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26 ABSTRACT

27 Generally, the physical, chemical and biological attributes of a soil combined 

28 with abiotic factors (e.g. climate and topography) drive pedogenesis. However, 

29 biological indicators of soil quality play no direct role in traditional soil classification 

30 and surveys. To support their inclusion in classification schemes, previous studies 

31 have shown that soil type is a key factor determining microbial community 

32 composition in arable soils. This suggests that soil type could be used as proxy for soil 

33 biological function and vice versa. In this study we assessed the relationship between 

34 soil biological indicators with either vegetation cover or soil type. A wide range of 

35 soil attributes were measured on soils from across the UK to investigate whether; (1) 

36 appropriate soil quality factors (SQFs) and indicators (SQIs) can be identified, (2) soil 

37 classification can predict SQIs; (3) which soil quality indicators were more effectively 

38 predicted by soil types, and (4) to what extent do soil types and/ or aggregate 

39 vegetation classes (AVCs) act as major regulators of SQIs. Factor analysis was used 

40 to group 20 soil attributes into six SQFs namely; Soil organic matter, Organic matter 

41 humification, Soluble nitrogen, Microbial biomass, Reduced nitrogen and Soil 

42 humification index. Of these, Soil organic matter was identified as the most important 

43 SQF in the discrimination of both soil types and AVCs. Among the measured soil 

44 attributes constituting the Soil organic matter factor were, microbial quotient and bulk 

45 density were the most important attributes for the discrimination of both individual 

46 soil types and AVCs. The Soil organic matter factor discriminated three soil type 

47 groupings and four aggregate vegetation class groupings. Only the Peat soil and Heath 

48 and bog AVC were distinctly discriminated from other groups. All other groups 

49 overlapped with one another, making it practically impossible to define reference 

50 values for each soil type or AVC. We conclude that conventionally classified soil 
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51 types cannot predict the SQIs (or SQFs), but can be used in conjunction with the 

52 conventional soil classifications to characterise the soil types. The two-way ANOVA 

53 showed that the AVCs were a better regulator of the SQIs than the soil types and that 

54 they (AVCs) presented a significant effect on the soil type differences in the measured 

55 soil attributes.

56 Keywords: Soil health; Soil quality factor; Multivariate classification; Discriminant 

57 analysis; Cluster analysis

58

59 1. Introduction

60 The multiple roles and functions of soil have resulted in several broad 

61 definitions of soil quality. One of the most widely adopted definitions for soil quality 

62 (SQ) was proposed by a committee for the Soil Science Society of America (chaired 

63 by Karlen) as: “the capacity of soil to function, within natural or managed ecosystem 

64 boundaries, to sustain plant and animal productivity, maintain or enhance water and 

65 air quality, and support human health and habitation” (Karlen et al., 1997). The 

66 quality of any soil has two parts: (1) the natural or inherent quality which is based on 

67 the parent geological material and soil-state-factors and is rather static, and (2) the 

68 dynamic soil quality which encompasses those soil properties that can change over 

69 relatively short time periods in response to human use and management (Carter, 2002; 

70 Fließbach et al., 2007; Bonfante et al., 2019). In contrast to the inherent SQ, the 

71 dynamic SQ can be used to monitor temporal trends on the same soil. There is no 

72 universally applicable set of inherent SQ criteria and optimum values (Carter, 2002) 

73 because soils with differences in the soil forming factors have different absolute 

74 capabilities (Seybold et al., 1998; Karlen et al., 2001). Therefore, soil quality and 

75 indicators have been defined by very different criteria and approaches dependent on 
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76 the various functions the soil performs (Rapport et al., 1997; Carter, 2002, Cherubin et 

77 al., 2016). In spite of the lack of standard methodology and “critical limits”, it is 

78 possible to develop SQ ranges for specific soils evaluated with regard to specific land 

79 use and management regimes.

80 Soil quality is evaluated in terms of measurable soil attributes that measure 

81 specific physical, chemical, and biological properties; also known as soil quality 

82 indicators (SQIs; Shukla et al., 2006; Cherubin et al., 2016). Many of these properties 

83 are interrelated and the best SQIs are those that integrate and have the combined 

84 effect of several properties or processes that affect the capacity of a soil to perform 

85 a specified function (Dagnachew et al., 2019). SQIs should generally be linked 

86 and/or correlated with ecosystem processes and functions and should be responsive to 

87 variations in management and climate on an appropriate time scale (Doran and Safley, 

88 1997, Bonfante et al., 2019). The SQIs which respond over the medium term i.e. those 

89 that are sensitive over few years and decades in land uses and management 

90 practices, may be the most useful for indicating soil quality changes as opposed to 

91 those which change either very rapidly (e.g. seasonally) or very slowly (e.g. over 

92 centuries) (Rapport et al., 1997; Dagnachew et al., 2019). Thus, measurement of key 

93 SQIs over time can be used to establish whether the quality of a soil under a given 

94 land use and management system is improving, declining or stable (Shukla et al., 

95 2006; Ghaemi et al., 2014; Rayo et al.,2017).  

96 Soil types are known to be inextricably determined by the physical, chemical 

97 and biological processes operating in soil, yet the biological indicators are rarely used 

98 in traditional soil classification and surveys (Cavigelli et al., 2005). Studies conducted 

99 by a number of researchers, such as Parkin (1993), Buyer et al. (2002), Girvan et al. 

100 (2003) and Ulrich and Becker (2006), have shown that soil type is a key factor 
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101 determining microbial community composition in arable soils. Furthermore, Rapport 

102 et al. (1997) and Lagomarsino et al. (2009) reported that microorganisms and 

103 microbial communities can provide an integrated measure of soil quality; an aspect 

104 that cannot always be obtained with physical and chemical measures and/or analyses 

105 of higher organisms. Currently, bioindicators are mostly based on so-called sum or 

106 black-box parameters and generally include microbial indicators such as microbial 

107 biomass, activity and biodiversity (Rapport et al., 1997; Nielsen and Winding, 2002; 

108 Schloter, et al., 2018). Recently, an alternative has been proposed, based on the use 

109 of specific ratios that report on function such as the quotients of microbial 

110 respiration-C-to-microbial biomass-C (qCO2) and the microbial biomass-C-to-

111 organic matter-C ratio (qMic) (Schloter, et al., 2018). These indicators avoids the 

112 problems of comparing trends in soils with different organic matter or microbial 

113 biomass content and appears to provide a more sensitive indicator of soil changes than 

114 either activity or population measurements alone (Lagomarsino et al., 2009). In this 

115 study, we used multivariate statistical methods to explore these relationships using 20 

116 physico-chemical and biological soil properties as Total Data Set (TDS). Using factor 

117 analysis the 20 correlated variables were reduced to 6 uncorrelated factors (soil 

118 quality factors; SQFs) also called Minimum Data Set (MDS) that were linear 

119 functions of the original 20 variables. The main questions addressed in this study 

120 were: (1) Can soil classification be used to predict SQFs and SQIs? (2) Which SQFs 

121 and SQIs are more effectively predictable by soil type in UK soils? (3) To what extent 

122 do soil types and/or AVCs act as major regulators of SQFs or SQIs? 
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123

124 2. Materials and methods

125 2.1. Soil sampling and preparation

126 Soil samples were collected throughout the UK as part of the Centre for 

127 Ecology and Hydrology Countryside Survey (CS) 2007 (Emmett et al., 2010) with 

128 sites representing the main types of landscape and soil groups. To encompass all the 

129 major soil and land use types, a total of 304 soil samples were collected throughout 

130 the UK, based on a stratified random sample of 1 km squares at gridpoints on a 15 km 

131 grid using the Institute of Terrestrial Ecology (ITE) Land Classification as the basis of 

132 the stratification (Scott, 2008). Figure S1 shows the general location and distribution 

133 of samples across the UK. At each grid intersection, a 1 km2 sample area was 

134 selected. Within the 1 km2 sample area, 3 plots (5 × 5 m2) were randomly located and 

135 a single 15 cm long × 4 cm diameter soil sample was collected from each of the plots. 

