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Abstract 

A central goal of systems neuroscience is to determine the functional-anatomical basis of brain-

wide activity dynamics. While brain activity patterns appear to be low-dimensional and guided 

by spatial gradients, the set of gradients remains provisional and their mode of interaction is 

unclear. Here we applied deep learning-based dimensionality reduction to task-free fMRI 

images to derive an intrinsic latent space of human brain activity. Each dimension represented a 

discrete, dynamically fluctuating spatial activity gradient. The principal dimension was a novel 

unipolar sensory-association gradient underlying the global signal. A small set of gradients 

appeared to underlie key functional connectomics phenomena. Different task activation patterns 

were generated by gradients adopting task-specific configurations. Dynamical systems 

modelling revealed that gradients interact via state-specific coupling parameters, allowing 

accurate forecasts and simulations of task-specific brain activity. Together, these findings 

indicate that a small set of dynamic, interacting gradients create the repertoire of possible brain 

activity states. 
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Main Text 

Introduction  

Functional connectivity is defined as synchronous activity within two or more brain 

regions over time. Functional connectivity patterns as revealed by functional MRI (fMRI) have 

advanced our understanding of the brain’s functional neuroanatomy in health (Yeo et al., 2011) 

and disease  (Seeley et al., 2009). Despite this progress, the basis for functional connectivity 

remains unclear. Any candidate model must account for the diverse but constrained range of 

dynamic functional connectivity states that are observed both within and across individuals 

(Allen et al., 2014; Gratton et al., 2018; Pasquini et al., 2020; Vidaurre et al., 2017). Importantly, 

this limited flexibility of whole-brain activity suggests that a low-dimensional set of 

neuroanatomical systems may be involved (Glomb et al., 2019; Saggar et al., 2018; Shine et al., 

2019). Recent work indicates that these dimensions reflect “gradients” of continuous variation in 

regional functional connectivity (Haak et al., 2018; Margulies et al., 2016; Zhang et al., 2019) 

and cytoarchitecure (Burt et al., 2018; Paquola et al., 2019; Wang, 2020), with clustered regions 

forming functionally connected networks. To date, however, no study has demonstrated how 

gradients and their dynamic interactions can collectively explain key observations in functional 

connectomics, including the brain-wide global signal (Fox et al., 2009), anti-correlation between 

large-scale networks (Fox et al., 2005), the presence of discrete functional modules and hub 

regions (Sporns and Betzel, 2016), correspondence with spatial patterns of gene expression 

(Richiardi et al., 2015), dynamic configuration into task-specific brain activity states (Barch et al., 

2013), and stable functional connectivity patterns in individuals over time (Finn et al., 2015). 

Here we apply deep-learning based dimensionality reduction to derive an intrinsic latent 

space of brain activity dynamics. Our approach explicitly focuses on instantaneous brain activity 

patterns and differs from conventional methods for deriving functional connectivity gradients 

(Hong et al., 2020). This approach yields a more comprehensive set of latent brain activity 

dimensions each associated with a spatial gradient. Most importantly, this includes a principal 
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activity gradient that underlies the global signal of brain activity and that we believe is fully 

described here for the first time. We demonstrate that this expanded set of activity gradients 

represent intrinsic systems that are stable across individuals, multiple days of scanning, and 

task-free or task-engaged scanning conditions. In confirmatory analyses, we show that this set 

of latent dimensions and gradients capture essential properties of brain activity and functional 

connectivity including modularity and regional hub properties, correspondence with spatial gene 

expression patterns, and reconfiguration during specific mental tasks. Finally, we use dynamical 

systems analysis to reveal how this set of activity gradients can transiently couple into state-

specific configurations, suggesting a novel mechanism the brain appears to use to dynamically 

generate diverse activity and functional connectivity states. 

 

 

Results 

Low-dimensional brain activity latent space 

We assessed latent brain activity dynamics in task-free and task-engaged fMRI scans by 

first applying a convolutional autoencoder, a deep learning tool for dimensionality reduction and 

the representation of spatial features from 2D or 3D images (Hinton and Salakhutdinov, 2006; 

Zeiler and Fergus, 2013). By design, convolutional neural networks can determine a more 

efficient data-driven spatial dimensionality reduction than techniques like independent 

component analysis (ICA) or principal component analysis (PCA) that are naïve to spatial 

structure in images (Calhoun et al., 2001; Beckmann and Smith, 2004). Autoencoders are also 

more computationally tractable than PCA for performing spatial dimensionality reduction on a 

large set of images. We therefore used a 3D convolutional autoencoder for spatial 

dimensionality reduction of 119,500 task-free fMRI images from a group of 100 healthy young 

control subjects in the Human Connectome Project (HCP; Methods). After autoencoder 

training, we obtained spatial embeddings for each image. We then ran subsequent PCA on the 
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119500 x 1080 embedding matrix to derive the latent space of functional brain activity with 

spatially and temporally orthogonal dimensions (Figure 1A). Component scores for each image 

were then linked to yield dynamic latent trajectories for each individual’s fMRI scan. 

In this latent space each dimension represented an independent spatial activity gradient 

and the entire space collectively encapsulated the range of possible brain activity states. To 

derive the spatial activity gradients associated with each latent dimension, we regressed each 

voxel’s BOLD activity against that latent dimension timeseries, inferring a voxel’s positive or 

negative beta weight on that dimension (Figure 1A). A voxel’s BOLD signal could be 

reconstructed by multiplying the voxel’s weight on a gradient by the gradient’s current slope and 

summing across all gradients (Figure 1C, Movie S1, and Methods). Throughout this study, we 

use the term “gradient” to refer to the spatial map associated with a latent dimension (analogous 

to loadings on a PCA component), the term “slope” to describe the steepness of the gradient at 

a specific timepoint (i.e. score on a PCA component), and the term “trajectory” in reference to a 

multi-dimensional set of gradient slope timeseries (i.e. a set of PCA score timeseries). When 

reconstructing each brain region’s timeseries, the first three dimensions explained 44.9% of 

BOLD activity variance across 273 cortical, subcortical, and cerebellar regions, while nine 

dimensions explained 57.9% (Figure S1 and Supplementary Information). This indicates that 

a low-dimensional latent space was able to explain a substantial proportion of the variation in 

BOLD activity. Our subsequent analysis focused on the first nine dimensions based on the 

criterion that diminishing additional variance was explained with subsequent dimensions 

(Methods). 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 3, 2021. ; https://doi.org/10.1101/2020.08.12.248112doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.12.248112


6 

 

Figure 1. Latent space derivation, gradient maps, and temporal interpretation. 

A. The workflow for deriving individual latent trajectories and spatial activity gradient maps from 

task-free fMRI images. B. Activity gradient maps for the first nine latent space dimensions. The 

signs are arbitrary, representing only whether regions are correlated or anti-correlated with each 

other on that dimension. C. Illustration of relationship between latent space trajectories and 

regional BOLD activity. Across three successive timepoints, latent space positions on each 

dimension reflect the current slopes of the corresponding gradients. The resultant BOLD signal 

in each region depends on the region’s weight on each gradient, shown here for the anterior 

cingulate cortex (yellow), premotor cortex (cyan), and precuneus (orange). 
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The polarity of regional “positive” versus “negative” weights on a gradient was arbitrary, 

signifying only whether regions were correlated or anti-correlated with each other on that 

gradient (Figure 1C). These activity gradients demonstrated both similarities and key 

differences with functional connectivity gradients like the set described by Margulies and 

colleagues (referred to as FCG1-FCG5) (Margulies et al., 2016). The strongest spatial matches 

between each functional connectivity gradient and the activity gradients reported here were: 

FCG1/Gradient 2, r=0.86; FCG2/Gradient 5, r=0.76; FCG3/Gradient 3, r=0.88; FCG4/Gradient 

7, r=0.57; and FCG5/Gradient 6, r=0.61. Overall, the activity gradients had strong 

correspondence with known functional connectivity gradients, with Gradient 1 being an 

important exception. 

