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Abstract 28 

Gaining insight into the downstream consequences of non-coding variants is an essential step 29 

towards the identification of therapeutic targets from genome-wide association study (GWAS) 30 

findings. Here we have harmonized and integrated 8,727 RNA-seq samples with accompanying 31 

genotype data from multiple brain-regions from 14 datasets. This sample size enabled us to 32 

perform both cis- and trans-expression quantitative locus (eQTL) mapping. Upon comparing the 33 

brain cortex cis-eQTLs (for 12,307 unique genes at FDR<0.05) with a large blood cis-eQTL 34 

analysis (n=31,684 samples), we observed that brain eQTLs are more tissue specific than 35 

previously assumed. 36 

 37 

We inferred the brain cell type for 1,515 cis-eQTLs by using cell type proportion information. 38 

We conducted Mendelian Randomization on 31 brain-related traits using cis-eQTLs as 39 

instruments and found 159 significant findings that also passed colocalization. Furthermore, two 40 

multiple sclerosis (MS) findings had cell type specific signals, a neuron-specific cis-eQTL for 41 

CYP24A1 and a macrophage specific cis-eQTL for CLECL1.  42 

 43 

To further interpret GWAS hits, we performed trans-eQTL analysis. We identified 2,589 trans-44 

eQTLs (at FDR<0.05) for 373 unique SNPs, affecting 1,263 unique genes, and 21 replicated 45 

significantly using single-nucleus RNA-seq data from excitatory neurons.  46 

 47 

We also generated a brain-specific gene-coregulation network that we used to predict which 48 

genes have brain-specific functions, and to perform a novel network analysis of Alzheimer’s 49 

disease (AD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS) and Parkinson’s 50 
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disease (PD) GWAS data. This resulted in the identification of distinct sets of genes that show 51 

significantly enriched co-regulation with genes inside the associated GWAS loci, and which 52 

might reflect drivers of these diseases. 53 

 54 

Introduction 55 

Diseases of the brain manifesting as psychiatric or neurological conditions continue to be a 56 

massive global health burden: The World Health Organization estimates that in 2019 globally 57 

280 million individuals were affected by depression, 39.5 million by bipolar disorder, and 287.4 58 

million by schizophrenia1. Likewise, the fraction of 50 million people living with dementia today 59 

is expected to rise to 152 million by 20502, with similar trajectories for other neurodegenerative 60 

diseases. While substantial progress has been made in uncovering the genetic basis of psychiatric 61 

and neurological diseases through genome-wide association studies (GWAS), much of how the 62 

identified genetic variants impact brain function is still unknown. 63 

 64 

To translate from genetic signals to mechanisms, associations with gene expression levels, or 65 

expression quantitative trait loci (eQTL) have shown great potential. eQTLs can be divided in 66 

direct effects of local genetic variants (cis-eQTLs) and indirect effects of distal variants (trans-67 

eQTLs). Cis-eQTLs and trans-eQTLs can aid interpretation of GWAS loci in several ways. Cis-68 

eQTLs aid interpretation by identifying direct links between genes and phenotypes through 69 

causal inference approaches such as Mendelian randomization (MR) instrumented on QTLs and 70 

genetic colocalization analysis, whereas trans-eQTLs expose sets of downstream genes and 71 

pathways on which the effects of disease variants converge.  72 

 73 
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eQTLs are dynamic features and vary with tissue, cell type and additional factors such as 74 

response to stimulation. For an optimal interrogation of GWAS loci, it is therefore desirable to 75 

perform eQTL analyses in disease-relevant tissues3. To help interpret GWAS of 76 

neurodegenerative and psychiatric diseases, several brain-derived eQTL studies have been 77 

published, including meta-analyses by the PsychENCODE4 and AMP-AD5 consortia, which 78 

cover 1,866 and 1,433 individuals, respectively. However, to yield reliable results, statistical 79 

approaches such as MR and colocalization require robust effect size estimates from even larger 80 

carefully curated eQTL datasets. Large sample sizes are better suited to decompose eQTL effects 81 

to specific cell types. 82 

 83 

To maximize the potential of eQTL-based analyses in brain, we here combined and rigorously 84 

harmonized brain RNA-seq and genotype data from 15 different cohorts, including 8,727 RNA-85 

seq samples from all major brain eQTL studies and publicly available samples from the 86 

European Nucleotide Archive (ENA). By leveraging the statistical power across these datasets, 87 

we created a gene coregulation network based on 8,544 RNA-seq samples covering different 88 

brain regions and performed cis- and trans-eQTL analysis in up to 2,970 individuals of European 89 

descent, with replication in up to 420 individuals of African descent. This sample size enabled us 90 

to make inferences on the brain cell types in which eQTLs operate, and to systematically conduct 91 

