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Abstract: M/EEG resting-state analysis often requires the definition of the epoch length and the 

criteria to select which epochs to include in the subsequent steps. However, the effects of epoch 

selection remain scarcely investigated and the procedure used to (visually) inspect, label and 

remove bad epochs is often not documented, thus hindering the reproducibility of the reported 

results. In this study, we present Scorepochs, a simple and freely available tool for the automatic 

scoring of resting-state M/EEG epochs that aims to provide an objective method to aid M/EEG 

experts during epoch selection procedure. We tested our approach on a freely available EEG dataset 

containing recordings from 109 subjects using the BCI2000 64-channel system. 
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1. Introduction 

Task-free resting-state recording from M/EEG (magneto/electroencephalogram) represents one 

of the most used experimental paradigms to investigate the baseline level of brain activity in healthy 

subjects and patients [1]. However, the resting-state condition is an elusive concept which is 

influenced by different states of vigilance that are usually out of control from the experimenter [2]. 

Generally, the first steps performed during an M/EEG resting-state analysis consist of (i) segment the 

raw/filtered EEG traces into a set of non-overlapping epochs and (ii) select a number of artifacts-free 

epochs to be used during the subsequent steps of the pipeline. These steps require the definition of 

the epoch length and the criteria to select which epochs to include in the subsequent analysis. The 

effects of the epoch length have been previously investigated [3], while the effects of epoch selection, 

induced by the inter-observer variability and unclear criteria used for this task, remain scarcely 

investigated. Epoch selection is performed at individual level (independently for each subject) and 

usually is conducted by one or more experts. Some kind of procedure to detect and mitigate EEG 

artifacts may be applied before this step. However, the precise procedure used to (visually) inspect, 

label, and remove bad epochs is often not documented [4], thus hindering the reproducibility of the 

reported results. Most importantly, especially in the case the selection procedure is performed by 

different experts, it would be of relevance to assure that homogeneous criteria were used. In this 

context, most of the studies using resting-state paradigms make some kind of assumptions on 

stationarity of EEG signal and perform averaging of individual features (extracted at subject-level) to 

make inferences at group-level. In short, this means that it is assumed a strong within-subject stability 

of M/EEG features and that these individual characteristics may be consistent within a group. 

Subjective visual scoring and/or inter-observer variability poses a possible threat to the validity of 

these assumptions, although some studies have reported that the subjective influence may lead to 

minimal changes when a sufficient number of epochs are selected [5,6]. Nevertheless, it is still far to 

be clear how to quantify this sufficient number of epochs. In this context, it will assume a very 

important role the possibility to develop some kind of automated analysis with the aim to help 

clinicians during this very crucial step. Few recent studies used computer-assisted tool to allow 

interpreting EEG background patterns [7,8] but, probably, as suggested by van Diessen et. al. [4], 
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these methods were not applied to large scale also because inherent complexity or limited 

transparency. On the other hand, other studies have suggested the use of automatic artifacts 

suppression [9] that would be indirectly of help to limit the uncertainty induced by inter-observer 

variability. Most of these approaches are based on independent component analysis (ICA) [10], which 

however requires a great amount of EEG data to obtain an acceptable decomposition. In this study, 

we present Scorepochs, a simple and freely available tool for automatic scoring of resting-state 

M/EEG epochs that aims to provide an objective method to aid M/EEG experts during epoch selection 

procedure. Our approach, which works at subject-level, provides a score for each epoch within a 

single M/EEG recording, with the attempt to make this crucial procedure less ambiguous, more 

objective, and reproducible. Furthermore, Scorepochs is based on the power spectrum of the EEG, 

does not require any specific assumption on the underlying frequency content and may thus keep all 

the relevant spectral information contained in the unfiltered raw signal [11]. 

2. Methods 

The proposed method is based on a very simple and fast algorithm which takes as input (i) a set 

of M/EEG recordings and (ii) the length of the desired epoch. After that, the algorithm provides as 

output a score for each single M/EEG epoch. A schematic representation of the proposed method is 

depicted in Figure 1. Furthermore, all the scripts used to perform the analysis are freely available for 

MATLAB (https://github.com/matteogithub/scorepochs) and for Python 

(https://github.com/smlacava/scorepochs/tree/master/Python). For each subject, each epoch, and 

each channel, the algorithm computes the power spectral density (PSD) via the Welch method into a 

specific range of frequencies (see Figure 1, panels A and B). At channel-level, a similarity score, 

computed by using the Spearman correlation coefficient, is evaluated between the PSD extracted 

from all the epochs, thus providing a correlation matrix with number of epochs x number of epochs as 

dimension (see Figure 1, panel C). A first average is now computed over the rows (/columns) of the 

symmetric matrix to obtain a score vector with length equal to the number of epochs, where the entries 

represent the mean similarity score of the corresponding epoch (see Figure 1, panel D). Computing 

the score vector for each channel, and then averaging the score vectors across channels, it is possible to 

obtain a final score for each epoch (see Figure 1, panel E). Finally, for each subject, the score can be 

sorted in descending order allowing to select the suggested epochs to be included in the subsequent 

steps of the analysis. 

