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Abstract

The identification of missing drug targets is critical for the development of treat-
ments and for the molecular elucidation of drug side effects. Drug targets have
been predicted by exploiting molecular, biological or pharmacological features of
drugs and protein targets. Yet, developing integrative and interpretable machine
learning models for predicting drug targets remains a challenging task. We present
Inception, an integrative and interpretable matrix completion model for predicting
drug targets. Inception is a self-expressive model that learns two similarity matrices:
one for drugs and another for protein targets. These learned similarity matrices are
key for our models’ interpretability: they can explain how a predicted drug-target
interaction can be explain in terms of a linear combination of chemical, biological
and pharmacological similarities. We develop a novel objective function with
efficient closed-form solution. To demonstrate the ability of Inception at recovering
missing drug-target interactions (DTIs), we perform cross-validation experiments
with stringent controls of data imbalance, chemical similarities between drugs and
sequence similarities between targets. We also assess the performance of our model
using a simulated prospective approach. Having trained our model with DTIs from
a snapshot 2011 of the DrugBank database, we test whether we could predict DTIs
from a 2020 snapshot of DrugBank. Inception outperforms two state-of-the-art
drug target prediction models in all the scenarios. This suggests that Inception
could be useful for predicting missing drug target interactions while providing
interpretable predictions.

∗Equal contribution, authors are in alphabetical order.
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1 Introduction

The identification of drug targets is critical for the elucidation of drugs therapeutic effects, the
anticipation of drug side effects, and even for the prevention of drug resistance (Schenone et al.,
2013). Typically, a limited number of drug targets are experimentally identified through costly
and time consuming in-vitro experiments. Yet, our knowledge of drug targets remains largely
incomplete [Yıldırım et al., 2007].

A wide range of computational approaches have been proposed to predict missing drug-target
interactions (DTI). Early work focuses on docking simulations and ligand-based approaches. Docking
simulations attempt to model physico-chemical drug-protein interactions by considering the 3D
structure of the proteins. However, these simulations are computationally expensive, often requiring
expert knowledge, and they can only be used when the 3D protein structure is available (see review
in [Amaro et al., 2018]). Ligand-based methods (Keiser et al., 2007) relate protein targets based on
the chemical similarity of their ligands and then use statistical models to make predictions. Yet, these
methods often neglect other relevant information, such as protein sequence.

Machine learning approaches that have been proposed to predict missing drug-targets can be divided
into two main groups. A first group of methods are based on exploiting the structure of the drug-target
network, in combination with chemical structure similarities between drugs and protein sequence
similarities between targets [Yamanishi et al., 2008, Bleakley and Yamanishi, 2009, Mei et al., 2013,
Chen et al., 2012]. The drug-target network is a bipartite graph where nodes represent drugs and
targets and edges represent experimentally known interactions. For instance, Bleakley and Yamanishi,
2009 use a support vector machine classifier with kernels based on drug chemical similarities and
target sequence similarities. Chen et al., 2012 build a heterogeneous network by adding further links
to the drug-target network: weighted links between pairs of drugs representing their chemical and
shared targets similarities, and weighted links between pairs of targets representing their sequences
and shared drugs similarities. In the heterogeneous network, starting from a given drug, they perform
a random walk with restart to rank the candidate targets for the given drug. The limitation of these
methods is that they only integrate chemical information about drugs and sequence information about
their protein targets. However, other type of information, such as drug side effects, have also been
useful in the prediction of missing drug targets [Campillos et al., 2008].

The second group of machine learning methods integrate a wider range of heterogeneous information
about drugs and their protein targets. In an early attempt, Zheng et al., 2013 propose a collabora-
tive matrix factorisation model that uses drug similarities based on their chemical structures and
Anatomical, Therapeutic and Chemical (ATC) classification, and protein similarities based on their
similarities in protein sequence, gene ontology annotations and protein interactions. Recently, Luo
et al., 2017 proposed DTINet, a network integration model that exploits seven types of heterogeneous
data about drugs and targets, including chemical structure, drug-drug interactions, drug side effects,
disease indications, protein sequence, protein-protein interactions and protein-disease associations.
DTINet has two main learning steps. In the first, it learns a low-dimensional vector representation for
drugs and targets based on the heterogeneous information using diffusion component analysis [Cho
et al., 2015]. In the second step, the learned representations are used as features in an inductive matrix
completion model, where interaction is predicted based on the geometric closeness between the
drugs and the targets. Wan et al., 2019 proposed neoDTI, that improves on DTINet by using a neural
network model to learn topology-preserving embeddings of drugs and targets from the heterogeneous
network.

