent was added to each well. The microplate was continuously shaken for 25 min, and luminescence was measured using an ELISA reader (Synergy HTX, multi-mode reader, BioTek, Bad Friedrichshall, Germany).

RNA sequencing. Genome-wide expression profiling was a service provided by the European Molecular Biology Laboratory (EMBL; Heidelberg, Germany). After 5 days in culture total RNA was isolated from 2D monolayer culture and 3D hydrogel culture using an RNeasy Mini kit (Qiagen, Hilden, Germany) according to the manufacturer's instructions (biological replicates, passage 3). After isolation, the total RNA was treated with the Turbo DNAfree kit according to the manufacturer's instructions (Thermo Fisher Scientific). The RNA concentration and quality were evaluated using Nanodrop and Agilent2000 Bioanalyzer (Appendix X). RNAseq libraries were prepared using the TruSeq stranded mRNA kit and sequenced using an Illumina NextSeq 500 platform, resulting in 75-bp single end reads in a read count of 36 million reads per sample. Quality control of the RNAseq FastQ files was performed

with FastQC v.0.11.8. The obtained reads were pseudoaligned using the rn4 reference genome with the addition of human insulin gene and quantified by Salmon v1.2 with standard parameters. The resulting transcript expression levels were summarized to gene-level expression values and corrected for average transcript length by using tximport v1.10.1 and the "lengthScaledTPM" option while filtering out genes expressed in low amounts (average counts < 10).³ Differentially expressed genes for the culture conditions were determined by using the DESeq2 v1.22.2 package.⁴ Using the DESeq2 and log2 fold change pre-ranked differentially expressed genes, a gene set enrichment analysis was performed using the fgsea package v1.8 and the hallmark gene sets from MSigDB v7.1.⁵ Additional data analysis was performed using Ingenuity Pathway Analysis (IPA; Ingenuity Systems, Qiagen) by input of gene identifiers, log2 fold change, and p-values.⁶ Canonical pathway analysis identified the pathways referenced in the Ingenuity Knowledge Base of canonical pathways (11/2020) that were significant to the data set (p≤0.05). Molecules from the data set that met the log fold change cut-off of <-0.5 and >0.5 and a p-value ≤ 0.05 were considered for the analysis.

Xenotransplantation to the chorioallantoic membrane (CAM) of fertilized chicken eggs. As described before,⁷ fertilized eggs from genetically identical hybrid Lohman Brown chickens were obtained from a local ecological hatchery (Gefluegelzucht Hockenberger, Eppingen, Germany). Eggs were delivered at day 0 of chick development and were immediately cleaned with 70% warm ethanol. The eggs were placed in a digital motor breeder (Type 168/D, Siepmann GmbH, Herdecke, Germany) at 37.8 °C and 45–55% humidity with an activated turning mechanism to start day 1 of the embryonic chick development. Four days after incubation, the turning mechanism of the incubator was switched off and a small hole was cut into the eggshell to detach the embryonic structures from the eggshell by removing 3 ml albumin. The hole was covered with Leukosilk® tape (BSN medical, Hamburg, Germany), and the eggs were incubated further with the turning mechanism switched off. On day 9 of embryonic development, the tape was removed and the epithelial layer of the chorioallantoic membrane (CAM) was gently scratched with a syringe needle to ensure immediate blood supply to the xenotransplant/polymer component. PCL scaffold groups and bioprinted xenografts (bioprinted hydrogel) were placed on the CAM. PCL scaffold groups consisted of 3D-printed PCL scaffolds functionalized with covalently bound heparin and plain PCL scaffolds. Prior to implantation, scaffolds were sterilized with 70% ethanol for 48 h. For explantation, the chicks were ethically euthanized at day 18 of development, 3 days before hatching, as described before.⁸ PCL scaffolds and bioprinted xenografts were excised including the surrounding CAM and briefly washed in PBS before further imaging. Each specimen was imaged by stereomicroscopy (Leica MZ10 F, Leica Microsystems GmbH, Wetzlar, Germany). Images of PCL scaffold groups were analyzed using an automatic image analysis software (WimCAM; CAM Assay Image Analysis Solution, Release 1.1, Wimasis, 2016).

