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Abstract 
The current COVID-19 pandemic represents a global challenge. A better understanding of the 
immune response against SARS-CoV-2 is key to unveil the differences in disease severity 
and to develop future vaccines targeting novel SARS-CoV-2 variants. Feature barcode 
technology combined with CITE-seq antibodies and DNA-barcoded peptide-MHC I Dextramer 
reagents enabled us to identify relevant SARS-CoV-2-derived epitopes and compare epitope-
specific CD8+ T cell populations between mild and severe COVID-19. We identified a strong 
CD8+ T cell response against an S protein-derived epitope. CD8+ effector cells in severe 
COVID-19 displayed hyperactivation, T cell exhaustion and were missing characteristics of 
long-lived memory T cells. We identify A*0101 WTAGAAAYY as an immunogenic CD8+ T cell 
epitope with the ability to drive clonal expansion. We provide an in-depth characterization of 
the CD8+ T cell-mediated response to SARS-CoV-2 infection which will be relevant for the 
development of molecular and targeted therapies and potential adjustments of vaccination 
strategies. 
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Introduction 
Since the discovery of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in 
the city of Wuhan, China in December 2019, the pandemic Coronavirus disease 2019 (COVID-
19) has posed significant challenges for public health and the global economy at an 
unprecedented scale1. Following the rapid global spread of the highly infectious virus, more 
than 2 million deaths have been attributed to COVID-19 as of February 2021 (World Health 
Organization). While most SARS-CoV-2-infected individuals are asymptomatic or display only 
mild symptoms, some patients develop severe clinical symptoms such as acute respiratory 
distress syndrome (ARDS), cardiac complications and death2. Significant contributions have 
been made to better understand the infectious disease but the pathogenetic basis for the 
significant difference in disease severity of COVID-19 is still not well understood.  
 
CD8+ cytotoxic T cells play a pivotal role in viral clearance during infection and are activated 
by the interaction between the T cell receptor (TCR) and virus-derived peptide-antigens 
presented by major histocompatibility complex (MHC) class I molecules. Following infection, 
a subset of antigen-specific memory CD8+ T cells remains and provides long-lasting protection 
against secondary viral infection3. Efforts have been made to study the role of T cells during 
SARS-CoV-2 infection and through advances in single-cell RNA sequencing (scRNA-seq) 
technologies it has become possible to unveil heterogeneity among individual lymphocytes4. 
A thorough characterization of antigen-specific immune cells at a single-cell resolution is 
crucial for understanding the immunopathology of COVID-19 on a molecular level. While 
several studies have investigated different characteristics of overall immune cell populations 
in SARS-CoV-2 infection at a single-cell level5,6, only a limited number of studies currently 
exist that focus on antigen-specific lymphocyte populations, particularly antigen-specific CD8+ 
T cells7. However, studies that combine immune profiling of CD8+ T cells with an examination 
of epitope-binding properties at a single-cell level are still lacking. A precise understanding of 
the CD8+ T cell response to SARS-CoV-2 epitopes is of particular importance given the current 
discussions of vaccine efficacy against mutated SARS-CoV-2 variants.  
 
Here, we present scRNA- and TCR-seq profiles of T cells derived from patients with  a varying 
degree of COVID-19 severity with a unique, in-depth characterization of antigen-specific CD8+ 
T cells using DNA-barcoded peptide-MHC I multimers (MHC I Dextramer reagents)8 loaded 
with known SARS-CoV-2-derived peptides. By investigating antigen-specific CD8+ T cells we 
demonstrate that mild cases of COVID-19 display a more functional, terminally differentiated 
CD8+ effector T cell phenotype compared to severe infection. We observe dysregulated 
interferon (IFN) signaling in severe SARS-CoV-2 infection with a progression towards T cell 
exhaustion and hyperactivation while antigen-specific CD8+ effector cells maintain properties 
relevant for T cell memory formation in mild cases of COVID-19. Finally, we identify the S 
protein-derived epitope A*0101 WTAGAAAYY as a potentially important target for CD8+ T cell-
mediated antiviral response. 
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Results 
Identification of immunogenic SARS-CoV-2 epitopes by bulk-sequencing 
We first aimed to identify the most immunogenic epitopes from a pool of 38 in silico-selected 
MHC I Dextramer reagents carrying SARS-CoV-2-derived peptides (epitope panel presented 
in Table S1). This panel also included 4 positive and 4 negative control Dextramer reagents. 
Patient-specific T cells from the conditions active mild (n = 4) and severe (n = 4), recovered 
mild (n = 3) and severe (n = 11), and healthy controls (n = 6) were incubated with the 
Dextramer reagents followed by subsequent sequencing of Dextramer reagent DNA-barcodes 
for quantification of epitope-binding T cells and SARS-CoV-2 epitope enrichment (Fig. 1A-B; 
clinical data presented in Supplementary Table 2).  
 
Epitope-binding characteristics were divided into four groups (Supplementary Fig. 1A) based 
on the HLA profiles of the patients and the Dextramer reagents (Supplementary  Fig. 1B-C 
and Supplementary Table 1 and 3). Patients who displayed the most “specifically enriched” 
epitope-binding were selected for the subsequent single-cell experiments. Epitopes with an 
enrichment value of log2(5) in at least one patient were considered for further analysis, 
resulting in 15 top immunogenic SARS-CoV-2 epitopes and 8 controls to form our epitope pool 
for subsequent single-cell experiments (Supplementary  Table 1). 
 
A population of exhausted CD8+ T cells is exclusive for the recovery stage after severe 
COVID-19 
Next, we used the top immunogenic epitopes selected in the bulk screening and performed 
single-cell immunoprofiling of patient specific CD8+ T cells (5´ sequencing, 10x Genomics) by 
combining scRNA-seq with enrichment of TCR genes and single-cell proteomics (CITE-seq 
antibodies and MHC I Dextramer reagents carrying SARS-CoV2 epitopes) (Fig. 1A). Patient-
specific CD8+ T cells were incubated with a panel of immuno-relevant CITE-seq antibodies, a 
CD8a FACS antibody, and the Dextramer reagents with subsequent FACS sorting 
(Supplementary Fig. 2A) followed by scRNA-seq. 
 
Unsupervised clustering and subsetting for CD8+ T cells captured 30,623 cells and 13 distinct 
subclusters (Fig. 1C). Functional annotation of T cell subclusters was based on the expression 
of CD45RA and CCR79 together with T cell effector markers10 (Fig. 1D-E and Supplementary 
Table 4). We identified populations of naive CD8+ T cells (TN), CD8+ central memory T cells 
(TCM), and CD73+ CD8+ regulatory T cells (CD8+ CD73+ Treg) where the latter was annotated 
based on expression of the regulatory genes NT5E (CD73) and CCR911,12. A cluster of classic 
CD8+ effector memory T cells re-expressing CD45RA (TEMRA) and two populations of CD8+ 
effector memory T cells (TEM1 and TEM2) were also identified, where TEM2 displayed a more 
activated phenotype based on the expression of CD38 and HLA-DR. A population of cycling 
CD8+ effector cells (Tcyc) (Supplementary Fig. 2B) also displayed a highly active phenotype. 
Two distinct clusters strongly expressed natural killer (NK) cell markers KLRC2 and NCR3 
and were annotated as NK-like CD8+ early effector T cell population (NK TEFF) and NK-like 
CD8+ effector memory T cell population re-expressing CD45RA (NK TEMRA). The NK TEMRA 
population expressed the killer-cell immunoglobulin-like receptors KIR2DL3, KIR3DL2, and 
KIR3DL1 (Fig. 1E). Of note, we detected a high proportion of CD8+ TEMRA cells in one healthy 
volunteer who informed us of an unknown infection in early January 2020, approximately four 
months prior to the initiation of this study, which might explain this finding. We therefore 
decided to remove the volunteer from the study. 
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We detected three innate-like T cell populations; γδ T cells (γδ), mucosal-associated invariant 
T cells (MAIT), and atypical NKT cells (NKT) (Supplementary Fig. 2C-D). The NKT cells were 
characterized by the expression of TRAV12-3, TRBV5-5 and KLRB1 (CD161) and resembled 
a population of atypical NKT cells that has been described previously13. Interestingly, the 
group that recovered from severe COVID-19 carried a population of exhausted T cells (TEX) 
(Fig. 1F-G), characterized by the expression of TIGIT, CTLA4, CD279 (PD-1) and HAVCR2 
(Tim-3). Exhausted T cells display a strong impairment of effector functions14 and are typically 
seen in chronic infections or tumors, where chronic antigenic stimulation induces exhaustion15. 
This observation indicated that in severe but not in mild COVID-19, T cell exhaustion was 
induced. Increased number of exhausted T cells during severe SARS-CoV-2 infection is in 
line with previous findings16,17, however conflicting results have recently been reported7. 
 
Impaired interferon response and CD8+ T cell differentiation in severe COVID-19 
To investigate the mechanisms involved in T cell exhaustion in severe SARS-CoV-2 infection, 
we focused on the differences between the active disease conditions (active mild vs. active 
severe infection) and performed differential gene expression and gene set enrichment analysis 
(GSEA). A significant downregulation of IFN-stimulated genes was found in the active severe 
condition (Fig. 2A), which was supported by the negative enrichment of biological process 
(Gene Ontology) gene sets associated with “response to type I IFN” in several effector cell 
types (Fig. 2B). 
  
