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Abstract 25 

A detailed understanding of gut microbial ecology is essential to engineer effective 26 

microbial therapeutics and to model microbial community assembly and succession in 27 

health and disease. However, establishing generalizable insights into the functional 28 

determinants of microbial fitness in the human gut has been a formidable challenge. Here 29 

we employ fecal microbiota transplantation (FMT) as an in natura experimental model to 30 

identify determinants of microbial colonization and resilience. Our long-term sampling 31 

strategy and high-resolution multi-omics analyses of FMT donors and recipients reveal 32 

adaptive ecological processes as the main driver of microbial colonization outcomes after 33 

FMT. We also show that high-fitness donor microbial populations are significantly 34 

enriched in metabolic pathways that are responsible for the biosynthesis of nucleotides, 35 

essential amino acids, and micronutrients, independent of taxonomy. To determine 36 

whether such metabolic competence can explain the microbial ecology of human disease 37 

states, we analyzed genomes reconstructed from healthy humans and humans with 38 

inflammatory bowel disease (IBD). Our data reveal that such traits are also significantly 39 

enriched in microbial genomes recovered from IBD patients, linking presence of superior 40 

metabolic competence in bacteria to their expansion in IBD. Overall, these findings 41 

suggest that the transfer of gut microbes from a healthy donor to a disrupted recipient 42 

environment initiates an environmental filter that selects for populations that can self-43 

sustain. Such ecological processes that select for self-sustenance under stress offer a 44 

model to explain why common yet typically rare members of healthy gut environments 45 

can become dominant in inflammatory conditions without any need for them to be causally 46 

associated with, or contribute to, such disease states. 47 

  48 
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Introduction 49 

The human gut microbiome is associated with a wide range of diseases and disorders 50 

(Almeida et al. 2020; Durack and Lynch 2019; Lynch and Pedersen 2016). However, 51 

mechanistic underpinnings of these associations have been difficult to resolve in part due 52 

to the diversity of human lifestyles (David et al. 2014) and the limited utility of model 53 

systems to make robust causal inferences for microbially mediated human diseases 54 

(Walter et al. 2020). 55 

Inflammatory bowel disease (IBD), a group of increasingly common intestinal disorders 56 

that cause inflammation of the gastrointestinal tract (Baumgart and Carding 2007), has 57 

been a model to study human diseases associated with the gut microbiota (Schirmer et 58 

al. 2019). The pathogenesis of IBD is attributed in part to the gut microbiome (Plichta et 59 

al. 2019), yet the microbial ecology of IBD-associated dysbiosis remains a puzzle. Despite 60 

marked changes in gut microbial community composition in IBD (Ott et al. 2004; Sokol 61 

and Seksik 2010; Joossens et al. 2011), the microbiota associated with the disease lacks 62 

traditional pathogens (Chow, Tang, and Mazmanian 2011), and microbes that are found 63 

in IBD typically also occur in healthy individuals (Clooney et al. 2021), which complicates 64 

the search for robust functional or taxonomic markers of health and disease states (Lloyd-65 

Price et al. 2019). One of the hallmarks of IBD is reduced microbial diversity during 66 

episodes of inflammation, when the gut environment is often dominated by microbes that 67 

typically occur in lower abundances prior to inflammation (Vineis et al. 2016). The sudden 68 

increase in the relative abundance of microbes that are common to healthy individuals 69 

suggests that the harsh conditions of IBD likely act as an ecological filter that prevents 70 

the persistence of low-fitness populations. Yet, in the absence of a complete 71 

understanding of the functional drivers of microbial colonization in this habitat, critical 72 

insights into the metabolic requirements of survival in IBD remains elusive. 73 

Understanding the determinants of microbial colonization has been one of the 74 

fundamental aims of gut microbial ecology (Costello et al. 2012; Messer et al. 2017). To 75 

overcome the difficulties of conducting well-controlled studies with humans, researchers 76 

have studied the determinants of microbial colonization of the gut in model systems, such 77 
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as germ-free mice conventionalized with individual taxa (S. M. Lee et al. 2013) or a 78 

consortium of human microbial isolates (Feng et al. 2020). Despite their utility for 79 

hypothesis testing, simpler models do not capture the complex ecological interactions 80 

fostered by natural systems and thus the insights they yield do not always translate to 81 

human gut microbial ecology (Ley et al. 2006; Finucane et al. 2014). Between the 82 

extremes of well-controlled but simple mouse models and complex yet uncontrolled 83 

human populations, there exists a middleground that provides a window into the microbial 84 

ecology of complex human systems through a controlled perturbation: human fecal 85 

microbiota transplantation (FMT), the transfer of stool from a donor into a recipient’s 86 

gastrointestinal tract (Eiseman et al. 1958). 87 

FMT complements laboratory models of environmental perturbation by colliding two 88 

distinct microbial ecosystems, and thus offers a powerful framework to study fundamental 89 

questions of microbial ecology, including the determinants of microbial succession and 90 

resilience (Schmidt, Raes, and Bork 2018). Here we use FMT as an in natura 91 

experimental model to investigate the ecological and functional determinants of 92 

successful microbial colonization of the human gut at the level of individual populations. 93 

Our findings suggest that adaptive ecological forces are key drivers of colonization 94 

outcomes after FMT, reveal taxonomy-independent metabolic determinants of fitness in 95 

the human gut, and demonstrate that similar ecological principles determine resilience of 96 

microbes in stressful and inflammatory conditions. 97 

Results and Discussion 98 

Our study includes 109 gut metagenomes (Supplementary Table 1) from two healthy FMT 99 

donors (A and B) and 10 FMT recipients (five recipients per donor) who had multiply 100 

recurrent Clostridium difficile infection (CDI) and received vancomycin for a minimum of 101 

10 days to attain resolution of diarrheal illness prior to FMT. On the last day of vancomycin 102 

treatment, a baseline fecal sample was collected from each recipient, and their bowel 103 

contents were evacuated immediately prior to FMT. Recipients did not take any antibiotics 104 

on the day of transplant, or during the post-FMT sampling period (Supplementary Figure 105 

1). We also collected 24 Donor A samples over a period of 636 days and 15 Donor B 106 
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samples over a period of 532 days to establish an understanding of the long-term 107 

microbial population dynamics within each donor microbiota. We also collected 5 to 9 108 

samples from each recipient up to 336 days post-FMT. Deep sequencing of donor and 109 

recipient metagenomes using Illumina paired-end (2x150) technology resulted in a total 110 

of 7.7 billion sequences with an average of 71 million reads per metagenome (Figure 1, 111 

Supplementary Table 1, Supplementary Table 2). We employed genome-resolved 112 

metagenomics, pangenomics, and microbial population genetics for an in-depth 113 

characterization of donor and recipient gut microbiota using these data, and we leveraged 114 

publicly available gut metagenomes to benchmark our observations. 115 

Many but not all donor microbes colonized recipients and persisted 116 

long-term 117 

We first characterized the taxonomic composition of each donor and recipient sample by 118 

aligning metagenomic short reads to reference genomes in the NCBI’s RefSeq database 119 

(Supplementary Table 2). The phylum-level microbial community composition of both 120 

donors reflected those observed in healthy individuals in North America (Human 121 

Microbiome Project Consortium 2012): a large representation of Firmicutes and 122 

Bacteroidetes, and other taxa with relatively lower relative abundances, including 123 

Actinobacteria, Verrucomicrobia, and Proteobacteria (Figure 1, Supplementary Table 2). 124 

In contrast, the vast majority of the recipient pre-FMT samples were dominated by 125 

Proteobacteria, a phylum that typically undergoes a drastic expansion in individuals 126 

treated with vancomycin (Isaac et al. 2017). After the FMT, we observed a dramatic shift 127 

in recipient taxonomic profiles (Supplementary Table 2, Supplementary Figure 2), a 128 

widely documented hallmark of this procedure (Khoruts et al. 2010; Grehan et al. 2010; 129 

Shahinas et al. 2012). Nearly all recipient samples post-FMT were dominated by 130 

Bacteroidetes and Firmicutes as well as Actinobacteria and Verrucomicrobia in lower 131 

abundances, resembling qualitatively, but not quantitatively, the taxonomic profiles of 132 

their donors (Supplementary Table 2). For example, even though the median relative 133 

abundance of Bacteroidetes populations were 5% and 17% in donors A and B, their 134 

relative abundance in recipients post-FMT increased to 33% and 45%, respectively 135 
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(Figure 1, Supplementary Table 2). A single genus, Bacteroides, made up 76% and 82% 136 

of the Bacteroidetes populations in the recipients of Donor A and B, respectively 137 