Immunohistochemistry of xenograft tissue. Xenografts were fixated in 5% formaldehyde (Otto Fischar GmbH & Co. KG, Saarbruecken, Germany) after excision and transferred to 70% ethanol after 24 h. The fixated, explanted xenografts were embedded using HistoGel[™] (Lot# 370234, HG-4000-012, Thermo Fisher Scientific) and cryomolds (Tissue-Tek[™], Cryomold[™], Thermo Fisher Scientific) according to the manufacturers' instructions. After paraffin embedding of the xenografts, randomly chosen blocks from each group were continuously sampled in 5 µm serial sections, numbered, and processed for histology. Slides with odd numbers were stained with Mayer's Hematoxylin-Eosin (H/E),

while those with even numbers were immunostained for insulin. Therefore, a primary anti-insulin antibody (monoclonal mouse IgG, 2D11-H5, Lot# SC-8033, SantaCruz, Dallas, TX, USA), overnight 1:100 in background reducing antibody diluent (S3022, Dako, Agilent Tech., Santa Clara, CA, USA), and a polyclonal goat anti-mouse secondary antibody (Dako, Agilent Tech.), 3-3'diaminobenzidine staining with subsequent hematoxylin counter-staining, were used. In addition, randomly chosen samples were immunostained for endothelial and endothelial progenitor cells with a primary anti-chicken CD34 antibody (monoclonal mouse IgG; Lot# AV138, UniProt E1BUT3, Avian Immunology toolbox project, Bio-Rad Laboratories GmbH, Feldkirchen, Germany) to identify newly formed vascular structures in the CAM assay. Whole slides were scanned at 40× magnification using a NanoZoomer S60 Digital Slide Scanner (Hamamatsu Photonics, Hamamatsu City, Japan). Stained tissue slides were analyzed using the ilastik software package⁹ for supervised machine learning (ilastik: interactive machine learning for [bio]image analysis, v1.3.3, open-source, https://www.ilastik.org/download.html). Islets were segmented using the pixel classification workflow (islet, non-islet, background [not islet, not non-islet]). First, a random forest classifier was trained manually, and subsequent batch processing was performed. Due to limitations of the machine-learning strategy in differentiating xenograft and CAM tissue, the xenograft area was determined using ImageJ (Fiji package¹⁰).

Glucose-stimulated insulin secretion (GSIS). For GSIS experiments, INS-1 cells were stained with red fluorescent membrane inserting dye PKH-26 (Lot# SLBW0232, Merck) according to the manufacturer's protocol prior to mixing with the hydrogel for bioprinting. In brief, cells were trypsinized using 0.25% Trypsin-EDTA (Gibco), rinsed with Dulbecco's PBS (DPBS; PromoCell GmbH, Heidelberg, Germany), and finally pelleted. The pellet was resuspended in Diluent A, and PKH-26 dye dissolved in Diluent A was added to the cells. After rapid mixing and incubation, culture medium was added. The cell suspension was centrifuged and further washing steps were performed. The insulin secretion of 3Dbioprinted INS-1 (low glucose: n = 22; high glucose: n = 20) and INS-1/HUVEC co-culture (low glucose: n = 22; high glucose: n = 21) groups, INS-1 cells seeded on PCL/heparin-PCL scaffolds (2x10⁵ cells in 1ml RPMI-1640 in per well), and the 2D monolayer control group was measured. In the 2D monolayer culture group, INS-1 cells were seeded in 4-well chamber slides (10⁵ cells in 1 ml RPMI-1640 per well) (Nunc® Lab-Tek®, Thermo Fisher Scientific). The medium was changed after 2 days, and GSIS was performed on day 3 in all conditions. For preparation of the GSIS solution, SILAC RPMI-1640 Flex (A2494201, Gibco) was supplemented with MgSO₄ (1.16 mmol/l end concentration) (Merck), CaCl₂ (2.5 mmol/l end concentration) (Merck), 20 mM HEPES, and 0.2% BSA (Merck). GSIS was initiated by rinsing the cells once with low-glucose solution (1.67 mM D-glucose), followed by incubation for 1 h in 1 ml low-glucose solution. After that, either 1 ml of low-glucose solution or 1 ml of high glucose solution (16.7 mM D-glucose) was added, followed by incubation for 2 h. A quantity of 500 µl medium was taken and briefly spun down in a 1.5-ml Eppendorf tube. Next, 400 µl supernatant was used for determination of insulin concentration by chemiluminescence immunoassay (ADVIA CENTAUR, Siemens Medical Solutions, Malvern, PA, USA). After GSIS of 2D samples on chamber slides, cells were incubated in 5% formaldehyde solution for 15 min, rinsed with DPBS twice, dried for 10 min, and covered with Fluoroshield Mounting Medium with 4',6-diamidino-2-phenylindole (DAPI; Abcam, Cambridge, UK) and a coverslip. Similarly, 3D-bioprinted samples were fixated and transferred to a glass slide, covered with two drops of Shandon Consul mounting medium (Thermo Fisher Scientific), and squashed with a