Previous studies have demonstrated that JAK-STAT signaling is crucial for the cellular 
response to IFN-α and -β as activated STAT1/STAT2 heterodimers bind to IFN regulatory 
factor 9 (IRF9) to form the IFN stimulated gene factor 3 (ISGF3)18. ISGF3 translocates to the 
nucleus to initiate transcription of other IFN regulatory factors (IRFs), which in turn induce the 
expression of IFN-stimulated genes19–21. To investigate whether impaired JAK-STAT signaling 
could be the reason for the reduced expression of IFN-stimulated genes in severe COVID-19, 
we estimated the signaling pathway and transcription factor activity. The analysis revealed 
significantly stronger JAK-STAT pathway activity in differentiated effector cell types from mildly 
affected individuals (Fig. 2C). This was further supported by a significantly stronger 
transcription factor activity of STAT1 and STAT2 (Fig. 2D). Among the IFN-stimulated genes, 
IFITM3 was significantly downregulated in all CD8+ T cell subtypes in active severe COVID-
19 when compared to mild (Fig. 2A). 
 
A significant underexpression of the genes KLRG1 and FCRL6 was observed in effector cell 
subtypes in the active severe condition (Fig. 2A), which have been associated with highly 
differentiated effector phenotypes of CD8+ T cells22,23. Genes encoding mitochondrial 
respiratory chain complex I were significantly downregulated in severe disease whereas 
mitochondrial uncoupling protein 2 (UCP2) was overexpressed. Inhibition of complex I has 
been associated with impaired CD8+ T cell effector function as it is important for metabolic 
reprogramming upon T cell activation24, while UCP2 reduces mitochondrial oxidative 
phosphorylation and restricts terminal differentiation of CD8+ T cells towards short-lived 
effector cells25. While terminally differentiated effector T cells are present in both the active 
mild and severe condition, these findings indicate impaired effector differentiation and a short-
lived nature of CD8+ effector T cells in severe COVID-19. In this context, overexpression of 
UCP2 could be interpreted as a negative feedback intended to counteract terminal 
differentiation and a short-lived phenotype. Significantly stronger activity of RFX transcription 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 3, 2021. ; https://doi.org/10.1101/2021.03.03.432690doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.03.432690
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

factors was observed in active severe SARS-CoV-2 infection (Fig. 2D). These  transcription 
factors have been shown to facilitate transcription of MHC class II genes26. Expression of MHC 
class II molecules is a sign of T cell activation27 therefore stronger transcription of these genes 
could be indicative of hyperactivation in severe COVID-19. Finally, several cytolytic effector 
molecules were upregulated in CD8+ effector T cells (Fig. 2B). In summary, these results 
suggest that CD8+ effector T cells in severe COVID-19 display a highly cytotoxic and short-
lived phenotype with characteristics of hyperactivation. A full list of differentially expressed 
genes and an overview of all investigated pathways are provided in Supplementary Table 5 
and Supplementary Fig. 3A. 
 
Altered cell-cell communication promotes exhaustion and impaired effector T cell 
survival in severe COVID-19 
We next asked whether cell-cell communication contributed to an impaired CD8+ T cell 
response in active severe COVID-19. Differences in the global interactions between active 
mild and severe SARS-CoV-2 infection revealed an overall decrease in cell-cell 
communication in the severe condition (Fig. 2E and Supplementary Fig. 3B). We focused on 
a selection of ligand-receptor interactions that have been associated with effector T cell 
activation or inhibition and displayed a high difference between the active disease conditions 
(Fig. 2F). These included killer-cell immunoglobulin-like receptors (KIRs) and lectin-like 
receptors. A large decrease in activating and inhibiting receptor signaling in the Tcyc and TEMRA 
populations was observed for the active severe group. Larger heterogeneity and increased 
average signaling strength of interactions via several lectin-like receptors (NKG2A, NKG2C, 
NKG2D, NKG2E, CLEC2B, and KLRB1) towards CD8+ effector T populations were observed 
for the active mild group (Supplementary Fig. 3C). Of note, signaling towards Tcyc via 
CD94/NKG2A was missing in the active severe condition (Supplementary Fig. 3D). The 
heterodimer CD94/NKG2A is known to inhibit effector functions of CD8+ T cells28,29 and 
NKG2A-knockout in influenza- and adenovirus-infected mice has been shown to increase lung 
pathology28. Therefore, lack of NKG2A-mediated inhibition could contribute to 
immunopathology, hyperactivation of CD8+ effector T cells and lung injury in severe COVID-
19. Engagement of NKG2A has also been reported to increase survival of virus-specific CD8+ 
effector T cells29,30, supporting the finding of short-lived CD8+ effector T cells in severe COVID-
19. Interestingly, the average strength of MICB-NKG2D signaling towards TEM2 and TEMRA cells 
was stronger in the active severe condition (Supplementary Fig. 3D). As NKG2D is known to 
mediate costimulatory signals upon TCR ligation31, this might contribute to a hyperactivated 
effector phenotype in severe COVID-19. 
 
We observed stronger predicted interactions via KIRs in active mild COVID-19 towards the 
NK TEMRA and Tcyc populations than in severe COVID-19 (Supplementary Fig. 3C). In contrast, 
predicted strength of interactions towards γδ T cells via KIR2DL1 and KIR3DL2 was increased 
in severe COVID-19. Besides their regulatory effect on CD8+ T cell activation, several human 
and murine studies have suggested that KIRs play an important role in long-lived CD8+ T cell 
memory formation32,33, possibly by inhibiting activation-induced cell death32,34. These results 
could suggest a more potent memory induction in mild COVID-19. 
 
Increased average signaling strength was found for SELL-SELPLG interactions in most CD8+ 
T cell populations in active severe COVID-19 (Supplementary Fig. 3D). SELPLG has been 
shown to induce CD8+ T cell exhaustion in mice infected with lymphocytic choriomeningitis 
virus (LCMV). Furthermore, SELPLG-knockout was associated with an increase in IL-7Rα-
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expressing antigen-specific T cells that displayed increased survival35. After acute LCMV 
infection, SELPLG-knockout mice displayed increased numbers of epitope-specific CD8+ 
memory T cells36. Additionally, we observed IL-10 signaling towards all CD8+ T cell subtypes 
in the population that recovered from severe COVID-19. Increased IL-10 production has been 
observed in murine models of T cell exhaustion37 and could be attributed to a population of 
severely exhausted CD8+ T cells38. In line with this, exhausted CD8+ T cells in the recovered 
severe condition displayed strong interactions with other CD8+ T cell populations via SELL-
SELPLG, thereby contributing to further exhaustion (Fig. 2G). 
 
In summary, our results support an imbalance in CD8+ T cell regulation via NK cell receptors 
in severe COVID-19. This might contribute to a hyperactivated and short-lived effector 
phenotype. Changes in cell-cell interactions appeared to promote CD8+ T cell exhaustion in 
severe SARS-CoV-2 infection, while exhausted T cells themselves further contributed to the 
process of exhaustion by interacting with other CD8+ T cell populations. Furthermore, the cell-
cell interaction analysis suggested a decreased survival and impaired memory formation in 
favor of exhaustion in severe COVID-19. 
  
Severe COVID-19 displays shift towards terminal T cell differentiation and exhaustion  
To understand potential differences in CD8+ T cell differentiation between active mild and 
severe COVID-19, we performed a pseudotime trajectory analysis on CD8+ T cells that would 
likely originate from naive CD8+ T cells (n = 27,769). Pseudotime analysis predicted two 
trajectories originating from the TN population (Fig. 3A). The first trajectory progressed towards 
the terminally differentiated TEMRA stage and was designated the short-lived effector cell 
(SLEC) lineage. The second trajectory progressed towards the TEM2 and TEX populations and 
was termed the memory-precursor effector cell (MPEC) lineage (Fig. 3A). We observed a 
significant shift in cell density for active severe disease towards the late stages of pseudotime 
in both trajectories compared to mild COVID-19 (Fig. 3B and Supplementary Fig. 4A). This 
could indicate an imbalanced shift towards terminal T cell effector differentiation and 
exhaustion in severe SARS-CoV-2 infection. 
 
To dissect differences between the SLEC and MPEC trajectories and between the active mild 
and severe disease states within the lineages, temporal differential gene expression was 
conducted (Fig. 3C). Differential gene expression between the progenitor and differentiated 
cell populations revealed a significant increase in the expression of cytotoxic effector 
molecules over pseudotime in both lineages, indicative of acquisition of effector functions. The 
SLEC lineage was significantly enriched for the biological processes “cell activation”, “immune 
effector process”, and “apoptotic process”, which was indicative of acquisition of a short-lived 
effector phenotype at the end of this trajectory. Interestingly, genes associated with “viral gene 
expression” were also significantly enriched in the SLEC lineage (Fig. 3D). 
 
To decipher functional differences between the SLEC and MPEC lineages, we performed 
differential expression analysis in the pseudotime partition where the two lineages bifurcated 
(Supplementary Table 5). A strong increase in the expression of KLRC2 was observed from 
the bifurcation point in the SLEC lineage (Supplementary Fig. 4B). KLRC2 encodes for the 
activating NK cell receptor NKG2C and has been shown to be expressed in highly 
differentiated TEMRA cells39, again indicating a terminal effector differentiation in this trajectory. 
In contrast, we observed a re-expression of IL7R from the bifurcation point in the MPEC 
lineage after an initial decrease in expression (Fig. 3C). The same expression pattern for IL-
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7Rα expression has been reported in memory precursor cells, evolved from antigen-induced 
effector cells, that developed into long-lived memory cells23. This suggested a memory-
precursor profile of the MPEC lineage where a subset of effector cells is able to re-express 
IL7-Rα and differentiate into long-lived memory cells40. However, it should be noted that the 
TEX population was also present at the end stage of the MPEC lineage. Interestingly, increased 
IFN-stimulated gene expression was observed in the end stage of the MPEC lineage 
compared to the SLEC trajectory (Supplementary Fig. 4C), indicating elevated IFN-
responsiveness of these cells. Thus, we hypothesised the MPEC lineage comprised a strongly 
IFN-responsive memory precursor effector cell population that terminated with exhaustion in 
severe COVID-19. 
 