(Supplementary Table 2). The success of the donor Bacteroides populations in recipients 138 

upon FMT is not surprising given the ubiquity of this genus across human populations 139 

throughout the globe (Wexler and Goodman 2017) and the ability of its members to 140 

survive substantial levels of stress (Swidsinski et al. 2005; Vineis et al. 2016). This result 141 

suggests that FMT outcomes in our dataset are unlikely random, and the study design 142 

and resulting dataset offers a framework to study ecological principles of the human gut 143 

microbiome. 144 

Next, we assembled short metagenomic reads into contiguous segments of DNA 145 

(contigs). Co-assemblies of 24 Donor A and 15 Donor B metagenomes independently 146 

resulted in 53,891 and 54,311 contigs that were longer than 2,500 nucleotides, and 147 

described 0.70 and 0.79 million genes occurring in 179 and 248 genomes, as estimated 148 

by the mode of the frequency of bacterial single-copy core genes (Supplementary Table 149 

2). One way to characterize how well a given assembly describes the DNA content of a 150 

given metagenome is to calculate the percentage of reads it recruits from the 151 

metagenome through read mapping. Donor contigs recruited on average 80.8% of 152 

metagenomic reads from donor metagenomes. In contrast, they recruited 43.4% of reads 153 

on average from pre-FMT recipient metagenomes. This number increased to 80.2% for 154 

recipient metagenomes post-FMT (Figure 1), and the donor contigs continued to 155 

represent 76.8% of the recipient metagenomes on average even after a year post-FMT 156 

(Supplementary Table 2). These read recruitment results suggest that members of the 157 

donor microbiota successfully established in recipient guts upon FMT and largely 158 

persisted until the end of the sampling period. 159 

Compared to metagenomic short reads, assembled contigs provide a larger genetic 160 

context to study microbial metagenomes. However, a sole focus on contigs may yield 161 

misleading results (Kowarsky et al. 2017) that can be ameliorated by reconstructing 162 

microbial genomes from metagenomic assemblies (Chen et al. 2020). We reconstructed 163 

genomes from co-assembled donor metagenomes by grouping contigs into putative bins 164 

based on sequence composition and differential coverage signal as previously described 165 
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(Sharon et al. 2013; S. T. M. Lee et al. 2017). We retained bins that were at least 70% 166 

complete and had no more than 10% redundancy as predicted by bacterial single-copy 167 

core genes (Bowers et al. 2017; Chen et al. 2020) and manually refined them to improve 168 

their quality following previously described approaches (Delmont et al. 2018; Shaiber et 169 

al. 2020). Our binning resulted in a final list of 128 metagenome-assembled genomes 170 

(MAGs) for Donor A and 183 MAGs for Donor B that included members of Firmicutes 171 

(n=265), Bacteroidetes (n=20), Actinobacteria (n=14), Proteobacteria (n=7), 172 

Verrucomicrobia (n=2), Cyanobacteria (n=2), and Patescibacteria (n=1) (Supplementary 173 

Table 3). The taxonomy of donor-derived genomes largely reflected the taxonomic 174 

composition of donor metagenomes as predicted by short reads (Figure 1, 175 

Supplementary Table 2, Supplementary Table 3). While only 20 genomes (mostly of 176 

Bacteroides and Alistipes) explained the entirety of the Bacteroidetes group, we 177 

recovered 265 MAGs that represented lower abundance but diverse populations of 178 

Firmicutes (Figure 1, Supplementary Table 2, Supplementary Table 3). We found no 179 

difference between the delivery method of FMT for the recipients of donor A, where, on 180 

average 45% and 43% of donor genomes emerged in recipients who received donor stool 181 

through colonoscopy (n=3) versus pills (n=2), respectively. However, there was an 182 

increase in the efficiency of pills for donor B, where on average 25% and 54% of donor 183 

genomes emerged in recipients who received donor stool through colonoscopy (n=2) 184 

versus pill (n=3) (Supplementary Figure 3).  185 

Reconstructing genomes gave us access to microbial populations in metagenomes 186 

through metagenomic read recruitment strategies and enabled us to characterize (1) 187 

population-level microbial colonization dynamics before and after FMT using donor and 188 

recipient metagenomes and (2) the distribution of each donor population across 189 

geographically distributed humans using 1,984 publicly available human gut 190 

metagenomes (Supplementary Table 4). As expected, we detected each donor 191 

population in at least one donor metagenome (see Methods for ‘detection’ criteria). Yet, 192 

only 16% of Donor A populations were detected in every Donor A sample, and only 44% 193 

of Donor B MAGs were detected in every Donor B sample (Figure 1, Supplementary Table 194 

3), in agreement with the previously documented dynamism of gut microbial community 195 

composition over time (David et al. 2014). A marked increase in the detection of donor 196 
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populations in recipients after FMT echoed the general pattern of transfer suggested by 197 

the short-read taxonomy (Figure 1): while only 38% of Donor A and 54% of Donor B 198 

populations were detected in at least one recipient pre-FMT, these percentages increased 199 

to 96% and 96% post-FMT (Supplementary Table 3). Not every donor population 200 

colonized each recipient, but colonization events did not appear to be random: while some 201 

donor populations colonized all recipients, others colonized none (Figure 1), providing us 202 

with an opportunity to resolve colonization events and quantify colonization success for 203 

each donor population in our dataset. 204 

 205 
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Figure 1. FMT Donor genomes across recipients and publicly available gut metagenomes. In both heat maps 206 

each column represents a donor genome and each row represents a metagenome, and each data point represents the 207 

detection of a given genome in a given metagenome. Purple rows represent donor metagenomes which cover 636 208 

days for Donor A and 532 days for Donor B. Each recipient metagenome is colored red for pre-FMT samples and blue 209 

for post-FMT samples. The three rightmost columns display for each metagenome (X) the number of metagenomic 210 

short reads in millions, (Y) the percent of metagenomic short reads recruited by genomes, and (Z) the taxonomic 211 

composition of metagenomes (based on metagenomic short reads) at the phylum level. The row Q provides the phylum-212 

level taxonomy for each donor genome. Finally, the 11 bottom rows under each heat map show the fraction of healthy 213 

adult metagenomes from 11 different countries in which a given donor genome is detected (if a genome is detected in 214 

every individual from a country it is represented with a full bar). The dendrograms on the right-hand side of these layers 215 

organize countries based on the detection patterns of genomes (Euclidean distance and Ward clustering). Red and 216 

green shades represent the two main clusters that emerge from this analysis, where green layers are industrialized 217 

countries in which donor genomes are highly prevalent and red layers are less industrialized countries where the 218 

prevalence of donor genomes is low. 219 

Resolving colonization events accurately is a challenging task as multiple factors may 220 

influence the ability to determine colonization outcomes unambiguously. These factors 221 

include (1) the inability to detect low-abundance populations, (2) inaccurate 222 

characterization of transient populations observed immediately after FMT as successful 223 

colonization events, (3) the reliance on relative abundance of populations to define 224 

colonization events when abundance estimates from stool do not always reflect the 225 

abundance of organisms in the GI tract (Yasuda et al. 2015; Sheth et al. 2019), and (4) 226 

the failure to distinguish between colonization by a donor population or emergence of a 227 

pre-FMT recipient population after FMT (where a low-abundance recipient population that 228 

is closely related to one or more donor populations becomes abundant after FMT and is 229 

mistaken as a bona fide colonization event). To mitigate these factors, we have (1) 230 

employed deep-sequencing of our metagenomes which averaged 71 million reads per 231 

sample, (2) implemented a longitudinal sampling strategy, that spanned 376 days on 232 

average, to observe donor populations in our recipients long after the FMT, (3) leveraged 233 

a ‘detection’ metric to define colonization events by presence/absence of populations 234 

rather than abundance, and (4) employed microbial population genetics to identify and 235 

resolve origins of subpopulations. We also developed an analytical approach 236 

(Supplementary Figure 4) to determine whether a given donor population has colonized 237 

a given recipient based on the detection of donor subpopulations in the transplant sample, 238 

in the recipient pre-FMT, and in the recipient post-FMT (see Materials and Methods, 239 
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Supplementary Table 5). To determine colonization outcomes, we analyzed 640 240 

genome/recipient pairs for Donor A (128 donor genomes in 5 recipients) and identified 99 241 

successful colonization events, 38 failed colonization events, and 503 ambiguous 242 

colonization events (Supplementary Table 6). For Donor B, we analyzed 915 243 

genome/recipient pairs (183 donor genomes in 5 recipients) and identified 106 successful 244 

colonization events, 109 failed colonization events, and 700 ambiguous colonization 245 

events (Supplementary Table 6). Our stringent criteria (see Materials and Methods, 246 

