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Fig. 5. The Structural Integrity, but not Active Contraction of Actin Stress Fibers is Required for Membrane Deformation. | (A) Before and (B) after images of cells
treated with Cytochalasin-D. Cytochalasin-D treatment dissolved membrane pockets associated with stress fibers, but not with focal adhesions, indicating that the physical
structure of stress fibers is necessary for membrane deformation. (C) Before and (D) after images of cells treated with Y-27632. Y-27632 treatment had no effect on observed
membrane pockets, suggesting that once the membrane has been deformed, stress fiber contraction is not necessary to maintain membrane deformation. (E) Before
and (F) after images of cells treated with Blebbistatin. Blebbistatin treatment also removed observed membrane pockets, suggesting that once the membrane has been
deformed, myosin-actin binding is necessary to maintain the membrane pocket. Scale Bar = 25 um. Each experiment was conducted in parallel in three separate wells, and

a representative image from one well is shown.

30°C overnight. Plasmids were sequence verified by Sanger
Sequencing provided by Quintara Biosceince using the in-
house CMV Forward (BP0002) and WPRE (BP0156) reverse
primers.

Viral Production. HEK 293FT cells (passages 3-15) were
plated at 90% confluency in a T-25 flask in HEK cell me-
dia (DMEM, 10% FBS, 1X Glutamax, 1x NEAA). After 24
hours, the flask was transfected with the pLenti plasmid and
the packaging VSV-G and PSPAX-2 plasmids using Lipofec-
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tamine 3000, according to the manufacturer’s protocol. After
12 hours, the media in the dish was discarded and replaced.
Media from the flask containing viral particles was collected
24 hours later, replaced and collected again 24 hours later.
The viral media was spun at 300 x g for 10 minutes to pellet
any cells, and the supernatant was then passed through a .45
pm syringe filter. The resulting media was aliquoted in 500
L tubes and stored at -80°C.
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Fig. 6. Contextualizing Actin Stress Fiber-Plasma Membrane Interactions
| Schematics of cytokinesis (left) and lateral membrane bending (right), which
demonstrate inverse topologies. In cytokinesis, an actin fiber ring (magenta) con-
tract (black arrows) and apply a centripetal force (gray arrows) to the membrane
(cyan) which is on the outside of the fiber, resulting in inward contraction of the
membrane, and ultimately membrane cleavage. In the novel ventral stress fiber-
induced membrane bending, the ventral stress fibers can be viewed as an arc on
a circle. In this case the membrane is on the inside of the fiber, and when these
fibers contract (black arrows), and apply the centripetal force to the membrane (gray
arrow) expanding the membrane and forming ridges.

NHDF Cell Culture. Neonatal Human Dermal Fibroblasts
(passages 1-8) were cultured in fibroblast media (FGM media
supplemented with an FGM-2 OneShot kit) in an incubator at
37°C and 5% COs. Cells were passaged at 80-90% conflu-
ency, and media was changed every 48 hours. To generate
stably expressing pools of cells, fibroblasts were lifted from
a flask by incubating the cells in .05% trypsin and then pel-
leted by centrifugation at 300 x g for 5 minutes. The cells
were then resuspended in fresh fibroblast media and seeded
in a 24 well plate at a concentration of 20,000 cells/well. 500
pL of viral media and 500 pL of fibroblast media were then
added to the well, and the dish was incubated at 37 °C for
48 hours. The media in the well was then changed to fibrob-
last media with 1 pg/mL puromycin to select for positively
transduced cells. After 48 hours, the cells were transferred to
either a 6 well dish for continued passaging, or a new 24 well
plate for experimentation.

Stress Fiber Induction. Fibroblasts were seeded at 20,000
cells/well in a glass bottomed 24 well dish. After 24 hours,
stress fibers were induced by changing the cell media to a
serum-free induction media (DMEM, 2% B-27, 10 ng/uL
TGFf-1) which was refreshed every 48 hours. Cells were
used after 96 hours of induction.

Confocal Microscopy. After 96 hours of induction, the cells
were stained with various live cell stains according to the
manufacturer’s instructions, which generally involved dilut-
ing a stock solution 1000x (10,000x for Cell Mask Actin
stain) in DMEM, and incubating the cells for 15 - 30 min-
utes at 37°C and 5% COs. After staining, the cell media was
changed to imaging media (Fluorobrite DMEM, 1% Gluta-
max, 1% OxyFluor). Cells were imaged on a Ti-2E Eclipse
(Nikon Instruments) with a Dragonfly Spinning Disk con-
focal system (Oxford Instruments) in a 37°C and 5% CO
stage top incubator (OKO labs). Images were acquired on

10 | bioRxiv

an iXon 888 Life EM-CCD camera (Oxford Instruments).
Fluorescent dyes were imaged through a 405/488/561/647
dichroic mirror using the following excitation laser/emission
filter combinations: Ex.405 nm-Em.445/50, Ex. 488 nm-Em.
515/30, Ex. 561 nm-Em. 590/60, Ex. 647- Em. 698/60.
All staining and drug treatments were repeated in 3 sepa-
rate wells, and a representative image was selected from each
treatment for display in a figure.