Potentially reduced viral protection in severe COVID-19 
To elucidate differences in functional CD8+ T cell activation between active mild and severe 
SARS-CoV-2 infection, we compared the active disease conditions within the SLEC and 
MPEC lineages. Several IFN-stimulated genes displayed increased expression in the active 
mild condition compared to severe, including the gene IFITM3 (Fig. 3C). IFITM3 has previously 
been reported to confer protection against H1N1 influenza A virus41,42 and IFITM proteins have 
been shown to restrict cellular entry of SARS-CoV-143. Therefore, our finding could indicate a 
potential role for IFITM3 in protection from severe courses of SARS-CoV-2 infection. Several 
MHC II genes were significantly upregulated in both lineages in active severe COVID-19 
compared to mild Elevated MHC II expression in T cells has previously been described as a 
sign of activation27, supporting our finding of CD8+ T cell hyperactivation in severe COVID-19. 
Conversely, several activating NK receptor genes were significantly upregulated in the SLEC 
and MPEC trajectories in the active mild condition, potentially indicating more effective T cell 
effector differentiation during mild COVID-19. 
 
TCR analysis reveals clonal hyperexpansion in severe COVID-19 
To investigate the characteristics of clonal expansion of CD8+ T cells in the COVID-19 
conditions, we analysed the single cell TCR-seq data. We observed an increase in clonal 
expansion from early to the late stages of CD8+ T cell differentiation (Fig. 4A) and found that 
the differentiated CD8+ T cell populations were composed of larger clonotypes (Fig. 4B and 
Supplementary Fig. 5A). Furthermore, we observed a high proportion of hyperexpanded 
clones in active severe COVID-19 (Fig. 4B and Supplementary Fig. 5A). 
 
In order to study global changes in diversity of the TCR repertoire during COVID-19, TCR 
richness and evenness were computed for the collapsed mild and severe conditions  (active 
and recovered) (Fig. 4C-D). We observed a global decrease in TCR diversity over pseudotime 
for the SLEC and MPEC lineages for both mild and severe COVID-19. However, the severe 
condition displayed a more accentuated loss of diversity in the TCR repertoire even from early 
stages of pseudotime, which was in line with the observation of hyperexpansion in this group. 
To study the similarities between the TCR repertoires of the overall CD8+ T cell 
subpopulations, we computed the overlap in clonotype abundance between the CD8+ T cell 
subtypes.  TEM2 displayed high similarity to Tcyc and the TCR repertoire of TEMRA was similar to 
both TEM2 and Tcyc (Fig. 4E). As mainly antigen-induced T cells enter the cell cycle, the 
observed similarity could indicate that the TEM2 and TEMRA populations consisted of clonotypes 
that received strong proliferative stimuli and could be of importance for the antigen-specific 
response to COVID-19.  
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CD8+ T cells highly respond to a SARS-CoV-2 Spike-protein-derived epitope 
To unveil SARS-CoV-2-derived epitopes that may drive clonal expansion of CD8+ T cells and 
to investigate differences in epitope-specific CD8+ T cells between mild and severe COVID-
19, we integrated the scRNA- and TCR-seq data with epitope-binding information from the 
pool of MHC I Dextramer reagents loaded with known SARS-CoV-2-derived peptides. We 
identified eight epitopes that were bound by CD8+ T cells (Supplementary Table 6) of which 
four were uniquely recognized by cells that did not bind any other epitope (Fig. 4F). Of these 
four, two epitopes were derived from the SARS-CoV-2 S protein (WTAGAAAYY and 
GVYFASTEK) and the remaining two from the N protein (GMSRIGMEV and ILLNKHIDA) 
(Supplementary Fig. 5B). Most of the uniquely epitope-binding cells were specific for 
WTAGAAAYY, which indicates a relevance of this S protein-derived epitope for CD8+ T cell-
mediated immunity to SARS-CoV-2. Therefore, we investigated the amino acid sequence 
similarity between the peptide and S proteins derived from other human coronaviruses 
(HCoVs). The peptide displayed high similarity to MERS-CoV and SARS-CoV-1 but low 
similarity to the “common cold” HCoVs (Fig. 4G). 
  
Unique A*0101 WTAGAAAYY epitope-binding was distributed across most subpopulations of 
MHC class I restricted CD8+ T cells (n = 6,431) and was highly enriched in the differentiated 
populations (Fig. 4F and 4H). This finding was supported by increased clonal expansion of 
WTAGAAAYY epitope-specific CD8+ T cells over pseudotime for both the SLEC and MPEC 
trajectories (Fig. 4I). For severe COVID-19, a strongly hyperexpanded epitope-binding 
clonotype (n = 1,499) was revealed (Supplementary Fig. 5C) and its functional development 
could be followed from the naive state TN to terminal differentiation (Fig. 4I). TCR-seq analysis 
revealed that the TCRɑ (TRA) and TCRβ (TRB) complementary determining region 3 (CDR3) 
sequences of the strongly hyperexpanded clonotype from the severe group 
(CILYRYDKVIF;CASSLEAGADPVHRQFF) made up approximately 25% of the TRA/B usage 
in this group (Fig. 5A-B). In contrast, the most frequently used CDR3s in mild COVID-19 
represented nearly 5% (CAPLAGSNYQLIW;CASSVTDSSYEQYF) of the TRA/B usage in this 
group. This further supported the observation of a more accentuated clonal hyperexpansion 
of CD8+ T cells upon A*0101 WTAGAAAYY epitope-recognition in severe COVID-19. MHC I-
binding predictions revealed that seven out of 12 patients whose CD8+ T cells recognized 
A*0101 WTAGAAAYY would be able to present this epitope on their endogenous MHC I 
molecules. 
 
Exhaustion and impaired memory formation of epitope-specific CD8+ T cells in severe 
COVID-19 
In order to elucidate the differences between the SARS-CoV-2 epitope-specific CD8+ T cells 
in mild and severe COVID-19, we focused on the uniquely WTAGAAAYY epitope-binding TEM1 
and TEMRA populations. Differential gene expression analysis between mild and severe COVID-
19 revealed an upregulation of certain IFN-stimulated genes in the epitope-binding cells of the 
severe group (Fig. 6A and Supplementary Table 5). Additionally,  JAK-STAT pathway activity 
was significantly stronger in both epitope-binding populations in severe COVID-19 (Fig. 6B 
and Supplementary Fig. 5D). Enhanced JAK-STAT signaling activity was most likely causative 
for the stronger expression of IFN-stimulated genes in the epitope-binding TEM1 and TEMRA cells 
in severe COVID-19. These findings were in contrast to the observations from the overall CD8+ 
T cell subsets (Fig. 2A-C). Interestingly, we also observed a significant upregulation of STAT1 
expression and downregulation of STAT4 expression in WTAGAAAYY epitope-binding TEMRA 
cells in severe COVID-19 compared to mild. However, IFITM3 was still significantly 
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downregulated in the antigen-specific TEM1 cells in severe disease compared to mild COVID-
19, further indicating a special relevance of IFITM3 for protection against severe SARS-CoV-
2 infection. 
 
For the WTAGAAAYY epitope-binding TEM1 and TEMRA cells, genes associated with memory 
formation were significantly downregulated in severe COVID-19 whereas PRDM1, a gene 
involved in terminal effector T cell differentiation44, was overexpressed in TEM1 (Fig. 6A). 
Combined with significant upregulation of caspase 1 and 4, these findings suggested a 
preferential terminal effector differentiation and a short-lived nature of these epitope-specific 
CD8+ effector populations in severe SARS-CoV-2 infection. However, significantly stronger 
expression of CD27 in WTAGAAAYY epitope-binding CD8+ TEMRA cells indicated a less 
differentiated TEMRA phenotype in severe COVID-19 compared to mild infection45. 
  
Lower expression of activating and inhibiting NK cell receptors was found for the severe 
disease group (Fig. 6A). As these receptors have been shown to regulate  CD8+ T cell effector 
functions and survival29,30,34, this could indicate an impaired regulation of SARS-CoV-2-specific 
CD8+ T cell response and point towards decreased T cell survival in severe disease. We 
observed significant downregulation of the interleukin 2 receptor beta chain gene (IL2RB) in 
epitope-specific TEMRA cells in severe SARS-CoV-2 infection. Expression of IL2RB is 
characteristic of a specific memory population which accumulates upon activation of KIR 
receptors33. This finding further supported our hypothesis of impaired CD8+ T cell memory 
formation in severe COVID-19 and was in accordance with our observations from the cell-cell 
interaction analysis. 
 
Significant upregulation of the activation markers HLA-DR and CD38 together with the RFX 
transcription factors (Fig. 6C) was observed for the WTAGAAAYY epitope-binding TEM1 and 
TEMRA populations in the severe condition, further underlining hyperactivation of CD8+ T cells 
in severe COVID-1917. 
  
Interestingly, analysis of the WTAGAAAYY epitope-specific cells revealed overexpression of 
exhaustion markers by the TEMRA population in the severe group (Fig. 6A) as an early indication 
of development towards exhaustion, potentially due to hyperactivation. Lastly, we observed 
significant negative enrichment of genes associated with “NFAT TF pathway” and “AP1 
pathway” (Fig. 6D) in severe disease. As both NFAT and AP1 are important transcription 
factors in downstream signaling upon TCR activation46, this may indicate impaired signal 
transduction upon TCR stimulation in severe COVID-19. 
 