coverslip until flattened. Cells were counted using a Leica DMi8 fluorescence microscope with the following settings for PKH-26 imaging: 10× magnification, Y3 filter block, 260 ms exposure time, gain 7. DAPI imaging was performed with the following settings: 10× magnification, DAPI filter block, 10.5 ms exposure time, gain 4. Image processing was performed using Leica LAS X software, and subimages were assembled to mosaics depicting whole domes or whole well bottoms. Cells were counted using ImageJ (Fiji package¹⁰). In the case of polymer scaffold culture, cells were lysed using radioimmunoprecipitation assay (RIPA) buffer supplemented with protease inhibitor (cOmplete Mini, Roche, Basel, Switzerland) and incubated on ice for 10 min. Protein concentration was determined using a bicinchoninic acid (BCA) assay (Pierce BCA Protein Assay Kit, Thermo Fisher Scientific). The assay was performed according to the manufacturer's protocol. In n=12 wells of a 24-well plate, 10⁵ INS-1 cells were seeded in 1 ml RPMI-1640 for correlation of total protein to cell number. After 48 h the medium was changed, followed by another 24 h of incubation. Cells were lysed using 250 µl RIPA buffer + protease inhibitor in n=6 wells and total protein was determined. The residual wells were fixed with 5% formalin, rinsed twice with PBS, and mounted using Fluoroshield Mounting Medium with DAPI. After cell counting, a conversion factor between cell number and total protein was obtained.

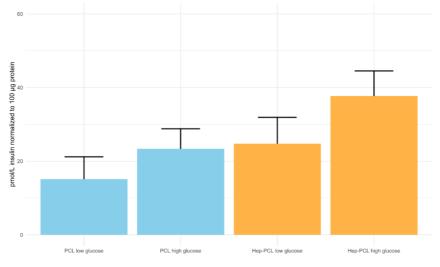
Computer-aided applicability screening of scaffold architecture by finite element analysis. Diffusion of oxygen, glucose, and secreted insulin through islets of Langerhans encapsuled in a hydrogel shell was modeled using a custom python script (v3.8, Python Software Foundation, https://www.python.org) for input parameter-based insulin secretion based on literature data¹¹ (s. Appendix S7). The finite element simulations are based on mesh generation using the open-source module Gmsh¹² and FiPy¹³, a respective finite element solver. The simulations were performed in 2D and the results were extrapolated to 3D spherical setups. Hydrogel shell and islet were initialized with 10 mM (5, 15, 25 mM) glucose. The initial oxygen partial pressures ranged from 90 mmHg to 270 mmHg. The thickness of the hydrogel shell varied between 0 µm and 1000 µM. In the simulation, diffusion started from outside the capsule and triggered consumption of glucose and oxygen within the islets. The simulations were carried out for at least 60 s with step sizes for diffusion below 0.005 s leading to converged results. Based on simulation results, cell viability was evaluated by considering a minimum local oxygen partial pressure of 0.07 mmHg for cells to survive.

Statistical analysis. Data analysis and statistical testing was done using R version 3.6.1 and ggplot2 package. Proliferation assay, vascular ingrowth analysis, and GSIS were analyzed by non-parametric Wilcoxon rank-sum test. Conditions in 2D and 3D GSIS were normalized to 10 000 cells, and PCL scaffold conditions were normalized to 100 μ g total protein. Values not within the 2 ſ interval were classified as outliers and removed prior to analysis. The results are expressed as standard error of the mean. Sequencing was performed using two biological replicates; other experiments were repeated at least three times. Using IPA), the significance of association between dataset and canonical pathway was measured in two ways: (1) ratio of dataset molecule number mapped to canonical pathway; (2) right-tailed Fisher's exact test to calculate a p-value determining the probability that the association between dataset genes and canonical pathway is explained by chance alone. Molecules from the data set that met the log fold change cut-off of <-0.5 and >0.5 and a p-value ≤ 0.05 were considered for the analysis. R version 4.0.0 with additional packages tidyverse v1.3, ggpubr v0.4, and ggrepel v0.8.2 (https://www.r-project.org) was used for data analysis

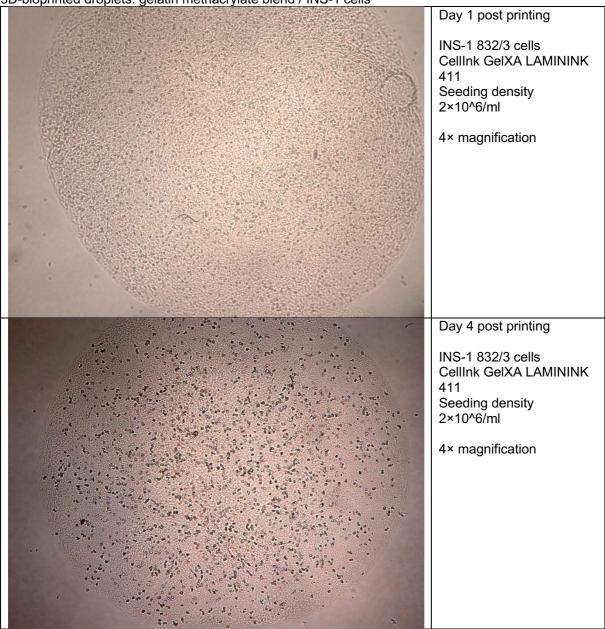
and presentation. Statistical significance is depicted by means of asterisks. p-values are given as $*P \le .05$; $**P \le .01$, $***P \le .001$; $****P \le .0001$.