The spatial weights for Gradient 1 were positive across 99.6% of the gray matter (Figure 

1B), albeit with topographically varied weights that were highest in the primary sensory, visual, 

and auditory cortices. The gradient slope timeseries associated with this dimension had a near-

perfect correlation with the global gray matter signal (r=0.92; Figure 2A), a major influence on 

the estimated strength of functional connectivity (Fox et al., 2009). Gradient 1 was the only 

“unipolar” gradient, as no other gradient was more than 70% skewed towards positive- or 

negative-predominant weights brain-wide. We ensured that this unipolar component was not a 

statistical artifact by demeaning the data in two stages, both voxel-wise demeaning of BOLD 

activity before autoencoder inference and dimension-wise demeaning of spatial embeddings 

before PCA. Crucially, Gradient 1 could only be detected when performing dimensionality 

reduction on data with a temporal dimension. This approach differs from how spatial gradients 

are typically derived from fMRI data, by applying dimensionality reduction on the functional 

connectivity matrix. There is a straightforward reason why this unipolar gradient can be detected 

from the timeseries data but not from a functional connectivity matrix. PCA and related 

dimensionality reduction methods find components that maximize the variance in a measure 

across observations. When applied to timeseries data, PCA is capable of detecting a global 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 3, 2021. ; https://doi.org/10.1101/2020.08.12.248112doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.12.248112


8 

unipolar spatial factor which causes all regions to have high or low activation at different 

timepoints. By contrast, in a functional connectivity matrix where the time dimension is 

collapsed, all regions would share a common pattern of connectivity reflecting the average slope 

of the unipolar Gradient 1. This lack of region-to-region variability in connectivity would render 

this factor invisible to the variance-maximizing PCA algorithm. This highlights the benefit of 

deriving spatial gradients from continuous BOLD activity data. 

 

 

 

Figure 2. Gradient 1 underlies the global signal and corresponds to the principial spatial 

gene expression component. A. The correlation between the latent dimension 1 score, 

reflecting the gradient’s current slope, and the global gray matter signal. B. Spatial maps for 

Gradient 1 and the primary spatial component of genetic expression variability, along with their 

spatial correlation. 

 

 

The spatial activity gradient for dimension 2 corresponded to the putative primary 

functional connectivity gradient (Margulies et al., 2016), a sensory-to-cognitive axis (Figure 1B) 

reflecting a functional spectrum from perception and action to more abstract cognitive function. 

The most positive weights were in areas of the default mode network and executive control 

network (Figure S4 for overlap with seven canonical networks (Yeo et al., 2011)), while the 

most negative weights were in somatomotor, visual, and ventral attention networks. Dimension 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 3, 2021. ; https://doi.org/10.1101/2020.08.12.248112doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.12.248112


9 

3 resembled a task-positive (frontoparietal) to task-negative (default mode) gradient (Figure 1B 

and Figure S4). The subsequent dimensions included strongly lateralized activity gradients 

(Gradients 8 and 9), oppositions between specific sensory modalities like the visual and 

somatomotor networks (Gradients 4 and 5), and differential involvement of sub-components of 

larger super-systems like the default mode network (Gradients 2, 3, and 7) (Andrews-Hanna et 

al., 2010). Critically, gradients were highly reproducible in an independent validation dataset 

with the first 12 dimensions appearing in the nearly the same sequence (all spatial correlation 

coefficients > r=0.5; Table S1 and Figure S4/Figure S5). Overall, we found that by performing 

dimensionality reduction on BOLD timeseries data, we could detect an expanded set of activity 

gradients from those previously reported, including the unipolar Gradient 1 which explained the 

most variance in brain activity. The consistency of the spatial gradients across individuals 

suggests that they reflect intrinsic anatomical systems of brain functional organization. We next 

evaluated the ability of this set of activity gradients to explain core phenomena in functional 

brain activity and connectivity. 

 

Latent trajectories capture individual brain activity fingerprints 

Importantly, individual subject latent trajectories (described by the gradient slope 

covariance matrix, Methods) exhibited high reliability on consecutive days of scanning, 

consistent with the finding of identifiable individual functional connectivity fingerprints (Finn et 

al., 2015). Six latent dimensions were required to correctly match a subject’s day 1 and day 2 

scans for at least 50% of individuals, while 29 dimensions were required to identify the correct 

fingerprint for all 100 subjects (Figure S6 and Supplementary Information). Thus, a low 

dimensional latent space of brain activity captures sufficient information to distinguish 

individuals, suggesting that reliable differences in gradient engagement may represent 

individual traits. 
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Basis for functional modularity and hubness 

We next characterized how latent activity trajectories represent observed patterns of 

functional connectivity. Here we demonstrate how a latent trajectory can maximize functional 

connectivity (i.e. co-variation) between two example regions, the anterior cingulate cortex (ACC) 

and middle frontal gyrus (MFG), two regions of interest that belong to dissociable functional 

networks. We focused on Gradient 2 and 3, the first two bipolar gradients. We first determined 

which latent space trajectory direction was optimal for maximizing the ACC or MFG’s BOLD 

activation relative to all other regions (Figure 3A). The ACC’s activity was maximized by a 

mostly downward trajectory (Figure 3A, top). By contrast, the MFG’s activity was maximized by 

a more rightward trajectory (Figure 3A, bottom). The optimal trajectory angle to maximize co-

variation between the ACC and MFG was from the top-left to the bottom-right of this 2D latent 

space, bisecting the trajectory angles that maximized activity in either the ACC or MFG. We 

confirmed that the individual subjects with maximal or minimal ACC-MFG functional connectivity 

during task-free fMRI had latent trajectories that were most or least aligned with the optimal co-

variation angle (Figure 3B; Methods and Supplementary Information). This illustrates the 

value of rendering brain activity as a latent trajectory, providing a read out for levels of regional 

activity or functional connectivity for any timespan, from a single timepoint to a full scan. 
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Figure 3. Functional modularity and hubness reflect non-uniform spacing of regions 

along gradients. A. Latent trajectory directions that maximize BOLD activation for the ACC, 

MFG, or the covariation between them. B. Latent trajectories during task-free scans for subjects 

with the most negative (top) or most positive (bottom) ACC-MFG correlation. C. Left: group-

average functional connectivity matrix, based on region timeseries reconstructed only from 

latent dimensions 2 and 3. The eight modules detected in this connectivity matrix are highlighted 

along the diagonal along with the best-corresponding canonical network. Middle/Right: polar 

plots showing the best latent trajectory direction for maximizing activation in each region, which 

span the full 360° of the 2D latent space. Region colors are based on the modules they belong 

to, revealing that the bunching of regions with similar angles naturally reflects the modularity. 

Regions identified as the top connector hubs (larger font, middle) are the most distant (i.e. have 

the largest angles) from their neighboring regions in this 2D space, while provincial hubs (larger 

font, right) are the closest to their neighbors. SM: somatomotor, VIS: visual, DAN: dorsal 
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attention network, VAN: ventral attention network, FP: frontoparietal, DMN: default mode 

network, LIM: limbic. See deposited data for full list of region abbreviations. 

 

 

The existence of continuous spatial activity gradients may appear to be at odds with the 

presence of discrete modular brain networks, a major principle of brain functional organization 

(Sporns and Betzel, 2016). We therefore attempted to reconcile the gradient and modular 

perspectives by testing the hypothesis that non-uniform spacing of regions along a gradient 

would recapitulate modular boundaries. By assessing the optimal trajectory direction for 

maximizing BOLD activation in every brain region, we discovered that the trajectory angles fully 

spanned the 360° of the 2D latent space (Figure 3C). Regions tended to cluster with their 

contralateral homologues and other regions belonging to the same functional connectivity 

network, while regions that were diametrically opposed belonged to canonically anti-correlated 

networks. Based on this observation, we expected that functional connectivity modules derived 

from the functional connectome would correspond well with different angular ranges in latent 

space. We found that region module membership from the functional connectome corresponded 

exactly to the sequence of regions as grouped by optimal activation angle (Figure 3C). 