In summary, this data suggests that CD8+ T cell response to SARS-CoV-2-derived epitopes 
preferentially leads to short-lived, terminal effector differentiation, and a hyperactivated 
phenotype in severe COVID-19, while epitope-binding CD8+ effector T cells in mild COVID-19 
preserve the ability to develop into memory cells after clearance of the viral infection. 
 
Discussion 
While vaccination campaigns are rolled out globally, there is still a limited understanding of 
the pathogenesis of severe courses of COVID-19. However, this is a critical step in order to 
develop targeted therapies. A precise understanding of the CD8+ T cell response to specific 
viral epitopes is also important for potential strategies to adjust vaccines in response to 
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the  increased occurrence of mutated SARS-CoV-2 variants. Feature barcode technology 
combined with MHC class I Dextramer reagents carrying specific SARS-CoV-2 epitopes and 
TCR-seq allowed us to study the epitope-specific CD8+ T cell response in COVID-19 at an 
unprecedented resolution. 
  
We identified different functional subsets of CD8+ T cells which seem to acquire an effector 
phenotype during SARS-CoV-2 infection. However, terminal effector differentiation differed 
between CD8+ T cells in mild and severe disease. While in mild COVID-19, effector cells 
acquired characteristics indicative of a highly functionally differentiated effector phenotype, 
CD8+ TEMRA cells seemed to be less differentiated in severe disease as indicated by significant 
overexpression of CD2745. Furthermore, CD8+ effector cells displayed a hyperactivated 
phenotype in severe COVID-19 and showed significant reduction in characteristics of 
functional differentiation. 
  
The WTAGAAAYY epitope-specific TEM1 and TEMRA populations displayed decreased 
expression of transcription factors and cytokine receptors associated with T cell memory 
formation (especially IL7R) in severe COVID-19 compared to mild disease (Fig. 6A). 
Additionally, cell-cell interaction analysis revealed a dysregulation in ligand-receptor 
interactions associated with long-term T cell memory formation in severe disease. These 
results might indicate a lower potential for formation of a long-lived SARS-CoV-2-specific CD8+ 
T cell memory in severe COVID-19. Furthermore, the inflammatory environment in severe 
COVID-19 seemed to favor the development of exhausted CD8+ T cells, which might be 
caused by the hyperactivation of T cells. In line with previous reports47, we observed a 
significant downregulation of IFN-stimulated genes in active severe COVID-19 when 
compared to active mild. Combined with significantly reduced JAK-STAT signaling and 
STAT1/2 transcription factor activity in severe COVID-19, this is strongly indicative of an 
impaired response to IFN stimulation in severe disease. 
  
As previously described, IFN-induced signaling is mediated via STAT1/2, which bind to IFN 
regulatory factor 9 (IRF9) to generate the IFN-stimulated gene factor 3 (ISGF3)18. Nuclear 
transport of ISGF3 is mediated by karyopherin alpha 1 (KPNA1) and beta 1 (KPNB1)21,48,49. It 
has previously been demonstrated that ORF6 protein from SARS-CoV-1 is able to impair the 
formation of KPNA1:STAT1:KPNB1 complexes, thereby limiting the IFN response21. 
Furthermore, several mechanisms have been demonstrated by which SARS-CoV-2 impairs 
the expression and signal transduction of IFN-α and -β50. However, in mild COVID-19, JAK-
STAT-signaling seems to be sufficient to mount significantly higher expression levels of IFN-
stimulated genes compared to severe disease. Interestingly, these findings were reversed 
when comparing WTAGAAAYY epitope-binding cells between severe and mild COVID-19, 
indicating that epitope-recognition and TCR stimulation are responsible for these changes. 
 
In addition to TCR activation, IFN-I stimulation is an important signal for T cell activation51,52. 
In non-activated CD8+ T cells, type I IFNs induce STAT1/2 signaling to upregulate IFN-
stimulated genes. STAT1 has been shown to have strong anti-proliferative effects, thereby 
preventing expansion of non-specific CD8+ T cells52,53. Conjugated signaling via IFN-receptors 
and TCR leads to impaired STAT1 phosphorylation and limits STAT1 expression52,53. Instead, 
epitope-specific CD8+ T cells upregulate STAT4 expression to transduce IFN-induced 
signals51,52. Through this mechanism, epitope-specific CD8+ T cells alter the effect of IFN 
signaling so that IFN stimulation now promotes proliferation, acquisition of effector functions, 
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and survival via STAT451,52. In our WTAGAAAYY epitope-binding CD8+ T cell population we 
observe upregulation of STAT1 and downregulation of STAT4 in severe COVID-19, when 
compared to mild disease. This might indicate that the necessary upregulation of STAT4 and 
downregulation of STAT1 upon combined TCR and IFN stimulation in epitope-binding CD8+ T 
cells failed in severe SARS-CoV-2 infection. In this case, type I IFNs would still transduce their 
signals via STAT1, thereby mediating pro-apoptotic and anti-proliferative signals and 
promoting expression of IFN-stimulated genes52, while epitope-binding cells in the mild group 
effectively downregulate STAT1 signaling. This would explain the observation of stronger 
expression of IFN-stimulated genes in WTAGAAAYY epitope-binding CD8+ T cells in severe 
SARS-CoV-2 compared to mild infection. Preferential STAT4 signaling instead of STAT1 in 
WTAGAAAYY epitope-binding CD8+ T cells in mild COVID-19 would also explain the 
observation of stronger JAK-STAT pathway activity in severe disease as the PROGENy model 
only includes STAT1-3 and not STAT4. 
 
As NFAT and AP-1 depend on karyopherins for their nuclear translocation54, it is possible that 
SARS-CoV-2-induced inhibition of karyopherin-mediated nuclear transport of STAT1/2 also 
affects translocation of NFAT in response to TCR activation. This could explain our 
observation of significantly reduced enrichment of genes associated with “NFAT TF pathway” 
and “AP1 pathway” in WTAGAAAYY epitope-binding CD8+ T cells in severe disease and on 
the other hand provide an explanation for impairments in the switch from STAT1 to STAT4 
signaling upon combined activation of IFN- and T cell receptor. Impaired nuclear translocation 
of NFAT upon CD8+ T cell activation has been reported as a cause for CD8+ T cell exhaustion. 
In this report, the exhausted T cells were unable to produce cytokines but retained cytotoxic 
functions55. As WTAGAAAYY epitope-binding CD8+ T cells display characteristics of 
exhaustion and strong upregulation of cytotoxic effector molecules at the same time, it is 
conceivable that the suggested mechanism of impaired nuclear translocation of NFAT 
contributes to the development of exhaustion. 
 
A prerequisite for the virus to affect karyopherin-mediated nuclear translocation and therefore 
JAK-STAT signaling is viral entry into CD8+ T cells, and the ability to enter immune cells has 
recently been demonstrated for SARS-CoV-256. We could not detect viral RNA in our scRNA-
seq data using Viral-Track57. However, limitations are imposed on the ability to detect viral 
RNA by the tool, including low viral load in immune cells and sparsity of scRNA-seq data57. 
Viral infection of the CD8+ T cells could therefore not be ruled out. Weak evidence supporting 
this hypothesis was the significant enrichment of genes associated with “viral gene 
expression” in the SLEC lineage during severe COVID-19 (Fig. 3D). Assuming viral infection 
is a contributing factor in observed changes in JAK-STAT signaling and in CD8+ T cell 
differentiation in severe COVID-19, it remains unclear why viral infection leads to severe 
disease in some individuals, while others only develop mild symptoms. 
 
One possible explanation for the difference in disease progression of COVID-19 could be the 
significant downregulation of IFITM3 in severe COVID19. Downregulation of the IFN-
stimulated gene was still pertained despite increased JAK-STAT signaling in the 
WTAGAAAYY epitope-binding TEM1 cells in the severe group compared to mild COVID-19. As 
previously described, IFITM proteins have been implicated in the restriction of SARS-CoV-1 
cellular entry43 and baseline expression of IFITM3 has been shown to determine the 
susceptibility to influenza A virus infection41,42. It is therefore possible that in individuals who 
develop only mild COVID-19, a higher baseline expression of IFITM3 restricts cellular entry 
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into CD8+ T cells, therefore leading to reduced viral loads and less impairment of JAK-STAT 
signaling compared to severely infected patients. 
 
The proposal of therapeutic JAK-STAT-inhibition against COVID-19 is gaining popularity58. 
Considering our observations, impaired JAK-STAT signaling seems to be one of the 
pathomechanisms driving severe COVID-19. Accordingly, therapeutic inhibition of JAK-STAT 
signaling might aggravate the course of disease. With regard to the observed T cell exhaustion 
in severe COVID-19, checkpoint inhibition (PD-1 inhibition) could be a potential  therapeutic 
approach as checkpoint inhibition has been suggested to target cells in a pre-exhausted stage 
and restore their ability to develop into memory T cells59. 
 
Epitope-binding analysis of CD8+ T cells revealed recognition of eight epitopes from our 
epitope pool, among them four epitopes derived from the SARS-CoV-2 S protein, three from 
the N protein, and one from the M protein. Four of these epitopes were uniquely bound by 
CD8+ T cells, with A*0101 WTAGAAAYY showing the largest pool of uniquely responsive 
CD8+ T cells. Interestingly, WTAGAAAYY was found to be the most immunogenic spike 
protein-derived CD8+ T cell epitope according to recent in silico predictions60. 
  