Mendelian Randomization and colocalization analyses to find shared genetic effects between 92 

eQTLs and GWAS traits. This prioritized likely causal genes from GWAS loci for 31 brain-93 

related traits, including neurodegenerative and psychiatric conditions. Additionally, this 94 

identified cell type dependent eQTLs that may be associated with disease risk (Figure 1). 95 

 96 
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Results 97 

Leveraging public RNA-seq and genotype data to create large, harmonized brain 98 

eQTL and gene co-regulation datasets 99 

We combined 15 eQTL datasets into the 'MetaBrain' resource to maximize statistical power to 100 

detect eQTLs and to create a brain specific gene coregulation network (Figure 2; 101 

Supplementary Table 1, Supplementary Figures 1-5). MetaBrain includes 7,604 RNA-seq 102 

samples and accompanying genotypes from the AMP-AD consortium6 (AMP-AD MAYO6, 103 

ROSMAP6 and MSBB6), Braineac7, the PsychENCODE consortium8 (Bipseq4, BrainGVEX4, 104 

CMC9, GVEX and UCLA_ASD4), BrainSeq10, NABEC11, TargetALS12, and GTEx3. 105 

Additionally, we carefully selected 1,759 brain RNA-seq samples from the European Nucleotide 106 

Archive (ENA)13, calling and imputing genotypes based on the RNA-seq alignment 107 

(Supplementary Note, Supplementary Figure 1). There were 8,727 RNA-seq samples 108 

remaining after realignment and stringent quality control (Methods and Supplementary Note, 109 

Supplementary Figure 2-3). Using slightly different quality control measures, we created a 110 

gene network using 8,544 samples (Supplementary Note). We corrected the RNA-seq data for 111 

technical covariates and defined 7 major tissue groups (amygdala, basal ganglia, cerebellum, 112 

cortex, hippocampus, hypothalamus and spinal cord): Principal Component Analysis (PCA) on 113 

the RNA-seq data showed clear clustering by these major tissue groups, resembling brain 114 

physiology (Figure 2D, Supplementary Figure 4). Genotype data revealed individuals from 115 

different ethnicities (Figure 2B; Supplementary Figure 5), including 5,138 samples from 116 

European descent (EUR) and 805 samples from African descent (AFR). We created 6 cis-eQTL 117 

discovery datasets: Basal ganglia-EUR (n=208), Cerebellum-EUR (n=492), Cortex-EUR 118 

(n=2,970), Cortex-AFR (n=420), Hippocampus-EUR (n=168) and Spinal cord-EUR (n=108; 119 
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Supplementary Table 1, Figure 2C). Cis-eQTLs were not calculated for amygdala and 120 

hypothalamus tissue groups due to the small sample size (n<100).  121 

 122 

 123 

41% of the cortex cis-eQTL genes are regulated by multiple independent variants 124 

Within each discovery dataset, we performed a sample-size weighted cis-eQTL meta-analysis on 125 

common variants (MAF>1%), within 1 megabase (Mb) of the transcription start site (TSS) of a 126 

protein-coding gene. We identified 1,317 (Basal ganglia-EUR), 6,865 (Cerebellum-EUR), 5,440 127 

(Cortex-AFR), 11,803 (Cortex-EUR), 990 (Hippocampus-EUR), and 811 (Spinal cord-EUR) cis-128 

eQTL genes (FDR<0.05; Figure 3A; Supplementary Table 2). Cis-eQTL effect directions were 129 

highly concordant between datasets included in the Cortex-EUR meta-analysis (median 130 

Spearman r=0.80; median allelic concordance=89%; Supplementary Figure 6), indicating 131 

robustness of the identified effects across datasets. We observed that significant cis-eQTL 132 

findings were sensitive to RNA-seq alignment strategies, and it is difficult to confidently 133 

ascertain cis-eQTLs in regions with multiple haplotypes represented on patch chromosomes, like 134 

the MAPT locus on 17q21 (Supplementary Note, Supplementary Figures 7-9). We next 135 

performed conditional analysis to identify independent associations in each cis-eQTL locus (e.g., 136 

secondary, tertiary and quaternary eQTLs). In Cortex-EUR, 4,791 genes had a significant 137 

secondary cis-eQTL (41% of cis-eQTL genes identified in this dataset). 1,658 genes had tertiary 138 

and 598 had quaternary cis-eQTLs. We also identified secondary associations for the other 139 

discovery datasets albeit to a lesser extent (Figure 3A; Supplementary Table 2 and 3). 140 