Consequently, provincial hubs and connector hubs were found to have characteristic 

orientations. Provincial hubs had significantly smaller angles to their most strongly connected 

neighbors than non-hubs (provincial hubs: mean=2.8°±2.3°; non-hubs: mean=4.0°±3.7°; 

F=80.45, p=5.72x10-19; Figure S8), which in turn had smaller angles to their neighbors than 

connector hubs (connector hubs: mean=4.8°±3.9°; F=9.94, p=0.001). This relationship held true 

when considering a higher dimensional latent space with a larger number of gradients 

(Supplementary Information). Thus, the presence of modularity and hub regions appears to 

be consistent with the non-uniform spacing of regions along gradients. 
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Correspondence with spatial gene expression patterns 

The spatial gradients described here have a striking congruence with morphogen 

gradients that guide regional differentiation and connectivity during brain development (O’Leary 

et al., 2007). This motivated a systematic assessment by comparing each activity gradient’s 

spatial similarity with genetic expression maps using the 15,655 genes across 196 cortical 

regions from the Allen Human Brain Atlas (Methods). While numerous relationships between 

structural or functional gradients and spatial gene expression patterns have been established 

(Burt et al., 2018; Vogel et al., 2020; Shafiei et al., 2020; Huntenburg et al., 2021), we sought to 

determine if the activity gradients defined in this study had stronger correspondence to gene 

expression patterns than to functional gradients derived by other methods. Across the first nine 

gradients, 4089 genes showed significant spatial correlations with at least one gradient in both 

the discovery and validation datasets, with correlation coefficients ranging between r=0.37-0.81 

(surviving Bonferroni corrected threshold p < 3.55 x 10-7 in both the discovery and validation 

datasets). The most striking correspondences were with gradient 1, for which 3572 genes were 

significantly correlated and which explained up to 64% of the variance in regional gradient 

weight. A gene ontology enrichment analysis based on the full set of significantly correlated 

genes found associations including “ion gated channel activity”, “neuron projection”, “synapse”, 

and “anatomical structure development” (top-ranked terms in Table S2, all terms in deposited 

data). The most significant positive relationships between gene expression and gradient 1 were 

SEMA7A (discovery/validation mean r=0.78), SCN1B (r=0.76), LAG3 (r=0.76), ACAN (r=0.76), 

ASB13 (r=0.76), SV2C (r=0.76), ANK1 (r=0.76), and GPAT3 (r=0.76), while the most negative 

relationships were KCNG1 (r=-0.81), ASCL2 (r=-0.78), ANKRD6 (r=-0.76), PRKCD (r=-0.75), 

and RSPH9 (r=-0.75). Because such a large number of genes exhibited strong positive or 

negative spatial correlations with gradient 1, we tested for a potential link to the primary spatial 

component of genetic expression variability, which is known to stratify sensory and association 

areas (Burt et al., 2018). There was a significant spatial correlation between Gradient 1 and the 
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principal spatial component of gene expression (r=0.72; Figure 2B), for which each of the 

aforementioned individual genes were strongly loaded (all loading absolute Z scores > 2.8). This 

correlation coefficient is stronger than any previously reported correlation between functional 

gradients and human spatial gene expression patterns that we are aware of in the literature. 

This indicated that the predominant sources of variability in BOLD activity and spatial gene 

expression are strongly linked. 

Substantially fewer genes were significantly correlated with the remaining gradients 

(Supplementary Information and Figure S9). Gradient 2 had 48 significantly correlated genes 

while interestingly, gradient 3 had no significantly correlated genes (discovery minimum p=2.51 

x 10-6, validation minimum p=9.06 x 10-11) despite explaining a substantial portion of BOLD 

variance, having a replicated spatial pattern in the validation dataset, and showing spatial 

correspondence to a previously described functional connectivity gradient (Supplementary 

Information). The lack of genetic correspondence for this gradient may be due to the stringent 

criterion for statistical significance or greater individual variability. Among the strongest of the 

other gene/gradient relationships were CARTPT on gradient 2 (r=0.55) and CDH6, CDH13, and 

FABP6 on gradient 5 (r=0.60/0.58/0.60). Genes associated with activity gradients were 

recurrently linked to functional and structural processes likely to influence brain-wide activity 

patterns including anatomical morphogenesis, excitation/inhibition balance, and thalamocortical 

connectivity. 

 

Gradient-based task-induced brain activity patterns 

We next evaluated the possibility that activity gradients detected during the task-free 

state are spatially stable, intrinsic systems that can dynamically adopt specific configurations to 

create task-specific brain activity states. The key novel aspect of our approach was projecting 

task fMRI data into the task-free defined latent space, based on our hypothesis that the 

dimensions and associated gradients are intrinsic to the brain and will remain fixed, while the 
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shape of the trajectories will change in task-specific fashion. We thus projected HCP task fMRI 

data from validation dataset subjects into the task-free latent space defined from discovery 

dataset subjects, then derived gradient slope timeseries for each condition in each task. We 

focused on four diverse cognitive tasks known to elicit distinct brain activity patterns – working 

memory (2-back vs. 0-back), motor movement (finger/toe/tongue movement vs. visual fixation), 

language comprehension (auditory story vs. math questions), and emotion processing (face 

emotion recognition vs. shape recognition). In each task, we found selective gradient slope 

differences between conditions (abs(t) > 3.17, p < 0.005) that combined to produce greater 

activation in areas consistent with previously reported task-activity patterns (Figure 4) (Barch et 

al., 2013). We verified the plausibility of the task-specific gradient-based activation patterns by 

measuring their spatial correlation with conventional voxel-wise GLM-based task activation 

maps. Gradient-based maps had strong correlation (r > 0.5) with the GLM-based maps when 

including between 3 to 10 gradients, rapidly increasing in correspondence before plateauing 

after ~20 gradients and reaching a maximum of r=0.76-0.91. The rapid increase and 

subsequent plateau of correlation suggests that a low-dimensional set of activity gradients are 

sufficient to generate diverse task-activation patterns. Furthermore, this finding is evidence that 

the latent dimensions derived from the task-free state are intrinsic, and that what changes 

during a task is the engagement level of each gradient. 
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Figure 4. Specific gradient slopes produce task-specific activity patterns. 

A. Reconstructed BOLD activity differences between the active and baseline conditions in the 

working memory, motor, language, and emotion tasks, based on gradient slope differences of 

the first 9 latent dimensions after projecting task fMRI data into the task-free defined latent 

space. B. Gradient slope differences between the contrasting task conditions, where the line 

slope represents the across-subject average and the shaded band represents the 95% 

confidence interval. Black tick marks denote each region’s weight on each gradient. C. Spatial 

correlation between the gradient-based task activation maps from panel A and the task 

activation maps derived with a conventional general linear model (GLM).  
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Predicting state-specific dynamic trajectories of brain activity 

The engagement of activity gradients at specific levels during different tasks raised the 

question of how gradients with perpetual dynamics can organize into distinct global states. This 

motivated our use of a dynamical systems model to infer how gradients influence each other in 

an ongoing fashion. Based on our observation that latent trajectories exhibited continuity and 

momentum, we chose to model the gradient slope timeseries with differential equations 

describing the continuous influence of each activity gradient on one another (Breakspear, 2017). 

We used a data-driven strategy to estimate the “coupling parameters” between gradients 

(Brunton et al., 2016). We first focused on the task-free fMRI data. For each fMRI timepoint, we 

measured the gradient slope (g), the first derivative of the slope (g’, the velocity of the change in 

slope), and the second derivative of the slope (g’’, the acceleration of the change in slope) 

(Figure 5A). We then used linear regression for each of the first nine gradients to estimate 

gradient slope acceleration as a function of all gradients’ slopes and slope velocities. We found 

that a gradient’s slope acceleration g’’ primarily had a strong negative relationship with its own 

slope g (mean b=-0.06±0.007, mean t=-238.6±12.8), as is characteristic of an oscillating signal. 

Gradients also had selective relationships with the slope velocity g’ of the other eight gradients 

(b absolute range=0.0001-0.10), t absolute range=0.13-37.09) (Figure S10). This demonstrated 

that a given gradient’s current activity level is dependent on changes in both its own activity and 

the activity of specific other gradients. 