There are several reasons why we see a reaction against A*0101 WTAGAAAYY in five 
patients, even though the in silico predictions suggested that they are not able to present the 
epitope on their MHC I molecules. It is conceivable that the reactive CD8+ T cells of these five 
patients actually recognized a different epitope during their infection, which displayed a strong 
similarity to WTAGAAAYY, accordingly leading to a cross-reactivity with WTAGAAAYY. This 
assumption could be highly relevant as cross-recognition of WTAGAAAYY by CD8+ T cells 
due to peptide similarities or due to the high immunogenicity of WTAGAAAYY could lead to a 
broad and unspecific activation of CD8+ T cells. Therefore, we identified WTAGAAAYY as a 
relevant epitope for the generation of CD8+ T cell responses to SARS-CoV-2 infection that 
could be relevant for further development of peptide-based vaccines. 
 
Despite interesting observations, our study had some limitations such as the low number of 
patients per group. For the analysis of epitope-binding cells, the active and recovered 
conditions were collapsed to generate an overall group of mildly and severely infected 
individuals with increased group sizes. Lastly, two of our negative control Dextramer reagents 
displayed relatively high similarity to peptides derived from other HCoVs (Supplementary Fig. 
5E). Since the negative controls need to retain the ability to be presented by MHC class I 
molecules, this poses limitations to the randomness of their peptide sequences. This 
necessitated a stringent threshold for specific binding by CD8+ T cells which might have led to 
a loss of signal for certain SARS-CoV-2 derived epitopes. 
 
For the purpose of our study, we aimed to dissect differences between mild and severe 
COVID-19 by providing an in-depth immunoprofiling of epitope-specific CD8+ T cells. We 
identified WTAGAAAYY as a relevant S protein-derived epitope for the generation of SARS-
CoV-2-specific CD8+ T cell responses. We demonstrated that CD8+ T cells in severely affected 
patients displayed a dysregulated IFN-response, probably due to impaired JAK-STAT 
signaling. While CD8+ T cells from mildly affected individuals displayed characteristics of 
highly differentiated effector cells and maintained expression of genes relevant for memory 
formation, CD8+ T cells in severe COVID-19 exhibited a hyperactivated phenotype and 
differentiated towards exhaustion. Further research has to be conducted to demonstrate viral 
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entry of CD8+ T cells as the cause of the observed changes in IFN-response and JAK-STAT 
signaling, and to investigate whether decreased expression levels of IFITM3 are able to 
increase the susceptibility of CD8+ T cells to viral infection, thereby increasing the risk for a 
severe course of SARS-CoV-2 infection.  
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Fig. 1. Selection of top SARS-CoV-2 epitopes by bulk sequencing and identification of 
functional subsets of CD8+ T cells. (A) Schematic overview of the study design. (B) Bulk 
screening enrichment of every peptide-MHC I Dextramer reagent per disease condition plotted 
as the mean log2-fold enrichment. MHC I Dextramer reagents were grouped according to their 
respective HLA-supertype (see also Supplementary Table 1). (C) Integrated UMAP projection 
of all 13 CD8+ T cell subpopulations (n = 30,623). (D) Scaled expression of antibody-derived 
tag (ADT) markers (CITE-seq) per CD8+ T cell subpopulation. (E) Marker gene expression per 
CD8+ T cell subtype. TCR = T cell receptor (see also Supplementary Table 4). (F) Average 
distribution of CD8+ T cell subsets for the healthy (n = 2), active mild (n = 3), active severe (n 
= 3), recovered mild (n = 3), and recovered severe (n = 3) condition. Cell type proportions per 
patient are reported in Supplementary Fig. 2D. (G) Number of exhausted CD8+ T cells per 
condition. 
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Fig. 2. Impaired interferon-response and cell-cell communication in CD8+ T cells in 
active severe COVID-19. (A) Selection of relevant differentially expressed genes (DEG) 
between active mild and active severe COVID-19. Positive values indicate overexpression in 
the active severe group. Size and color relate to the adjusted p-value (pAdj) and log2 fold 
change (L2FC), respectively. (B) Gene ontology (GO) Biological process (BP) gene set 
enrichment analysis. Positive normalized enrichment scores (NES) indicate enrichment in 
active severe disease. (C) Pathway activity estimated with PROGENy. Selected significant 
(Wilcoxon rank sum test) pathways are shown (All PROGENy pathways are reported in 
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Supplementary Fig. 3A). (D) Differential transcription factor (TF) activity (DoRothEA) 
estimated with msviper. Positive values indicate increased activity in active severe COVID-19. 
Significant genes are highlighted by name. (E) Differential cell-cell interactions between active 
severe and mild COVID-19. Negative values indicate fewer interactions in the active severe 
group. *NKT cells were only included for the active mild condition. (F) Selected T cell activating 
(yellow) and inhibiting (purple) ligand-receptor (LR) interactions between CD8+ T cell 
subtypes. Supplementary Fig. 3C is referred to for specific interactions included. (G) Sankey 
plot of differential interactions of SELL-SELPLG between recovered severe and mild COVID-
19. Positive values indicate increased interactions in the recovered severe group. *TEX cells 
were only present in the recovered severe condition. IFN = interferon, EM = effector molecule, 
NKR = NK cell receptor, AP = adaptor protein, pos = positive, neg = negative, reg = regulation. 
*** = p < 0.001, ** = p < 0.01, * = p < 0.05. 
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Fig. 3. Impaired CD8+ T cell differentiation and exhaustion in severe COVID-19. (A) 
Pseudotimes and estimated trajectories projected onto the integrated UMAP of cell types likely 
to have their origin in naive CD8+ TN cells. (B) Temporal distribution of cell density for the 
active mild and severe conditions across pseudotime. Shifts in distribution between the 
conditions for the short-lived effector cells (SLEC) and memory precursor effector cells 
(MPEC) lineage were tested with the Kolmogorov-Smirnov method (MPEC: D = 0.310, p < 2e-
16, SLEC: D = 0.402, p < 2e-16). Supplementary Fig. 4A is referred to for distribution of healthy 
and recovered conditions. (C) Heatmap depicts differentially expressed genes between the 
progenitor and differentiated cell populations across pseudotime (start vs end). Smoothed 
expression of two selected genes is shown with the y-axis on natural logarithmic scale. An 
extended panel of genes is reported in Supplementary Fig. 4. (D) Significantly enriched 
biological process (BP) gene sets from the Gene Ontology (GO) database. Gene set 
enrichment analysis was based on the genes from the start vs end test (upper panel) and 
condition tests between active mild and severe COVID-19 (lower panel) with tradeSeq. 
Normalized enrichment score = NES. *** = p-value < 0.001, ** = p-value < 0.01. 
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Fig. 4. Clonal hyperexpansion is pronounced in severe COVID-19 and CD8+ T cells 
highly respond to viral Spike-protein-derived WTAGAAAYY. (A) T cell receptor (TCR) 
clonal expansion projected onto the integrated UMAP of cell types, which are likely to have 
their origin in naive CD8+ TN cells. (B) Distribution of clonal expansion within the conditions 
(left) and within the CD8+ T cell populations (right), displayed as relative abundance of 
clonotype expansion groupings (Supplementary Fig. 5A is referred to for abundance per cell 
type per condition). (C) TCR richness and (D) evenness across pseudotime for the short-lived 
effector cell (SLEC) and memory precursor effector cell (MPEC) trajectories for the collapsed 
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mild and severe conditions (active and recovered). (E) TCR clonotype similarity between the 
CD8+ T cell subpopulations estimated with the Morisita horn similarity index. (F) Binding 
counts for the four uniquely recognized SARS-CoV-2-derived epitopes per CD8+ T cell 
subtype and condition (Supplementary Fig. 5B is referred to for binding counts per patient). 
(G) Protein similarity between the Spike protein-derived epitope WTAGAAAYY and Spike 
proteins from other known human coronaviruses. (H) Unique WTAGAAAYY epitope-binding 
cells (n = 6,431) highlighted on the integrated UMAP (Supplementary Fig. 5C highlights the 
top four WTAGAAAYY epitope-binding clonotypes on the integrated UMAP). (I) Clonal 
expansion of WTAGAAAYY epitope-binding CD8+ T cells across pseudotime per condition 
and trajectory. 
 

 
 
Fig. 5. Pronounced clonal hyperexpansion of SARS-CoV-2-specific CD8+ effector T cells 
during severe COVID-19. (A) Percentage of complementary determining region 3 (CDR3) 
usage of the 15 most abundant clonotypes per collapsed disease condition (active and 
recovered) for the T cell receptor ɑ chain (TRA) and (B) β chain (TRB). 
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Fig. 6. WTAGAAAYY epitope-binding CD8+ T cells display a hyperactivated and less 
differentiated effector phenotype in severe COVID-19. (A) Differentially expressed genes 
(DEG) in WTAGAAAYY epitope-binding CD8+ T cells between severe and mild COVID-19. 
Positive values indicate overexpression in the severe group. Size and color relate to the 
adjusted p-value (pAdj) and log2 fold change (L2FC), respectively. (B) Pathway activity of 
WTAGAAAYY epitope-binding CD8+ T cells estimated with PROGENy. Selected significant 
(Wilcoxon rank sum test) pathways between the conditions are shown. All PROGENy 
pathways are reported in Supplementary Fig. 5D. (C) Differential transcription factor activity 
(DoRothEA) estimated with msviper in WTAGAAAYY epitope-binding CD8+ T cells between 
severe and mild COVID-19. Positive values indicate increased activity in severe COVID-19. 
(D) Significantly enriched biological process (BP) gene sets from the Gene Ontology (GO) 
database and Pathway Interaction Database (PID) gene sets for epitope-binding CD8+ TEM1 
and TEMRA cells. Positive normalized enrichment scores (NES) indicate enrichment in the 
severe group. TCR = T cell receptor, co-stim = co-stimulatory receptors, EM = effector 
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molecules, IFN = interferon, TF = transcription factor, ISG = interferon-stimulated genes, NKR 
= NK cell receptors, AP = adaptor proteins, Activ = activation markers, EX = exhaustion 
markers, CASP = caspase, func = function. *** = p < 0.001, ** = p < 0.01, * = p < 0.05. 
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Methods 
Materials Availability 
Epitopes, MHC class I molecules, and DNA-barcode sequences of the used peptide-MHC I 
Dextramer reagents are provided in Supplementary Table 1. Primer sequences that were used 
to quantify Dextramer reagent enrichment by bulk sequencing are provided in Supplementary 
Table 7. There are restrictions to the availability of primer sequences for HLA typing as these 
primers were developed for the use in clinical practice at the University Hospital Düsseldorf, 
Düsseldorf, Germany. These primers are still used by the Institute of Transplantation 
Diagnostics and Cell Therapeutics (ITZ), University Hospital of Düsseldorf, Düsseldorf, 
Germany. Accordingly, the sequences are subject to intellectual property protection. 
 