 141 
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The properties of the Cortex-EUR cis-eQTLs conform to studies performed earlier in blood14 and 142 

brain15 (Figure 3B): primary lead cis-eQTL SNPs were generally located close (median distance: 143 

31 kilobase; kb) to the transcription start site (TSS; Figure 3B) and cis-eQTL genes had a lower 144 

probability for loss of function intolerance (pLI; χ2 p=6.35x10-147). Genes with a cis-eQTL 145 

generally had a higher median expression than those without (Wilcoxon p-value: 9.96x10-12). 146 

Contrary to blood, where genes in the highest expression decile are the most likely to have a cis-147 

eQTL, the third decile of gene expression had the most cis-eQTLs in cortex, and higher deciles 148 

had increasingly lower proportions of eQTLs (Supplementary Note, Supplementary Figure 149 

10A). This could suggest that highly expressed genes in the cortex have tighter genetic 150 

regulation than highly expressed genes in the blood, although we did not observe differences 151 

when comparing variance per gene expression decile between blood and brain (Supplementary 152 

Note, Supplementary Figure 10B). Cortex-EUR cis-eQTL genes showed limited functional 153 

enrichment for human phenotype ontologies (HPO), GO ontologies and TRANSFAC16 154 

transcription factor motifs (Supplementary Figure 10C and D, Supplementary Table 4). We 155 

observed similar patterns for secondary, tertiary and quaternary cis-eQTLs (Supplementary 156 

Note). 157 

 158 

We investigated differences in cis-eQTLs due to ancestry, brain region, data sets and tissue type. 159 

We compared Cortex-EUR, Cortex-AFR and a smaller, East Asian cortex dataset (Cortex-EAS; 160 

n=208, limited to the ENA cohort; Figure 2C) and observed high concordance between the 161 

different ethnicities (>95.67%; Figure 3C). There was high concordance between different brain 162 

regions overall (>94.58%), though the cerebellum showed lower concordance with the cerebral 163 

brain regions (Figure 3D). Despite the limited sample size compared to Cortex-EUR, we 164 
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identified 846 cis-eQTLs that were unique to Cerebellum-EUR (Supplementary Figure 11A). 165 

Of the 846 Cerebellum-EUR unique cis-eQTL genes, 184 had low gene expression levels in 166 

cortex, which may explain why they did not have a cis-eQTL in that tissue (Supplementary 167 

Figure 11B, C, Supplementary Note). For the remaining 662 genes that were highly expressed 168 

in both cortex and cerebellum, we performed functional enrichment of transcription factor 169 

binding sites (TFBS; Supplementary Table 5, Supplementary Note) and determined that these 170 

genes were enriched for TFBS of 101 distinct transcription factors. Five of these transcription 171 

factors had low gene expression in cortex and high expression in cerebellum (EOMES, TFAP2B, 172 

TFAP2A, IRX1 and IRX5, Supplementary Figure 11D). These transcription factors might 173 

explain the difference in cis-eQTL genes found in cerebellum but not in cortex, while many of 174 

these cis-eQTL genes are expressed in both tissues. Next, we compared Cortex-EUR cis-eQTLs 175 

with different tissues from the GTEx project (Figure 3E; Supplementary Figure 12, 176 

Supplementary Table 6). There was high concordance in brain-related tissues (cerebral tissues, 177 

>98% and cerebellar tissues, >94%) compared to other tissue types, and the lowest concordance 178 

rates were observed in testis (84%) and whole blood (85%). We also compared Cortex-EUR cis-179 

eQTLs with eQTLGen17, a large blood-based eQTL dataset (n=31,684; majority EUR ancestry) 180 

and observed a 76% concordance rate (Supplementary Figure 13; Supplementary Table 7) 181 

with a moderate correlation of cis-eQTL effect sizes (Rb=0.54 including all eQTLs, or Rb=0.62 182 

when pruning genes within 1Mb)18, supporting the lower concordance observed in GTEx-blood. 183 

Since we found that 24% of the shared cis-eQTLs between blood and brain showed opposite 184 

allelic effects, these results suggest that with larger sample sizes, more tissue specific regulatory 185 

variants can be identified. If a causal tissue-specific regulatory variant resides on a haplotype that 186 

also contains a variant that is specific for another tissue, it is well conceivable that opposite 187 
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allelic effects are going to be observed when contrasting eQTLs for these two tissues19. Since the 188 

procedures for eQTL mapping were identical between MetaBrain and eQTLGen, our results 189 

highlight the relevance of tissue-specific eQTL mapping to accurately assess the directionality of 190 

eQTLs, which can elucidate eQTLs with opposite allelic effects20. This direct comparison 191 

illustrates the importance of investigating the appropriate tissue type for the interpretation of 192 