We tested our approach on a freely available EEG dataset [12,13] containing recordings from 109 

subjects collected using the BCI2000 64-channel system (http://www.bci2000.org). The EEG dataset is 

available at the following link: https://physionet.org/content/eegmmidb/1.0.0/. We decided to define 

an easily interpretable hypothetical scenario where the interest was to contrast two different baseline 

conditions, namely eyes-open (EO) and eyes-closed (EC) resting-state. To contrast the two conditions 

the relative alpha power (computed in the range between 8 and 13 Hz) was the perfect candidate, as 

this property is a very common yet effective feature able to detect macroscopic differences between 

EO and EC conditions. The analysis was performed on 99 out of the 109 subjects, since some of them 

were excluded due to differences in recording parameters or overall poor quality. We used an epoch 

length of 5 seconds and thus segmented the one-minute available recordings into twelve non-

overlapping epochs (the results were successively replicated using two different epoch lengths, 

respectively of 2 and 8 seconds). For each epoch and each channel, we extracted the relative alpha 

power and the average across channels was successively evaluated for each epoch, thus computing 

the relative alpha power at global level. To mimic a realistic epoch selection procedure and 

investigate its possible effect, we decided to select for each subject four of the twelve available epochs, 

considering 495 different selections, representing all the possible combinations obtained by using the 

same subset of epochs for all the subjects. We then compared the results in terms of magnitude of 

effect-size obtained contrasting the two conditions (EO vs EC) on a group-level. We computed 495 t-

tests, where for each test we selected 4 epochs for every subject in sequential order (i.e, for all subjects, 

for the first test the epochs selected were [1, 2, 3, 4], for the second test the epochs selected were [1, 2, 

3, 5], for the third test the epoch selected were [1, 2, 3, 6], …, up to the last test where the selected 
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epochs were [9, 10, 11, 12]). We then compared the magnitude of the paired Cohen’s d effect-size 

obtained using the selection suggested by Scorepochs against the distribution of Cohen’s d effect-size 

based on the sequential random selection. The analysis was later replicated using a completely 

different method, namely the phase lag index (PLI) [14], to compare the two experimental conditions. 

We performed this further analysis to investigate if the proposed approach may be successfully 

applied also to different methods. 

 

 

Figure 1. A schematic representation of the algorithm used to compute Scorepochs. Panel A: EEG raw 

signals of three channels with epoching scheme; Panel B: Power spectral density plots for each channel 

and each epoch; Panel C: correlation matrices for each channel; Panel D: score vector for each channel 

and for each epoch; Panel E: score for each epoch. 

 

3. Results 

All the results are summarized in Figure 2, which shows the comparison, in terms of Cohen’s d 

effect-size values, between the described sequential random selection and the selection suggested by 

our approach. In particular, Figure 2, Panel A, depicts the ‘effect-size time-course’ using this random 

selection with the result derived by the application of our method, represented by the green dashed 

line. A decreasing trend in terms of effect-size values can be observed. Figure 2, Panel B, shows the 

distribution of the effect-size values (independently of the sequential order), where the vertical green 

dashed line represents the value of the effect-size obtained using the epochs suggested by our 

approach. The Cohen’s d value for the Scorepochs algorithm is 1.4512, which is around the 75 th 

percentile of the random epoch selection distribution. It is worth noting that the minimum effect-size 

is bigger than 1, meaning that, as expected, we are in a situation where the difference is largely 

independent of the epoch selection strategy (i.e., the difference between the two conditions EO and 

EC is reliably measurable). 
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With the aim to investigate the possible effects of the time-window on the reported results, we 

reproduced all the analysis using two different epoch lengths of 2 and 8 seconds. The results obtained 

from this new analysis are represented in Figure 3 and Figure 4 respectively.  

    

Figure 2. Cohen’s d effect-size for random selection and Scorepoch selection using a time window . 