Supplementary Figure 4) classified the vast majority of all genome/recipient pairs as 247 

ambiguous colonization events. Nevertheless, due to the relatively large number of donor 248 

MAGs and FMT recipients in our study, we were left with 352 MAG/recipient pairs with 249 

unambiguous phenotypes for downstream analyses. 250 

Adaptive ecological forces are the primary drivers of microbial 251 

colonization 252 

The ability of a microbial population to colonize and persist in a complex ecosystem is 253 

influenced by both neutral and adaptive forces (Maignien et al. 2014). Although which of 254 

these is the major driver of successful colonization of the human gut remains unclear 255 

(Smillie et al. 2018). In the context of FMT, previous studies have suggested neutral 256 

processes to determine colonization success based on the abundance of a microbial 257 

population in a donor stool sample (Smillie et al. 2018; Podlesny and Florian Fricke 2020). 258 

Indeed, ecological drift may have a significant role in a system dominated by neutral 259 

processes, where low-abundance donor populations in the transplant would be less likely 260 

to be observed in recipients. In contrast, if the system is dominated by adaptive forces, 261 

colonization success would be a function of the population fitness in the recipient 262 

environment, rather than its abundance in the transplant. 263 

To investigate the impact of neutral versus adaptive processes on colonization in our 264 

dataset we first asked whether the prevalence of a donor population in healthy human gut 265 

metagenomes, which we define here as a measure of its fitness, was associated with the 266 

detection of the same population in donor or recipient metagenomes. Within both FMT 267 

cohorts, the mean detection of each population in recipients post-FMT had a stronger 268 
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association with population fitness than mean detection in donor samples (Figure 2a). 269 

The fitness of donor A populations explained 4.2% of the variation in mean detection of 270 

those populations in donor samples (R2=0.042, p=0.021) and 19% of variation in mean 271 

detection in recipient post-FMT samples (R2=0.19, p=2.7e-07), an increase of 272 

approximately 4.5-fold (Figure 2a). Similarly, Donor B population fitness explained 7.3% 273 

of the variation in mean detection in donor samples (R2=0.073, p=2.1e-04), and 36% of 274 

the variation in mean detection in recipient post-FMT samples (R2=0.36, p=4.5e-19), an 275 

increase of approximately 5-fold (Figure 2a). This suggests that fitness is a better 276 

predictor of colonization outcome than it is of the detection of a population in the donor, 277 

suggesting that adaptive forces are likely at play. But detecting a donor population in a 278 

recipient post-FMT metagenome through metagenomic read recruitment does not prove 279 

colonization, since donor genomes can recruit reads from recipient populations that are 280 

closely related (i.e., strain variants) and that were low abundance prior to FMT. Single-281 

nucleotide variants in read recruitment results, however, can reveal such cases (Denef 282 

2019) and quantify their dynamics (Quince et al. 2017). Thus, we developed an improved 283 

model that took into consideration the presence and absence of distinct subpopulations 284 

in our data and their origins (Supplementary Figure 4). We then used this model to test if 285 

colonization success was correlated with population fitness or population dose, which we 286 

define here as the relative abundance of a given population in the transplanted donor 287 

stool sample. For Donor A populations, colonization outcome was significantly correlated 288 

with both dose (Wald test, AUC=0.73, p=7.7e-05) and fitness (Wald test, AUC=0.76, 289 

p=6.3e-06) (Figure 2b,c). But combining both measures as predictive variables did not 290 

substantially improve the performance of our colonization model (AUC=0.82) (Figure 2c). 291 

This was likely due to the small, but significant, correlation between dose and fitness in 292 

Donor A MAGs (R2=0.053, p=0.0070) (Figure 2d). When the fitness of a microbial 293 

population is reflected in its relative abundance, the effect of fitness on colonization 294 

outcome may be masked by an apparent dose effect. In contrast to Donor A, the fitness 295 

of Donor B populations and their relative abundance in Donor B samples were not 296 

correlated (R2=0.0012, p=0.61) (Figure 2d), providing us with an ideal case to analyze 297 

these two factors independently. Indeed, there was no correlation between dose of a 298 

microbial population in Donor B transplant samples and colonization outcome in 299 
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recipients post-FMT (Wald test, AUC=0.56, p=0.09). Instead, we found a significant 300 

correlation between the fitness of each population and the colonization outcome (Wald 301 

test, AUC=0.70, p=9.0e-07) (Figure 2c). 302 

Taken together, our findings suggest that fitness of a microbial population as measured 303 

by its prevalence across global gut metagenomes can predict its colonization success 304 

better than its abundance in the donor stool sample, giving credence to the role of 305 

adaptive rather than neutral ecological processes in colonization. This finding contrasts 306 

with previous studies which suggested that the abundance of a given population in the 307 

donor sample was an important determinant of colonization (Smillie et al. 2018; Podlesny 308 

and Florian Fricke 2020). However, these analyses included many recipient samples 309 

collected less than one week after FMT and it is likely that their observations were 310 

influenced by the presence of transient populations. Indeed, samples collected 311 

immediately after FMT are more likely to inflate the number of colonization events, 312 

whereas longitudinal sampling over a longer time course can distinguish transient 313 

populations from those that successfully colonized the recipients. We cannot definitively 314 

test this hypothesis as we sampled most of our recipients a week after FMT. Still, on 315 

average 12% of the donor populations detected in our recipients a week after FMT were 316 

no longer detected after a month (Figure 1, Supplementary Table 3). Overall, our stringent 317 

criteria to determine colonization outcome and the extended post-FMT sampling period 318 

likely enabled us to study the long-term engraftment of successful and potentially low-319 

abundance colonizers, instead of high-abundance transient populations that may be 320 

dominant directly after FMT. 321 

 322 

 323 

Figure 2. Relationships between dose, prevalence, and colonization outcome. Left: Donor A. Right: Donor B. a) 324 

Linear regression models of mean detection of each MAG in either donor or recipient post-FMT samples as a function 325 

of prevalence. b) Colonization outcome of MAG/recipient pairs as a function of MAG dose or MAG prevalence. 326 

Significance calculated by Wald test. c) Receiver operator curves (ROCs) for logistic regression models of colonization. 327 

d) Linear regression models of dose as a function of prevalence. 328 

 329 
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Accurately distinguishing the role of dose versus fitness in colonization success is further 331 

compounded by the fact that microbial populations that are prevalent across human 332 

populations may also tend to be more abundant. This is well illustrated by Donor A. 333 

Fortunately, the abundant populations in Donor B did not reflect prevalent microbes in 334 

healthy adult guts, which demonstrated the importance of fitness as a determinant of 335 

colonization success compared to dose without the confounding effect of a correlation 336 

between fitness and dose. Thus, it is a theoretical possibility that colonization success is 337 

purely driven by adaptive forces and is not influenced by dose, at all. However, while our 338 

data assign a larger role to adaptive forces with confidence, a more accurate 339 

determination of the proportional influence of adaptive versus neutral processes in 340 

colonization requires a much larger dataset. 341 

Colonizer and resilient microbes are enriched in metabolic 342 

pathways for the biosynthesis of essential organic compounds 343 

Fitness in a specific environment is conferred to an organism by a combination of 344 

functional traits. In the human gut, such traits drive microbial community succession and 345 

structure as a response to changing host diet and lifestyle (Koenig et al. 2011; Rothschild 346 

et al. 2018). Behind successful colonization and resilience after perturbation are likely 347 

similar functional traits that promote fitness. Building on our observation that suggests a 348 

primary role of adaptive ecological processes in colonization outcome, we next sought to 349 

identify genetic determinants of colonization. For this, we leveraged our access to donor 350 

microbial population genomes and global metagenomes to investigate whether a 351 

functional enrichment analysis could reveal predictors of success independent of 352 

taxonomy. 353 

To generate metabolic insights into colonization success we divided our donor 354 

populations into ‘high-fitness’ and ‘low-fitness’ groups by considering both their 355 

prevalence in FMT recipients and prevalence across global gut metagenomes (Materials 356 

and Methods). The ‘high-fitness’ group included the microbial populations that colonized 357 

or persisted in all FMT recipients and were the most prevalent in gut metagenomes from 358 