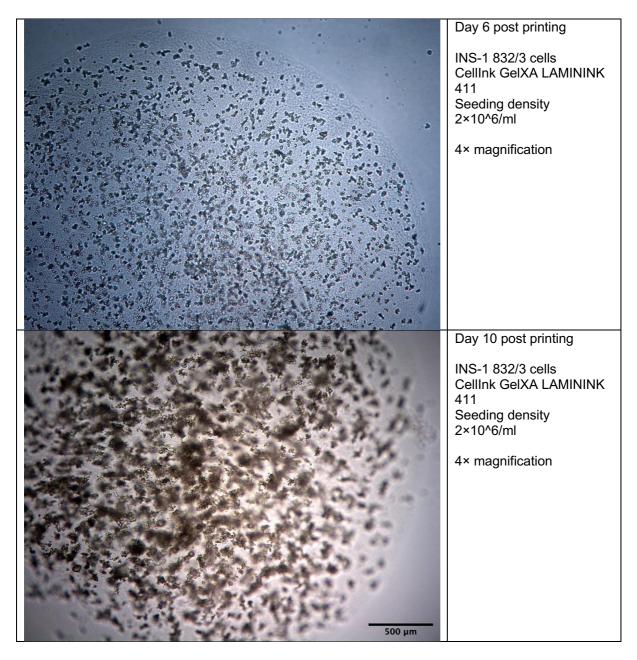
References

- 1. Community, B.O. Blender a 3D modelling and rendering package. (2018).
- 2. Peiris, H., Bonder, C.S., Coates, P.T., Keating, D.J. & Jessup, C.F. The beta-cell/EC axis: how do islet cells talk to each other? *Diabetes* **63**, 3-11 (2014).
- 3. Soneson, C., Love, M.I. & Robinson, M.D. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. *F1000Res* **4**, 1521 (2015).
- 4. Love, M.I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biol* **15**, 550 (2014).
- 5. Subramanian, A., *et al.* Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. *Proc Natl Acad Sci U S A* **102**, 15545-15550 (2005).
- 6. Kramer, A., Green, J., Pollard, J., Jr. & Tugendreich, S. Causal analysis approaches in Ingenuity Pathway Analysis. *Bioinformatics* **30**, 523-530 (2014).
- 7. Zhao, Z., *et al.* Intraductal papillary mucinous neoplasm of the pancreas rapidly xenografts in chicken eggs and predicts aggressiveness. *Int J Cancer* **142**, 1440-1452 (2018).
- 8. Aleksandrowicz, E. & Herr, I. Ethical euthanasia and short-term anesthesia of the chick embryo. *ALTEX* **32**, 143-147 (2015).
- 9. Berg, S., *et al.* ilastik: interactive machine learning for (bio)image analysis. *Nat Methods* **16**, 1226-1232 (2019).
- 10. Schindelin, J., *et al.* Fiji: an open-source platform for biological-image analysis. *Nat Methods* **9**, 676-682 (2012).
- 11. Buchwald, P. A local glucose-and oxygen concentration-based insulin secretion model for pancreatic islets. *Theor Biol Med Model* **8**, 20 (2011).
- 12. Geuzaine, C. & Remacle, J.F. Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. *International Journal for Numerical Methods in Engineering* **79**, 1309-1331 (2009).
- 13. Guyer, J.E., Wheeler, D. & Warren, J.A. FiPy: Partial Differential Equations with Python. *Computing in Science & Engineering* **11**, 6-15 (2009).


Appendix S1A

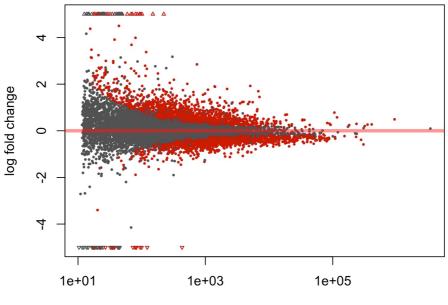
3D-printed polycaprolactone component


Appendix S1B


Glucose-stimulated insulin-secretion: INS-1 cells seeded on 3D-printed polymer scaffolds