136 Topsoils were only selected for sampling to reflect standard practice in national 

137 monitoring schemes (Bellamy et al., 2005) such as Soil Survey England and Wales 

138 handbook (Hodgson, 1976), the National Soil Monitoring Network (Emmett, B.A., 

139 2006 ) and the UK Soil Monitoring Network (Environmental Agency, 2008).

140 The soil leachate was collected according to Emmett et al. (2008). The soil 

141 leachate replicate cores were first wetted to field capacity with artificial rainfall (125 

142 μM NaCl, 15.7 μM CaCl2, 1.3 μM CaSO4, 15.3 μM MgSO4, 12.3 μM H2SO4) in the 

143 dark at 10°C until the soils were fully wetted. The cores were then sprayed with 

144 artificial rainfall until a further 150 ml of leachate had been collected resulting in a 

145 solution with a pH of approximately 4.6. After washing out the cores, a small amount 

146 of suction was applied to drain larger pores. Cores were then incubated under 

147 anaerobic conditions for 4 weeks, at 10 0C, approximately UK mean summer soil 
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148 temperature Cores were then extracted with 1 M KCl, and ammonium and nitrate 

149 concentrations were determined as a measurement of mineralisable N using a TOC-

150 VCSH/CSN analyzer (Shimadzu Corp., Kyoto, Japan) as describe below.

151 Across all land uses (Supplementary Information S2) and aggregate vegetation 

152 class (AVC) categories, the dominant soil types (% of total) were: Brown soils (32%), 

153 Groundwater gleys (13%), Surface water gleys (19%), Lithomorphic soils (8 %), 

154 Peats (15%), Pelosols (2%) and Podzolic soils (11%). See Table S1 for their 

155 equivalents in the WRB classification. All the sites were characterised by a temperate 

156 climate with a North-South mean annual temperature range of 7.5 to 10.6°C and East-

157 West mean annual rainfall range of 650 to 1700 mm.

158

159 2.2. Aggregate vegetation classes

160 The vegetation data from the plots were analysed using the classification by 

161 Aggregate Classes (ACs) or Aggregate Vegetation Classes (AVCs). The AVCs were 

162 the vegetation types produced from a quantitative hierarchical classification of the 

163 different species found in sample plots. The eight AVCs used for assessing vegetation 

164 condition are listed in Table 1. Across all the soils sampled, the AVCs represented (% 

165 of the total): 18% Crop and weeds, 17% Fertile grasslands, 22% Heath and bogs, 20% 

166 Infertile grasslands, 2% Lowland woodland, 10% Moorland grass mosaics, 4% Tall 

167 grass and herbs and 7% Upland woodland.

168

169 Table 1. Summary of the Aggregate Vegetation Classes (AVCs) used for assessment of 

170 vegetation condition. The brackets indicate the abbreviation of the vegetation class 

171 (adapted from Smart et al., 2003).

172
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Aggregate vegetation 
class (AVC) +(abrev) Description

1. Crops and weeds (Craw) Weedy communities of cultivated and disturbed ground, 
including species-poor arable and horticultural crops.

2. Tall grass and herbs 
(Tgah)

Less intensively managed tall herbaceous vegetation 
typical of field edges, roadside verges, stream sides and 
hedge bottoms.

3. Fertile grassland (Frtg) Agriculturally improved or semi improved grassland. Often 
intensively managed agricultural swards with moderate to 
high abundance of perennial rye grass.

4. Infertile grassland (Infg) Less-productive, unimproved and often species rich 
grasslands in a wide range of wet to dry and acid to basic 
situations.

5. Lowland wooded 
(Lwlw)

Vegetation dominated by shrubs and trees in neutral or 
basic situations, generally in lowland Britain. Includes 
many hedgerows.

6. Upland wooded (Uplw) Vegetation of broadleaved and conifer woodland often in 
more acidic situations, generally in upland Britain.

7. Moorland grass mosaics 
(Mrgm)

Extensive, often unenclosed and sheep grazed hill pastures 
throughout Britain.

8. Heath and bog (Htab) Vegetation dominated by heathers. Includes drier heaths as 
well as bog. Mostly in the uplands.

173
174

175 2.3. Soil analysis

176 Soil pH was determined in soil-distilled water extracts (1:2.5 w/v soil to water 

177 soil ratio) using a glass electrode (Gelplas general purpose electrode, BDH) and HI-

178 209 pH meter (Orion research, Boston, MA, USA). Soil moisture was determined by 

179 weight loss after oven drying at 105°C overnight (>16 h). Water content at field 

180 capacity was estimated by saturating the soil followed by measuring the water 

181 retained in the soil at -33 kPa. Bulk density was calculated (mass/volume) after 

182 removal of stones from the cores (>2 mm in diameter). Loss on ignition (LOI) was 

183 undertaken at 375°C for 16 h. Soil organic carbon (SOC) was calculated from the LOI 

184 values according to the method of Ball (1964) where

185  SOC = (0.458 × g LOI) - 0.4         [Eq. 1]
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186 Phosphorus was determined by the Olsen P method according to Emmett et al. (2008). 

187 Total C and N were determined using UKAS accredited method SOP3102 on an 

188 Elementar Vario-EL elemental analyser (Elementaranalysensysteme GmbH, Hanau, 

189 Germany) according to Emmett et al. (2008, and 2010). 

190 Soil respiration (SR) was determined on a 15 cm long, 2.5 cm diameter soil 

191 cores with a 1250 cm3 head space. The soils were incubated at 10°C for 1 h (at which 

192 linearity was established). Subsequently, the head space gas was analysed for CO2 

193 concentration using a Clarus 500 Gas Chromatograph (Perkin Elmer Corp., Beverley, 

194 MA). The CO2 flux was established by comparing the CO2 concentration before and 

195 after incubation. Soil microbial biomass C and N were estimated on moist soil 

196 samples (10 g) using the modified chloroform-fumigation-extraction (CFE) method of 

197 Vance et al. (1987). For each soil 10g of the control and the fumigated samples were 

198 extracted with 1 M KCl. The TOC and TON in the 1 M KCl extracts was determined 

199 using a TOC-VCSH/CSN analyzer (Shimadzu Corp., Kyoto, Japan). Extraction 

200 efficiency correction factors of 0.45 and 0.54 were used for microbial C and N, 

201 respectively (Joergensen and Mueller, 1996a; 1996b; Fließbach et al., 2006). Soil 

202 microbial biomass was therefore calculated according to the formula: Cmic = EC/kEC, 

203 where EC = (TOC in fumigated samples - TOC in control samples) and kEC = 0.45, 

204 and Nmic = EN/kEN, where EN = (total N in fumigated samples – total N in control 

205 samples) and kEN = 0.54. The microbial C:N ratios were subsequently calculated 

206 from these values.