Canada. We assumed that they represented a set of highly fit microbial populations as 359 
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(1) they were able to colonize human gut environments systematically, (2) they persisted 360 

in these environments long-term regardless of the host genetics or lifestyle, and (3) they 361 

were prevalent in gut metagenomes outside of our study. In comparison, the ‘low-fitness’ 362 

group comprised microbial populations that failed to colonize or persist in at least three 363 

FMT recipients. These populations were nevertheless viable gut microbes as not only our 364 

long-term sampling of the donors systematically identified them but also, they sporadically 365 

colonized some FMT recipients. Yet, unlike those in the high-fitness group, the distribution 366 

patterns of low-fitness populations were sparse, not only within our cohort, but also within 367 

publicly available metagenomes. In fact, low-fitness genomes were on average less 368 

prevalent than high-fitness genomes in each of the 17 different countries we queried 369 

(Supplementary Table 3). Overall, we conservatively categorized 20 populations in each 370 

group for downstream analyses (Supplementary Table 7). All populations in the low-371 

fitness group resolved to Firmicutes. The high-fitness group was also dominated by 372 

Firmicutes (15 of 20) but it also included five Bacteroidetes and one Actinobacteria 373 

(Supplementary Table 7). Genome completion estimates did not differ between high and 374 

low-fitness groups (Wilcoxon rank sum test, p=0.42) and averaged to 91% and 93%, 375 

respectively. However, genome sizes between the two groups differed dramatically 376 

(p=2.9e-06), where high-fitness group genomes averaged to 2.8 Mbp while low-fitness 377 

group genomes averaged to 1.6 Mbp. These results suggest that the length difference 378 

between genomes in high and low-fitness groups is likely to have biological relevance. 379 

Indeed, we found a very high correspondence between the lengths of our MAGs and their 380 

best matching reference genomes in the GTDB (r=0.88, p=5e-14) (Supplementary Table 381 

7). 382 

Our metabolic enrichment analysis revealed 33 KEGG pathway modules, each containing 383 

genes that form a functional unit in a metabolic pathway. Every module that was enriched 384 

differentially between these two groups were enriched in the high-fitness group. The lack 385 

of any enriched modules in the low-fitness group is in line with the reduction in genome 386 

lengths in the low-fitness group and further suggests that the reduction is associated with 387 

the absence of metabolic modules. Of all enriched modules, 79% were modules related 388 

to biosynthesis, which indicates an overrepresentation of biosynthetic capabilities in the 389 

high-fitness group as KEGG modules for biosynthesis only make up 55% of all KEGG 390 
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modules (Figure 3, Supplementary Table 7). Of the 33 enriched modules, 48.5% were 391 

associated with amino acid metabolism, 21.2% with vitamin and cofactor metabolism, 392 

18.2% with carbohydrate metabolism, 6% with lipid metabolism and 3% with energy 393 

metabolism (Supplementary Table 7). Metabolic modules that were enriched in the high-394 

fitness group included the biosynthesis of seven of the nine essential amino acids, 395 

indicating the importance of metabolic competency to synthesize high-demand 396 

compounds as a factor increasing fitness in colonizing new gut environments 397 

(Supplementary Table 7). This is further supported by the enrichment of biosynthesis 398 

pathways for the essential cofactor vitamin B12 (cobalamin), which occurred in 67.5% of 399 

the high-fitness populations and only 12.5% of the low-fitness group (Supplementary 400 

Table 7). Vitamin B12 is structurally highly complex and costly to produce, requiring 401 

expression of more than 30 genes that are exclusively encoded by bacteria and archaea 402 

(Martens et al. 2002). Thus, the competitive advantages conferred by metabolic 403 

autonomy appear to outweigh the additional costs. In addition to the biosynthesis of 404 

tetrahydrofolate, riboflavin, and cobalamin, the high-fitness group had a larger 405 

representation of biosynthetic modules for vitamins including biotin, pantothenate, folate, 406 

and thiamine (Supplementary Table 7), micronutrients that are equally important in 407 

bacterial and human metabolism and are shown to play important roles in mediating host-408 

microbe interactions (Biesalski 2016). Interestingly, enriched metabolic modules in our 409 

analysis partially overlap with those that Feng et al. identified as the determinants of 410 

microbial fitness using metatranscriptomics and a germ-free mouse model 411 

conventionalized with microbial isolates of human origin (Feng et al. 2020). 412 

Even though enriched metabolic modules occurred mostly in high-fitness populations, we 413 

did find some of these modules in the low-fitness group as well (Supplementary Table 7), 414 

but their distribution was not uniform as they primarily occurred only in a subset of 415 

genomes that resolved to Firmicutes (Figure 3). We then sought to identify whether the 416 

levels of completion of these modules that occurred in both groups were identical. For 417 

this, we matched six low-fitness genomes that encoded modules enriched in high-fitness 418 

group genomes to six high-fitness genomes from the same phylum (marked as HF and 419 

LF subgroups in Figure 3). Bacterial single-copy core genes estimated that genomes in 420 

both subgroups were highly complete with a slight increase in average completion of low-421 
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fitness genomes (93.7%) compared to high-fitness genomes (90.1%). Despite the higher 422 

estimated genome completion for low-fitness populations, estimated metabolic module 423 

completion values were significantly lower in the low-fitness group (Wilcoxon rank sum 424 

test with continuity correction, V=958, p=5e-09) (Figure 3, Supplementary Table 7). This 425 

indicates that even when modules that are associated with high-fitness were detected in 426 

low-fitness genomes, they were systematically missing genes and were less complete 427 

than the same modules in high-fitness genomes. 428 

 429 

Figure 3. Distribution of metabolic modules across low and high-fitness genomes. Each data point in this 430 

heat map shows the level of completion of a given metabolic module (rows) in a given genome (columns). 431 

The box-plot on the right-side compares a subset of low-fitness (LF) and high-fitness (HF) genomes, where 432 

each data point is the level of completion of a given metabolic module in a genome and shows a statistically 433 

significant difference between the overall completion of metabolic modules between these subgroups 434 

(Wilcoxon rank sum test, p=5.4e-09).  435 
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While gut microbial ecosystems of healthy individuals include both 436 

low- and high-fitness microbes, IBD primarily selects for high-437 

fitness populations 438 

Our results so far show that while the healthy donor environment could support both high-439 

fitness and low-fitness populations (Figure 1, Supplementary Table 3), challenging 440 

microbes to colonize a new environment or withstand massive ecosystem perturbation 441 

during FMT selects for high-fitness populations (Figure 3, Supplementary Table 7), 442 

suggesting that metabolic competence is a more critical determinant of fitness during 443 

stress than during homeostasis. Based on these observations, it is conceivable to 444 

hypothesize that (1) a healthy gut environment will support a range of microbial 445 

populations with a wide spectrum of metabolic competency, and (2) a gut environment 446 

under stress will select for high metabolic competency in microbial populations. 447 

To test these hypotheses, we compared genomes reconstructed from a cohort of healthy 448 

individuals (Pasolli et al. 2019) to genomes reconstructed from a cohort of pouchitis 449 

patients  (Vineis et al. 2016), a form of IBD with similar pathology to ulcerative colitis (De 450 

Preter et al. 2009). We conservatively excluded genomes that were less than 70% 451 

complete from the Pasolli et al. dataset to avoid underestimating pathway completion in 452 

genomes from healthy people. In contrast, we included any genomes from the Vineis et 453 

al. dataset if they were more than 50% complete. The number of genomes per individual 454 

and their level of completeness were similar between IBD and healthy individuals: we 455 

compared 44 genomes from 4 IBD patients with an average completion of 89.2% and 264 456 

genomes from 22 healthy individuals with an average completion of 90.4% 457 

(Supplementary Table 8). Intriguingly, similar to the length differences between genomes 458 

of high-fitness and low-fitness populations (2.8 Mbp versus 1.6 Mbp on average), 459 

microbial populations associated with IBD patients had larger genomes compared to 460 

healthy people and averaged to 3.3 Mbp versus 2.6 Mbp, respectively (Supplementary 461 