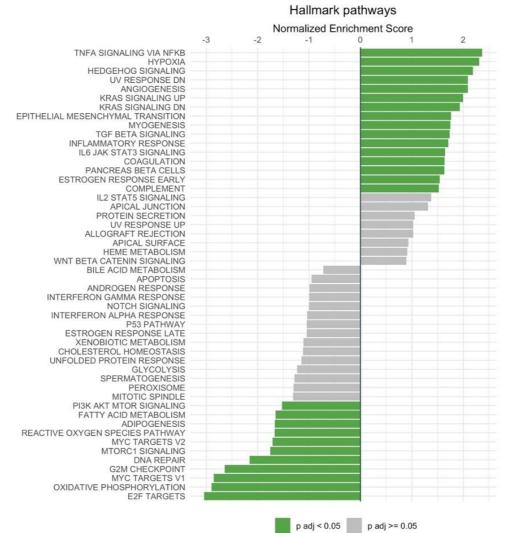
Appendix S2

3D-bioprinted droplets: gelatin methacrylate blend / INS-1 cells


Appendix S3A

3D-Bioprinted grid structures incl. INS-1 for total RNA sequencing

Appendix S3B


MA-plot RNA sequencing

mean of normalized counts

Appendix S3C

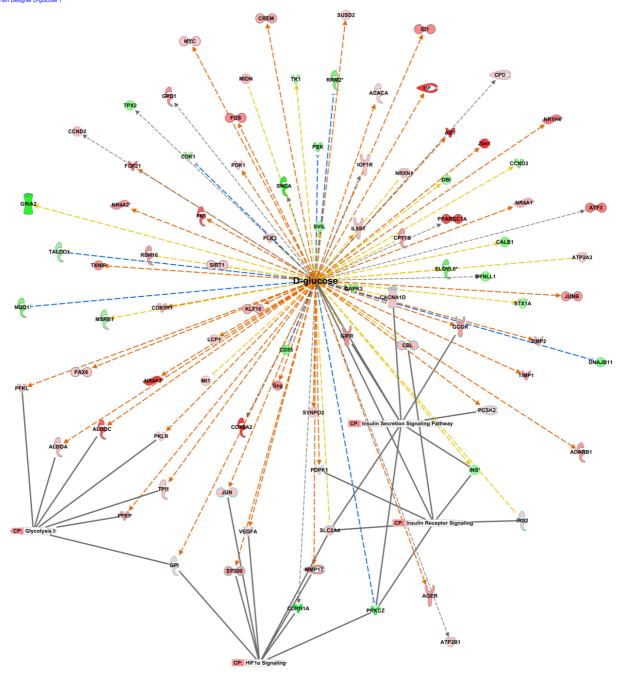
Gene set enrichment analysis: hallmark pathways

Appendix S3D

Ingenuity Pathway Analysis: 100 altered canonical pathways (cut-off threshold p≤0.05)

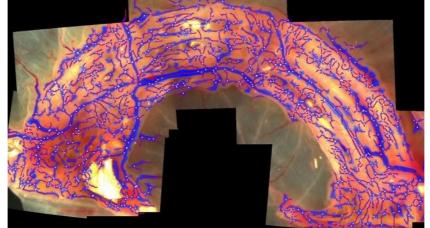
Appendix S3E

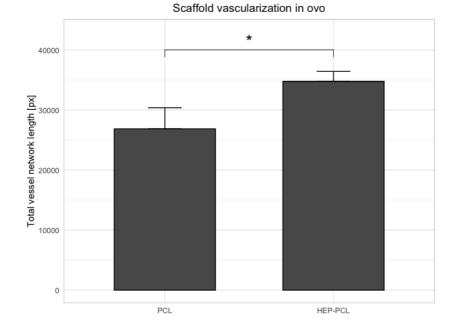
Ingenuity Pathway Analysis: graphical summary



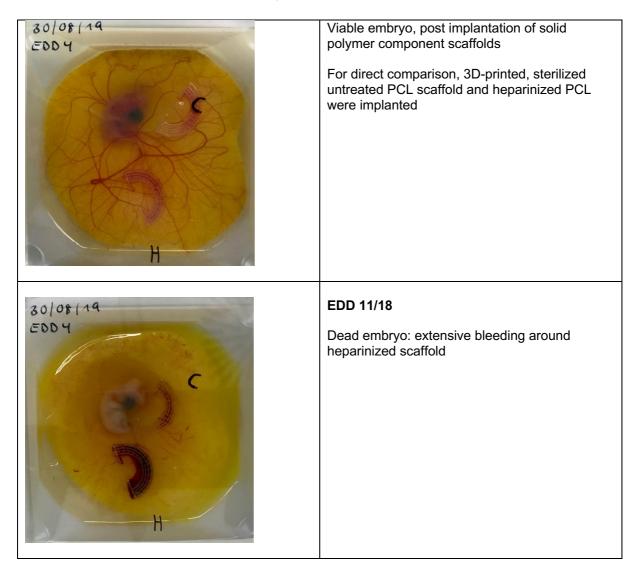
Appendix S3F Excerpt table: differential gene expression