In the next step, we used these coupling parameters to model nine-dimensional 

trajectories as a system of second-order differential equations (Figure 5A and Methods). We 

measured the accuracy of these differential equations by using them to generate forecasts of 

task-free state latent trajectories from an initial starting condition. Specifically, starting with initial 

slope and velocity of the nine gradients at a given timepoint t (randomly selected from the actual 

task-free fMRI data), we predicted the gradient slope timeseries for 10 future timepoints t+1 to 

t+10. Critically, we used coupling parameters derived from the discovery dataset to make 
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forecasts in the validation dataset. As a benchmark for this forecast accuracy, we compared 

these forecasts to alternative forecasts generated by a first-order autoregressive model, a 

standard timeseries forecasting procedure which makes predictions based on the previous 

timepoint by leveraging the autocorrelation in the signal (Liégeois et al., 2017). The differential 

equation-based forecasts of the gradient slopes for gradients 1-9 at the subsequent fMRI 

timepoints explained significantly more variance than the autoregressive model (all p < 0.001): 

t=2, 99.8%/94.0% (Z=385.0); t=3, 96.9%/78.2% (Z=244.5); t=4, 87.3%/58.1% (Z=162.5); t=5, 

69.2%/38.8% (Z=105.2); t=6, 46.1%/23.9% (Z=60.7); t=7, 24.7%/13.9% (Z=26.9); t=8, 

10.3%/8.0% (Z=5.5). Thus, our model’s short-term forecasts outperformed a conventional 

timeseries forecasting technique. This provides evidence that a major determinant of near-term 

future brain activity patterns is the dynamic interaction of spatial activity gradients guided by 

specific coupling parameters. 
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Figure 5. Distinct gradient coupling patterns produce state-specific functional activity 

and connectivity patterns. A. Gradient forecasting schematic. For each gradient, a linear 
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model estimated the gradient’s acceleration as a function of all gradients’ slopes and first 

derivatives. The regression-derived coupling parameters were used to specify the system of 

coupled differential equations, which were then solved using initial conditions and coupling 

parameters that either come from in-sample data (“reconstructions”) or out of sample data 

(“forecasts”). B. Differential equation-based reconstructions of gradient timeseries during the 2-

back and 0-back conditions of the working memory task, based on trial-locked group-average 

data. The reconstructions accurately match the actual data up until t=25 timepoints (18 

seconds), after which they become unstable. C. Functional connectivity matrices from the active 

condition for each task, comparing actual data region pairwise correlations (upper triangle) with 

simulated data using state-specific coupling parameters (lower triangle). FRNT: frontal, TEMP: 

temporal, PRT: parietal, INS: insula, CING: cingulate, OCCP: occipital, SUB: subcortical, CRB: 

cerebellar. D. Partial correlations between each simulated functional connectivity matrix and the 

real/simulated functional connectivity matrices. E. Actual and simulated latent trajectories during 

working memory. Latent space dwell time differences are shown for the first nine latent 

dimensions, with actual working memory task trajectories on the matrix upper triangle and 

simulated trajectories on the lower triangle. Latent space locations where trajectories dwell more 

during the 2-back than the 0-back condition are shown in red and vice versa in blue. F. Task 

fMRI forecast accuracy. In each task, coupling parameters from condition of interest (blue; *: 

significantly lower than red, FDR corrected) yielded more accurate forecasts (root mean 

squared error ± standard error of the mean) than task-free state parameters (green), or opposite 

task condition coupling parameters (red). 

 

 

Building on this finding, we hypothesized that specific gradient coupling modes would be 

required to induce task-specific activation patterns. We expected that forecasts of task-specific 

fMRI activity timeseries generated with the corresponding task-specific coupling parameters 
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would be more accurate than forecasts using alternative coupling parameters, either from other 

tasks or the task-free state. We tested this hypothesis in three ways: task-specific gradient slope 

timeseries reconstruction, simulation, and forecasting (Figure 5A).  

Reconstructions illustrated that the differential equations accurately modeled the within- 

and between-gradient factors that guide the moment-to-moment evolution of gradient changes 

for each task over a time horizon of ~20 timepoints (~14 seconds; Figure 5B and 

Supplementary Information). Next, we performed simulations to test whether differential 

equations with state-specific coupling parameters could generate timeseries that mimicked the 

brain-wide temporal dynamics in the actual task fMRI data that result in task-specific functional 

connectivity patterns (Methods). For each task, the simulated functional connectivity matrix 

generated from state-matched coupling parameters was always most similar to the true 

functional connectivity matrix from the matched task condition (cross-validated correlations: 

working memory, actual vs. simulated functional connectivity matrix r=0.95, Z=12.09; motor 

r=0.94, Z=5.33; language r=0.93, Z=7.83; emotion r=0.95, Z=21.45; all Z-associated p < 0.001; 

Figure 5C for real and simulated functional connectivity matrices; Figure 5D for partial 

correlations between simulated matrices and actual matrices; Table S3 and Supplementary 

Information). To illustrate the influence of the coupling parameters on latent trajectories, we 

compared latent space dwell time differences for the simulated state-specific latent trajectories 

to the true latent trajectories in the working memory task (Figure 5E). The shapes and locations 

of the 2D trajectories were consistent across multiple dimensions, indicating that the simulations 

can replicate higher-order geometrical properties of the multi-dimensional data manifold.  

Finally, we performed timeseries forecasting to verify that state-matched coupling 

parameters could accurately extrapolate task-specific activity trajectories for unseen subjects. 

With parameters derived from the discovery dataset, the forecasts for all four tasks in the 

validation dataset were always significantly more accurate when based on the state-matched 

parameters than when using parameters from the baseline condition or from task-free state 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 3, 2021. ; https://doi.org/10.1101/2020.08.12.248112doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.12.248112


22 

(working memory, for timepoints t+1 to t+10, all t-statistics versus baseline condition > 3, all 

FDR-corrected p < 0.01; motor, timepoints t+5 to t+10; language, timepoints t+1 to t+10; 

emotion, timepoints t+1 to t+10; Figure 5F and Supplementary Information). Collectively, this 

set of experiments showed that differential equations with state-specific coupling parameters 

effectively captured the most salient aspects of task-specific brain activity including the 

dynamics of the task activity timeseries and the functional connectivity patterns. 
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Discussion 

This study makes three primary contributions to understanding the functional-anatomical 

basis of low-dimensional brain activity. First, we performed spatial dimensionality reduction on a 

large fMRI timeseries dataset using a convolutional autoencoder and subsequent PCA. By 

focusing the dimensionality reduction on timeseries data rather than a static functional 

connectivity matrix, we were able to derive a more encompassing set of latent brain activity 

dimensions than has previously been described. Most importantly, this set included a novel 

primary dimension of brain activity reflecting a unipolar spatial gradient most strongly weighted 

in unimodal cortical areas. This gradient explained the most variance in BOLD activity, 

appeared to underlie the global signal, and had a stronger correlation with the principal spatial 

component of gene expression than any previously described functional gradient. Our second 

contribution was to demonstrate that these latent dimensions and gradients appear to be 

intrinsic. We tested this by defining the latent space from task-free fMRI data, projecting task 

fMRI data into that latent space, and finding that different task activation patterns were 

generated by intrinsic gradients steepening or flattening into task-specific configurations. Our 

third contribution was to model gradient interactions as a dynamical system. We showed that 

coupling parameters determine the level of influence that gradients have on one another, and 

that a dynamical model with state-specific coupling parameters can yield accurate forecasts and 

simulations of functional connectivity during different tasks.  

We performed several analyses to confirm that this expanded set of latent dimensions 

and gradients are consistent with core phenomena in functional connectomics. First, the 

gradient spatial patterns and ordering in the discovery cohort were reproduced in the validation 

cohort, providing evidence that this functional anatomy is stable across individuals. Second, the 

activity gradients we describe here had specific correspondences with known functional 

connectivity gradients (Margulies et al., 2016). Third, individual subjects had identifiable latent 

trajectories on consecutive days, indicating that functional connectivity fingerprints were 
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apparent in the low-dimensional latent space (Finn et al., 2015). Fourth, regions were spaced 

non-uniformly along gradients, reflecting functional modularity and the presence of hub regions. 