Building integrative machine learning models it is not an straightforward task, and it remains an open
challenge across biology and medicine [Zitnik et al., 2019]. DTINet and neoDTI have effectively
combined a wide range of heterogeneous information about drugs and targets to provide state-of-
the-art predictions. Yet, even these accurate models were not designed for providing interpretable
predictions; which is critical to aid decision making in drug discovery [Rudin, 2019, Jiménez-Luna
et al., 2020].

Here we present Inception, an integrative machine learning model that predicts missing DTIs more
accurately than previously proposed prediction models. Inception is a matrix completion model
inspired by recent high-rank matrix completion under self-expressive models (SEM) [Elhamifar,
2016]. The core idea of SEM models is to represent datapoints (e.g. drugs) as a linear combination
of few other datapoints. This is different from the representation used by DTINet and neoDTI
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where drugs and targets are represented by learned low-dimensional feature vectors. Importantly, we
constrain our matrix completion to learn from non-negative similarities between drugs and targets.
This has the advantage of offering interpretable predictions in terms of available chemical, biological
and pharmacological information. Our results indicate that Inception provides state-of-the-predictions
and that it might be useful to provide human-in-the-loop interpretations of the predictions.

2 Methods

Self-expressive models are based on the self-expressiveness property of the data [Elhamifar and Vidal,
2013], which states that each data point in the union of subspaces can be efficiently represented as
a linear combination of other data points [Fan and Chow, 2017, Frasca et al., 2019, Galeano and
Paccanaro, 2019] . Given an incomplete data matrix X ∈ RN×M , SEM models aims to represent
each column of X as a sparse representation of other columns, i.e. X ' XW, where W ∈ RM×M

denotes the self-representation coefficient matrix for the column elements. A similar model can
be obtained for the rows of X, i.e. X ' HX, where H ∈ RN×N denotes the self-representation
coefficient matrix for the row elements. Typically, diag(W) = 0 (or diag(W) = 0) is enforced to
prevent the trivial solution of representing a datapoint by itself.

To learn the self-representation matrices W and/or H, previous work focused on solving sparse
optimization programs under l1 relaxation. Galeano and Paccanaro [2019], Frasca et al. [2019]
also proposed Geometric SEM (GSEM), a framework to integrate side information using graph
regularisation constraints. Yet, these models do not effectively integrate multiple side information
about X and their learned self-representation matrices, W and/or H, are difficult to interpret because
they are not symmetric, i.e. similarities.

We propose Inception, an integrative SEM model that constrains the self-representation matrices to
learn from similarities relating drugs and targets. Inception exploits the use of well-known similarity
information between drugs, such as chemical structure similarity, and between protein targets, such
as sequence similarity, to provide interpretable predictions in terms of known available chemical,
biological or pharmacological information. Our starting point is the matrix X containing binary
drug-target interactions between N drugs (rows) and M protein targets (columns). An entry xij = 1
if drug i was found to experimentally bind to protein target j, or xij = 0 otherwise. Our task consist
on predicting the presence or absence of drug-target interactions in X. Inception predicts scores by
weighting the contributions of the SEM model for drugs and targets, as follow:

X̂ = pHXr + (1− p)XcW (1)

where Xr and Xc are obtained after normalising rows and columns of X such that the norm of each
row (or column) is one, respectively; and p ∈ [0, 1] controls for the relative importance of each model
for the prediction.

Figure 1 illustrates Inception’s model in Equation (1). The figure depicts (in blue) how our model
integrates several drug similarities to learn H, including information from chemical structure (denoted
as Sr

chem ∈ RN×N ), drug indication (Sr
ind), drug side effects (Sr

se) and drug-drug interactions (Sr
DDI).

An additional similarity matrix is built based on the cosine similarity between the row elements of the
normalised DTI matrix Xr (Sr

DTI). Similarly, Figure 1 shows (in red) how our model integrates several
target similarities to learn W, including information from protein sequence (Sc

seq), protein-protein
interactions (Sc

PPI), and protein-disease association (Sc
dis). A similarity matrix based on the cosine

similarity between the columns of the normalised DTI matrix Xc (Sc
DTI) is also build.