Inhibitor Treatments. Cells were treated with the actin in-
hibitor Cytochalasin-D (5 puM, Tocris), the Ezrin Inhibitor
NSC668394 (50 M, Calbiochem), Y27632 (25 M, Hello
Bio), and s-nitro-Blebbistatin 25 M, Cayman Chemical).
For Cytochalasin-D treatment, an 18 slice z-stack (140 nm
step size) was acquired every minute for 5 minutes using
a Plan Apochromatic 100x silicone oil immersion objective
(Nikon, NA = 1.35) as described above. After 5 minutes, a
solution of Cytochalasin-D dissolved in imaging media was
injected into the well and the cells were imaged for another
15 minutes post treatment. For NSC668394, Y27632, and
S-nitro-Blebbistatin, cells were treated immediately before
imaging and an 18 slice z-stack (192.5 nm step size) was ac-
quired every hour for 17 hours using a Plan Apochromatic
40x air objective (Nikon, NA = 0.95) and a 2x zoom lens
(80x total magnification). Each drug treatment experiment
was repeated in three separate wells and multiple fields of
view were collected per well.

Immunofluorescence. After 96 hours of induction, cells
were fixed in 4% Paraformaldehyde in PBS and permeabi-
lized using 0.1% Triton-x. Non-specific interactions were
blocked using 10% normal goat serum in PBS. The cells were
then incubated overnight with the primary antibody (anti-
paxillin 1:50 and anti-ERM 1:100), washed in PBS, and then
followed by incubation with the appropriate Alexa Fluor 647
secondary antibody (1:200) in 10% normal goat serum for
1 hour at room temperature. In experiments where phal-
loidin or membrane stain was used, it was added after the
secondary at 1:1000 in PBS and incubated for 30 minutes at
room temperature. Cells were washed 3X in PBS and then
imaged using the same parameters as previously described
using a Plan Apochromatic 100x silicone oil immersion ob-
jective (Nikon), but at room temperature with no CO2.

Transmission Electron Microscopy. After 96 hours
of induction, cells were fixed in 2.5% paraformalde-
hyde/glutaraldehyde in sodium cacodylate buffer for 1 hour
at room temperature. Cells were then washed with sodium
cacodylate buffer 3x and stored at 4 °C until imaged. Elec-
tron microscopy imaging, consultation, and services were
performed in the HMS Electron Microscopy Facility, on a
TecnaiG2Spirit BioTwin microscope with a 2k AMT camera.

Membrane Bending Energy Calculations. All model cal-
culations were carried out using a Python script in Spyder
(version 4.1.5) using the NumPy (110), Matplotlib (111), and
SciPy (112) packages. To calculate membrane bending, the
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profile of the membrane wrapping around the fiber was de-
fined as follows: until the midpoint of the fiber is level with
the membrane, the membrane wraps directly around the fiber
using a square root function. As the midpoint of the fiber
dips below the level of the membrane, parts of the membrane
to either side begin to bend. This is modeled by fitting hy-
perbolic curves that start at the y value at the midpoint of
the fiber and have a length half the distance from the fiber
midpoint to the resting level of the membrane. After the pro-
file of the membrane has been defined, the curvature at each
point was calculated using the derivative function from the
SciPy package. The bending energy equation is applied for
each point of curvature and summed over the whole stretch
of membrane modeled to get the total bending energy. Code
available online at https://github.com/sgrolab/ventralsfpaper.
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Cells.
Cell Name Manufacturer Lot
Neonatal Human Dermal Fibroblasts | Lonza (CC-2509) 0000490825, 0000490827
HEK293FT Thermo Fisher (R70007)
Plasmids.
Plasmid Name Source
pLenti CMV Puro Dest ERK-KTR | Addgene #59150
pLentiCMV Puro mNeonGreen Synthesized
pLentiCMV Puro mScarlet-I Synthesized
pLentiCMV Puro mCherry-Paxillin | Synthesized
PSPAX-2 viral packaging plasmid Gift from the Ngo Lab
VSV-g viral envelope plasmid Gift from the Ngo Lab
Reagents.
A. Cell Culture.
Name Manufacturer Lot
FBM media Lonza (CC-3131) 0000849191, 0000914535
FGM-2 OneShot Lonza (CC-4126) 0000851116, 0000885722, 0000923831
DMEM Corning (MT10013CV) 10420009
Opti-MEM Gibco (31985-062) 1897019
FluoroBrite DMEM Gibco (a18967-01) 2120559
Fetal Bovine Serum Gibco (16000044) 2103017RP
Pen-Strep Gibco (16140-122) 2145104
B-27 Gibco (17504044) 2121033, 2193555
Glutamax Gibco (35050-061) 2164667
Lipofectamine 3000 Thermo Fisher (LL3000) 2177271
.05% Trypsin Gibco (253000-054) 2120736
OxyFluor Sigma-Aldrich (SAE0059) | SLCC2576
24 Well Glass Bottom Dishes | Porvair Sciences (324042) | 037505
24 Well Plastic Dishes Denville Scientific (T1024) | 2018003
T-75 culture flasks Fisher Scientific (156499) 161855
T-25 culture flasks Denville Scientific (T1205) | 2019001
B. Drugs.