Fifth, gradients had strong spatial correlations with spatial gene expression patterns. 

Collectively, these novel and confirmatory analyses establish that the brain activity latent space 

captures the core properties of functional brain activity and connectivity. 

The primary gradient had a unipolar activation pattern reflecting the global signal of brain 

activity. The global signal is a source of ongoing controversy in fMRI literature, appearing to 

have a neuronal basis (Turchi et al., 2018), relating to individual differences in behavior (Uddin, 

2020), but also associating with respiration or head motion (Chang and Glover, 2009; Power et 

al., 2014). We used ICA-FIX denoised HCP fMRI data to minimize the impact of non-neural 

signals including respiration (Power et al., 2017; Glasser et al., 2019). We found that this 

gradient had strongest involvement of unimodal visual, somatomotor, and auditory areas, 

consistent with previous reports that the global signal has a heterogenous spatial topography 

(Liu et al., 2018b; Li et al., 2019; Orban et al., 2020). The unipolar nature of Gradient 1 is a likely 

reason why it has not previously been detected with conventional gradient discovery methods 

(Vos de Wael et al., 2020). Gradient 1 acts like a rising and falling tide, driving positive 

correlation between all areas. In this case, only methods which look for latent dimensions of 

variability in activity will detect this gradient, unlike methods which look for latent dimensions of 

functional connectivity. Similarly, recent work has shown that when the global signal is low or 

has been regressed out, the most prominent residual spatiotemporal pattern involves anti-

correlation between the default mode and task positive networks (Yousefi et al., 2018; Yousefi 

and Keilholz, 2020), strongly resembling Gradient 2 in the current study. One practical 

implication of a latent “global signal” dimension existing is that cleanly isolating the global signal 

may be more effective using PCA or temporal ICA (Glasser et al., 2018) rather than 

conventional global signal regression. 
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Gradient 1 had a striking spatial correlation with the principal spatial component of 

cortical gene expression. This correlation is the strongest reported relationship we are aware of 

between a functional gradient and a spatial gene expression pattern, supporting its biological 

plausibility. The principal genetic expression component is known to have a strong relationship 

with the cortical myelination pattern that demarcates the borders between sensory and 

association areas (Burt et al., 2018). In the current study, the genes most positively associated 

with Gradient 1 included SEMA7A and SCN1B, which have known roles in excitation/inhibition 

balance and seizure disorders (Brackenbury et al., 2013; Carcea et al., 2014). Collectively, the 

primary gradient appears to represent a convergent system of functional, structural, and genetic 

variation in the brain which may modulate global neuronal excitation/inhibition balance (Wang, 

2020). 

Gradient 2 strongly resembled the previously described principal macroscale gradient of 

functional connectivity (Margulies et al., 2016). This gradient defines a sensory-to-cognitive axis 

with the default mode network at one extreme and somatomotor and visual areas at the other. 

Balanced anticorrelation between networks is a central aspect of brain functional connectivity 

(Fox et al., 2005) and could plausibly be instantiated by placing brain areas at opposing ends of 

a single dynamic gradient. What circuit or systems-level mechanism might drive the ongoing 

fluctuations of these global, bipolar gradients? One compelling possibility is the reciprocal 

inhibitory connections in the thalamic reticular nucleus, which excite one thalamic nucleus while 

inhibiting an opposing cellular cluster (Crabtree, 2018). This motif is essential for switching 

between attending to visual or auditory stimuli (Schmitt et al., 2017) and may enable thalamic 

coordination of widespread cortical functional connectivity (Hwang et al., 2017; Buckner and 

DiNicola, 2019). We found that multiple gradients had correlations with genes such as SEMA7A 

and CDH6 that demarcate specific thalamic nuclei and are also expressed in cortical layers 

where thalamocortical axons terminate (Bibollet-Bahena et al., 2017). Proof of a causal link 
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between microscale thalamic electrophysiology and macroscale BOLD activity gradient 

fluctuations may require an optogenetic fMRI approach (Liu et al., 2015).  

 One consequence of functional anticorrelation between systems is modularity, which the 

brain uses to perform segregated cognitive processing (Sporns and Betzel, 2016). Here we find 

that the presence of modular boundaries, provincial hubs, and connector hubs reflects the non-

uniform spacing of regions along each gradient. This principle of non-uniform spacing or 

“clumpiness” is known to influence the distinctness of regional boundaries (Tian and Zalesky, 

2018). Our observation that gradients had significant spatial correlations with gene expression 

maps suggests that a non-uniform distribution of gene expression along gradients is also likely, 

with sections of a gradient expressing either clustered or transitioning gene expression profiles. 

Canonical functional connectivity networks have similarly been shown to exhibit discrete spatial 

gene expression patterns (Bertolero et al., 2019; Richiardi et al., 2015). Morphogen gradients 

during brain development may provide the scaffold for the emergence of multiple distributed and 

overlapping activation gradients (O’Leary et al., 2007). 

 We found that task-specific activation patterns resulted from specific levels of gradient 

engagement. This supports the hypothesis that the gradients are spatially fixed, intrinsic 

systems. If this is true, then the primary means for the brain to occupy different states is for 

gradients to steepen or flatten different amounts. We observed that latent trajectories reflecting 

gradient slopes are bounded during different task conditions, as demonstrated for the working 

memory 2-back and 0-back conditions (Figure 5E). This builds on previous work showing that 

distinct low-dimensional trajectories underlie task-specific brain activity states (Shine et al., 

2019). A key consequence of a small set of spatially fixed, intrinsic gradients underlying brain 

activity patterns is that the range of possible functional network configurations is limited. This is 

in line with studies showing that brain-wide functional connectivity patterns only modestly 

reconfigure between task-free and task-engaged states (Cole et al., 2014; Gratton et al., 2018).  
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Our dynamical systems model showed that distinct brain activity states can be reached 

when gradients interact following state-specific coupling parameters. As we illustrated for the 

working memory task, the shape of the latent brain activity manifold is dictated by the gradient 

coupling parameters. The shape of this manifold will determine the coactivation patterns 

occurring during that state (Liu et al., 2018a), the probability of transition between different 

states (Vidaurre et al., 2017), and the temporal sequence of activity flow (Cole et al., 2016). One 

critical aspect of our modeling approach is that while the PCA-derived gradient timeseries are 

temporally orthogonal, this does not imply that gradients cannot causally influence each other. 

Ordinary differential equations can accurately capture non-linear relationships between 

orthogonal variables in a low-dimensional system (Brunton et al., 2016). Our discovery of 

specific coupling parameters generating unique functional connectivity states is evidence that 

the gradients do not function independently, but instead exert distinct influence on one another. 

The amount of push and pull between gradients may be calibrated by neuromodulation (Shine, 

2019) or other mechanisms of gain control (Buzsáki, 2019). We observed a strong tendency for 

a transiently steep gradient slope to subsequently flatten out, suggesting that gradient 

engagement and maintenance may be energetically costly. A tendency towards relaxation in 

parallel with mutual influence between gradients may lead to a “frustrated equilibrium” that 

perpetuates dynamic activity (Gollo and Breakspear, 2014). Future work can seek to understand 

how gradient coupling evolves on short timescales and is altered by neurological conditions or 

modified by feedback over extended timescales. 
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Materials and Methods 

Subjects and data 

200 subjects were randomly selected from the Human Connectome Project (HCP) 1200 

Subjects Data Release with available resting (task-free) and task fMRI data from a 3T MRI 

scanner (https://db.humanconnectome.org/data/projects/HCP_1200). Informed consent was 

obtained for each individual by the HCP consortium. The HCP complied with all relevant ethical 

regulations. This study agreed to the Open Access Data Use Terms 

(https://www.humanconnectome.org/study/hcp-young-adult/document/wu-minn-hcp-consortium-

open-access-data-use-terms) and was exempt from the UCSF IRB because investigators could 

not readily ascertain the identities of the individuals to whom the data belonged. Task-free state 

scans were 14.4 minutes long with a repetition time (TR) of 720 ms, resulting in 1200 fMRI 

volumes per scan. We divided these subjects into 100-subject discovery and validation datasets 

(56 female/44 male in the discovery dataset, mean age=28.9 years; 50 female/50 male in the 

validation dataset, mean age= 28.6 years). For task-free state fMRI data, we used the left-right 

phase encoded, minimally preprocessed scans with motion correction and FIX-ICA denoising. 

fMRI volumes were temporally concatenated for all subjects in the discovery or validation 

datasets (119500 volumes each) and each voxel’s timeseries was then standardized to have a 

mean of zero and a standard deviation of one. More detailed scanning parameters and 

preprocessing procedures have been described in detail elsewhere (Glasser et al., 2013). We 

used FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) and AFNI (https://afni.nimh.nih.gov/) for 

subsequent fMRI preprocessing. The first 5 volumes for each fMRI scan were dropped to allow 

scanner stabilization. Scans were bandpass filtered in the 0.008-0.15Hz frequency range and 

subsequently normalized in each voxel across time to have zero mean and unit variance. 