207 The metabolic and microbial quotients were calculated indices. The metabolic 

208 quotient or coefficient was calculated as the ratio between the CO2-C from basal 

209 respiration and the microbial biomass-C (CO2-Cresp-to-Cmic), expressed as µg CO2-C 

210 mg-1 biomass-C h-1. It is also known as the specific respiration rate (qCO2) (Anderson 
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211 and Domsch, 1993). The microbial quotient was calculated as the ratio between the 

212 microbial biomass-C-to-total organic C (Cmic-to-Corg).

213

214 2.4. Leachate analysis

215 Leachate dissolved organic C (DOC) and total organic N (TON) were 

216 measured using a TOC-VCSH/CSN analyzer (Shimadzu Corp., Kyoto, Japan) and the 

217 DOC:TON ratio subsequently calculated. Nitrate and ammonium concentrations were 

218 measured with a Skalar SAN++ segmented-flow autoanalyser (Skalar, Breda, 

219 Netherlands), based on the cadmium (Cd) reduction method (Maynard and Kalra, 

220 1993; Griffin, et al., 1995) and the modified Berthelot reaction (Searie, 1984) 

221 respectively. Electrical conductivity (EC) was measured with a standard platinum 1 

222 cm electrode on a 4520-EC meter (Jenway Ltd, Dunmow, Essex, UK). pH was 

223 measured using a glass electrode (Gelplas general purpose electrode, BDH) on a HI-

224 209 pH meter (Orion research, Boston, MA, USA). Total free amino acids were 

225 determined using the fluorometric OPAME procedure of Jones et al. (2002) and a 

226 Cary Eclipse Fluorescence Spectrophotometer (Varian Inc., Australia) using a leucine 

227 standard. Humic substances were determined by measuring the absorbance of 350 µl 

228 of leachate at 254 and 400 nm (UV and visible range respectively) on a PowerWave 

229 XS scanning microplate spectrophotometer (BioTek® Instruments, Winooski, VT). 

230 The absorbance of deionised water was used as a control. A humification index (HIX) 

231 was calculated by dividing the absorbance at 254 nm by the absorbance at 400 nm 

232 (Zsolnay et al., 1999; Embachar et al., 2007). Soluble phenolic concentrations were 

233 assayed using a modification of the method of Box (1983) and Ohno and First (1998) 

234 using Na2CO3 (1.9 M) and the Folin-Ciocalteu reagent (Sigma-Aldrich, Poole, Dorset) 
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235 (DeForest et al., 2005). The blue-coloured phenolics were measured at 750 nm using a 

236 PowerWave XS scanning microplate spectrophotometer (BioTek® Instruments). 

237

238 2.5. Statistical analyses

239 ANOVA, Factor, Discriminant and Cluster analyses were all determined using 

240 SPSS version 15.0 (SPSS Inc., Chicago, IL) and GenStat version 8 (VSN 

241 International Ltd, Hemel Hempstead, UK). They were used to analyse the measured 

242 attributes to investigate the effect of soil types and AVCs on the SQIs identified. To 

243 identify significant differences between treatments, post hoc multiple comparison 

244 (pair-wise) tests were made using the Gabriel test where homogeneity of variance was 

245 assumed and Games-Howell procedure where unequal variance occurred. Some 

246 variables were clearly not normally distributed judging from the Q-Q plots (data not 

247 presented); however, all the factors (SQFs) from factor analysis and discriminant 

248 analysis were normally distributed. 

249 For the cluster analysis, the average linkage method and a squared Euclidean 

250 distance measure were used with a rescaled distance cluster combined measure on the 

251 similarity axis. The variables were standardized to minimize the effect of scale 

252 differences since the variables possessed different units.

253

254 3. Results 

255 3.1. Biological, physical and chemical properties of soils

256 The variability of individual soil quality indicators across the range of soil 

257 types is shown in Figure 1. The box plots shows the spread of each measured soil 

258 property for each soil type as well as the data’s symmetry and skewness. (The 

259 boundary of the box closest to zero indicates the 25th percentile, the line within the 
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260 box marks the median (50th percentile), and the boundary of the box farthest from 

261 zero indicates the 75th percentile while the whiskers below and above the box indicate 

262 the 10th and 90th percentiles where outliers are present). From the box plots, most of 

263 the soil quality indicators did not show differentiations among the soil types save for 

264 the following: microbial quotient, SOC and Soil Respiration separated the peats from 

265 the rest; pH and C:N leachate separated the peats and the podzols from the rest, while 

266 the bulk density grouped the soils in three groups of Pelosols, the Browns, Ground-

267 water gleys and the Surface-water gleys (average =1.1 g cm-3) in one group; Podzols 

268 and Lithomorphics (av = 0.5 g cm-3) in the second group and peats (ave 0.2 g cm-3) in 

269 the third group. All other properties were did not show effective differentiations 

270 among the soil types.   

271 Figure 1: Box plots showing the spread of each measured soil property for each of the 

272 major soil types from 304 individual soils sampled as part of a nationwide soil quality 

273 assessment in UK. The boundary of the box closest to zero indicates the 25th 

274 percentile, the line within the box marks the median (50th percentile), and the 

275 boundary of the box farthest from zero indicates the 75th percentile. Whiskers below 

276 and above the box indicate the 10th and 90th percentiles where outliers are present. 

277 GWG and SWG represent groundwater and surface water gley soils respectively.

278

279 3.2. Relationships among soil properties

280 Correlation analysis of the 20 soil attributes representing soil biological, 

281 physical and chemical properties resulted in significant correlation (P < 0.05) in 112 

282 of the 190 soil attribute pairs (Table 2). Of these, the highest significant (P < 0.01) 

283 positive correlations was between humic substances at 254 nm versus those at 400 nm 

284 (r = 0.97). Other highly significant (P < 0.01) positive correlations were between the 
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285 absorbance at 254 nm or 400 nm versus DOC (r = 0.78 and r = 0.71 respectively); 

286 leachate TON versus NO3
- (r = 0.78), and bulk density versus pH (r = 0.70). 

287 Additional notable significant (P < 0.01) positive correlations (r > 0.50) were between: 

288 microbial-N versus microbial-C, SOC versus soil respiration, the leachate C:N ratio 

289 versus SOC, electrical conductivity versus both nitrate and TON, phenolics versus 

290 absorbance at 254 nm and DOC versus absorbance at 400 nm. The highest significant 

291 (P < 0.01) negative correlation was between bulk density versus SOC (r = - 0.83) 

292 Other notable significant (P < 0.01) negative correlations were between: bulk density 

293 versus either microbial-C (r = -0.42), soil respiration (r = -0.51) or the leachate C:N 

294 ratio (r = -0.47); SOC versus qMic (r = -0.47) and pH versus either SOC (r = -0.66), 

295 absorbance at 400 nm (r = -0.42), leachate DOC (r = -0.40) or leachate C:N ratio (r = 

296 -0.47)
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297 Table 2. Correlations among physical, chemical and biological soil attributes
298