Inception learns W and H from Equation 1 by minimising the following cost function:

min
W,H

L(W,H) =
∑
j

αj

2
‖Sc

j −W‖2F +
∑
j

βj
2
‖Sr

j −H‖2F (2)

where ‖.‖F denotes the Frobenius norm, and αj > 0 and βj > 0 are constant values. The first
term in Equation 2 is the target self-representation constraint, that ensures that W is a weighted
linear combination of similarity matrices relating protein targets. Notice how the constant values αj

weigh the importance of each similarity matrix for W. This informs us about the relative importance
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of each type of side information for the prediction. Similarly, the second term in Equation 2, the
drug self-representation constraint, ensures that H learns from the weighted linear combination of
similarity matrices relating drugs. The objective function in Equation 2 is convex in both W and H.
This allows us to obtain a closed form solution for our predictions X̂. By setting ∂L

∂W = 0, ∂L
∂H = 0,

we obtain the optimal solution for W and H:

W =

∑
j αjS

c
j∑

j αj
; H =

∑
j βjS

r
j∑

j βj
(3)

By replacing Equation (3) in (1), our predicted scores X̂ can be written as:

X̂ =

(∑
j βjS

r
j∑

j βj

)
Xr

︸ ︷︷ ︸
Drug self-representation model

+ Xc

(∑
j αjS

c
j∑

j αj

)
︸ ︷︷ ︸

Target self-representation model

(4)

Thus our approach does not require iterations of any optimisation procedure, it can be computed
extremely fast, and it scales up to large drug-target interaction datasets with multiple heterogeneous
sources of information.

3 Materials

Datasets

We use the datasets compiled by Luo et al., 2017 in their original study. It includes Drug-Target
Interactions (DTIs) from a 2011 snapshot of DrugBank v3.0 (Knox et al., 2010) and complementary
information about drugs and protein targets. It contains 1923 DTIs between 549 drugs and 424 protein
targets. Each drug and each protein in this set have at least one known association. Complementary
information about drugs includes 2D Tanimoto chemical similarity, drug-drug interactions from
DrugBank v3.0 (Knox et al., 2010), drug-disease associations from the Comparative Toxicogenomics
database (Davis et al., 2013) and drug-side effects from the Side Effect Resource (SIDER) v2.0 (Kuhn
et al., 2010). Complementary information about proteins includes sequence similarity, protein-protein
interactions from the Human Protein Reference Database (HPRD) (Keshava Prasad et al., 2009),
and protein-disease association from the Comparative Toxicogenomics database (Davis et al., 2013).
In total, there are seven heterogeneous sources of complementary information. Details about each
dataset can be found in Supplementary Table 1.

Similarity matrices

Similarities between drugs are obtained as follows. Sr
DDI is obtained after computing the cosine

similarity between the row elements of the 549× 549 drug-drug interaction (DDI) matrix. Similarly,
we obtain Sr

ind and Sr
se from the 549× 5, 022 drug-disease association matrix and the 549× 3, 588

drug-side effect association matrix, respectively. We use the same Sr
chem provided by Luo et al., 2017,

which consists on the 2D Tanimoto chemical similarity. Sr
DTI is also computed based on the cosine

similarity between the rows of Xr. In total, we obtain five similarity matrices relating drugs based on
diverse chemical, biological and pharmacological data.

To obtain similarities between protein targets, we also compute the cosine similarity between protein
target features based on their 424× 5, 022 protein-disease association matrix, and 424× 424 protein-
protein interaction data; from which we build Sc

dis and Sc
PPI, respectively. The sequence similarity

matrix Sc
seq, which is based on the Smith-Waterman percent identity score provided by Luo et al.,

2017, is normalised between 0 and 1. Sc
DTI is also computed based on the cosine similarity between

the columns of Xc. In total, we obtain four similarity matrices relating proteins based on genomic
and proteomic features.

The similarity values in each of the nine similarity matrices, Sr
i and Sc

j , are bounded between 0
and 1. This helps in the statistical interpretation of the contributions of each individual type of
information to the optimal W and H , by inspecting the values of αs and βs in Equation (2). While
high similarity values can be informative of the biology underlying a drug-target interaction, low
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similarity values might represent noisy information that can be removed. To achieve a sparser and
more meaningful solution for interpretability, we define thresholds values τchem, τse, τind, τseq, τdis for
the Sr

chem,S
r
se,S

r
ind,S

c
seq,S

c
dis similarity matrices, respectively. Below each threshold, the values in

the similarity matrices were set to zero. These values are defined in the following section.