Patient recruitment and clinical data 
25 laboratory-confirmed COVID-19 patients were recruited from the University Hospital of the 
RWTH Aachen University and from the Sankt Antonius Hospital Eschweiler from May to 
September 2020. 7 healthy volunteers were included in the study. All patients provided 
informed consent and the study was performed in accordance with the Declaration of Helsinki. 
For patients who were not able to give consent themselves, their legal representative agreed 
to their participation in the study. The study protocol was reviewed and approved by the Ethical 
Board of the RWTH Aachen University Hospital (vote: EK 078/20). Three COVID-19 patients 
and one healthy volunteer were excluded from the study due to missing clinical data and bad 
sample quality, respectively. Thus, 22 COVID-19 patients and 6 volunteers were included in 
the study. Patients were pseudonymized and clinical as well as epidemiological data were 
obtained from the electronic hospital information system "CGM Medico". Clinical data is 
provided in Supplementary Table 2. 
 
Group allocation 
Based on the clinical course and time point of blood withdrawal, patients were divided into two 
major groups; severe or mild SARS-CoV-2 infection. Patients with asymptomatic infection and 
symptomatic patients who did not require mechanical ventilation were allocated to the group 
of mild infection. Symptomatic patients who required mechanical ventilation were allocated to 
the group of severe SARS-CoV-2 infection. 
 
Based on the PCR result that was closest to blood withdrawal, patients within the major groups 
of mild or severe infection were further subdivided into the subgroups “active infection” or 
“recovered”. If a PCR result of a previously positive localization was negative before or at the 
time of blood collection and the result subsequently remained negative as well, the patients 
were assigned to the group of recovered SARS-CoV-2 infections. If a positive PCR result was 
obtained on the day of blood collection or later, or if the last positive PCR result  was obtained 
at a maximum of 3 days before blood collection, the patients were assigned to the group of 
active SARS-CoV-2 infections. Group allocation for each patient is shown in Supplementary 
Table 2. 
 
Sample collection and PBMC isolation 
10-30 ml of blood per patient were collected in either 9 ml S-Monovettes, K3 EDTA 92x16 mm, 
or in 5.5 ml S-Monovettes, 75x15 mm, provided by Sarstedt (Nümbrecht, Germany). The 
samples were stored at 4°C for a maximum of 7 hours until further processing. Peripheral 
blood mononuclear cells (PBMCs) were isolated by Ficoll gradient centrifugation. The isolated 
PBMCs were resuspended in 10% DMSO in FCS and immediately frozen gradually. The 
frozen PBMC samples were stored at -152°C. In addition, serum samples were frozen for each 
patient. After thawing, the PBMCs were immediately diluted with 10 ml 5% FCS in PBS and 
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centrifuged at 500 rcf for 5 minutes. The supernatant was removed and the PBMCs were 
resuspended in 5 ml 5% FCS in PBS and filtered through a 20 µm pluriStrainer® provided by 
pluriSelect (Leipzig, Germany) to obtain a single cell solution. 
 
SARS-CoV-2 antibody testing 
To exclude healthy controls with a previous SARS-CoV-2 infection, we tested the subjects for 
SARS-CoV-2-specific IgG antibodies by performing the Euroimmun anti-SARS-CoV-2 ELISA 
(IgG) (EUROIMMUN, Lübeck, Germany) (Supplementary Fig. 1D). An IgG ratio of > 2.5 was 
considered a positive test, a ratio between 0.8 and 2.5 was considered an intermediate result 
and a ratio < 0.8 was considered a negative test61. 
 
High-throughput amplicon-based HLA typing 
DNA for HLA typing was isolated from PBMCs using the Quick-DNA/RNATM Microprep Plus 
Kit (Zymo Research, Irvine, CA, USA). High throughput-HLA typing was performed by the 
Institute of Transplantation Diagnostics and Cell Therapeutics (ITZ), University Hospital of 
Düsseldorf, Düsseldorf, Germany using an amplicon based Next Generation Sequencing 
assay that targets the HLA genes HLA-A, -B, -C, -DRB1, -DQB1 and -DPB1. 
 
Primers for HLA typing were designed to target exons 2 to 4 for the HLA class 1 genes as well 
as for HLA-DPB1 and exons 2 and 3 for HLA-DRB1 and HLA-DQB1. Amplificates comprised 
the entire exon each and additional flanking intron sequences. Primers were screened for 
SNPs using the SNPCheck software (https://genetools.org/SNPCheck/snpcheck.htm) to 
prevent impaired primer binding and subsequent allele drop-out and erroneous genotyping. 
Primers were purchased from Biolegio (Nijmegen, The Netherlands). Each primer pair was 
checked for specificity using Sanger sequencing. For intellectual property reasons, primer 
sequences that are used in the Next Generation Sequencing assay for HLA typing are not 
described here. 
 
Next Generation Sequencing and workflow for HLA typing 
The entire set of fragments was amplified in six multiplex PCR reactions. After a clean-up step 
using paramagnetic beads, sample-specific barcodes and Illumina compatible adapter 
sequences were added in a second-round PCR. Samples obtained from the UCLA 
International Cell Exchange program were included as quality controls for both PCR steps. 
The samples were pooled, underwent a second purification step, and were quantified using 
the QuantiFluor dsDNA system (Promega, Walldorf, Germany). Paired-end sequencing was 
performed on a MiSeq platform (Illumina, San Diego, CA, USA) for 7 pM of the library with 2x 
280 cycles using a standard v3 cartridge. As an internal quality run control, we used a spike-
in of 15% of PhiX DNA. After de-multiplexing using the MiSeq Reporter software (Illumina 
Inc.), the analysis of the read sequences was performed by a Visual Basic-based in-house 
software (NGSSequence Analyser, Institute of Transplantation Diagnostics and Cell 
Therapeutics (ITZ), University Hospital of Düsseldorf, Düsseldorf, Germany) approach 
considering quality control values and high coverage to automate data analysis. 
 
Sequencing runs had to pass the following criteria: cluster density between 800 and 1,300 
k/mm2, more than 70% of clusters passed the filter, Q30 score must be more than 70%. 
 
MHC class I molecules show overlapping peptide specificity as they bind the same main 
anchor motifs in peptides62. According to this shared peptide recognition, MHC-class I 
molecules can be grouped into so-called HLA-supertypes62. Therefore, patients will likely not 
only be able to present an epitope if they match the exact HLA-allele of a certain Dextramer 
reagent, but also if their HLA-allele matches the HLA-supertype of the Dextramer reagent. To 
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compare the HLA-supertypes between patients and Dextramer reagents, we determined the 
HLA-supertype for the HLA-A and HLA-B alleles. HLA-alleles and the associated HLA-
supertypes are shown in Supplementary Table 3. 
 
SARS-CoV-2 epitope selection and synthesis of MHC I Dextramer reagents 
An explorative panel of 30 SARS-CoV-2-derived epitopes with the strongest predicted affinity 
to MHC class I molecules was defined by Immudex (Copenhagen, Denmark). The selection 
was based on internal predictions using NetMHCpan version 4.0 and on previous publications, 
followed by confirmed binding of the selected epitopes to the assigned MHC I molecules. 
Synthesis of the peptide-MHC class I Dextramer reagents for both, bulk and single-cell 
experiment, was performed by Immudex. Dextramer reagents consisted of a dextran 
backbone to which several MHC-I molecules were attached, each of them carrying one of the 
selected SARS-CoV-2 epitopes. Each Dextramer reagent carried a specific DNA barcode, and 
a PE-label. As the MHC molecules of one MHC I Dextramer reagent carried the same SARS-
CoV-2 epitope, subsequent identification of the epitopes was possible using the Dextramer 
reagent-specific DNA barcode. Additionally, 8 control dCODE Dextramer reagents were 
included into the panel. Dextramer reagents carrying nonsense peptides were used as 
negative controls and Dextramer reagents carrying CMV-derived epitopes were used as 
positive controls. An overview over the epitope panel is provided in Supplementary Table 1. 
 