Varable qMic qCO2 Mic C Mic N Mic CN SR SOC Nitrate Amonia pH
qMic 1          
qCO2 -0.07 1         
Mic C 0.23(**) -0.07 1        
Mic N 0.17(**) -0.05 0.63(**) 1       
Mic CN 0.18(**) -0.02 0.03 -0.24(**) 1      
SR -0.26(**) -0.01 0.31(**) 0.09 -0.02 1     
SOC -0.47(**) -0.04 0.39(**) 0.09 0.04 0.61(**) 1    
Nitrate 0.21(**) -0.01 -0.15(**) -0.12(*) 0.20(**) -0.22(**) -0.33(**) 1   
Amonia -0.05 -0.04 0.08 0.06 -0.03 0.02 0.04 0.06 1  
pH 0.35(**) 0.08 -0.31(**) 0 -0.11(*) -0.39(**) -0.66(**) 0.25(**) -0.18(**) 1
Ec 0.03 0.06 -0.09 0.01 0.17(**) -0.08 -0.03 0.59(**) 0.03 0.12(*)
Phenols -0.23(**) -0.01 0.19(**) 0.08 -0.01 0.27(**) 0.39(**) -0.19(**) 0.38(**) -0.36(**)
Absb @ 254 -0.24(**) -0.01 0.10(*) -0.03 0.05 0.22(**) 0.34(**) -0.19(**) 0.23(**) -0.42(**)
Absb @ 400 -0.23(**) -0.01 0.10(*) -0.06 0.05 0.21(**) 0.35(**) -0.19(**) 0.23(**) -0.42(**)
HIX 0.06 0.02 0 0.11(*) 0.13(**) -0.07 -0.14(**) 0.24(**) 0.01 0.10(*)
amino acids -0.04 -0.03 0.09 -0.04 0.28(**) 0.03 0.11(*) -0.02 0.48(**) -0.15(**)
TOC_L -020(**) 0.01 0.12(*) -0.02 0.06 0.29(**) 0.35(**) -0.18(**) 0.32(**) -0.40(**)
TON_L 0.18(**) 0.02 -0.08 -0.05 0.24(**) -0.14(**) -0.21(**) 0.78(**) 0.11 (*) 0.09
CN_L -0.25 (**) -0.04 0.16(**) -0.02 0.03 0.33(**) 0.50(**) -0.33(**) -0.04 -0.47(**)
BD 0.46(**) 0.05 -0.42(**) -0.22(**) -0.07 -0.51(**) -0.83(**) 0.35(**) -0.14(**) 0.70(**)
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299
300 Table 2 continued 
301

Varable Ec Phenols
Absob @ 
254

Absob @ 
400 HIX

amino 
acids TOC_L TON_L CN_L BD

Ec 1          
Phenols 0.04 1         
Absb @ 254 -0.04 0.58(**) 1        
Absb @ 400 -0.08 0.60(**) 0.97(**) 1       
HIX 0.37(**) -0.09 -0.04 -0.22(**) 1      
amino acids -0.01 0.23(**) 0.09 0.09 0.11(*) 1     
TOC_L 0.01 0.56(**) 0.78(**) 0.71(**) 0.08 0.23(**) 1    
TON_L 0.66 (**) -0.08 -0.13(**) -0.14(**) 0.31 (**) 0.05 -0.05 1   
CN_L -0.05 0.34(**) 0.38(**) 0.37(**) -0.06 0.02 0.38(**) -0.25 (**) 1  
BD 0.10(*) -0.38(**) -0.35 (**) -0.33 (**) 0.04 -0.17 (**) -0.37 (**) 0.21(**) -0.4 (**) 1

302

303 Note: *Correlation is significant at P < 0.05 level, and ** at the P < 0.01 level; qMic, microbial quotient; qCO2, metabolic quotient;  Mic C, 

304 microbial carbon (mg C kg-1); Mic N, microbial nitrogen (mg C kg-1); Mic C:N, microbial C:N ratio; SR, soil respiration (mg C kg-1 h-1); SOC, 

305 soil organic carbon (mg C kg-1); NO3
-, nitrate (mg N l-1); NH4

+, ammonium (mg N l-1); EC, (µS cm-1); Phenols, Soluble phenolics (mg l-1); Abs 

306 @ 254 and 400, absorbance of soil solution at 254 and 400 nm; HIX, humification index; Am acids, Free amino acids (µM); TOC/N L, total 

307 organic carbon/nitrogen in leachate (mg l-1); BD, bulk density.
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308 Due to differences in the units of individual variables, Factor Analysis (FA) was 

309 performed using a correlation matrix on the standardised values of the measured 20 attributes. 

310 The generalised least-squares method was used to extract factors because it is robust and requires 

311 no assumptions of sample coming from a multivariate normal distribution (SPSS, 2006). The 

312 first six factors with eigenvalues > 1 were retained for interpretation, whilst factors with 

313 eigenvalues < 1 explained less total variation than individual soil attributes (Brejda et al., 2000). 

314 The retained factors accounted for > 61% of the total variance in the measured attributes; see 

315 Table 3.

316

317 Table 3. Total variance (Eigenvalue), proportion and cumulative variance (Prop Var and Cum 

318 Var) explained by factor analysis using correlation matrix (standardized data) on the measured 

319 attributes.

Factors Initial eigenvalues

Extraction sums of squared 

loadings

Rotation sum of squared 

loadings

Total Prop of

Var (%)

Cum

Var (%)

Total Prop of

Var (%)

Cum

Var (%)

Total Prop of

Var (%)

Cum

Var (%)

Factor 1 5.31 26.6 26.6 3.60 18.0 18.0 3.35 16.7 16.7

Factor 2 2.64 13.2 39.8 3.22 16.1 34.1 2.96 14.8 31.5

Factor 3 2.03 10.1 49.9 2.14 10.7 44.8 2.28 11.4 42.9

Factor 4 1.73 8.7 58.6 1.56 7.8 52.6 1.65 8.3 51.2

Factor 5 1.31 6.6 65.1 0.65 3.3 55.9 1.32 6.6 57.8

Factor 6 1.18 5.9 71.1 1.15 5.7 61.6 0.76 3.8 61.6

320

321 The retained factors were subjected to a varimax rotation. A varimax rotation 

322 redistributes the variance of significant factors and minimizes the number of variables that have 

323 high loadings on each factor, thereby simplifying the interpretation of the factors (SPSS, 2006). 

324 The relative importance of each soil attribute, in terms of its contribution to all of the factors, 
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325 was judged by its communality value (Field, 2005; Ayoubi and Khormali, 2008) and is shown in 

326 Table 4. The six factors explained > 90% variance in absorbance @ 254 and 400 (absb@254 and 

327 400), microbial carbon (Mic C), and soil organic carbon (SOC); > 80% in total organic nitrogen 

328 in leachate (TON_L) and bulk density (BD); > 70% in microbial nitrogen (Mic N), Nitrate, 

329 Ammonium, electrical conductivity (EC), and total organic carbon in leachate (TOC_L); > 60 % 

330 in microbial quotient (qMic), pH and humification index (HIX); > 50 % microbial C/N ratio 

331 (Mic CN), soil respiration (SR), and phenolics; and < 50 % C/N ratio of the leachate (CN_L) and 

332 microbial metabolic quotient (qCO2) (Table 4). Attributes with the low communality estimates 

333 (e.g. qCO2 and leachate C:N) were the least important for interpreting factors. The magnitudes of 

334 the loadings were used as a criterion for interpreting the relationship between the soil attributes 

335 and the factors. Soil attributes were assigned to the factor for which the loadings were highest. 

336
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337 Table 4. Proportion of variance (loadings) using varimax rotation and communality estimates 

338 for soil attributes of the retained factors.