Gene_name	ID	Ensemble	baseMean	log2fold change	lfcsE	stat	p value	p adjusted
Insulin	Inș	FNSG00000254647	238211.652	-0.129	0.085	-1.522	0.127995498	0.279319244
Glucagon	Geg	ENSRNOG0000005498	2654,924	1.213	0.457	2,653	0.007966849	0.034514808
Glucagon receptor	Gegr	ENSRNOG0000036692	2326.087	1.076	0.101	10.687	1.17E-26	7.03E-24
GLUT2	Sic2a2	ENSRNOG00000011875	14986.447	0.393	0.058		1.23E-11	7.78E-10
GLUT4	Sic2a4	EN5RNOG00000017226	130.455	0.693	0.260		0.007589811	0.03326968
SUR1, ATP blinding cassette subfamily C member 8	Abcc8	EN5RNOG0000021130	2915.685	0.831	0.082		3.04E-24	1.42E-21
MafA	Mafa	EN5RNOG0000007668	3771.928	0.158	0.110	1.433	0.151775038	0.314360904
Pancreatic and duodenal homeobox 1	Pdx1	FN\$RN0G0000046458	3752.708	-0.233	0.090	-2.604	0.009223669	0.038710575
Neurogenic differentiation 1	Neurod1	EN SR NOG00000005609	1750.953	0.043	0.118	0.365	0.715066016	0.842432143
Insulin like growth factor 1 receptor	lgf1r	ENSRNOG0000014187	361.518	0.638	0.209	3.052	0.002272084	0.01276656
Insulin like growth factor binding protein 4	lgfbp4	ENSRNOG0000010635	529.906	0.750	0.167	4.491	7.10E-05	0.000100092
Glycogen synthase kinase 3 beta	Gsk3b	EN5RNOG00000002833	678.621	0.555	0.158		0.000436008	0.003290919
Forkhead box O1	Foxo1	ENSRNOG0000013397	353.278	0.642	0.174		0.000228759	0.001880739
Islet amyloid polypeptide	lapp	EN5RNOG0000012417	317725.627	0.200	0.059	3.401	0.000671365	0.004683593
Insulin receptor substrate 2	lrs2	ENSRNOG0000023509	1264.762	0.537	0.106	5.087	3.64E-07	7.52E-06
Activation transcription factor 3	Atf3	ENSRNOG0000003745	51.599	1.388	0.441	3.145	0.001658037	0.00991022
Pyruvate dehydrogenase kinase 1	Pdk1	ENSRNOG0000001517	569.605	0.613	0.175	3.498	0.000468251	0.003490444
Transforming growth factor beta 2	Tgfb2	EN5RNOG0000002418	92.788	5.784	0.673	8.592	8.57C-18	1.830-15
6-Phosphofructo-2- kinase/fructose-2,6- bisphosphatase 3	Pfkfb\$	ENSRNOG0000018911	1418.659	1.888	0.102	18.464	3.99E-76	2.52E-72
Hypoxia inducible factor 1 subunit alpha	Hfia	ENSRNOG0000008292	363.999	0.008	0.171	0.045	0.964023534	0.981988388
Glucosidase alpha	Gaa	ENSRNOG00000047656	6016./4/	0.680	0.080	8.539	1.36E-17	2.81E-15
Aldolase	Aldoa	ENSRNOG0000052802	19051.944	0.696	0.079	8.863	7.78E-19	1.82E-16
Oxytocin receptor	Oxtr	EN5RNOG0000005806	59,153	1.815	0.429	4.228	2.36E-05	0.000276982
X-linked inhibitor of apoptosis	Xiap	ENSRNOG0000006957	245.367	0.585	0.266		0.028011004	0.092806214
Caspase 3	Casp3	EN5RNOG00000010475	972.584	-0.317	0.115		0.006061081	0.027927342
Bcl2 associated X Bcl2 associated agonist of	Bax Bad	EN5RNOG00000020876 EN5RNOG00000021147	3520.619	-0.389 -0.370	0.090	-4.319 -3.984	1.57E-05 6.77F-05	0.000195986
cell death		FINSKINUGUUUUUUUUUUU	1814-180	-0.370	0.095		0.778-05	0.000077347
Fibronectin	Fn1	EN5RNOG0000014288	6783.646	1.698	0.083	20.548	7.94E-94	1.00E-89
Ecadh	Cdh1	ENSRNOG0000020151	2776.210	0.196	0.078		0.01260122	0.04921925
VEĞFA	Vegfa	ENSRNOG0000019598	5049.442	0.598	0.102		3.94E 09	1.32E 07
VEGFB	Vegfb	ENSRNOG0000021156	863.567	0.502	0.119		2.50E-05	0.000290696
Laminin subunit beta 3	Lamb3	ENSRNOG0000006025	479.110	0,721	0,164		1,15F-05	0.000150921
Laminin subunit alpha 5	Lama5	ENSRNOG0000053691	181.864	0.672	0.231	2.902	0.003/13368	0.018843066
Basal cell adhesion molecule	Bcam	ENSRNOG0000029399	1442.506	0.725	0.137	5.295	1.19E 07	2.76E 06
Fibroblast growth factor receptor 1	Fgfri	ENSRNOG0000016050	529.626	0.953	0.180	5.307	1.11E-07	2.61E-06
Fibroblast growth factor receptor 4	Fgfr4	EN5RNOG00000016763	528.082	0.610	0.146	4.179	2.92E-05	0.000333051
Fibroblast growth factor 13	Fgf1S	ENSRNOG0000042753	129.914	1.201	0.335	3.582	0.000341432	0.002653246
Heparin binding EGF like growth factor	Hbegf	ENSRNOG0000018646	341.644	1.130	0.169		2.17E-11	1.27E-09
Wnt family member 4	Wnt4	EN5RNOG0000013166	1267.758	0.746		7.511	5.88E-14	6.35E-12
Claudin 15	Cidn15	ENSRNOG0000001419	167.689	1.429	0.248		8.59E-09	2.70E-07
VGF nerve factor inducible	Vgf	ENSRNOG0000001416	5882.449	0.557	0.111	5.021	5.13E 07	1.020 05
Neuronal growth regulator 1	Negr1	ENSRNOG0000021410	186.823	0.942	0.226	4.159	3.19F-05	0.000357297