 

Deep learning 
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All preprocessed fMRI volumes in this study were downsampled to 48x48x48 cubic images with 

4 mm3 isotropic resolution, the maximal resolution possible due to GPU memory constraints 

during deep neural network training. We used a three-dimensional deep convolutional 

autoencoder (3D-DCA) to learn a dimensionality reduction of the 3D fMRI volumes. The 3D-

DCA architecture we used was: 64 filter convolutional layer with a 3 voxel-by-3 voxel kernel and 

a stride of 2 voxels (64-CL-3x3), batch normalization (BN), rectified linear unit (ReLU), 128-CL-

3x3, BN, ReLU, 256-CL-3x3, BN, ReLU, 1296 unit fully connected layer, BN, ReLU, spatial 

upsampling 2x2 (SU-2x2), 256-CL-3x3, BN, ReLU, SU-2x2, 128-CL-3x3, BN, ReLU, SU-2x2, 

64-CL-3x3, BN, ReLU, 1-CL-1x1. A mean squared error loss function was used with the Adam 

optimizer to adjust network weights during training (Kingma and Ba, 2014) with a learning 

rate=0.0001. The 3D-DCA was trained for five epochs on the 119500 3D task-free fMRI 

volumes from the 100 subjects day 1 scans in our discovery dataset, with a batch size of 16 

volumes and shuffling of the sequence of volumes in each epoch. This autoencoder was used 

to generate latent embeddings for all fMRI images in the study. For more details, see 

Supplementary Methods. 

 

Latent space analysis 

Latent space embeddings for all HCP scans were derived as the output from the 3D-DCA’s 

1296-D middle layer. 216 dimensions had unvarying values across all volumes and were 

excluded from subsequent analysis, resulting in 1080 dimensions for each fMRI volume’s 

autoencoder middle layer code. The embeddings for the 119500 discovery dataset fMRI 

volumes were processed with Principal Component Analysis (PCA) in order to organize the 

latent space dimensions according to the amount of variance they explained. Matlab’s ‘pca’ 

function was run on the 119500 x 1080 embedding matrix with de-meaning of each column. The 

two-dimensional pairwise distributions for the first nine dimensions are shown in Figure S3. For 

gradient map validation, an independent latent space was derived for the 119500 validation 
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dataset fMRI volumes. Partial Least Squares (PLS) regression was used to confirm that the 

same PCA components explaining maximal variance in the autoencoder embeddings also 

explained the most variance in the original BOLD timeseries. PLS regression was run on the 

119500 x 1080 autoencoder embeddings against the 119500 x 273 cortical, subcortical, and 

cerebellar regional mean BOLD timeseries. To measure the similarity of the PCA and PLS 

components, the PCA-derived spatial gradient maps (see Spatial gradient derivation) were 

correlated with the PLS component spatial loadings. 

 

Spatial gradient derivation 

Following PCA, we regressed each gray matter voxel’s BOLD intensity values against timepoint-

wise gradient slope (i.e. the PCA scores) to measure the strength of the linear relationship 

between latent space position and a given voxel’s BOLD activity. For a given component, the 

voxel activity/component beta values were derived for each voxel and stored in a statistical 

parametric “gradient” map (see Supplementary Data 5). We refer to these beta values as 

gradient weights. Independent gradient maps were derived for the validation dataset. These 

voxel-wise gradient maps were then averaged within each of a set of 273 regions of interest 

using a parcellation of 246 cortical and subcortical regions from the Brainnetome atlas (Fan et 

al., 2016) (http://www.brainnetome.org/) and 27 cerbellar regions from the SUIT atlas 

(Diedrichsen, 2006) (http://www.diedrichsenlab.org/imaging/suit.htm). Region names were 

assigned based on maximum probability overlap with the Harvard-Oxford cortical and 

subcortical atlas and the probabilistic cerebellar atlas in FSL. The polarity of each gradient was 

assessed by calculating what percentage of the 273 regions had positive or negative mean 

weights.  

 

Timeseries analysis 
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Any voxel or region’s BOLD activity at a given timepoint can be reconstructed as the sum of the 

voxel/region’s gradient weights multiplied by the gradient slopes for the current timepoint, 

summed across all dimensions: 

𝐵𝑂𝐿𝐷𝑖,𝑡 = ∑𝛽𝑖,𝑘𝑆𝑘

𝑑

𝑘=1

 

 

where 𝛽𝑖,𝑘 is the current voxel/region’s weight on a given gradient, S is the current timepoint’s 

gradient slope (ie PCA score) on a given dimension, k is the dimension number out of d total 

dimensions, i is the current voxel/region, and t is the current timepoint. The strength of the 

relationship in BOLD signal between two regions, the functional connectivity, is typically 

represented as the covariance or correlation of two voxels’ or regions’ timeseries. Covariance is 

defined as the product of the two regions’ BOLD activity values at each timepoint, averaged 

over timepoints. The BOLD covariance can be determined by multiplying the gradient slope 

matrix for each timepoint elementwise by the gradient weight matrix, averaging across all 

timepoints, and taking the sum of the resulting matrix. In general, the covariance between a pair 

of regions for a latent space with any number of dimensions is: 

𝑐𝑜𝑣𝑖𝑗 =

∑ [
𝑆1𝑆1 ⋯ 𝑆1𝑆𝑘
⋮ ⋱ ⋮

𝑆𝑘𝑆1 ⋯ 𝑆𝑘𝑆𝑘

] ∘ [

𝛽𝑖,1𝛽𝑗,1 ⋯ 𝛽𝑖,1𝛽𝑗,𝑘
⋮ ⋱ ⋮

𝛽𝑖,𝑘𝛽𝑗,1 ⋯ 𝛽𝑖,𝑘𝛽𝑗,𝑘

]𝑛
𝑡=1

𝑛
 

 

Where Sk,t is the gradient slope of fMRI timepoint t for latent dimensions 1 through k, and 𝛽 is 

the gradient weight for region i or j on dimension k. In order to compute the correlation from the 

covariance, the standard deviation is required. The standard deviation for a given region is 

calculated by multiplying the gradient slope covariance matrix by the region i-region i gradient 

weight matrix: 
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𝜎𝑖
2 = [

𝑆1𝑆1 ⋯ 𝑆1𝑆𝑘
⋮ ⋱ ⋮

𝑆𝑘𝑆1 ⋯ 𝑆𝑘𝑆𝑘

] ∘ [

𝛽𝑖,1𝛽𝑖,1 ⋯ 𝛽𝑖,1𝛽𝑖,𝑘
⋮ ⋱ ⋮

𝛽𝑖,𝑘𝛽𝑖,1 ⋯ 𝛽𝑖,𝑘𝛽𝑖,𝑘

] 

𝜎𝑗
2 = [

𝑆1𝑆1 ⋯ 𝑆1𝑆𝑘
⋮ ⋱ ⋮

𝑆𝑘𝑆1 ⋯ 𝑆𝑘𝑆𝑘

] ∘ [

𝛽𝑗,1𝛽𝑗,1 ⋯ 𝛽𝑗,1𝛽𝑗,𝑘
⋮ ⋱ ⋮

𝛽𝑗,𝑘𝛽𝑗,1 ⋯ 𝛽𝑗,𝑘𝛽𝑗,𝑘

] 

 

Finally, the correlation between region i-region j is determined by: 

𝑐𝑜𝑟𝑟𝑖𝑗 =
𝑐𝑜𝑣𝑖𝑗
𝜎𝑖𝜎𝑗

 

 

Activation fields 

Because regional activation can be estimated using the region’s weight on each gradient and 

the slopes of those gradients, regional activation can be visualized for two dimensions of latent 

space as an “activation field” (Figure 3A). The overall BOLD activity level of a region at a 

specific point in a latent trajectory can be determined by its (x,y) position on the regional 

activation field. In order to visualize how a trajectory relates to functional connectivity (co-

activation) between two areas, we applied the covariance formula. Covariance is measured as 

the mean of the product of two BOLD signals over time, assuming each signal has zero mean. 