Variable Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Communality 

extraction

qMic -0.54 -0.13  0.12 0.45 -0.01 -0.07 0.67

qCO2  0.05 -0.05 -0.05 -0.18  0.01  0.00 0.10

Microbial-C  0.29  0.03 -0.04  0.89  0.09 -0.03 0.90

Microbial-N  0.05 -0.04 -0.08  0.75 -0.02  0.14 0.73

Microbial C:N  0.07  0.05  0.30 -0.03  0.11  0.01 0.51

Soil respiration  0.61  0.06 -0.07  0.09  0.03 -0.06 0.50

Soil organic C  0.92  0.16 -0.08  0.08  0.01 -0.06 0.91

Nitrate-N -0.27 -0.09  0.81 -0.04  0.01  0.04 0.77

Ammonium-N  0.01  0.23  0.05  0.05  0.78  0.01 0.72

pH -0.68 -0.28  0.02 -0.06 -0.18  0.05 0.68

Elec. conductivity  0.03  0.00  0.74 -0.03 -0.05  0.22 0.70

Soluble phenolics  0.29  0.52 -0.03  0.06  0.32 -0.10 0.55

Absorb @ 254 nm  0.17  0.98 -0.06 -0.01  0.04  0.03 1.00

Absorb @ 400 nm  0.17  0.96 -0.05 -0.02  0.04 -0.20 0.99

HIX -0.06 -0.06  0.25  0.07  0.05  0.76 0.69

Amino acids  0.11  0.06  0.02  0.01  0.66  0.05 0.56

TOC (leachate)  0.24  0.71 -0.02  0.00  0.29  0.18 0.73

TON (leachate) -0.12 -0.06  0.91  0.01  0.09  0.07 0.87

C:N (leachate)  0.47  0.26 -0.17 -0.02 -0.06  0.02 0.42

Bulk density -0.86 -0.19  0.13 -0.18 -0.11 -0.05 0.87

339

340 The first factor explained 16.7 % (see Table 3) of the total variance. It was named soil 

341 organic matter (SOM) because it had high positive loading for SOC (0.92), soil respiration (0.61) 

342 and leachate C:N ratio (47), a high negative loadings for bulk density (-0.86), pH (-0.68) and 

343 moderately on qMic (-0.54). Grouping qMic with the SOM factor rather than factor 4 was as a 

344 result of its stronger correlation with attributes constituting the SOM factor namely, soil 
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345 respiration (r = -0.26), SOC (r = -0.47) and bulk density (r = 0.46) rather than with Microbial-C 

346 (r = 0.23) and Microbial-N (r = 0.17) of factor 4 (Table 3). The second factor explained 15% of 

347 the total variance with a high positive loading for soluble phenolics (0.52), leachate absorbance 

348 at 254 nm (0.98), 400 nm (0.96) and leachate TOC (0.71) and consequently, was termed OM 

349 humification. The third factor explained 11 % of the total variance with high positive loadings 

350 for nitrate (0.81), leachate TON (0.91) and electrical conductivity (0.74) and was therefore 

351 termed soluble nitrogen factor. The fourth factor had positive loadings for Microbial-C (0.89), 

352 Microbial-N (0.75) and a moderately high loading for qMic (0.45), and was termed microbial 

353 biomass. The fifth factor had positive loading for ammonium (0.78) and amino acids (0.66) and 

354 was termed reduced N. The sixth factor explained only 4 % of the total variance and had a high 

355 positive loading for HIX (0.76) and was termed soil humification index.

356

357 3.3. Effect of soil types on attribute means and factor scores

358 One way ANOVA revealed that most of the soil attributes and factor scores varied 

359 significantly with soil types (Table 5). However, pairwise comparison showed that the effect of 

360 soil types on most attribute was very small. In most cases, only the Peat soils were clearly 

361 significantly (P < 0.01) different from all the other soil types. Only SOM and microbial biomass 

362 factors (Factors 1 and 4 respectively) varied significantly (P < 0.05) with soil type. SOM factor 

363 mean scores were negative for Brown, GWG, SWG and Pelosol soils and positive for 

364 Lithomorphic, Peat and Podzolic soils. Peats had the highest score and were significantly 

365 different from all other soil types on the SOM factor. Furthermore, Peat soils had the highest 

366 SOC content to which the analysis also confirmed. The mean scores for SOM factor did not vary 

367 significantly (p > 0.05) within Browns, GWGs and Pelosols nor did it do so among the 
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368 Lithomorphic, Podzolic and SWG soils. The Microbial biomass factor varied significantly (P < 

369 0.05) between Brown versus GWG soil types and Lithomorphics only. Mean scores for OM 

370 humification, soluble N, reduced N and humification index did not vary significantly (P > 0.05) 

371 among all soil types.  
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372 Table 5. Soil attribute means and factor scores in the different soil types (The first 5 variables are the most important for 

373 discrimination between soil types)

Soil attributes Soil types SEM ANOVA
Brown Groundwater 

gley
Lithomorphic Peat Pelosols Podzolic Surface 

water gley
Microbial quotient 0.018a 0.026 a 0.014 ac 0.003 b 0.014 abc 0.010 c 0.018 a 0.003 0.00
qCO2 0.073 0.002 0.001 0.011 0.01 0.002 0.003 0.012 NS
Microbial-C (g kg-1) 0.59 a 1.00 ab 1.03 ab 1.37 b 0.54 a 1.02 ab 0.89 ab 0.13 0.00
Microbial-N (mg kg-1) 85 a 119 ab 148 b 113 ab 71 ab 111 ab 99 ab 16 0.03
C:N (Microbial) 12.4 19.6 18.9 19.7 36.3 29.9 33.2 12 NS
Soil respiration (mg kg-1 h-1) 0.63 a 1.10 a 0.93 a 3.35 b 1.63 ab 1.58 ab 1.18 a 0.45 0.00
Soil organic C (g kg-1) 42 a 45 a 132 b 377 c 92 ab 151 b 98 b 23 0.00
Nitrate (mg N l-1) 3.00 a 2.04 ac 2.32 ac 0.13 b 1.13 c 0.37 bc 3.08 a 0.39 0.00
Ammonium (mg N l-1) 0.25 0.18 0.3 0.27 0.17 0.31 0.3 0.05 NS
pH 6.55 a 6.56 a 6.24 ac 4.71 b 6.18 ac 5.08 b 5.73 c 0.2 0.00
Elect. conductivity (µS cm-1) 129 107 124 99 74 81 116 16 NS
Soluble phenols (mg l-1) 0.33 ac 0.26 a 0.68 bc 1.10 b 0.56 abc 1.20 b 0.46 c 0.16 0.00
Absorbance @ 254 nm 0.25 a 0.28 a 0.29 ab 0.47 b 0.45 ab 0.48 b 0.32 ab 0.48 0.00
Absorbance @ 400 nm 0.028 a 0.033 a 0.032 ab 0.061 b 0.047 ab 0.061 b 0.036 ab 0.009 0.00
Humification index (HIX) 9.0 ab 9.0 ab 8.7 ab 8.2 a 8.3 ab 8.6 ab 9.3 b 0.3 0.03
Amino acids (µM) 1.52 1.83 1.67 1.95 1.15 3.1 2.08 0.4 NS
Leachate TOC (mg l-1) 7.5 a 6.9 a 8.2 ab 12.0 b 12.8 ab 12.3 b 9.8 ab 2.2 0.00
Leachate TON (mg l-1) 5.82 a 3.47 ac 3.16 ac 0.78 b 1.62 c 1.81 bc 6.69 a 0.8 0.01
Leachate C:N 4.6 a 5.5 a 7.2 a 19.0 b 9.1 ab 17.5 b 9.7 a 2.4 0.00
Bulk density 1.10 a 1.11 a 0.63 b 0.19 c 1.08 a 0.58 b 0.81 b 0.06 0.00
Factors Factor scores
Factor 1 -0.52a -0.63 a 0.15 b 1.58 c -0.59 a 0.2 b -0.07 b 0.12 0
Factor 2 -0.17 -0.05 -0.13 0.22 -0.46 0.44 0 0.15 NS
Factor 3 0.09 -0.1 -0.06 -0.13 -0.4 -0.28 0.23 0.11 NS
Factor 4 -0.24a 0.36 b 0.30 b 0.03 ab -0.21 ab 0.01 ab 0.02 ab 0.19 0.04
Factor 5 -0.05 -0.22 -0.03 -0.11 -0.2 0.36 0.14 0.17 NS
Factor 6 0.06 -0.1 0.17 -0.3 -0.29 -0.2 0.23 0.18 NS
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375 3.4. Soil quality indicators across soil types