Appendix S3G


Ingenuity Pathway Analysis: upstream regulator analysis Glucose as upstream regulator, data set genes, effect on target molecules, and overlay of canonical pathways (insulin secretion signaling, insulin receptor signaling, glycolysis I, HIF1a signaling)

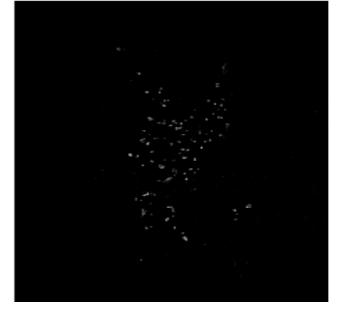
Appendix S4A


Vascular ingrowth and neoangiogenesis in scaffold structures Machine learning-based vascular network analysis: Explant of PCL scaffolds from CAM assay

Appendix S4B Chorioallantoic membrane assay: ex ovo trials, timeline

30/08 (19 EDD 4	Embryonic development day (EDD) 4/18 After 4 days of incubation, transfer of the viable chick embryo into culture device with glass top for observation
SO/OB (19 EDD Y	EDD 7/18 Viable embryo
30/08/19 EDDY	EDD 9/18 Viable embryo, before implantation of solid polymer component scaffold
	EDD 9/18

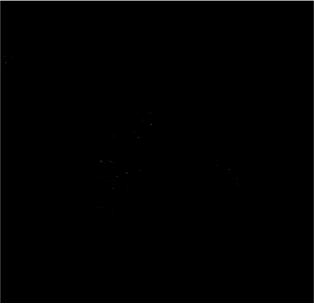
Appendix S4C

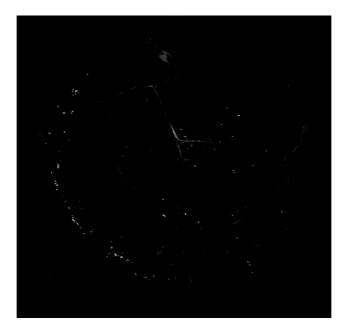

Immunohistochemical staining of CAM assay explant: gelatin methacrylate blend / INS-1 cells Paraffin embedded tissue, slice thickness 5 µm, avian antiCD34 staining: bottom, periphery of xenograft; top, center of xenograft

Appendix S5

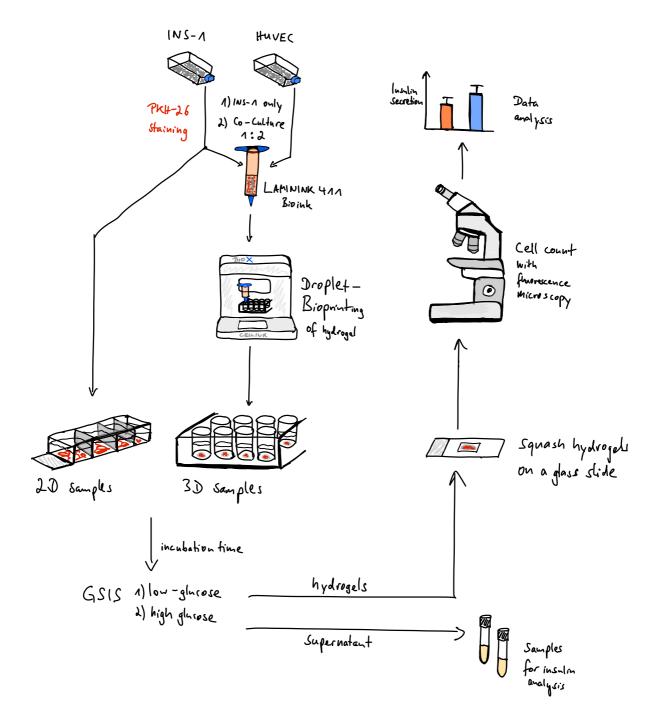
Pixel classification with ilastik: exemplary data on spatial distribution of pseudoislets of cross-sections from bioprinted xenografts explanted from CAM (anti-insulin immunohistochemistry)