Evaluation procedure

We compare the performance of Inception with two state-of-the-art integrative DTI prediction models:
DTINet [Luo et al., 2017] and neoDTI [Wan et al., 2019]. Following their procedure, we frame a
binary classification problem, where the goal is to predict the presence or absence of drug-target
interactions. We perform a ten-fold cross validation procedure where 10% of the known DTIs in
X are randomly chosen as a test set. The remaining 90% of the DTIs are used for training. Notice
that the values of X that are removed for testing are set to a value of zero in the DTI matrix used for
training. The prediction performance is then assessed based on the ability of the model to discriminate
interacting pairs versus non-interacting pairs in the test set. We use the area under the receiving
operator curve (AUROC) and the area under the precision recall curve (AUPR) to measure the binary
classification performance.

To set the model parameters, we perform a grid search on a validation set in each fold. On average,
we observe good results with αseq = 5 (τseq = 0.245), αppi = 2, αdis = 5 (τdis = 0.99), βchem = 1
(τchem = 0.684), βse = 3.5 (τse = 0.574), βind = 9.5 (τind = 0.866), βchem = 0.5. Note that we do
not tune αDTI = 1 and βDTI = 1, that correspond to the penalisation values for Sr

DTI and Sc
DTI,

respectively. We use these hyperparameters for all our experiments.

To guarantee a fair comparison, we tune the model parameters of each model using the same folds
that are used for our method. In detail,

• DTINet: we use the code provided by Luo et al., 2017. We perform a grid search of
hyperparameters for DTINet and find an optimal performance when setting the dimension
of drugs and proteins embeddings to 150, and the restart probability of the random walk to
0.5. For the matrix completion, we set the rank to 40 and the regularisation parameter to 10.

• NeoDTI: we use the code provided by Wan et al., 2019, which we updated to the latest
version of Tensorflow 2.1 [Abadi et al., 2015]. Following the guidelines provided by Wan
et al., 2019, we set the dimension of the embeddings and projection matrices to 1024, which
gives the best performance for our splits.

4 Results

Performance evaluation on multiple drugs

Following Luo et al., 2017, we start by analysing the performance of Inception at recovering missing
drug-target associations in X in a balanced scenario. During the ten fold cross-validation, we sample
at random a matching number of non-interacting pairs (negative labels) with respect to the number of
interacting pairs (positive labels) in the test set. Results show that Inception significantly outperforms
state-of-the-art competitors. Inception achieves an average AUROC of 95.96± 1.00% (mean and
s.t.d.), which represents a performance gain of 6.5% with respect to neoDTI (89.43± 2.22%) and
DTINet (89.79± 1.85%). The increase in prediction performance is also significantly higher in terms
of AUPR, for which our method achieves 96.25±0.73%, versus 90.16±01.94% and 91.57±1.24%
for neoDTI and DTINet, respectively. These results suggest that our method is able to effectively
recover missing DTIs in X.

In practice, there are more non-interacting pairs in X than interacting pairs (0.83% of the associations
in X are interacting pairs). To simulate the more realistic scenario where interacting pairs are
recovered from a larger sample of non-interacting pairs, we expanded the evaluation presented by Luo
et al., 2017 and evaluate the performance of the methods at predicting missing DTIs by increasing
the ratio of negative to positive labels. We randomly sample the set of non-interacting pairs in the test
set such that the ratios of negative to positive labels are 1, 5, 10, 20, 50 and 100. Figure 2a shows
that the mean AUROC of the three methods is robust with respect to the class imbalance. Inception
outperforms neoDTI and DTINet across all the ratios. In terms of AUPR, which is known to be
sensitive to class imbalance [Saito and Rehmsmeier, 2015], we observe that the performance of the
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three methods decrease around 10% when the ratio of negative to positive labels is increased by 10
(see Fig. 2b). We also observe that DTINet is more sensitive to the class imbalance than Inception or
neoDTI. Exact AUROC and AUPR values are shown in Supplementary Tables 2-3.