376 Discriminant analysis of the six statistical factors in relation to soil types, indicated that the 

377 SOM was the most powerful in discriminating among the seven soil type groups based on the 

378 magnitude of their discriminant coefficients (Eq. 2). The first canonical discriminant function 

379 explained 90 % of the total variance based on Wilks’s Lambda, (P < 0.001) (table not shown) 

380 and therefore was the most important canonical discriminant function for discriminating soil 

381 types using the soil quality factors identified. Although the second canonical discriminant 

382 function was also significant (P = 0.03) based on Wilks’s Lambda, it only accounted for 4 % of 

383 the total variance and therefore was not used.

384 Y1 = 1.43 (SOM ) + 0.29 (OM humification) –  0.14 (soluble N) + 0.08 (microbial 

385 biomass) + 0.03 (reduced N) –  0.22 (HIX) (Eq. 2)

386 Therefore the group differences across soil types shown by ANOVA can be explained in 

387 terms of SOM, judging from the discriminant coefficient which was five-fold larger than the 

388 coefficient for the OM humification factor and several fold greater than the rest of the factors. 

389 Discriminant analysis of the measured attributes constituting SOM (i.e. qMic, soil respiration 

390 (SR), soil organic C (SOC), pH and bulk density (BD)) indicated that microbial quotient (qMic) 

391 was the most powerful attribute discriminating the soil types (Eq. 3).

392 Y2 = 8.75 × 10-6 (SOC) – 1.99 (qMic) – 0.50 (BD) – 0.04 (pH) – 0.05 (SR)    (Eq. 3)

393 The discriminant coefficient for qMic was four-fold larger than the coefficient for bulk 

394 density and more than 40-fold for the rest. The qMic was significantly correlated with bulk 

395 density (0.46**), soil organic C (-0.47**), pH (0.35**) and soil respiration (-0.26**) while bulk 

396 density was significantly correlated with soil organic C (-0.83**), pH (0.70**) and soil 

397 respiration (-0.53**) meaning that qMic and bulk density, though correlated, were the most 
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398 important and dominant attributes for assessing soil quality across soil types. The mean 

399 comparisons using the Games-Howell approach indicated that the bulk density had similar 

400 discriminating power as the SOM factor among the soil types. qMic mean values varied 

401 significantly with soil types separating Peat < Podzols < Browns, GWGs and SWGs soils in 

402 increasing order (Table 5).

403

404 3.5. Effect of aggregate vegetation class on factor scores

405 Aggregate vegetation class (AVC) showed more effects on factor scores than the soil types. 

406 The significant effects were observed in SOM, OM humification, microbial biomass and 

407 humification index. The soluble N and reduced N factors showed no significant variation among 

408 the AVCs (Table 6).  The SOM factor had the highest factor scores (P < 0.001) in Heath and Bog. 

409 Mean scores between Moorland Grass Mosaics and Upland Woodland did not vary significantly 

410 (P > 0.05); nor among Fertile Grasslands, Infertile Grassland, Lowland Woodland and Tall Grass 

411 Mosaic. The mean scores were lowest in Crop and Weeds and were significantly different (P < 

412 0.001) from all other AVCs except in Tall Grass and Herbs.
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413 Table 6. Effect of Aggregate Vegetation Class (AVC) on factor scores and soil attribute means. 

414

Average vegetation class mean factor scores
Factors Crops & 

weeds

Fertile 

grasslands

Heath

& bog

Infertile 

grassland

Lowland 

woodland

Moorland grass 

mosaics

Tall grass

& herbs

Upland 

woodland

SEM ANOVA

Factor 1 -0.80a -0.54 b 1.43 c -0.50 b -0.40 b 0.62 d -0.64 ab 0.20 bd 0.10 0.00

Factor 2 -0.40 a -0.11 ab 0.30 b 0.02 b 0.41 ab -0.11 ab -0.06 ab 0.51 ab 0.19 0.00

Factor 3 0.34 0.07 -0.09 -0.03 0.05 -0.34 0.12 -0.28 0.14 NS

Factor 4 -0.49 a 0.16 b 0.07 b 0.27 b -0.19 ab 0.28 b -0.61 a -0.21 ab 0.16 0.00

Factor 5 -0.39 0.09 0.13 0.02 -0.12 0.22 -0.20 0.18 0.14 NS

Factor 6 -0.29 a 0.04 ab -0.35 ab 0.13 b 1.15 c 0.18 b 0.38 bc 0.63 bc 0.17 0.00

 Soil  

attributes
Soil attribute mean values

Soil respiration 0.29a 1.00 b 3.22 c 0.77 b 0.67 ab 1.44 b 0.43 ab 1.41 b 0.23 0.000

Soil organic C 16.7 a 43.6 b 350.2 c 43.8 b 46.4 b 185.6 c 25.0 ab 119.8 c 11.2 0.000

pH 7.3 a 6.4 b 4.6 c 6.3 b 6.2 abd 5.2 d 6.6 ab 4.7 dc 0.2 0.000

Bulk density 1.37 a 1.06 b 0.21 c 0.95 b 0.89 b 0.41 d 1.22 ab 0.48 d 0.05 0.000

qMic 0.021a 0.023 a 0.005 b 0.021 a 0.015 ab 0.009 b 0.015 ab 0.010 ab 0.003 0.000
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415

416 Means scores for OM humification factor varied significantly (P < 0.001) between Crop 

417 and Weeds verses Herb and Bog, and Infertile Grasslands; all other pairs did not vary 

418 significantly. For microbial biomass factor, Crop and Weeds and Tall Grass and Herbs varied 

419 significantly (P < 0.001) against the Fertile Grassland, Infertile Grasslands, Heath and Bog, and 

420 Moorland Grass Mosaics, while all other pairs were not significantly different (P > 0.05). The 

421 humification index factor showed that the mean scores varied significantly (P < 0.001) among 

422 Crop and Weeds versus Infertile Grassland and Moorland Grass Mosaics versus Lowland 

423 Woodland only. 

424

425 3.6. Soil quality indicators across Aggregate Vegetation Classes (AVC)

426 The first canonical discriminant function of the discriminant analysis of the six factors 

427 across the AVCs explained 94% of the total variance (Wilks’s Lambda, P < 0.001) whose 

428 coefficients were used in the equation below: 

429 Y3 = 2.12 (SOM ) + 0.49 (OM humification) - 0.35 (soluble N) + 0.30 (microbial biomass) 

430 + 0.36 (reduced N) - 0.20 (soil HIX) (Eq. 4)

431 From the discriminant coefficients in Eq. [4], SOM factor was the most powerful 

432 discriminating among the eight different AVCs. The SOM factor was more than four-fold larger 

433 than the coefficients of all others soil quality factors under consideration.