The “instantaneous” covariance is thus the product of the BOLD values in two different regions 

in a given timepoint, which can be represented in latent space as the element-wise product of 

the two regional activation fields, creating a “co-variation field” (Figure 3A, right). The 

covariance across a run can then be measured by taking the sum of the trajectory locations for 

each timepoint on the co-variation field, and dividing by the total number of timepoints. The 

correlation coefficient can subsequently be derived by dividing the covariance by the product of 

the standard deviations for each regional BOLD signal, where standard deviation in latent space 

is equivalent to the mean trajectory width along a given dimension. 
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Within-subject reliability assessment 

We determined within-subject similarity of latent fMRI trajectories from day 1 and day 2 for the 

100 subjects in the validation dataset using gradient slope covariance matrices, a measure of 

“fingerprinting” (Finn et al., 2015). We reconstructed these using between 1-50 latent 

dimensions, by deriving the gradient slope covariance matrix as described in the Timeseries 

analysis section. Our goal was to determine the minimum latent space dimensionality at which 

reliable individual differences in functional activity became apparent. We used trajectories for 

the 100 validation subjects, projected into the discovery-dataset defined latent space, to mitigate 

the possibility of certain dimensions/gradients being unique to specific individuals. The gradient 

slope covariance matrix for each day 1/day 2 scan was compared with every other gradient 

slope covariance matrix using the geodesic distance metric (Venkatesh et al., 2020). The matrix 

from the same subject on the opposite day was assigned a rank between 1-100, and a match 

was identified if the subject’s corresponding matrix was the best fit. For each number of 

dimensions, we determined the median rank of the corresponding matrix and the number of 

matches (Figure S6). 

 

Task fMRI analysis 

Preprocessed task fMRI data for the four tasks from the HCP were analyzed (working memory, 

motor, language, emotion) (https://db.humanconnectome.org/data/projects/HCP_1200). We 

used left-right phase encoded scans. Subsequent postprocessing steps for the task fMRI data, 

which had not undergone FIX-ICA denoising, included removing the first 5 scans and then 

denoising by regressing out the 6 motion parameters, temporal derivatives, squares, the white 

matter timeseries extracted using a mask of the highest probability cortical white matter 

according to the FSL tissue prior mask, and the CSF timeseries extracted using a mask in the 

central portion of the lateral ventricles. Scans were bandpass filtered in the 0.008-0.15Hz 

frequency range to match the task-free state data, voxel-wise normalized across time to a mean 
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of zero and a standard deviation of one, and spatially downsampled to 48x48x48 images with 4 

mm3 resolution. These images were passed through the task-free state-trained autoencoder 

from the discovery sample and the subsequent autoencoder-dimension-to-PCA-component 

loadings to obtain the latent space projections. 

When determining task-specific activation patterns, the following regressors were used 

for each task: for working memory, the 2-back and 0-back conditions, merging blocks from the 

faces, places, tools and body parts stimulus blocks (Barch et al., 2013); for the motor task, the 

active condition combining the right hand, left hand, right foot, left foot, and tongue blocks, and 

the fixation condition; for language, the story and math conditions; and for emotion, the faces 

and shapes conditions. Task condition block regressors were convolved with a hemodynamic 

response function using the ‘spm_get_bf’ function in SPM12 

(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). A general linear model was then fit for each 

subject and task, where the gradient slope timeseries for a given latent dimension was the 

response variable and the two HRF-convolved task regressors were the predictors. The 

parameter estimates for each condition were calculated and then contrasted between conditions 

using a two-sample t-test across subjects. The t-statistic of the between-condition gradient slope 

differences was obtained for each latent dimension (as shown for nine dimensions in Figure 

5B). This t-statistic vector was multiplied by the corresponding set of voxel-wise gradient weight 

maps and summed to obtain the gradient-based task contrast map, with units of BOLD standard 

deviations. The mean gradient slopes for each task for each condition are shown in Figure 5B, 

along with the 95% confidence intervals. The conventional voxel-wise general linear model task 

activation maps were derived by taking the preprocessed BOLD images and regressing each 

voxel’s timeseries against the task regressors and performing a subsequent two-sample t-test 

on the voxel-wise parameter estimates for each condition across subjects. Spatial correlations 

(Pearson r-values) were computed between the task GLM maps and the gradient-based task 
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contrast maps based on between 1 and 100 dimensions, considering 23714 voxels in a gray 

matter mask with 4 mm3 resolution that covered cortical, subcortical, and cerebellar regions. 

 

Functional modules 

The task-free functional connectivity matrix was derived for the discovery dataset by 1) 

reconstructing each region’s timeseries based on a specific subset of gradients (see Timeseries 

analysis) and 2) correlating each region’s resultant timeseries in a pairwise manner. The 

functional connectivity matrix was then r-to-Z transformed. Graph theory analyses were run 

using the Brain Connectivity Toolbox (BCT; https://sites.google.com/site/bctnet/). Networks were 

thresholded to keep the strongest 10% of edges. Modularity was determined using the Louvain 

algorithm (Blondel et al., 2008) as implemented in BCT, running 1000 iterations with the default 

parameters, choosing the partition that maximized the Q value. Connector and provincial hubs 

were determined by computing each region’s within-module degree Z-score and participation 

coefficient. Regions in the top tertile of within-module degree Z-score and the bottom tertile of 

participation coefficient were identified as provincial hubs, while regions in the top tertile of 

participation coefficient and the bottom tertile of within-module degree Z-score were identified as 

connector hubs. The remaining regions were labeled as non-hubs. Each region’s neighbors 

were identified as the top 10 most highly functionally correlated regions. 

Gradient weights for different regions were statistically compared in two different ways. 

When only considering the two-dimensional latent space based on gradients 2 and 3 (Figure 4), 

the angle between each region’s [2x1] gradient weight vector was computed. To compare the 

mean neighborhood angle for provincial hubs, connector hubs, and non-hubs, we used a 

Watson-Williams test using pycircstat (Berens, 2009). When considering higher dimensional 

latent spaces defined by three or more gradients, region gradient weight vectors were compared 

to each other using the cosine similarity. Cosine similarity values for hub and non-hub regions 

were then statistically compared using a non-parametric Mann-Whitney test. 
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Genetic spatial correlation 

We compared each gradient map to Allen Human Brain spatial gene expression patterns using 

the ‘abagen’ package (https://github.com/rmarkello/abagen) (Arnatkevic̆iūtė et al., 2019; 

Hawrylycz et al., 2012). We used default options including for donors (all), tolerance (2 mm), 

collapsing across probes (diff_stability), and intensity-based filtering threshold (0.5). Expression 

data was available for 261 out 273 Brainnetome and SUIT regions from both hemispheres for 

15655 genes. All non-cortical regions were eliminated because of substantial differences in 

subcortical expression values, which would hamper brain-wide spatial correlation estimates, 

leaving 202 regions. Data-driven filtering was used to remove regions with outlying expression 

values. Using K-means clustering we identified an outlying cluster with 6 regions, which were 

removed to give the final [15655 x 196] matrix of expression values. For each of the first nine 

gradients in the discovery or validation datasets, we calculated the spatial Pearson correlation 

between each 196-region gene expression vector and the 196-region gradient weight vector. 