An interesting question is whether chemically similar drugs could bias our evaluations of the method’s
performance. This may occur because the distribution of chemical similarities for drugs that share
targets is significantly higher than for those that do not (One-Tailed Wilcoxon Sum Rank Significance,
p < 2.23× 10−308). Following Luo et al., 2017, we assess the performance of the methods using
the same test sets from our cross-validation sets, for a class imbalance with ratio 10, but where the
DTIs corresponding to drugs with more than 0.6 chemical similarity to drugs in the training set are
removed. Our results show that Inception can predict more accurately missing DTIs in X even for
drugs that are chemically dissimilar to the drugs available for training. The mean AUROC only
decreases by 2.15% for Inception, while this percentage is 4.44% for neoDTI and 7.05% for DTINet.
The performance drops in terms of AUPR are consistent: 8.57% (Inception), 10.77% (neoDTI) and
16.36% (DTINet). Exact AUROC and AUPR values are shown in Supplementary Tables 4-5.

Another interesting question is whether targets with similar sequence could bias our evaluations of
the method’s performance. This is also motivated by the observation that the distribution of sequence
similarities for proteins that share drugs is significantly higher than for those that do not (One-Tailed
Wilcoxon Sum Rank Significance, p < 2.23× 10−308). Following Luo et al., 2017, we remove DTIs
in the test set corresponding to protein targets with sequence similarity higher than 40% by keeping a
class imbalance with ratio 10. Our results show that Inception can predict more accurately missing
DTIs in X even for targets that are dissimilar in sequence to the targets available for training. The
mean AUROC only decreases by 3.9% for Inception, while this percentage is 8.57% for neoDTI
and 10.4% for DTINet. The performance drops in terms of AUPR are also also consistent: 20.93%
(Inception), 27.72% (neoDTI) and 29.7% (DTINet). Exact AUROC and AUPR values are shown in
Supplementary Tables 4-5.

Following Luo et al., 2017, we also investigated the method’s performance when simultaneously
controlling for chemically similarity and sequence similarity. We remove DTIs in the test set
corresponding to protein targets with sequence similarity higher than 40% and drugs with chemical
similarity higher than 0.6, and keeping a class imbalance with ratio 10. While the prediction
performance of Inception only drops by 5.11% in terms of mean AUROC, the decline in performance
is 14.23% for neoDTI and 15.44% for DTINet. The result is consistent in terms of mean AUPR:
24.85% (Inception), 38.31% (neoDTI) and 37.14% (DTINet). AUROC and AUPR values from the
cross-validation procedure are shown in Figure 2c-d. Exact AUROC and AUPR values are shown in
Supplementary Tables 4-5.

Prospective Evaluation

We have shown that Inception effectively predicts missing DTIs in X under several evaluation
procedures. Cross-validation procedures can be overoptimistic, as they do not mimic the experimental
drug discovery process [Cami et al., 2011]. In practice, DTIs are continuously added to the DrugBank
database by pharmacological experts as these are discovered and experimentally validated by the
scientific community.

Using DTI data from DrugBank 2011, we build X, trained the models, and aim to predict novel DTIs
that appear in DrugBank 2020 but were not known in 2011. This amounts to a prospective evaluation
that preserves the chronological order in which information become historically available. We found
471 new DTIs between 169 drugs and 129 protein targets that were placed in a test set. Following
Luo et al., 2017, we calculate the performance using the recall of novel DTIs found in the top-N
predictions retrieved for each drug.

Figure 3 shows that, in 70% of the cases, Inception predicts the correct DTIs in the top-40 predictions
retrieved. The percentage of DTIs in the top-40 predictions retrieved is significantly lower for neoDTI
and DTINet. This means that many of these novel DTIs, which were discovered experimentally,
could have been systematically predicted by our approach already in 2011.

Interpreting Inception’s predictions

The effectiveness of Inception at predicting missing DTIs prompted us to ask whether our model can
provide biologically meaningful interpretation for the predictions.
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Let us recall that Inception is a linear model where the predicted scores are given by the linear
combination of two terms (see Equation 1): the drug self-representation model (HXr) and the target
self-representation model (XcW ). We started by analysing the contribution of each of these terms
for a single DTI that was missing in our 2011 snapshot but appeared in the 2020 snapshot. We select
the beta-blocker Atenolol (DB00335), for which we had only one known target in our 2011 snapshot:
the beta-1 adrenergic receptor (ADRB1). In the 2020 snapshot, Atenolol was also associated to the
beta-2 adrenergic receptor (ADRB2), its new target. The pair Atenolol-ADRB2 is in fact Inception’s
top-1 prediction with a score of 1.141. 95% of this score is coming from the drug self-representation
model, and only 5% from the target self-representation model (see Figure 4a).