Name

Cytochalasin-D
Y-27632
NSC668394
s-Nitro-Blebbistatin

Recombinant TGF(-1

Manufacturer

R&D Systems (7754-BH)
Tocris (1233)

Hello Bio (HB2297)
calbiochem (341216)

Cayman Chemical Company (13891)

Lot
DCPUO0819111
7A/207303
E0807-1-4
3434830

C. Primers for Cloning.

Name Assembly Construct

Sequence

GGAATTCTGCAGATATCAACAAGTTTGTACAGCCACCATGGTGAGCAAGGGCGAGGAG

mNeonGreen pLenti homology Fwd
mNeonGreen pLenti homology Rev
mScarlet pLenti homology Fwd
mScarlet pLenti homology Rev
mCherry pLenti homology Fwd
paxillin pLenti homolgy Rev

pLenti CMV Puro mNeonGreen
pLenti CMV Puro mNeonGreen
pLenti CMV Puro mScarlet-i
pLenti CMV Puro mScarlet-i
pLenti CMV Puro mcherry-Paxillin
pLenti CMV Puro mCherry-Paxillin

GATATCAACCACTTTGTACACTACTTGTACAGCTCGTCCATGCC
ATATCAACAAGTTTGTCGACGCCACCATGGTGAGCAAGGGCGAGGC
TATCAACCACTTTGTACACGCGTTTACTTGTACAGCTCGTCCATGCCG
ATCCGCTAGCGCTACCGGTCGCCACCATGGTGAGCAAGGGCGAGGA
GGATATCAACCACTTTGTACACGCGTCTAGCAGAAGAGCTTGAGGAAGCAGT
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D. Immunofluorescence.

Name Manufacturer Lot
16% PFA Thermo Fisher (P128906) UG287039
PBS Gibco (7011-044) 2193380
Triton-x Fisher (BP151) 176408
Normal Goat Serum Southern Biotech (0060-01) F3320-SD30B
Phalloidin Alexa Fluor 405 Thermo Fisher (A30104) (0529804-1)
Phalloidin iFluor 488 Cayman Chemical (20549) 0593927
Phalloidin California Red Cayman Chemical (20546) 0529804
Rabbit anti-paxillin antibody Cell Signaling Technology (69363S) | 1
Rabbit anti-ERM antibody Cell Signaling Technology (3142T) | 5
Goat anti-mouse Alexa Fluor 647 conjugate | Thermo Fisher (A21244) 2161043
Goat anti-rabbit Alexa Fluor 647 conjugate | Thermo Fisher (A21235) 2134003
Goat anti-rabbit Alexa Fluor 568 conjugate | Abcam (175471) GR3189790-3
Hoechst 34580 Sigma Aldrich (63493) BCCB3802
Cell Explorer dye Green AAT Bioquest (22621) 2391532
CellBrite Fix 640 membrane dye Biotium (30089T) 17C1115-1104173
CellBrite Fix 488 membrane dye Biotium (30090A) 18C0118-1120003
CellMask™ Deep Red Actin Tracking Stain | Thermo Fisher (A57245) 2212430
E. Plasmid Cloning.
Name Manufacturer Lot
Bsrgl-HF New England Biolabs (R3575) 10043043
Dpnl New England Biolabs (RO176L) | 10033040
2x Q5 PCR Master Mix New England Biolabs (M0492S) | 10047031
2x HiFi Assemby Master Mix | New England Biolabs (E2621)
CutSmart Buffer New England Biolabs (B7204S) | 2441703
NEBstable Competent E. coli | New England Biolabs (C3040) 10061595
F. TEM Prep.
Name Manufacturer Lot
Formaldehyde/Glutaraldehyde 2.5% | Electron Microscopy Sciences (NC0620709) | 200928-04
Sodium Cacodylate Buffer Electron Microscopy Sciences (11650) 200811
12 mm CoverSlips Fisher Scientific (C3040)
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