Table 8). This suggests that despite the slightly higher completion of microbial genomes 462 

from the healthy cohort, these genomes tended to be smaller in size than the genomes 463 

reconstructed from IBD patients. 464 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 3, 2021. ; https://doi.org/10.1101/2021.03.02.433653doi: bioRxiv preprint 

https://paperpile.com/c/Qzu8VF/XQGS
https://paperpile.com/c/Qzu8VF/oVHkU
https://paperpile.com/c/Qzu8VF/PkSn
https://paperpile.com/c/Qzu8VF/PkSn
https://doi.org/10.1101/2021.03.02.433653
http://creativecommons.org/licenses/by-nd/4.0/


Next, we asked whether the completion of those metabolic modules associated with 465 

colonization success and resilience differed between the genomes reconstructed from 466 

healthy and IBD individuals. The level of completion of the 33 metabolic modules were 467 

almost identical between high-fitness genomes and genomes from IBD patients 468 

(Wilcoxon rank sum test, p=0.5), but they were significantly less complete in microbial 469 

genomes from healthy individuals (Wilcoxon rank sum test, p=5.39e-08) (Figure 4, 470 

Supplementary Table 8). Metabolic modules with the largest differences in completion 471 

between genomes from healthy and IBD individuals included biosynthesis of cobalamin, 472 

arginine, ornithine, tryptophan, isoleucine as well as the Shikimate pathway (Figure 4, 473 

Supplementary Table 8), a seven step metabolic route bacteria use for the biosynthesis 474 

of aromatic amino acids (phenylalanine, tyrosine, and tryptophan) (Herrmann and Weaver 475 

1999). 476 

Our findings show that the same set of key metabolic modules that distinguish high-fitness 477 

and low-fitness populations in FMT were also differentially associated with populations 478 

that occurred in healthy individuals compared to IBD patients. In particular, while healthy 479 

individuals seem to harbor microbes with a broad range of metabolic competency, IBD 480 

individuals appear to be enriched with organisms with metabolic autonomy. It is 481 

conceivable that a stable gut microbial ecosystem is more likely to support low-fitness 482 

populations through metabolic cross-feeding, where vitamins, amino acids, and 483 

nucleotides are exchanged between microbes (D’Souza et al. 2018). In contrast, host-484 

mediated environmental stress in IBD likely disrupts such interactions and creates an 485 

ecological filter that selects for metabolic competence, which subsequently leads to loss 486 

of diversity and the dominance of organisms with large genomes that are not necessarily 487 

abundant in states of homeostasis. 488 

Figure 4. Distribution of metabolic modules in genomes reconstructed from healthy individuals and 489 

individuals with IBD. The top panel shows the metabolic module completion values for (1) high- and (2) low-490 

fitness donor genomes identified in this study (blue and orange), (3) genomes from healthy individuals 491 

(green), and (4) genomes from individuals with IBD. Next to group averages, shown the distribution of 492 

metabolic modules for each individual. Each dot in a given box-plot represents one of 33 metabolic modules 493 

that were enriched in high-fitness FMT donor populations and the y-axis indicates its estimated completion. 494 

In the bottom panel the completion values for 10 of the 33 pathways shown as ridge-line plots. 495 
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 496 

These observations have implications for the defining features of healthy gut 497 

environments from an ecological point of view. Defining the ‘healthy gut microbiome’ has 498 

been a major goal of human gut microbiome research (Bäckhed et al. 2012), and remains 499 

elusive (Eisenstein 2020). Despite comprehensive investigations that considered core 500 

microbial taxa (Arumugam et al. 2011; Lloyd-Price, Abu-Ali, and Huttenhower 2016) or 501 

guilds of microbes that represent coherent functional groups (Wu et al. 2021), the search 502 

for ‘biomarkers’ of healthy microbiomes is ongoing (McBurney et al. 2019). Given our data 503 

we hypothesize that one of the defining features of a healthy gut environment is its ability 504 

to support a diverse community of microbes with a broad spectrum of metabolic 505 

competence, where both low-fitness and high-fitness populations live in a coherent 506 

ecosystem. Conversely, an enrichment of metabolically competent high-fitness 507 

populations would likely indicate the presence of environmental stress. Our analyses 508 

demonstrate that this is a quantifiable feature of microbial communities through genome-509 
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resolved metagenomic surveys, although testing this hypothesis rigorously requires a 510 

larger number of genomes reconstructed from a larger number of individuals diagnosed 511 

with a broader set of IBDs. Our analyses have other limitations. For instance, metabolic 512 

insights in our study have been limited to genomic potential and have considered only 513 

well-known metabolic pathways, which, given the extent of the unknown coding space in 514 

microbial genomes (Vanni et al. 2020), are likely far from complete. As a result, the 515 

disproportional enrichment of biosynthetic modules in high-fitness genomes indicates that 516 

the ability to synthesize essential biological compounds is necessary but likely insufficient 517 

to survive environmental stress in the gut. Nevertheless, the finding that the same 518 

metabolic modules that promote colonization success after FMT are also the hallmarks 519 

of fitness in IBD suggests the presence of ecological principles that are shared between 520 

these systems and warrants deeper investigation. 521 

Subtle differences in key functions distinguish populations of the 522 

same genus with differential colonization success 523 

While adaptive processes that favor metabolic independence explain the determinants of 524 

colonization and resilience for distantly related taxa, metabolic features that promote high-525 

fitness at this broad level may not explain differences in fitness between more closely 526 

related taxa, such as distinct species within a single genus, which are likely to have similar 527 

metabolic capabilities (Martiny, Treseder, and Pusch 2013) due to unifying ecological 528 

traits in higher ranks of taxonomy (Philippot et al. 2010). We finally investigated whether 529 

we could identify determinants of fitness across metabolically similar populations with 530 

different levels of success in colonizing unrelated individuals. 531 

Members of the genus Bifidobacterium have long been used as probiotics (Gomes and 532 

Malcata 1999) and are prevalent occupants of the healthy human gut microbiota 533 

(Arboleya et al. 2016). In our dataset, Bifidobacterium was the second most abundant 534 

genus (14.1%) after Bacteroides (15.8%) in Donor A, from whom we reconstructed three 535 

MAGs over 98% completion that resolved to three distinct species in this genus: B. 536 

longum, B. adolescentis subsp. adolescentis, and B. animalis subsp. lactis 537 

(Supplementary Table 3). While each of these Bifidobacterium populations occurred in 538 
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Donor A metagenomes in a relatively stable fashion, they showed vastly different 539 

colonization efficiency upon FMT (Figure 5), enabling us to investigate determinants of 540 

colonization among closely related taxa. 541 

In contrast to the B. longum and B. adolescentis subsp. adolescentis (henceforth B. 542 

adolescentis) populations that colonized most recipients, B. animalis subsp. lactis 543 

(henceforth B. lactis) did not seem to have colonized any of our recipients (Supplementary 544 

Table 3). Overall, we were able to detect B. longum, B. adolescentis, and B. lactis 545 

populations in 83%, 75%, and 4% of all post-FMT recipient metagenomes, respectively 546 

(Figure 5). Most strikingly, patterns of colonization that emerged from the analysis of FMT 547 

recipients reflected those seen in publicly available gut metagenomes from Canada, 548 

where B. longum, B. adolescentis, and B. lactis populations occurred in 74%, 39%, and 549 

13% of the population, demonstrating a positive relationship (Pearson’s correlation of 0.9, 550 

n.s.) between the colonization efficiency upon FMT and the fitness of these populations. 551 

Furthermore, the gut metagenomes from 17 countries confirmed the substantially 552 

reduced fitness of B. lactis globally (Supplementary Table 9). Interestingly, the B. lactis 553 

MAG we reconstructed from Donor A was virtually identical (with over 99.99% sequence 554 

identity over 99.82% alignment, Supplementary Table 9) to most B. lactis strains that are 555 

widely used as probiotics (Jungersen et al. 2014), revealing a disagreement between the 556 

preferences of commercial microbial therapeutics and human gut microbial ecology. 557 

 558 

 559 

Figure 5. Characteristics of three Bifidobacterium species. Top panel shows the distribution of Donor A MAGs that 560 

represent three distinct Bifidobacterium populations across donor and recipient metagenomes before and after FMT. 561 

The last two columns in this panel show the prevalence of these populations in post-FMT metagenomes, and publicly 562 

available gut metagenomes from Canada. The panel below displays the distribution of KEGG orthologs across the 563 

three Bifidobacterium MAGs along with 31 high-quality isolate genomes from the NCBI. Each item shown in concentric 564 

circles represents a single function assigned by the database of KEGG Orthologs, and each layer is a distinct genome. 565 