Inception has the ability to further inform us about the additive contribution of each type of similarity
information in the drug and target self-representation models. The sunburst plots in Figure 4 (a)
show a breakdown of the score provided by each model. The drug self-representation model predicts
the Atenolol-ADRB2 association by linearly combining similarities between Atenolol and other
drugs that are known to target ADRB2 (see Equation 4). We observe that Bisoprolol and Acebutolol
are responsible for 33% of the drug self-representation score. Interestingly, the contributions of
Bisoprolol and Acebutolol are mainly explained by their similarities to the side effect profiles of
Atenolol. These drugs, in fact, also belong to the family of beta-blockers, and are known to have
similar side effect profiles. However, notice that the contribution of other beta-blocker drugs, and
other types of information, are also important for the drug self-representation score.

Although the target self-representation model only contributes to 5% of the final predicted score
for Atenolol-ADRB2, it can still provide useful biological insight. The target self-representation
model predicts the Atenolol-ADRB2 association by linearly combining similarities between ADRB2
and other targets of Atenolol. Since Atenolol has only one known target (ADRB1), the target
self-representation score is mainly explained by the similarity in protein sequence between ADRB1
and ADRB2. These proteins, in fact, participate in the same biological process of mediating the
catecholamine-induced activation of adenylate cyclase through the action of G proteins.

To further illustrate the interpretation of the scores provided by Inception, we select a different DTI
from our prospective evaluation set. The new association is the drug Sorafenib (DB00398) with the
vascular endothelial growth factor receptor 1 (VGFR1). This DTI is the top-10 prediction of Inception
with a score of 0.583. In this example, 97% of the score is explained by the target self-representation
model and only 3% by the drug self-representation model (see Figure 4b).

The sunburst plot of Figure 4 (b) shows the breakdown of the score provided by each self-
representation model. The target self-representation model predicts the DTI by linearly combining
similarities between VGFR1 and the known targets of Sorafenib (see Equation 4). We observe that
two targets stand out from the rest: VGFR2 and VGFR3. The contributions of these two targets
are primarily explained by their protein sequence similarity to VGFR1. These proteins, in fact, are
known to play major roles in the same biological processes and share similar molecular functions.

Notice how in the previous example, the final score was mostly explained by the drug self-
representation model, in this case it only contributes 3% of the final predicted score for Sorafenib-
VGFR1. However, it can still provide useful biological information about the prediction. The drug
self-representation model predicts the DTI by linearly combining similarities between Sorafenib
and other drugs that are known to target VGFR1. Since VGFR1 was only targeted by one drug,
the drug self-representation score is explained fully by the DTI similarity between Sorafenib and
Sunitinib. It is interesting to notice that these two drugs are both approved for the treatment of renal
cell carcinoma. These two drugs actually have the majority of their targets in common, including
VGFR2 and VGFR3. This fact is adding some extra weight to the explanation of the final predicted
score for the Sorafenib-VGF1 DTI. Thus, by analysing the breakdown of the scores, we can conclude
that our model is predicting the new DTIs by integrating evidence from heterogeneous types of
biological evidence.

5 Discussion

The elucidation of drug targets remain central in mechanism-based drug discovery [Santos et al., 2017].
Finding drug targets have been compared to finding a needle in a haystack. Yet, in systematically
finding drug targets lies the answer to finding treatments for many human diseases.
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Here we present Inception, an interpretable machine learning model for predicting missing drug-target
interactions. Inception outperforms recent state-of-the-art machine learning approaches by a wide
margin. Machine learning approaches, such as DTINet and neoDTI, can provide black-box predictions
but scientists are left with the difficult task of understanding them. We developed Inception to provide
straightforward interpretation of DTI predictions on the basis of known biological information.

A model that attempts to effectively predict missing drug-target interactions needs to integrate
available information about drugs and its protein targets. However, the integration of multiple
heterogeneous information into a machine learning model is not straightforward. DTINet [Luo
et al., 2017] and NeoDTI [Wan et al., 2019] have successfully integrated heterogeneous information
into powerful matrix decomposition and deep learning models but at the expense of interpretability.
Instead, Inception is capable of providing interpretability without compromising prediction accuracy;
a common misconception in the literature [Rudin, 2019].