Quantification of epitope-specific T cell responses in a bulk-approach 
PBMC samples were thawed as described above. After the PBMCs were passed through a 
strainer, a second centrifugation was performed. Samples were enriched for T cells by 
magnetic depletion of the remaining blood cell fractions from the PBMC layer using the Pan T 
cell Isolation kit, human (Miltenyi Biotec). The dCODE Dextramer reagents (HiT) were pooled, 
using 2 µl of each Dextramer reagent per patient. In accordance with the protocol provided by 
Immudex, 0.2 μl 100 μM d-Biotin were added per Dextramer reagent specificity. T cells were 
resuspended in 100 µl 5% FCS in PBS including Herring sperm DNA at a concentration of 0,1 
g/l and subsequently  incubated with the pool of Dextramer reagents. Excess Dextramer 
reagents were removed by several washing steps. Using magnetic activated cell sorting and 
Anti-PE MicroBeads (Miltenyi Biotec), we separated the T cells into a Dextramer reagent-
positive (PE+) and Dextramer reagent-negative (PE-) fraction.  
 
The PE+ and PE- fractions were processed identically in a two-step PCR procedure using 
KAPA HiFi HotStart ReadyMix (Roche). The protocol for the two-step PCR approach was 
adopted and modified from a previously described method63. During the first PCR, the DNA 
barcodes of the MHC I Dextramer reagents were amplified using Dextramer reagent-specific 
primers, which contained an overhang that functioned as a general handle sequence for the 
primers in the second PCR (Supplementary Table 7). The nucleotide sequence for the general 
handle sequences were adopted from the protocol described by Franzen et al63. To generate 
a single-indexed Illumina-compatible library, a second PCR was performed. As a reverse 
primer we used custom “barcoded primers'' including the Illumina i7 adapter sequences, an 
8bp sample index and sequences that were complementary to the general handle sequence 
from the first PCR. As a forward primer we used a “common primer” including only the Illumina 
i5 adapter sequences and the sequences that were complementary to the general handle 
sequence from the first PCR (Supplementary Table 7). Nucleotide sequences of SureSelectXT 
Indexes from the “SureSelectXT Target Enrichment System for Illumina Multiplexed 
Sequencing” were included as 8bp sample indexes in the “barcoded primer”. All custom PCR 
primers were purchased from Eurofins Genomics (Luxembourg). Primer sequences are 
provided in Supplementary Table 7. After every PCR, PCR products were purified using the 
QIAquick® PCR Purification Kit (Qiagen). Cycling conditions for the first PCR were as follows: 
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Initial denaturation 98°C for 45 sec, denaturation 98°C for 15 sec, annealing 60°C for 30 sec, 
extension 72°C for 30 sec and final extension 72°C for 1 minute; denaturation, annealing and 
extension were repeated for a total of 16 cycles. Cycling conditions for the second PCR were 
as follows: Initial denaturation 98°C for 45 sec, denaturation 98°C for 15 sec, annealing and 
extension 72°C for 30 sec and final extension 72°C for 1 minute; denaturation, annealing and 
extension were repeated for a total of 16 cycles. 
  
The Dextramer reagent-positive and -negative samples were pooled equimolar after 
fluorometric quantification. The library pool was quantified by qPCR and sequenced on a 
MiSeq platform (Illumina, San Diego, CA, USA) with 2x 150 cycles. To compensate for the low 
complexity of the amplicon library, up to 50% phiX DNA was added. 
  
Bulk sequencing data analysis 
Bulk-seq data analysis was carried out using the ShortRead package64 in R version 3.6.3. 
Sequencing data for the Dextramer reagent-positive and -negative sample were processed 
separately. After extraction of unique reads to avoid amplification bias, the number of barcodes 
for each MHC I Dextramer reagent was calculated in the samples. According to the workflow 
provided by Immudex, the apparent enrichment (AE) was calculated by dividing the counts for 
every Dextramer reagent in the Dextramer reagent-positive sample by the counts in the 
negative samples. For the negative controls, a median AE was calculated. Finally, the specific 
enrichment was calculated by dividing the AE for every Dextramer reagent by the median AE 
of the negative controls. Every Dextramer reagent that displayed a specific enrichment value 
of at least 5 in at least one condition was carried into the single-cell analysis. Based on this 
approach, we finally selected 15 Dextramer reagents and the 8 control Dextramer reagents 
for the single-cell experiment. To select three patients for each condition for the single-cell 
experiment, we divided Dextramer reagent-enrichment in the bulk experiment into four groups, 
based on the comparison between the HLA alleles of the patients and the Dextramer reagents 
and the specific enrichment value. HLA-match and a log2-fold enrichment < 1 was considered 
“no antigen specificity”. No HLA-match and log2-fold enrichment < 1 was considered “not HLA 
compatible”. HLA-match and log2-fold enrichment ≥ 1 was considered a “specific enrichment”. 
No HLA-match and log2-fold enrichment ≥ 1 was considered “unspecific binding”. For the 
single-cell experiment, we finally chose the three individuals from every condition, who 
displayed the most “specific enrichment”. 
 
Single-cell immune profiling of epitope-specific T cells 
PBMC samples were thawed as described above. After the PBMCs were passed through a 
strainer, a second centrifugation was performed. The supernatant was removed and cells were 
diluted in 100 µl 5% FCS in PBS. 5 µl Human TruStain FcX (BioLegend) was added and 
incubated for 10 minutes at 4°C. The panel of 23 10x-compatible MHC class I Dextramer 
reagents (Immudex), including 8 control Dextramer reagents was pooled as described above. 
Furthermore a panel of 15 TotalSeq-C antibodies (BioLegend) was pooled, using 0,5 µg of 
each antibody. The Dextramer reagent pool was incubated with the samples for 10 minutes at 
4°C, followed by a 30 minute incubation with the TotalSeq-C antibody pool and 5 µl of a 
PE/Cyanine7 anti-human CD8 antibody (BioLegend) at 4°C. Cells were washed two times 
using 3 ml 5% FCS in PBS and rediluted in 2 ml 5% FCS in PBS. For the detection of dead 
cells, DAPI was added at a final concentration of 0,5 µg/ml. Cells were sorted into 1% BSA in 
PBS on a Sony Cell Sorter by gating on two populations; a PE+ population (MHC I Dextramer 
reagent-positive) and a CD8+ PE- fraction (Supplemental Fig. 2A). If the number of PE+ cells 
did not exceed 10.000 cells, a maximum of 3.000 CD8+ PE- cells were added prior to single-
cell partitioning and barcoding via Chromium Controller (10x Genomics). For each sample, 
three libraries were prepared; a 5´ gene expression library (GEX), a T cell receptor enriched 
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library (VDJ), and a surface protein library containing the TotalSeq-C and MHC I Dextramer 
reagent barcodes (ADT). After fluorometric quantification, the libraries were pooled in a 5:1:1 
ratio for the GEX library, the VDJ enriched library and the ADT library, respectively. The pooled 
libraries were quantified by qPCR and sequenced on a NextSeq 500 platform (Illumina, San 
Diego, CA, USA) with 2x 150 cycles.  
 
Single-cell RNA seq data processing  
Raw scRNA-seq FASTQ files were aligned to the human GRCh38 genome with Cell Ranger 
version 4.0.0 with default settings (10x Genomics). For every patient, the paired GEX and ADT 
libraries were processed together with the count function and the VDJ enriched library was 
processed separately with the vdj method. Downstream analysis was conducted with Seurat 
version 4.065 in R version 4.0.3. Cells with < 200 or > 3,000 detected genes and more than 
10% mitochondrial read content were filtered out (Supplementary Fig. 2G is referred to for 
scRNA quality control metrics per sample). The GEX and ADT assays were log and centered 
log ratio (CLR) normalized, respectively, and were subsequently scaled with default settings. 
 
Clustering and cell annotation 
In order to cluster and characterize cell subtypes, the samples were integrated based on the 
GEX libraries for a first round of clustering. For every dataset, the top 2.000 most variable 
genes were determined and dimensional reduction was performed on the variable features 
with a principal component analysis (PCA). The samples were integrated using the harmony 
algorithm66 with default settings and the data was embedded in a Uniform Manifold 
Approximation and Projection (UMAP) using 30 principal components. A shared nearest 
neighbor graph was built with 30 principal components using FindNeighbors and unsupervised 
clustering was performed using a Louvain-based algorithm with FindClusters and a resolution 
of 1. In order to determine cluster-specific markers, a Wilcoxon rank sum test was performed 
with FindMarkers using min.pct = 0.25. Only genes with a false discovery rate (FDR) < 5% 
were considered. High-level cell annotation of the clusters was performed on the integrated 
data followed by filtering of non-T cells and clusters consisting mainly of low-quality cells. A 
second round of clustering was performed as described above using a resolution of 0.5. Low-
level annotation of the resulting clusters was based on a combination of GEX and ADT marker 
expression as listed in Supplementary Table 4. One healthy sample was removed from the 
study as the volunteer informed us of an unknown infection in early January 2020 and 
exhibited high levels of differentiated effector T cells (Supplementary Fig. 2E-F is referred to 
for patient and condition projection onto the integrated UMAP). Cell-cycle analysis was 
performed on the clusters using CellCycleScoring (Supplementary Fig. 2B) and mitochondrial 
gene content was computed per disease condition (Supplementary Fig. 2H). 
 
Differential gene expression and gene set enrichment analysis 
For functional characterisation of the differences between the disease conditions, differential 
gene expression analysis was performed with FindMarkers using min.pct = 0.25 and FDR < 
5%. When contrasting conditions, only cell types with counts > 20 in both groups were 
considered for the analysis. A pre-ranked gene set enrichment analysis was performed with 
the fgsea package67. The gene sets C2, C5 (subcategory BP), and C7 were used for the 
analysis and were downloaded with the msigdbr package. The top enriched gene sets with an 
FDR < 5% were visualized as bar plots. A full list of significantly differentially expressed genes 
for each test is listed in Supplementary Table 5. 
 