(a) shows the ‘time course’ of the effect-size computed using a sequential random selection. The effect-

size values are reported in the y-axis, while the x-axis indicates the t-test with a sequential random 

selection. The green dashed line represents Cohen's d value obtained by selecting the epochs using 

Scorepochs. (b) Cohen’s d effect-size distribution for random epoch selection and the Scorepoch 

selection. The effect-size values are reported on the x-axis, while the y-axis indicates the occurrences 

of specific effect-size values. The vertical green dashed line represents Cohen's d value selecting the 

4 epochs suggested by Scorepochs. 
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Figure 3. Cohen’s d effect-size for random selection and Scorepoch selection using a time windows 

equal to 2 seconds. (a) shows the ‘time course’ of the effect-size computed using a sequential random 

selection. The effect-size values are reported in the y-axis, while the x-axis indicates the t-test with a 

sequential random selection. The green dashed line represents Cohen's d value obtained by selecting 

the epochs using Scorepochs. (b) Cohen’s d effect-size distribution for random epoch selection and 

the Scorepoch selection. The effect-size values are reported on the x-axis, while the y-axis indicates 

the occurrences of specific effect-size values. The vertical green dashed line represents Cohen's d 

value selecting the 4 epochs suggested by Scorepochs. 
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Figure 4. Cohen’s d effect-size for random selection and Scorepoch selection using a time windows 

equal to 8 seconds. (a) shows the ‘time course’ of the effect-size computed using a sequential random 

selection. The effect-size values are reported in the y-axis, while the x-axis indicates the t-test with a 

sequential random selection. The green dashed line represents Cohen's d value obtained by selecting 

the epochs using Scorepochs. (b) Cohen’s d effect-size distribution for random epoch selection and 

the Scorepoch selection. The effect-size values are reported on the x-axis, while the y-axis indicates 

the occurrences of specific effect-size values. The vertical green dashed line represents Cohen's d 

value selecting the 4 epochs suggested by Scorepochs. 

Finally, the results derived from the application of the PLI method are summarized in 

Figure 5 and 6. 
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Figure 5. Cohen’s d effect-size for random selection and Scorepoch selection using a time windows 

equal to 5 seconds for the PLI method. (a) shows the ‘time course’ of the effect-size computed using a 

sequential random selection. The effect-size values are reported in the y-axis, while the x-axis 

indicates the t-test with a sequential random selection. The green dashed line represents Cohen's d 

value obtained by selecting the epochs using Scorepochs. (b) Cohen’s d effect-size distribution for 

random epoch selection and the Scorepoch selection. The effect-size values are reported on the x-axis, 

while the y-axis indicates the occurrences of specific effect-size values. The vertical green dashed line 

represents Cohen's d value selecting the 4 epochs suggested by Scorepochs. 

 

4. Discussion 

In this study, we propose an automatic method to assist M/EEG experts during the epoch 

selection procedure in resting-state analysis. Our method represents an objective approach (or less 

subjective) to perform epochs selection, if compared to the potential arbitrariness introduced by 

human observers and the lack of clear and shared criteria used to accomplish this crucial task. We 

showed, in a prototypical scenario of a group comparison between two resting-state conditions (EO 

vs EC), that the effect-size varied extensively depending on the epochs included in the analysis. In 

fact, even if it is possible to detect an effect between the two conditions EO and EC almost 

independently of the selected epochs (since the detection of an effect is highly probable as Cohen’s d 

> 1 for every epoch selection), there is a considerable variation on the effect-size depending on the 

actual selection. Specifically, we showed a decreasing trend (see Figure 2, Panel A) in terms of the 

effect-size with respect to the time in which the selection occurred (i.e., selecting epochs at the 
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beginning of the experiment gives a higher effect-size compared to the end of the experiment). This 

trend may be influenced by different states of vigilance related to tiredness or drowsiness that are 

reflected in the recorded signals. The magnitude of the effect-size obtained using our proposed epoch 

selection is close to the mean effect-size (which should represent the best estimate of the population 

effect-size) and, more importantly, is based on a quantifiable, objective, and replicable strategy (i.e., 

scores computed on the PSD). It is also relevant to highlight that our results successfully replicated 

using different size of time windows. Finally, our results suggest that the proposed approach may 

easily extended to other methods as the one based on connectivity metrics. Compared to other semi-

automatic procedures for the selection of the ‘best artefact-free epochs’ suitable for the analysis (e.g., 

independent component analysis, ICA), our method is completely data-driven and it does not require 

any intervention or particular skills of the user, compared to other selection strategies (e.g., 

knowledge of stereotypical EEG pattern related to artefact components using ICA). Moreover, the 

Scorepochs method, because of the small number of requirements (i.e., computation of the PSD), is 

not computationally expensive. Although its simplicity, this method is well grounded in 

physiological terms. In fact, it has been observed how the computation of simple statistics based on 

the PSD reflects intrinsic properties of excitatory/inhibitory levels of neuronal populations [15]. 

Furthermore, the PSD is able to capture different dynamics modulated by external stimuli and 

provides insight into sensory neural representation [16]. Finally, recently it has been reported how 

different behavioral states are reflected in different properties of the PSD [17]. In no way, the 

proposed approach aims to replace the work to be performed by experts (alone or using other 

automatic or semi-automatic methods) during visual inspections of real M/EEG data. Scorepochs 

guided selection should be complementary to the human activity or to any other selection method. 
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