The intensity of color indicates the presence of a given function in a given genome. The most outer circle marks groups 566 

of functions that are enriched in various groups of Bifidobacterium genomes as well as those functions that are not 567 

enriched in any group as they are either in all genomes, or only a very small number of them. 568 
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 569 

To identify factors that may explain the differences in colonization success between B. 570 

longum, B. adolescentis, and B. lactis, we created a collection of Bifidobacterium 571 

genomes that, in addition to the three metagenome-assembled genomes we 572 

reconstructed, included 31 complete genomes obtained from the NCBI (within-group and 573 

across-groups average gANI of 98.9% and 77.3%, respectively) (Supplementary Table 574 

9). All three groups of Bifidobacterium genomes encoded the majority of the metabolic 575 

pathways associated with the high-fitness group (63% ± 5%). However, missing pathways 576 

were not uniformly distributed across three: B. lactis lacked the largest fraction of these 577 

pathways (42%) compared to the more prevalent B. adolescentis (36%) and B. longum 578 

(33%) (Supplementary Table 9). B. longum and B. adolescentis carried the complete 579 

tetrahydrofolate (vitamin B9) biosynthesis pathway in agreement with previous metabolic 580 

descriptions of Bifidobacterium (D’Aimmo et al. 2012; Sugahara et al. 2015) which 581 
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qualifies this group as attractive probiotics (Strozzi and Mogna 2008; Pompei et al. 2007), 582 

but this pathway was absent in B. lactis genomes. We also found that B. longum and B. 583 

adolescentis genomes encoded histidine and nicotinamide adenine dinucleotide (NAD) 584 

biosynthesis which B. lactis lacked (Supplementary Table 9). Finally, the average genome 585 

lengths of B. longum (2.31 Mbp) and B. adolescentis (2.18 Mbp) were longer than the 586 

average genome length of B. lactis (1.94 Mbp), which reflects the pattern we observed 587 

previously where high-fitness populations tended to have larger genomes. In summary, 588 

even though all Bifidobacterium genomes in our pangenome had a higher metabolic 589 

overlap with one another compared to high-fitness and low-fitness genomes we have 590 

previously studied, the reduced fitness of B. lactis compared to B. longum and B. 591 

adolescentis could still be explained by the absence of a small number of metabolic 592 

competencies associated with the high-fitness group genomes. 593 

Next, we focused on the enrichment of individual functions across the three groups of 594 

genomes using gene annotations from KOfam profiles (Aramaki et al. 2020) from the 595 

Kyoto Encyclopedia of Genes and Genomes (KEGG) (M. Kanehisa and Goto 2000) and 596 

Clusters of Orthologous Groups (COGs) from the NCBI (Galperin et al. 2021). Of all 954 597 

unique KOfams found in our Bifidobacterium pangenome, 272 functions were not 598 

common to all genomes but statistically enriched in either one or two groups. Our analysis 599 

of these accessory functions showed that B. longum encoded 150 (55.5%), B. 600 

adolescentis encoded 115 (42.3%), and B. lactis encoded 95 (34.9%) of all accessory 601 

functions that were statistically enriched (Figure 5, Supplementary Table 9). The same 602 

analysis with 1,286 unique COGs confirmed these observations: of all 353 COGs 603 

enriched in any group, B. longum encoded 212 (60.1%), B. adolescentis encoded 172 604 

(48.7%), and B. lactis encoded 118 (33.4%) (Supplementary Table 9). Overall, these 605 

results reveal a striking correlation between the number of accessory functions 606 

associated with B. longum, B. adolescentis, and B. lactis, and echo the absence of 607 

metabolic pathways in B. lactis even at the level of accessory gene functions, explaining 608 

their differential ability to colonize new individuals and distribution in global human gut 609 

metagenomes. 610 
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We finally investigated the contents of the differentially occurring accessory functions to 611 

speculate on whether they could be related to differences in fitness. For instance, in 612 

contrast to all B. longum and B. adolescentis in the Bifidobacterium pangenome, none of 613 

the B. lactis genomes encoded a phosphoenolpyruvate phosphotransferase (PEP-PTS) 614 

system specific for the uptake of 𝛽-glucoside (Supplementary Table 9). As the genus 615 

Bifidobacterium is characterized by a large array of genes associated with carbohydrate 616 

uptake and metabolism (Ventura et al. 2009; Schell et al. 2002; Kleerebezem and 617 

Vaughan 2009), B. lactis represents a notable exception with a lower number of genes 618 

associated with carbohydrate metabolism, fewer genes encoding carbohydrate-specific 619 

ABC transporters, and the absence of phosphoenolpyruvate-phosphotransferase (PEP-620 

PTS) systems (Barrangou et al. 2009). The absence of any other PEP-PTS system in B. 621 

longum and B. adolescentis may indicate the catabolic niche occupied by these 622 

populations in the human gut that is shaped by their extensive capacity for uptake and 623 

metabolism of plant derived glycosides (Chien, Huang, and Chou 2006; Schell et al. 624 

2002). Additional functions that exclusively occurred in B. adolescentis and B. longum 625 

genomes included two multidrug resistance pumps of the ‘multidrug and toxin extrusion’ 626 

(MATE) type, three transporters of the major facilitator superfamily (MFS) involved in bile 627 

acid tolerance and macrolide efflux, two bile acid:natrium ion symporters, and one 628 

proton/chloride ion antiporter conferring acid tolerance (Supplementary Table 9). The 629 

drug defense mechanisms may act to protect these populations during periods of 630 

inflammation and drug administration, but may also be beneficial with regard to the 631 

common ingestion of antibiotics through various food products (Kirchhelle 2018). These 632 

results show that in the microbial fitness landscape of the human gut, where the 633 

determinants of success across distantly related taxa are primarily defined by the 634 

presence or absence of a large number of metabolic pathways, there exists smaller 635 

niches equally accessible to closely related organisms with similar metabolic potential, 636 

among which success can be speculated by subtle differences in key functions. 637 
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Conclusions 638 

Our study points to adaptive ecological processes as primary determinants of both long-639 

term colonization after FMT and microbial fitness in the human gut environment through 640 

metabolic competency as conferred by biosynthesis of nucleotides, amino acids, and 641 

essential micronutrients. Even when we found these metabolic modules in low-fitness 642 

populations, they were systematically less complete compared to their high-fitness 643 

counterparts. 644 

Our findings suggest that in a healthy gut environment high- and low-fitness populations 645 

co-occur in harmony, with their differential fitness indiscernible by taxonomy or relative 646 

abundance. However, transfer to a new gut environment through FMT, or host-mediated 647 

stress through IBD, initiates an ecological filter that selects for high-fitness populations 648 

that can self-sustain. This model offers a null hypothesis to explain how low-abundance 649 

members of healthy gut environments can come to dominate the gut microbiota under 650 

stressful conditions, while not being causally associated with disease states. If the 651 

association between particular microbial taxa and disease is solely driven by their 652 

superior metabolic competence, microbial therapies that aim to treat complex diseases 653 

by adding microbes associated with healthy individuals will be unlikely to compete with 654 

the adaptive processes that regulate complex gut microbial ecosystems. 655 

  656 
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Materials and Methods 657 

Sample collection and storage. We used a subset of individuals who participated in a 658 

randomized clinical trial (Kao et al. 2017) and conducted a longitudinal FMT study of two 659 

human cohorts (DA and DB), each consisting of one FMT donor and 5 FMT recipients of 660 

that donor’s stool. All recipients received vancomycin for a minimum of 10 days pre-FMT 661 

at a dose of 125 mg four times daily. Three DA and two DB recipients received FMT via 662 

pill, and two DA and three DB recipients received FMT via colonoscopy. All recipients had 663 

recurrent C. difficile infection before FMT, and two DA recipients and 1 DB recipient were 664 

also diagnosed with ulcerative colitis (UC). 24 stool samples were collected from the DA 665 

donor over a period of 636 days, and 15 stool samples were collected from the DB donor 666 

over a period of 532 days. Between 5 and 9 stool samples were collected from each 667 

recipient over periods of 187 to 404 days, with at least one sample collected pre-FMT and 668 

2 samples collected post-FMT. This gave us a total of 109 stool samples from all donors 669 

and recipients. Samples were stored at -80oC. (Supplementary Figure 1, Supplementary 670 