434 The discriminant analysis of the measured attributes constituting the SOM factor showed that BD 

435 and qMic were the most powerful discriminating soil attributes among the seven habitats (AVCs) 

436 (Eq. 5).
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437 Y4 = 3.27 (bulk density) – 2.45 (qMic) – 2.75 × 10-6 (soil organic C) + 0.70 (pH) + 0.08 

438 (soil respiration) (Eq. 5)

439 Bulk density possessed similar discriminating power as the SOM factor among the AVCs. 

440 Bulk density values were significantly different (P < 0.001) among AVCs with the lowest mean 

441 values in Heath and Bog (0.21 g cm-3) < Upland Wooded (0.48 g cm-3) and Moorland Grass 

442 Mosaic (0.41 g cm-3) < Fertile Grass (1.06 g cm-3), Infertile Grass (0.95 g cm-3), Lowland 

443 Wooded (0.89 g cm-3) < Tall Grass and Herbs (1.21 g cm-3) and Crop and Weeds (1.37 g cm-3; 

444 Table 6). 

445

446 3.7. Main and interactions effect of soil types and AVCs

447 The results of the two-way ANOVA on the first canonical discriminate function on all 20 

448 variables showed significant (P < 0.01) main and interaction effects. The main effect of soil 

449 types and the effect of soil types * AVCs interaction on the attribute’s scores was very small 

450 (Partial Eta Square = 0.09 and 0.16 respectively), while the main effect of the AVCs was large 

451 (Partial Eta Square = 0.42; Table. 7). 

452 Table 7. Tests of between-subjects effects; 
453

Source
Type IV sum of 

squares Df
Mean 
Square F Sig.

Partial eta 
squared

Corrected model 553.14 38 14.56 36.36 0.001 0.844
Intercept 3.42 1 3.416 8.532 0.004 0.032
Soil Type * 
AVC_Desc 18.98 25 0.759 1.896 0.008 0.157

Soil Type 10.36 6 1.726 4.311 0.001 0.092
AVC_Desc 73.97 7 10.57 26.39 0.001 0.420
Error 102.09 255 0.400
Total 655.24 294     
Corrected Total 655.24 293     

454
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455 Notes: Dependent variable: 1st Canonical Discriminant function scores from of all the soil 

456 attributes measured. AVC_desc means AVC description; Soil Type*AVC_Desc means the 

457 interaction between the soil type and AVC effects.

458

459 The cross tabulation of AVCs versus soil types (Table S3), showed that 27 out of 56 

460 combinations or cells, the soil types were sampled less than the calculated expected counts in the 

461 AVCs. In 16 combinations, the soil types were not at all represented in the AVCs. The most 

462 affected were the Lowland Woodland and Tall Grass and Herbs where, only Brown and SWGs 

463 were samples in the former and only Browns, GWG and SWGs in the latter.

464

465 4. Discussion

466 4.1. Effect of soil types and AVCs on the soil quality factors and/or indicators

467 A set of 20 correlated soil attributes were grouped into six factors called soil quality 

468 factors, using factor analysis. The factors identified contribute to one or more key soil functions 

469 proposed by Larson and Pierce (1991) and therefore could be considered soil quality indicators 

470 (Brejda et al., 2000). Since the soil quality factors cannot be measured directly (Elliott, 1997; 

471 Brejda et al., 2000), the effect of soil types and the AVCs on these factors were inferred by 

472 monitoring soil attributes that comprised them.

473 Not all the soil quality factors varied significantly with soil types or with AVCs. Only 

474 SOM and microbial biomass factors varied significantly (P < 0.001) by soil types. SOM was able 

475 to discriminate the highest number of soil groups, separating the Peats (1) with the highest 

476 scores, from Lithomorphics, Podzols, and SWGs (2) with intermediate scores, and from Browns, 

477 GWGs and Pelosols (3) with the lowest scores (Fig. 5), thus rendering three distinct soil type 
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478 groupings. The microbial biomass factor had a minor effect, discriminating the Browns from 

479 GWGs and Lithomorphics only. The soil attributes constituting these soil quality factors (Soil 

480 respiration, SOC, pH, bulk density, qMic, Microbial-C and -N) showed significant (P < 0.01) 

481 variations discriminating at most three groups of soil types. In all the attributes considered, 

482 Browns, GWGs and Pelosols were grouped together. SOM factor, SOC and bulk density 

483 attributes separated the Peats as a unique soil group from all other soil types, which is not 

484 entirely a surprising result, since the peats are highly organic in nature with low BD as opposed 

485 to mineral soils with low OM content and higher bulk densities. The most important soil quality 

486 indicator associated with specific soil types or groups was the SOM factor with qMic > bulk 

487 density as the most important attributes. 

488 Similarly, the most important SQF differentiating the AVCs across the GB was SOM 

489 factor with bulk density > qMic attributes being the most important attributes. Four distinct AVC 

490 groups were separated based on SOM factor and BD. Heath and bog was exclusively separated as 

491 one group (1). Other groups were: (2) Crop and weeds with Tall grass and herb; (3) Fertile 

492 grassland, Infertile grassland, Lowland woodland, Tall grass and herbs, and Upland woodland; 

493 (4) Moorland grassland mosaic with Upland woodland. The Upland woodland and Tall grass and 

494 herbs were intermediate habitats classifying in more than one of these groups. The rest of the 

495 factors and attributes discriminated three or less groups. The soil attributes were generally better 

496 in discriminating the AVCs than the SQF (Table 6)

497 Since qMic and bulk density were moderately correlated (r=0.46**), they may be 

498 redundant as indicators to be used together. If only one attribute were to be used to monitor soil 

499 quality in soil types and AVCs, qMic and BD respectively seems to offers the greatest potential 

500 judging from their high weights on the respective prediction models. However the qMic may be 
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501 a ‘MUST be included’ soil attribute in the minimum data set, due to its important role in several 

502 soil functions, being a fraction of soil carbon. Soil C influences a wide range of soil functions 

503 including bulk density, infiltration, pesticide buffering, aeration, aggregate formation, pH, buffer 

504 capacity, cation-exchange properties, mineralization, and the activity of soil organisms (Larson 

505 and Pierce, 1991; Seybold et al., 1997). However, since the measurement of bulk density is 

506 reasonably easy to obtain, it is therefore reasonable to consider it together with SOC, microbial 

507 and biomass C as minimum data set for assessing soil quality across average vegetation classes 

508 in the study area.

509 Pedogenesis has taken place over thousands of years in the UK. During this period there 

510 has been a range of climate change related vegetation colonization phases starting from tundra 

511 heath and cycling through a range of forest types (Fitzpatrick, 1980). During this period parent 

512 material/topography, climate and vegetation would have been stable for long periods of time 

513 leading to the differentiation of soils. This was followed by progressive forest clearance which 

514 started approximately 1000-3000 years ago with vegetation cover becoming more grassland and 

515 heathland dominated. The last 200 years, however, has seen intense management of these soils 

516 with the addition of fertilisers, lime and organic wastes combined with mechanical mixing of the 

517 soils which has reversed centuries of acidification and soil horizon development. This 

518 homogenisation of the soil has led to shifts between soil types even over short timescales (e.g. 