GWAS signals. 193 

 194 

8% of Cortex cis-eQTLs are mediated by cell type proportion differences 195 

Cell type dependent eQTLs can be identified in bulk RNA-seq data by performing cell type 196 

deconvolution and determining cell type interaction eQTLs (ieQTLs)3,21,22. We predicted five 197 

major cell types using single cell RNA-seq derived signature profiles23. Of these, neurons were 198 

the most abundant cell type (median cell proportion: 32.8%), followed by endothelial cells 199 

(24.9%), macrophages (17.8%), oligodendrocytes (12.4%) and astrocytes (12.1%; 200 

Supplementary Figure 14). We predicted similar proportions for cerebellum as well as other 201 

brain regions. We observed that predicted cell proportions are different for spinal cord, showing 202 

a relatively low proportion of neuronal cells and high proportions of macrophage and 203 

oligodendrocytes compared to other brain tissues, as was previously reported24 (Supplementary 204 

Figures 15 and 16). Predicted neuron proportions in both cortex and cerebellum were negatively 205 

correlated with the predicted proportions of other cell types, and predicted endothelial cell 206 

proportions were negatively correlated with predicted macrophage proportions (Figure 4A). 207 

Predicted cell type proportions were positively correlated with immunochemistry (IHC) counts 208 

from the ROSMAP cohort25, both overall (Spearman r=0.71; Figure 4B) and per individual cell 209 

type (Spearman r>0.1; Figure 4B). It is difficult to validate these cell type proportion predictions 210 
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due to the small scale of the IHC experiment, but also because IHC and bulk RNA-seq reflect 211 

different aspects of gene or protein expression. Thus, there is a level of uncertainty for the 212 

expected proportion for each cell type26,27. 213 

 214 

With these predicted cell type proportions, we used DeconQTL22 to identify interaction-eQTLs 215 

(ieQTLs) by testing 18,850 cis-eQTLs in Cortex-EUR and 8,347 cis-eQTLs in cerebellum 216 

(including primary, secondary, tertiary and quaternary eQTLs). We identified 1,515 significant 217 

ieQTLs (8%) in at least one cell type (Benjamini-Hochberg; BH FDR<0.05) for Cortex-EUR 218 

(Supplementary Table 8). Of these, 632 (42%) were an ieQTL in neurons, likely because this is 219 

the most prevalent cell type. The majority of the ieQTLs (90.2%) were uniquely mapped to one 220 

cell type (Figure 4C). Although we observed a lower proportion of ieQTLs in cerebellum (126; 221 

1.5%, Supplementary Figure 17, Supplementary Table 8), this is likely a power issue due to 222 

the smaller sample size. While we observed the most ieQTLs for neurons in cortex, the majority 223 

(n=106; 84%) of ieQTLs in cerebellum were mediated by astrocytes and macrophages.  224 

 225 

We compared the allelic direction of the identified ieQTLs for each cell type with matching cell 226 

types from a single nucleus RNA-seq (snRNA-seq) dataset (ROSMAP cohort, n=39; 227 

Supplementary Table 9)28. When filtering on cell type mediated eQTLs by Decon-QTL 228 

(FDR<0.05), we observed a high average concordance in allelic direction for both the eQTL 229 

main effect (68%), as well as the direction of the interaction (68%; Supplementary Figure 230 

18B). 106 of the cortex cis-ieQTLs were also significant (BH FDR<0.05) in the snRNA-seq 231 

datasets (63 in excitatory neurons and 43 in oligodendrocytes). Of these, 13 excitatory neuron 232 

and 21 oligodendrocyte ieQTLs were cell type mediated by the corresponding cell type in bulk 233 
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with 100% allelic concordance (Decon-QTL; BH FDR<0.05; Supplementary Figure 18D). The 234 

ieQTLs replicating in oligodendrocytes included STMN4, NKAIN1, and FAM221A (Figure 4D 235 

and E and Supplementary Figure 19A-C), which have previously been identified as 236 

oligodendrocyte specific29. Additionally, this set of ieQTLs included AMPD3 (rs11042811) and 237 

CD82 (rs2303865), genes involved in the white matter microstructure30, suggesting a role for 238 

oligodendrocytes in this pathway. The ieQTLs replicating in excitatory neurons included 239 