Table 1) 671 

Metagenomic short-read sequencing. We extracted the genomic DNA from frozen 672 

samples according to the centrifugation protocol outlined in MoBio PowerSoil kit with the 673 

following modifications: cell lysis was performed using a GenoGrinder to physically lyse 674 

the samples in the MoBio Bead Plates and Solution (5–10 min). After final precipitation, 675 

the DNA samples were resuspended in TE buffer and stored at −20 °C until further 676 

analysis. Sample DNA concentrations were determined by PicoGreen assay. DNA was 677 

sheared to ~400 bp using the Covaris S2 acoustic platform and libraries were constructed 678 

using the Nugen Ovation Ultralow kit. The products were visualized on an Agilent 679 

Tapestation 4200 and size-selected using BluePippin (Sage Biosciences). The final 680 

library pool was quantified with the Kapa Biosystems qPCR protocol and sequenced on 681 

the Illumina NextSeq500 in a 2 × 150 paired-end sequencing run using dedicated read 682 

indexing. 683 

‘Omics workflows. Whenever applicable, we automated and scaled our ‘omics analyses 684 

using the bioinformatics workflows implemented by the program `anvi-run-workflow` 685 
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(Shaiber et al. 2020) in anvi’o (Eren et al. 2015, 2021). Anvi’o workflows implement 686 

numerous steps of bioinformatics tasks including short-read quality filtering, assembly, 687 

gene calling, functional annotation, hidden Markov model search, metagenomic read-688 

recruitment, metagenomic binning, pangenomics, and phylogenomics. Workflows use 689 

Snakemake (Köster and Rahmann 2012) and a tutorial is available at the URL 690 

http://merenlab.org/anvio-workflows/. The following sections detail these steps. 691 

Taxonomic composition of metagenomes based on short reads. We used Kraken2 692 

v2.0.8-beta (Wood, Lu, and Langmead 2019) with the NCBI’s RefSeq bacterial, archaeal, 693 

viral and viral neighbours genome databases to calculate the taxonomic composition 694 

within short-read metagenomes. 695 

Assembly of metagenomic short and long reads. To minimize the impact of random 696 

sequencing errors in our downstream analyses, we used the program `iu-filter-quality-697 

minoche` to process short metagenomic reads, which is implemented in illumina-utils 698 

v2.11 (Eren et al. 2013) and removes low-quality reads according to the criteria outlined 699 

by Minoche et al. (Minoche, Dohm, and Himmelbauer 2011). IDBA_UD v1.1.2 (Peng et 700 

al. 2012) assembled quality-filtered short reads into longer contiguous sequences 701 

(contigs), although we needed to recompile IDBA_UD with a modified header file so it 702 

could process 150bp paired-end reads. For the assembly of long-reads and identification 703 

of circular contigs we used Flye v2.6 (Kolmogorov et al. 2019) with the `--meta` argument 704 

followed by Pilon v1.23 (Walker et al. 2014) correction using the high-quality short-reads. 705 

Processing of contigs. We use the following strategies to process both sequences we 706 

obtained from our assemblies and those we obtained from reference genomes. Briefly, 707 

we used (1) `anvi-gen-contigs-database` on contigs to compute k-mer frequencies and 708 

identify open reading frames (ORFs) using Prodigal v2.6.3 (Hyatt et al. 2010), (2) `anvi-709 

run-hmms` to identify sets of bacterial (Campbell et al. 2013) and archaeal (Rinke et al. 710 

2013) single-copy core genes using HMMER v3.2.1 (Eddy 2011), (3) ̀ anvi-run-ncbi-cogs` 711 

to annotate ORFs with functions from the NCBI’s Clusters of Orthologous Groups (COGs) 712 

(Tatusov et al. 2003), and (4) `anvi-run-kegg-kofams` to annotate ORFs with functions 713 

from the KOfam HMM database of KEGG orthologs (KOs) (Aramaki et al. 2020; M. 714 

Kanehisa and Goto 2000). To predict the approximate number of genomes in 715 
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metagenomic assemblies we used the program `anvi-display-contigs-stats`, which 716 

calculates the mode of the frequency of single-copy core genes as described previously 717 

(Delmont and Eren 2016).  718 

Metagenomic read recruitment, reconstructing genomes from metagenomes, 719 

determination of genome taxonomy and ANI. We recruited metagenomic short reads 720 

to contigs using Bowtie2 v2.3.5 (Langmead and Salzberg 2012) and converted resulting 721 

SAM files to BAM files using samtools v1.9 (Li et al. 2009). We profiled the resulting BAM 722 

files using the program `anvi-profile` with the flag `--min-contig-length` set to 2500 to 723 

eliminate shorter sequences to minimize noise. Once we have read recruitment results 724 

from each metagenome is profiled to store contig coverages into single anvi’o profile 725 

databases, `anvi-merge` combined all profiles into an anvi’o merged profile for 726 

downstream visualization, binning, and statistical analyses. We then used `anvi-cluster-727 

contigs` to group contigs into 100 initial bins using CONCOCT v1.1.0 (Alneberg et al. 728 

2014), `anvi-refine` to manually curate initial bins with conflation error based on 729 

tetranucleotide frequency and differential coverage signal across all samples, and `anvi-730 

summarize` to report final summary statistics for each gene, contig, and bin. We used the 731 

program `anvi-rename-bins` to identify bins that were more than 70% complete and less 732 

than 10% redundant, and store them in a new collection as metagenome-assembled 733 

genomes (MAG), discarding lower quality bins from downstream analyses. GTBD-tk 734 

v0.3.2 (Chaumeil et al. 2019) assigned taxonomy to each of our MAG using GTDB r89 735 

(Parks et al. 2018), but to assign species- and subspecies-level taxonomy for 736 

`DA_MAG_00057`, `DA_MAG_00011`, `DA_MAG_00052` and `DA_MAG_00018`, we 737 

used `anvi-get-sequences-for-hmm-hits` to recover DNA sequences for bacterial single-738 

copy core genes that encode ribosomal proteins, and searched them in the NCBI’s 739 

nucleotide collection (nt) database using BLAST (Altschul et al. 1990). Finally, the 740 

program `anvi-compute-genome-similarity` calculated pairwise genomic average 741 

nucleotide identity (gANI) of our genomes using PyANI v0.2.9 (Pritchard et al. 2016). 742 

Criteria for MAG detection in metagenomes. Using mean coverage to assess the 743 

occurrence of populations in a given sample based on metagenomic read recruitment can 744 

yield misleading insights since this strategy cannot accurately distinguish reference 745 
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sequences that represent very low-abundance environmental populations from those 746 

sequences that do not represent an environmental population in a sample yet still recruit 747 

reads from non-target populations due to the presence of conserved genomic regions. 748 

Thus we relied upon the ‘detection’ metric, which is a measure of the proportion of the 749 

nucleotides in a given sequence that are covered by at least one short read, and 750 

considered a population was detected in a metagenome if anvi’o reported a detection 751 

value of at least 0.25 for its genome (whether it was a metagenome-assembled or isolate 752 

genome). Values of detection in metagenomic read recruitment results often follow a 753 

bimodal distribution for populations that are present and absent (see Supplementary 754 

Figure 2 in (Utter et al. 2020)), thus 0.25 is an appropriate cutoff to eliminate false-positive 755 

signal in read recruitment results for populations that are absent.  756 

Identification of MAGs that represent multiple subpopulations. To identify 757 

subpopulations of MAGs in metagenomes, we used the anvi’o command `anvi-gen-758 

variability-profile` with the `--quince-mode` flag which exported single-nucleotide variant 759 

(SNV) information for all MAGs after read recruitment. We then used DESMAN v2.1.1 760 

(Quince et al. 2017) to analyze SNVs to determine the number and distribution of 761 

subpopulations represented by a single genome. To account for non-specific mapping 762 

that can inflate the number of estimated subpopulations, we removed any subpopulation 763 

that made up less than 1% of the entire population explained by a single MAG. To account 764 

for noise due to low-coverage, we only investigated subpopulation for MAGs for which 765 

the mean non-outlier coverage of single-copy core genes was at least 10X. 766 

Criteria for colonization of a recipient by a MAG. We developed a method to determine 767 

whether or not a MAG successfully colonized a recipient, and applied this method to each 768 