Signaling pathway and transcription factor activity 
Signaling pathway activities were estimated with PROGENy68,69 using the top 500 footprint 
genes per pathway. To test for significant differences between the active mild and severe 
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condition, Wilcoxon rank sum tests were performed on relevant pathways and cell types with 
FDR < 5%. Transcription factor activities were computed with msviper70 using regulons with 
confidence levels A, B or C from DoRothEA71. The changes in transcription factor activity were 
estimated per cell type using the condition contrasts obtained from differential gene expression 
analysis with FindMarkers. Transcription factor activities with FDR < 5% or an absolute 
normalized enrichment score > 2.5 between the active mild and severe condition were 
visualized with pheatmap. Supplementary Fig. 3A is referred to for all PROGENy pathway 
activities per condition. 
 
Cell-cell communication 
To estimate cell-cell interactions between the CD8+ T cell populations, CellPhoneDB version 
2.1.572 was used per disease condition with the statistical_analysis method. Cell types with 
counts > 20 per condition were included in the analysis and the log-normalized and scaled 
counts were used as input. Ligand-receptor interactions with p-value < 0.05 were considered 
for the downstream analyses. Summarized ligand-receptor interactions between cell types 
were visualized with pheatmap (Supplementary Fig. 3B). For the active mild and severe 
conditions, interactions with the T cell activating (NKG2D, NKG2C:CD94, CD94:NKG2E, and 
CLEC2B)31,73,74 and inhibiting receptors (NKG2A:CD94, KIR3DL2, KIR2DL3, KIR2DL1, and 
KLRB1)75 were visualized with the circlize package76.  
 
CrossTalkeR77 was used to compute changes in ligand-receptor interactions between the 
conditions. Briefly, CrossTalkeR constructs representations of the ligand-receptor networks 
for each condition, where the edges of the network are weighted by the number of interactions 
and the sum of weights of the interaction-pairs obtained by CellPhoneDB. Differential cell-cell 
interaction networks were constructed by subtracting the condition state network from the 
control states. Differential SELL - SELPLG interactions between the recovered mild and 
severe groups were visualized as sankey plots (Fig. 2G). Sankey plots of differential MICB - 
NKG2D, HLA-E - CD94:NKG2A, and SELL - SELPLG interactions were also made between 
the active mild and severe conditions (Supplementary Fig. 3D). 
 
Trajectory inference and pseudotemporal differential gene expression 
In order to estimate activation trajectories of the integrated scRNA-seq data, trajectory 
inference was performed with Slingshot78. The MAIT, ɣδ, NKT, and CD8+ CD73+ Treg 
populations were excluded from the pseudotime analysis in order to only include T cell 
subpopulations likely to originate from the CD8+ TN cells. Slingshot was run on the UMAP 
embedding of the remaining clusters and the CD8+ TN population was designated as the root. 
Two trajectories were determined by the pseudotime analysis; the short-lived effector cell 
(SLEC) lineage and memory-precursor effector cell (MPEC) lineage. In order to test for 
significant differences in the distribution of the active mild and severe conditions across 
pseudotime, a Kolmogorov-Smirnof test was performed for each lineage. 
 
For temporal differential gene expression analysis between the two trajectories, tradeSeq was 
used79. A negative binomial generalized additive model (NB-GAM) was built on the 10,000 
most variables genes and pseudotimes for the active mild and severe conditions using the 
fitGAM function. In order to study differences in temporal gene expression between the 
conditions, a condition-specific smoother was computed per lineage. 6 knots were used for 
the NB-GAM (Supplementary Fig. 4D is referred to for a visualization of the knots projected 
onto the integrated UMAP). Differential gene expression between the progenitor and 
differentiated cell populations was performed with startVsEndTest using l2fc = log2(2). The 
significant genes from the test were modeled with predictSmooth using nPoints = 50 and 
visualized with pheatmap. The expression of significant genes across pseudotime was 
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visualized with plotSmoothers. To characterize potential early drivers of differentiation towards 
the two trajectories, earlyDETest was used at the bifurcation point (between knots 2 and 3) 
with l2fc = log2(1.5). Differential gene expression between the end stages of the lineages was 
performed with diffEndTest using l2fc = log2(2). Temporal differential expression between the 
active mild and severe conditions for each lineage was computed with conditionTest using l2fc 
= log2(2), global = TRUE, and pairwise = TRUE. For all tests performed with tradeSeq, only 
genes with FDR < 5% were considered. For each test performed with tradeSeq, all genes 
were ranked based on the estimated Wald statistic and a gene set enrichment analysis was 
performed as previously described. Supplementary Table 5 is referred to for a full list of 
significantly differentially expressed genes for each test.   
 
T cell receptor clonality analysis 
In order to study T cell receptor (TCR) clonality in the scRNA data, TCR clonotypes were 
assigned based on the VDJ library using the cellranger vdj function. For the analysis, only 
MHC class I restricted T cell subtypes were considered. The clonotypes were grouped based 
on the level of expansion and designated as; single (n = 1), small (1 < n ≤ 5), medium (5 < n 
≤ 20), large (20 < n ≤ 100), or hyperexpanded (n > 100). The relative abundance of the 
clonotype size groups was computed for the conditions and cell types and visualized as bar 
charts. Supplementary Fig. 5A is referred to for the TCR clonotype size distribution for each 
cell type per condition. 
  
The similarity between the MHC class I restricted CD8+ T cell subtypes was calculated as the 
Morisita-Horn overlap of the TCR clonotypes. In order to estimate changes in TCR diversity 
between the disease conditions, the relative richness and evenness were calculated over 
pseudotime for the SLEC and MPEC trajectories. To increase the number of samples for the 
severe and mild conditions for the downstream analysis, the active and recovered groups were 
collapsed. The TCR richness of the mild and severe conditions was defined as the number of 
unique clonotypes divided by the total number of cells with an assigned clonotype80. TCR 
evenness was calculated as the inverse Simpson index divided by the number of unique 
clonotypes81. 
 
SARS-CoV-2 epitope binding of CD8+ T cells 
To characterise SARS-CoV-2 epitope-specific CD8+ T cells, the ADT library of the MHC I 
Dextramer reagents carrying SARS-CoV-2-derived peptides was used. We followed the 
protocol from 10x Genomics and Immudex for the identification of epitope-binding single T 
cells (https://www.10xgenomics.com/resources/application-notes/a-new-way-of-exploring-
immunity-linking-highly-multiplexed-antigen-recognition-to-immune-repertoire-and-
phenotype/). First, the log2 fold-change between the expression of the Dextramer reagents 
and the median of the negative controls (n = 4) was calculated. For every Dextramer reagent, 
cells were classified as epitope-binding if at least 30% of the cells belonging to the same 
clonotype had a log2 fold change > 2 and had a clonotype expansion size > 5. Epitope binding 
was found for eight Dextramer reagents, of which four had uniquely binding cells 
(Supplementary Table 6). Unique epitope-binding counts for the healthy, mild, and severe 
conditions were visualised as bar charts. Supplementary Fig. 5B is referred to for unique 
binding counts per patient. Unique binding of the A0101 WTAGAAAYY epitope was shown for 
the most hyperexpanded TCR clonotypes on the integrated UMAP (Supplementary Fig. 5C).  
 
Clonal expansion of the uniquely WTAGAAAYY-binding cells across pseudotime were 
visualized as scatter plots for the SLEC and MPEC lineages using stat_smooth (method = 
loess) from the ggplot2 package. For the uniquely epitope-specific CD8+ T cells, the frequency 
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of TRA and TRB CDR3 usage was computed for the mild and severe conditions and the top 
15 CDR3 sequences were visualized as bar charts. 
 
In order to dissect, whether the individuals binding to A*0101 WTAGAAAYY in our experiment 
would be able to present the epitope on endogenous MHC I molecules, we predicted the 
binding of WTAGAAAYY to HLA alleles in our patient population using NetMHCpan version 
4.1 with default settings82. 
  
Functional characterization of antigen-specific CD8+ T cells 
For a robust characterization of the differences in SARS-CoV-2 specific CD8+ T cells between 
the mild and severe conditions, we focused on subclusters with > 200 uniquely WTAGAAAYY 
epitope-binding cells with counts originating from at least two patients (Supplementary Fig. 
5B). The TEMRA and TEM1 populations matched these criteria and were used for the downstream 
analysis. Differential expression between the mild and severe conditions for each cell type 
was performed with FindMarkers, as previously described. Gene set enrichment analysis 
together with estimation of pathway signaling and transcription factor activity was computed 
as described above. 
 
Protein conservation of viral-epitope panel 
To understand possible cross-reactivity of T cells to certain SARS-CoV-2-derived epitopes, 
protein similarities between the Dextramer reagents and seven homologous human 
coronaviruses were computed. Multiple sequence alignment was performed with 
the  msaClustalOmega function from the msa package83. Distance matrices of the aligned 
sequences were computed with dist.alignment (matrix = identity) from the seqinr package84 
and the pairwise protein similarities were defined as 1 - distance. The protein conservation of 
the Dextramer reagents were visualized as tile plots. Supplementary Fig. 5E is referred to for 
protein sequence similarities between the negative Dextramer controls used in this study (n = 
4) and Spike proteins of known human coronaviruses. 
 
SARS-CoV-2 viral detection 
For the quantification of SARS-CoV-2-derived viral reads in the scRNA data, Viral-Track was 
used57. The viral genome of the German SARS-CoV-2 isolate (accession MT270101) was 
added to the human GRCh38 genome and STAR (runmode genomeGenerate)85 was run to 
create a joint reference genome. The Viral-Track pipeline was subsequently run on the FASTQ 
files of each sample with default settings. 
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