We defined the statistical significance threshold as the Bonferroni corrected p-value of p=.05 / 

15655 genes / 9 gradients=3.55 x 10-7. Furthermore, gradient/gene expression spatial 

correlations were only reported as significant if they replicated Bonferroni significance for at 

least one gradient in both the discovery and validation datasets.  

 The resultant set of 3804 significant genes were submitted to a Gene Ontology 

Enrichment Analysis using GOrilla (http://cbl-gorilla.cs.technion.ac.il/) (Eden et al., 2009), using 

a background of all 15655 genes and corrected for multiple comparison using the default FDR 

q-value < 0.1. GOrilla recognized 14952 genes, of which 13922 were associated with a gene 

ontology term. 

 The principal component of spatial gene expression was derived by performing PCA on 

the [15655 x 196] regional expression matrix and obtaining the PCA scores for each of the 196 

regions on the first component. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 3, 2021. ; https://doi.org/10.1101/2020.08.12.248112doi: bioRxiv preprint 

https://github.com/rmarkello/abagen
http://cbl-gorilla.cs.technion.ac.il/
https://doi.org/10.1101/2020.08.12.248112


37 

 

Differential equation modeling 

For each task-free scan in the discovery dataset, the first and second derivatives of the 1195 

timepoint gradient slope timeseries were calculated using the ‘gradient’ function in MATLAB. In 

this section we refer to the first derivative of gradient slope as ‘velocity’, and the second 

derivative as ‘acceleration’. For gradients 1-9, linear regression was used to estimate a given 

gradient’s acceleration as a linear function of the other gradients’ slopes, velocities, and an 

intercept. The parameter estimates (which we refer to as coupling parameters) for the 19 terms 

from this regression - the position and velocity terms for each gradient and an intercept - were 

then used to define a system of 9 differential equations: 

 

G1’’= 𝛽1,0 + 𝛽G1,1G1 + 𝛽G1’,1G1’ + 𝛽G2,1G2 + 𝛽G2’,1G2’ + … + 𝛽G9,1G9 + 𝛽G9’,1G9’’ 

G2’’= 𝛽2,0 + 𝛽G1,2G1 + 𝛽G1’,2G1’ + 𝛽G2,2G2 + 𝛽G2’,2G2’ + … + 𝛽G9,2G9 + 𝛽G9’,2G9’’ 

 … 

G9’’= 𝛽9,0 + 𝛽G1,9G1 + 𝛽G1’,9G1’ + 𝛽G2,9G2 + 𝛽G2’,9G2’ + … + 𝛽G9,9G9 + 𝛽G9’,9G9’’ 

 

This system of equations was solved numerically using the ‘ode45’ function in MATLAB. For 

initial conditions, we used the gradient slopes/velocities for a given timepoint from the first 1170 

timepoints from each scan. We determined each solution for an interval of 25 timepoints out 

from the initial condition (t=0 to t=25) with a temporal resolution of 1 volume (720 ms). Forecasts 

were generated from each timepoint in the validation dataset, using coupling parameters 

derived from the discovery dataset. This yielded one 25x9 matrix for simulated gradient slopes, 

and a second 25x9 matrix for simulated gradient velocities. We compared the 25x9 simulated 

gradient slopes to corresponding true gradient slopes using correlation and root mean squared 

error to estimate the accuracy of the predictions. 
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For autoregressive modeling, we adapted the Matlab function from Liégeois and 

colleagues (Liégeois et al., 2017) to generate gradient timeseries forecasts 

(https://github.com/ThomasYeoLab/CBIG/blob/master/stable_projects/fMRI_dynamics/Liegeois2

017_Surrogates/CBIG_RL2017_get_AR_surrogate.m). Parameters were derived in the 

discovery dataset task-free state data for each subject, and then averaged across subjects. 

These mean discovery parameters were then used generate gradient timeseries forecasts for 

each subject in the validation dataset, for a timeframe of 25 timepoints out from each actual 

timepoint in the task-free state scan. The variance explained r2 values were statistically 

compared between the differential equation and autoregression-based forecasts using the 

‘corr_rtest’ function in MATLAB based on 117000 observations per group to derive Z-scores. 

Simulations were performed using the system of differential equations for gradients 1-9. 

As an initial condition, we randomly selected 10000 timepoints from the task-free state scans in 

the discovery dataset. The associated initial conditions – each gradient’s slope, first derivative, 

and second derivative – were used as seeds to solve the differential equations. When solving 

the differential equations for simulations, the coupling parameters for each state – rest, working 

memory, motor, language, emotion – were estimated from the discovery dataset scans. Our 

basic strategy was to emulate a typical block-design task fMRI experiment. We did this by 

simulating 50-timepoint intervals from three different conditions: task-free, active task condition, 

or baseline task condition. Simulations were done for 50 timepoints with task-free coupling 

parameters. Next, simulations were done for a subsequent 50 timepoints with the coupling 

parameters from the active task condition (Working memory: 2-back; Motor: active; Language: 

story; Emotion: faces). A parallel simulation was run with 50 task-free timepoints followed by 50 

timepoints with the coupling parameters from the baseline task condition (Working memory: 0-

back; Motor: fixation; Language: math; Emotion: shapes). For each of the 10000 parallel active 

task or baseline task simulations, the last 50/100 timepoints were extracted and the first five of 

those timepoints were trimmed off to allow for stabilization. The remaining 45 timepoints were 
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expanded from nine gradient timeseries into 273 region timeseries, from which 273x273 

functional connectivity matrices were computed. These 10000 matrices were averaged to 

produce the active task condition-simulated functional connectivity (FC) matrix. For the actual 

data, the nine gradients’ timeseries from each timepoint where the subject was actively engaged 

in the task (ie where the HRF-convolved task waveform was greater than 0.5) were extracted 

from the validation dataset, expanded into 273 region timeseries, and pairwise correlated to 

obtain the actual active task condition FC matrix. 

When comparing the average simulated and real matrices, we first statistically compared 

using ‘corr_rtest’ based on 37128 edges per matrix to derive Z-scores. To measure the 

specificity of the real and simulated matrices, we performed two additional analyses. First, we 

flattened the real and simulated FC matrices for five conditions – task-free state, working 

memory 2-back, motor active, language story, and emotion faces – into a 37128x10 r-to-Z 

transformed matrix and computed the 10x10 partial correlations. Second, we ran linear models 

predicting one of the 37128x1 columns using the other 37128x9 columns as predictors, then ran 

linear contrasts to determine if the parameter estimate for the real matrix for a given condition 

was significantly more similar to the corresponding simulated matrix than to any other matrix. 

When forecasting task fMRI gradient timeseries using the differential equations, we first 

labeled volumes in each task as occurring during condition 1 when the condition 1 HRF-

convolved task waveform was greater than 0.5. The same was done for condition 2, and the 

remaining volumes were labeled as baseline. The gradient slopes, velocities, and accelerations 

were then calculated separately for both conditions of each task for subjects in the discovery 

dataset. Gradient slope timeseries were forecasted the same way as for the task-free state 

data, limiting the prediction interval to 10 timepoints, after which prediction errors generally 

reached a plateau. For the main condition of interest in each task, three sets of forecasts were 

generated for each subject in the validation dataset: using coupling parameters derived from the 

same task condition, from the opposite task condition, or from task-free state data. The forecast 
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accuracy was measured as the root mean squared error (RMSE) of actual and forecasted data 

at each timestep for each gradient, and then averaged across gradients at a given timestep. 

The three sets of forecasts were statistically compared for accuracy using pairwise two-sample 

t-tests of mean RMSE at each timestep, corrected for multiple comparisons using the false 

discovery rate with q=0.05. 

 

Data availability 

Original data was obtained from the Human Connectome Project (1U54MH091657, PIs Van 

Essen and Ugurbil) and the Allen Human Brain Atlas (http://human.brain-map.org/). All code 

and processed data will be available upon publication at https://github.com/jbrown81/gradients 
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