MAG and each recipient within a cohort. In order to confidently assign colonization or 769 

non-colonization phenotypes to each MAG/recipient pair, we required that the MAG be 770 

detected in the donor sample used for transplant into the recipient. If these criteria were 771 

met, we then determined whether the MAG was detected in any post-FMT recipient 772 

sample taken more than 7 days after transplant. If not, the MAG/recipient pair was 773 

considered a non-colonization event. If the MAG was detected in the recipient greater 774 

than7 days post-FMT, we used subpopulation information to determine if any 775 
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subpopulation present in the donor and absent in the recipient pre-FMT was detected in 776 

the recipient more than 7 days post-FMT. If this was the case, we considered this to 777 

represent a colonization event. See Supplementary Figure 4 for a complete outline of all 778 

possible cases. 779 

Determination of dose and fitness for MAGs. We defined population dose as the 780 

second and third quartile mean coverage of a population in the transplanted stool sample. 781 

We defined fitness as the prevalence of a population in 23 healthy adult gut metagenomes 782 

(see Materials and Methods: Criteria for MAG detection in metagenomes) from Canada, 783 

the same country in which the FMTs were performed. 784 

Regression analysis. To examine the association between dose and/or prevalence with 785 

colonization outcome, we built binomial logistic regression models using the R stats ̀ glm` 786 

function. We used the R stats ̀ predict` function and the R pROC ̀ roc` function to evaluate 787 

our models by creating receiver operating characteristic (ROC) curves and calculating the 788 

area under the ROC curve (AUC). To determine the correlation between dose and 789 

prevalence, we performed linear regression using the R stats `lm` function. We used the 790 

R tidyverse package, including ggplot2, to visualize boxplots, scatterplots, and ROC 791 

curves. 792 

Pangenomic analysis and gANI. We used anvi’o to compute and visualize pangenomes 793 

of MAGs and reference genomes. We stored all processed MAG and reference genome 794 

contigs (see Contig processing methods section) in an anvi’o database using the 795 

command ̀ anvi-gen-genomes-storage`. To create the pangenomes, we then passed that 796 

database to the command `anvi-pan-genome` which used NCBI’s BLAST (Altschul et al. 797 

1990) to quantify gene similarity within and between genomes and the Markov Cluster 798 

algorithm (MCL) (Enright, Van Dongen, and Ouzounis 2002) to cluster groups of similar 799 

genes. We set the `anvi-pan-genome` `--min-occurrence` flag to 2 to remove gene 800 

clusters only present in one genome (singletons), and visualized pangenomes using 801 

`anvi-display-pan`. 802 

Phylogenomic tree construction. To concatenate and align amino acid sequences of 803 

46 single-copy core (Campbell et al. 2013) ribosomal proteins that were present in all of 804 
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our Bifidobacterium MAGs and reference genomes, we ran the anvi’o command `anvi-805 

get-sequences-for-hmm-hits` with the `--return-best-hit`, `--get-aa-sequence` and `--806 

concatenate` flags, and the `--align-with` flag set to `muscle` to use MUSCLE v3.8.1551 807 

(Edgar 2004) for alignment. We then ran `anvi-gen-phylogenomic-tree` with default 808 

parameters to compute a phylogenomic tree using FastTree 2.1 (Price, Dehal, and Arkin 809 

2010). 810 

Analysis of metabolic modules and enrichment. We calculated the level of 811 

completeness for a given KEGG module (Minoru Kanehisa et al. 2014, 2017) in our 812 

genomes using the program `anvi-estimate-metabolism`, which leveraged previous 813 

annotation of genes with KEGG orthologs (KOs) (see the section ‘Processing of contigs’). 814 

Then, the program `anvi-compute-functional-enrichment` determined whether a given 815 

metabolic module was enriched in based on the output from `anvi-estimate-metabolism`. 816 

The URL https://merenlab.org/m/anvi-estimate-metabolism serves a tutorial for this 817 

program which details the modes of usage and output file formats. The statistical 818 

approach for enrichment analysis is defined elsewhere (Shaiber et al. 2020), but briefly it 819 

computes enrichment scores for functions (or metabolic modules) within groups by fitting 820 

a binomial generalized linear model (GLM) to the occurrence of each function or complete 821 

metabolic module in each group, and then computing a Rao test statistic, uncorrected p-822 

values, and corrected q-values. We considered any function or metabolic module with a 823 

q-value less than 0.05 to be ‘enriched’ in its associated group if it was also at least 75% 824 

complete and in at least 50% of the group members. To display the distribution of 825 

individual KEGG orthologs across genomes and order them based on their enrichment 826 

scores and group affiliations we used the program `anvi-display-functions`. 827 

Determination of high-fitness and low-fitness MAGs for metabolic enrichment 828 

analysis. We classified MAGs as high-fitness if, in all 5 recipients, they were detected in 829 

the donor sample used for transplantation as well as the recipient more than 7 days post-830 

FMT. We classified low-fitness MAGs as those that, in at least 3 recipients, were detected 831 

in the donor sample used for FMT but were not detected in the recipient at least 7 days 832 

post-FMT. We reduced the number of high-fitness MAGs to be the same as the number 833 
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of low-fitness MAGs for metabolic enrichment analysis by selecting only the high-fitness 834 

MAGs which were the most prevalent in the Canadian gut metagenomes. 835 

Ordination plots. We used the R vegan v2.4-2 package `metaMDS` function to perform 836 

nonmetric multidimensional scaling (NMDS) with Horn-Morisita dissimilarity distance to 837 

compare taxonomic composition between donor, recipient, and global metagenomes. We 838 

visualized ordination plots using R ggplot2. 839 

Data Availability 840 

Raw sequencing data for donor and recipient metagenomes are stored under the NCBI 841 

BioProject PRJNA701961 (see Supplementary Table 1 for accession numbers). 842 

Supplementary tables are accessible via doi:10.6084/m9.figshare.14138405. 843 
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Supplementary Figures 1214 

 1215 

Supplementary Figure 1. Timeline of stool samples collected from FMT study. Each circle represents a stool 1216 

sample collected from either an FMT donor or FMT recipient. The thicker, red vertical line at day 0 represents the FMT 1217 

event for each recipient. FMT method (pill or colonoscopy) and FMT recipient health and disease state (C. diff - chronic 1218 

recurrent Clostridium difficile infection, UC - ulcerative colitis) are indicated on the right. 1219 

 1220 
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Supplementary Figure 2. Nonmetric multidimensional scaling (NMDS) ordination of the taxonomic composition 1221 

of donor, recipient, and Canadian gut metagenomes at the genus level based on Morisita-Horn dissimilarity. 1222 

Samples from the same participant are joined by lines with the earliest time point labeled. CAN: Canadian gut 1223 

metagenomes, DA: donor A, DB: donor B, POST: recipients post-FMT, PRE: recipients pre-FMT. 1224 

 1225 

Supplementary Figure 3. Nonmetric multidimensional scaling (NMDS) ordination of the taxonomic composition 1226 

of the donor and recipient metagenomes at genus level based on Morisita-Horn dissimilarity. Samples from the 1227 

same participant are joined by lines with the earliest time point labeled. DA_POST: donor A recipients post-FMT, 1228 

DA_PRE: donor A recipients pre-FMT, DA: donor A, DB_POST: donor B recipients post-FMT, DB_PRE: donor B 1229 

recipients pre-FMT, DB: donor B. 1230 
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 1231 

Supplementary Figure 4. A flowchart outlining our method to assign successful colonization, failed colonization, or 1232 

undetermined colonization phenotypes to donor-derived populations in the recipients of that donor’s stool. 1233 
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Supplementary Table 1: Description of FMT study and stool samples collected. a) Description of FMT donor stool 1235 

samples and SRA accession numbers. b) Description of FMT recipient samples and SRA accession numbers. c) 1236 

Description of transplantation events. 1237 

Supplementary Table 2: Description of FMT metagenomes and co-assemblies. a) Metagenome SRA accession 1238 

numbers and number of metagenomic short-reads sequenced and mapped to co-assemblies and MAGs. b) Phylum 1239 
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Supplementary Table 3: Description of MAGs. a) Summary statistics and taxonomic assignments for MAGs. b) and 1242 

c) Detection of Donor A and Donor B MAGs in FMT metagenomes, respectively. d) and e) Detection of Donor A and 1243 

Donor B MAGs in global gut metagenomes, respectively. f) and g) Detection summary statistics of Donor A and Donor 1244 

B MAGs in global gut metagenomes, respectively. 1245 
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