Often, integrative machine learning models cannot be applied when the side information about a drug
or a target is not available; thus limiting their real applicability in certain cases. However, Inception
can still be applied in the cases where a drug (or target) have a small number of associations, but not
other side information is available. We verified that the performance of Inception remains robust even
when using only the matrix X alone for the predictions, or when adding one side information at a
time (see Supplementary Figure 1).

An innovative aspect of our self-expressive model is that it learns similarities between drugs and
between protein targets by a weighted linear combination of heterogeneous information. Previous
models based on self-expressiveness [Fan and Chow, 2017, Frasca et al., 2019], do not effectively
integrate similarity matrices in the learned self-representation matrices. Our algorithm in Equation 3
is easy to implement, runs in a few seconds, and do not require complicated optimisation algorithms.
We envisage its use in other important problems where the task is to predict missing associations
between pairs of objects. This is, for instance, in the problems of drug-side effect prediction [Galeano
et al., 2020], drug repositioning [Frasca et al., 2019], and disease-gene prediction [Cáceres and
Paccanaro, 2019].
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Figure 1: Overview of our approach. 1, 923 drug-target interactions (DTIs) between 549 drugs and
424 protein targets were used. The DTIs were arranged into an n×m matrix X by encoding them
with values of 1 (pink). Unobserved associations were encoded with zeroes (white). Our algorithm,
Inception, is the linear combination of two self-expressive models. The drug self-representation
model, HXr, represents each drug (row of X), as a linear combination of other drugs by learning a
similarity matrix H, that linearly aggregates similarity matrices relating drugs (shown in blue). The
target self-representation model, XcW, represents each target (column of X), as a linear combination
of other targets by learning a similarity matrix W, that linearly aggregates similarity matrices
relating protein targets (shown in red). Inception’s predicts scores by combining both linear models
X̂ = pHXr + (1− p)XcW, where p is a constant value that controls the importance of each model
for the prediction.
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Figure 2: Evaluation of our model at predicting missing drug-target interactions in stringent
scenarios. The performance of Inception (our method) is compared to the state-of-the-art drug
target prediction models DTINet and neoDTI. (a) mean area under the receiver operating curve
(AUROC) performance (y-axis) of each method when controlling for data imbalance in the test
set. The negative to positive ratio (x-axis) was obtained by a negative sampling of the unknown
DTIs in the test set. Error bars indicate the standard deviation. (b) mean area under the precision-
recall (AUPR) curve performance (y-axis) of each method when controlling for data imbalance in
the test set. (c-d) mean AUROC and AUPR performance when predicting drug target interactions
for chemically dissimilar drugs (Tanimoto chemical similarity below 0.6) and protein targets with
dissimilar sequence (sequence identity below 40%). Error bars indicate the standard deviation.

12

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 2, 2021. ; https://doi.org/10.1101/2021.03.01.433365doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.01.433365


       DTIs 

DrugBank 2011

      DTIs 

DrugBank 2020

Training Testing

Figure 3: Prospective performance evaluation. Each model was trained with drug-target interac-
tions (DTIs) from a 2011 snapshot of the DrugBank database to predict missing DTIs that were found
in the 2020 snapshot. 471 novel DTIs between 169 drugs and 129 protein targets from the 2020
snapshot were used as test set. For each drug, we check whether the method was able to retrieved
the correct target in the top-10, 20, 30, 40, 50, 60, 70, 80, 90 or 100 proteins retrieved. Our method
outperform the competitors in all the cases. Inception (red), NeoDTI (brown) and DTINet (green).
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Figure 4: Interpretation of Inception’s predicted scores. The final score for a DTI can first be
interpreted in terms of the drug and target self-representation models. These contributions are
represented by the inner-most levels in the sunburst plots. The next level shows the aggregated
similarities of each drug, for the drug self-representation model, and of each target, for the target
self-representation model. The last and outer-most level shows the breakdown of each type of
side information used to calculate the similarities. (a) Sunburst plot of the Atenolol-ADRB2 DTI,
the top-1 prediction for our prospective evaluation set. 95% of the score is explained by the drug
self-representation model and 5% by the target self-representation model. For the drug’s piece we
observe the total similarity between Atenolol and the 27 drugs that target ADRB2 in 2011. Similarly,
for the target’s side we observe the similarity between ADRB2 and the only known target of Atenolol
in 2011. Each drug or target can then be further analysed to quantify the relative importance of
each side information. (b) Sunburst plot of the Sorafenib-VGFR1 DTI, the top-10 prediction for our
prospective evaluation set. For this example, the drug-self representation model only accounts for 3%
of the final score and the target self-representation model accounts for the remaining 97%. In the
breakdown of the drug’s piece we observe the breakdown of the similarity between Sorafenib and the
only drug that targets VGFR1 in the 2011 dataset. In the target’s side we observe the breakdown of
the similarities between VGFR1 and the other known targets of Sorafenib in 2011.
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Supplementary Material