519 humic-podzolic to brown soils on improved upland grasslands) and the loss of peat soils in 

520 intensive agricultural areas (e.g. East Anglia; Taft et al., 2018). One key question is therefore 

521 whether it is historical soil type or current vegetation that is more important in driving soil 

522 processes in the short term (e.g. over a 10-25 year timescale)? Here we found that more soil 

523 quality factors showed an AVC effect rather than a soil type effect. All soil quality factors varied 
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524 significantly (P < 0.01) by AVCs except soluble N and reduced N factors though none 

525 discriminated more than four groups. It is possible that some of the soil quality factors that were 

526 insensitive to vegetation may represent inherent soil qualities that are controlled by other key 

527 factors of soil formation (e.g. parent material/topography), while those which significantly varied 

528 by AVCs may represent dynamic soil qualities, possessing great potential for assessing 

529 management practices on soil quality (Jenny, 1994; Soybold et al., 1997; Brejda et al., 2000; 

530 Bünemann, et al., 2018).

531 Most indicators available in literature have not been validated nor their sensitivity tested 

532 in a wide range of situations (Velasquez et al., 2007). Some of the attributes measured and the 

533 soil quality indicators identified in this work are not usually used in the monitoring of soil 

534 quality, but are candidates for potential alternatives (Schloter, et al., 2018).

535

536 4.2. Prediction of SQF and SQI by soil type or AVC

537 The clusters from multivariate classification are “natural” groups, which uses the 

538 “minimum-variance” solution; where a population is partitioned into cluster subsets by 

539 minimizing the total within group variation while maximising between groups variance (Wishart, 

540 1968). The groups/cluster formed from the multivariate analysis need to have no significant 

541 overall spread. The clusters therefore, should correspond to data modes (distinct modes). 

542 However, most of our cluster modes defined by soil types were not always distinct. Most of them 

543 were separated from each other by significant “noise” data, making it impossible to resolve all 

544 the clusters. Thus, the definition of the reference values for each soil type or AVC was 

545 ambiguous, since most soils types or AVC groups could not be differentiated (Fig. 2). Forming, 

546 describing and defining the groups could involve the use all measured attributes even though 
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547 only a few could be differentiating (Soil Survey Staff, 1999). Even when the soil quality 

548 factors/indicators and attributes were used in combination, some groups/clusters could still not 

549 be resolved. Therefore, the soil quality indicators and attributes identified in this study can only 

550 be used to characterise soil types and AVCs groups rather than for prediction or classification. 

551 From the discriminant plots and the dendrogram in Fig. 3 three groups can be defined in soil 

552 types and four groups in the AVC. 

553

554 Figure 2. Discrimination plots showing 95% confidence circles around the means for soil types 

555 (Panel A) and AVCs (Panel C). Panels B and D are the respective cluster analyses dendrograms 

556 using a complete linkage method.

557

558 Defining differentiating criteria for these groups in the soil types could involve the use of 

559 bulk density attribute to define unique property ranges for the  first groups, a combination of soil 

560 respiration and SOC attributes for the second group, and a combination of qMic, soil respiration, 

561 SOC, pH and bulk density attributes for the third group. The Pelosols were the most dispersed 

562 and unreliable group for the purpose of attribute membership prediction, probably due to the fact 

563 that they were under sampled, considering that only six samples were included in the analysis. 

564 The classification of the AVCs using discriminate and cluster analyses on key attributes yielded 

565 four clusters. Defining differentiating criteria for these groups could involve the use of a 

566 combination of soil respiration, SOC, pH attributes to define property ranges for the first, second 

567 and fourth groups and bulk density attribute for the third group. Tall Grass and Herbs and 

568 Lowland Wooded were under sampled (with 11 and 6 samples respectively; Table S3) which 
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569 greatly compromised their predictive accuracy as can be observed from the large 95% 

570 confidence circles which overlapped with other AVC groups.

571

572 4.3. To what extent do soil types and/ or AVC act as major regulators of SQI?

573 The two-way ANOVA and the tests of between-subjects effects on the first canonical 

574 discriminant (CD) function from the canonical discriminant analysis (CDA) of the 20 physical, 

575 chemical and biological properties showed significant differences between groups (soil types and 

576 AVCs) as well as significant differences in the effect of soil type on the soil attributes between 

577 the AVC (significant interaction of soil type × AVC; Table 7). The ‘practical’ significance of 

578 each term from Partial Eta Square values indicates that AVCs (with a large Partial Eta Square = 

579 0.42), were a better regulator of the SQIs than soil types (with a weak Partial Eta Square = 0.09). 

580 The effect size for the interaction was equally relatively weak (Partial Eta Square = 0.16). The 

581 conclusion of the significant (P < 0.01) interaction effect of soil type × AVC is that the soil type 

582 differences in the first CD function (or attributes) partly depended on the AVCs where the soil 

583 was sampled. A multiple comparison of all soil type groups with AVC groups would be required 

584 to draw specific conclusions regarding the interaction effects, which is quite complex and is 

585 beyond the scope of this thesis. Suffice to say that there was a partial and varied soil type × AVC 

586 interaction across all levels. These interactions confirm Jenny’s (1994) theory that the biotic 

587 factor (of which vegetation plays a major role) is amongst others an important soil forming 

588 factor. However, the results from the cross tabulation indicated that not all soil types were well 

589 represented in the AVCs in going by the calculated expected counts. In some cases soil types 

590 were not at all represented (See Table S3). This problem can contribute to the complexity and 

591 accuracy in the interpretation of the interaction effect observed above.
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592

593 5. Conclusions

594 The dominant SQFs/Is and attributes varied by both soil type and AVC. The SOM factor 

595 was the most discriminating factor for both soil types and AVCs with microbial quotient and 

596 bulk density as the most discriminating measured attributes. The discriminant analysis on the 

597 important measured attributes comprising the SOM factor produced three fairly homogenous 

598 groups for soil types and four groups for AVCs. It was however, impossible to define reference 

599 values in the SQF/I or attributes for separate individual soil types or AVCs, as property ranges 

600 greatly overlapped due to large between group variability (probably due to integrating large 

601 spatial areas). Some of the differences observed in soil types with regard to soil attributes were in 

602 part dependent on the AVCs differences.

603 Therefore, whether SQIs can be predicted by soil types remains an open question. This 

604 study has shown that soil types or AVCs are poor predictors for SQF and indicators derived from 

605 factor analysis. However, different sets of SQIs and attributes for different regions have been 

606 used in the past in different studies (e.g. Brejda et al., 2000a; Brejda et al., 2000b; Shukla et al., 

607 2006; Valesquez et al., 2007; Ayoubi and Khormali, 2008) suggesting that there may not be a 

608 universal optimum set of indicators for use across different regions of differing climatic 

609 conditions. Therefore, the search for SQIs which can be predicted by soil types continues. 

610 For future work it might be worthwhile to make special consideration for the climatic, 

611 spatial and parent material variability in the sampling designs in addition to the inclusion of other 

612 promising soil attributes. Management factors should also be included (e.g. fertilizer regime). In 

613 terms of other key soil quality indicators, it would be interesting to include measures of key soil 

614 enzymes (e.g. cellulase, protease, phosphatase, sulfatase), their potential to release N2O and CH4, 
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615 their hydrophobicity and clay effects. A further consideration should be in the sampling design, 

616 to ensure equal and adequate representation of soil types in the aggregate vegetation classes in 

617 order to accurately capture the interaction effect.

618

619 Supporting information 

620 Figure S1 Map of the UK showing the individual soil sampling locations used in the study. The 

621 total land area is 209,331 km2.

622 Table S2:  Shows conceptually comparable classification of the soils in the World reference base 

623 (WRB) Classification. Number in brackets indicates the number of samples for that soil type

624 Table S3: Land class classification with the corresponding land uses

625 Table S4: The cross tabulation table of Aggregate Vegetation classes (AVCs) versus soil types.

626
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