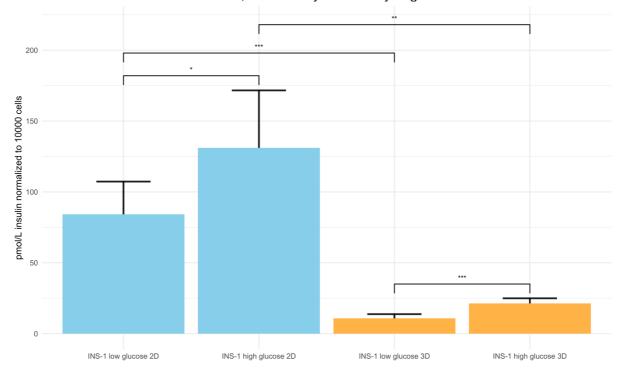
Pseudoislet segmentation (Insulin⁺ staining) using ilastik pixel classification with overlay of hydrogel graft area (1.3 mm², 1.8% pseudoislet area). Cross section at 20 μ m (from graft base).


Pseudoislet segmentation (Insulin⁺ staining) using ilastik pixel classification with overlay of hydrogel graft area (1.8 mm², 2.1% pseudoislet area). Cross section at 40 μ m (from graft base).


Pseudoislet segmentation (Insulin⁺ staining) using ilastik pixel classification with overlay of hydrogel graft area (6.5 mm^2 , 2.1% pseudoislet area). Cross section at $60 \text{ }\mu\text{m}$ (from graft base).

Pseudoislet segmentation (Insulin⁺ staining) using ilastik pixel classification with overlay of hydrogel graft area (10 mm², 0.1% pseudoislet area). Cross section from xenograft with 15 s UV crosslinking (405 nm) after bioprinting


Pseudoislet segmentation (Insulin⁺ staining) using ilastik pixel classification with overlay of hydrogel graft area (21.6 mm², 0.6% pseudoislet area). Cross section from large xenograft with 15 s UV crosslinking (405 nm) after bioprinting



Appendix S6

GSIS: experimental workflow

INS-1 cells were either growing in monolayer (2D samples) or embedded in bioprinted LAMININK 411 hydrogels (3D samples). To investigate the influence of endothelial cells on INS-1 cells, hydrogels containing a 1:2 co-culture of INS-1 and HUVEC were printed. GSIS was performed and cells were counted using fluorescence microscopy.

GSIS: culture conditions for INS-1 cells, 2D monolayer vs. 3D hydrogel

Appendix S7

In silico analysis: parameters for computer-aided structure screening

Parameter	ucture screening Value			
<u>Oxygen</u>				
Initial and inflow concentration	0.1305 mol/m³ (equ. 90 mmHg)			
	0.232 mol/m ³ (equ. 160 mmHg)			
	0.3915 mol/m³ (equ. 270 mmHg)			
Diffusion through aqueous media	3.0 x10 ⁻⁹ m²/s *			
Diffusion through hydrogel	2.5 x10 ⁻⁹ m²/s *			
Diffusion through Langerhans islet	2.0 x10 ⁻⁹ m²/s *			
<u>Glucose</u>				
Initial and inflow concentration	5 mol/m ³			
	10 mol/m ³			
	15 mol/m ³			
	25 mol/m ³			
Diffusion through aqueous media	9.0 x10 ⁻¹⁰ m²/s *			
Diffusion through hydrogel	6.0 x10 ⁻¹⁰ m²/s *			
Diffusion through Langerhans islet	3.0 x10 ⁻¹⁰ m²/s *			
Insulin				
Initial and inflow concentration	0 mol/m³			
Diffusion through aqueous media	1.5 x10 ⁻¹⁰ m²/s *			
Diffusion through hydrogel	1.0 x10 ⁻¹⁰ m²/s *			
Diffusion through Langerhans islet	0.5 x10 ⁻¹⁰ m²/s *			
Islet of Langerhans				
Radius	50 µm			
	75 μm			
	150 µm			
	250 μm			
<u>Hydrogel</u>				
Shell thickness	0 μm			
	50 µm			
	100 µm			
	300 µm			
	500 µm			
	600 µm			
	700 μm			
	800 µm			
	1000 μm			

*As described by Buchwald. et al. (2011)