Supplementary Figures

Figure 5: Performance of Inception in a ten-fold cross-validation procedure. The binary classifi-
cation performance is shown when training the model using only one protein side information at a
time (shades of green), when using one drug side information at a time (shades of blue) and using all
the available side information (bright red). (Top) mean AUROC; (Bottom) mean AUPR.
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Supplementary Tables

Matrix Rows Columns Number of known associations
Drug-target interaction 549 424 1,923

Chemical similarity 549 549 301,401
Drug Side effect 549 3588 65,240

Drug-drug interaction 549 549 6,078
Drug-disease association 549 5022 170,188

Sequence similarity 424 424 179,776
Protein-Protein Interaction 424 424 1,029
Protein-Disease interaction 424 5022 476,457

Table 1: Datasets.

Negative to Positive Ratio Method mean std
01:1 DTINet 0.897 0.018

NeoDTI 0.894 0.022
Inception (our method) 0.959 0.010

05:1 DTI Net 0.896 0.015
Neo DTI 0.929 0.010

Our Method 0.964 0.010
10:1 DTI Net 0.897 0.019

Neo DTI 0.931 0.011
Our Method 0.957 0.011

20:1 DTI Net 0.898 0.015
Neo DTI 0.930 0.011

Our Method 0.957 0.006
50:1 DTI Net 0.897 0.016

Neo DTI 0.932 0.015
Our Method 0.957 0.012

100:1 DTI Net 0.899 0.016
Neo DTI 0.933 0.011

Our Method 0.957 0.011
Table 2: AUROC at different negative to positive ratios.
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Negative to Positive Ratio Method mean std
01:1 DTI Net 0.915 0.012

Neo DTI 0.901 0.019
Our Method 0.962 0.007

05:1 DTI Net 0.789 0.026
Neo DTI 0.839 0.021

Our Method 0.900 0.019
10:1 DTI Net 0.718 0.034

Neo DTI 0.795 0.025
Our Method 0.845 0.019

20:1 DTI Net 0.643 0.019
Neo DTI 0.755 0.026

Our Method 0.796 0.022
50:1 DTI Net 0.530 0.037

Neo DTI 0.695 0.040
Our Method 0.716 0.039

100:1 DTI Net 0.440 0.031
Neo DTI 0.642 0.033

Our Method 0.653 0.043
Table 3: AUPR at different negative to positive ratios.

Removed Association Method mean std
Chem DTINet 0.826 0.042

IncEpTion 0.936 0.027
NeoDTI 0.887 0.018

ChemProt DTINet 0.742 0.078
IncEpTion 0.906 0.045
NeoDTI 0.789 0.049

DDI DTINet 0.855 0.041
IncEpTion 0.940 0.020
NeoDTI 0.895 0.030

Prot DTINet 0.793 0.061
IncEpTion 0.918 0.032
NeoDTI 0.846 0.032

SideEffect DTINet 0.895 0.021
IncEpTion 0.956 0.013
NeoDTI 0.930 0.013

Table 4: AUROC when removing different similarities.

Removed Association Method mean std
Chem DTINet 0.554 0.070

IncEpTion 0.759 0.067
NeoDTI 0.688 0.064

ChemProt DTINet 0.346 0.121
IncEpTion 0.596 0.100
NeoDTI 0.412 0.127

DDI DTINet 0.591 0.081
IncEpTion 0.779 0.044
NeoDTI 0.701 0.055

Prot DTINet 0.421 0.090
IncEpTion 0.635 0.073
NeoDTI 0.518 0.074

SideEffect DTINet 0.711 0.041
IncEpTion 0.842 0.027
NeoDTI 0.793 0.029

Table 5: AUPR when removing different similarities.
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