SLC25A27 (alias UCP4; Figure 4F and Supplementary Figure 19D), a gene principally 240 

expressed in neurons31 that modulates neuronal metabolism32. The eQTL SNP for this gene, 241 

rs2270450, is in high LD (r2=0.71) with a variant previously associated with schizophrenia33.  242 

Previous work has suggested a possible role of this gene in Parkinson’s disease34,35. These results 243 

suggest that the decomposition of eQTLs to their relevant cell types in MetaBrain yields 244 

additional valuable information about the underlying biological mechanisms of genes and cell 245 

types of interest for genes associated with disease. 246 

 247 

Shared genetic effects between Cortex-EUR cis-eQTLs and brain-related traits 248 

As one application of the MetaBrain resource, we linked cis-eQTLs to variants associated with 249 

brain-related traits and diseases. For this, we first evaluated linkage disequilibrium (LD) between 250 

the Cortex-EUR cis-eQTL SNPs with the strongest association signals and index variants 251 

identified in 1,057 GWASs of brain-related traits (Supplementary Note, Supplementary Table 252 

10). We observed that 10% of brain-related trait SNPs for 242 eQTL genes were in LD with cis-253 

eQTL SNPs (r2>0.8). This percentage marginally increased to 12% when secondary, tertiary and 254 

quaternary eQTL SNPs were included, indicating that the majority of LD overlap is driven by 255 
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primary eQTL effects: primary eQTLs were 3.3-fold more likely to be in LD with a GWAS SNP 256 

(Fisher exact test p-value = 6.2x10-16; Supplementary Note). 257 

 258 

To more formally test for overlap between GWAS and cis-eQTL signals, we conducted 259 

Mendelian randomization (MR) to test for a causal effect between gene expression and 31 260 

neurological traits using cis-eQTLs as instruments (Supplementary Table 11). We computed a 261 

Wald ratio for each eQTL instrument, from which 1,192 Wald ratios out of 268,030 tested in 262 

total passed a suggestive p-value threshold (p<5x10-5
; Supplementary Table 12). 120 of the cis-263 

eQTL instruments from these suggestive findings were also cell type ieQTLs. We further 264 

prioritized our list of genes with evidence of Wald ratio effects by determining genetic 265 

colocalization between GWAS and cis-eQTL signals using coloc36. There were 159 significant 266 

Wald ratios that passed a strict Bonferroni correction (p<1.87x10-7) where the GWAS SNP and 267 

eQTL colocalized (PP4>0.7; Figure 5A; Supplementary Figure 20). 69 of these prioritized 268 

findings were associated with neurological and neuropsychiatric disease risk (Table 1). Three 269 

examples where MR and colocalization pointed to likely causal GWAS genes are reported 270 

below, for others, see Supplementary Note, Supplementary Tables 11-16 and 271 

Supplementary Figures 21 and 22. 272 

 273 

MR comparison between blood and brain eQTL datasets 274 

MR analysis for multiple sclerosis (MS)37 identified 102 instruments in 83 genes that passed the 275 

Bonferroni-adjusted p-value threshold (Supplementary Table 12). 20 of these findings passed 276 

colocalization (Table 1; Figure 5B). This included 11 genes for which MR suggested that 277 

increased gene expression and 9 genes where decreased gene expression may confer MS risk. 278 
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Systematic comparison of the Wald ratio estimates for MS of 5,919 shared cis-eQTL genes 279 

between Cortex-EUR and eQTLGen (where the same gene was instrumented but could be with 280 

different SNPs)17 showed opposite directions of effect for 2,291 (38.7%) genes (Supplementary 281 

Figure 23, Supplementary Table 14). Agreement improved when the same SNP instrument 282 

was compared between studies, but discordance still remained high with 1,891 (26%) out of 283 

7,274 MetaBrain Wald ratios showing opposite directionality to eQTLGen (Supplementary 284 

Table 15). The notable discordance in the directionality of the blood and brain eQTLs 285 

underscore the importance of tissue-specific differences when interpreting transcriptomics data.  286 

 287 

Of the 135 genes with MR findings in Cortex-EUR for MS, there were 28 genes without a 288 

significant eQTLGen instrument, including 3 genes (SLC12A5, CCDC155 and MYNN) for which 289 

we found both MR significance and colocalization in MetaBrain (Supplementary Note; 290 

Supplementary Table 16. Comparing blood and brain gene expression levels for these genes in 291 

GTEx, SLC12A5 had almost no expression in blood, while expression was comparable between 292 

tissues for CCDC155 and MYNN (Supplementary Note, Supplementary Figure 24). The 293 

discrepancy in MR findings observed between Cortex-EUR and eQTLGen suggest tissue-294 

dependent genetic effects for MS. 295 

 296 

MR and colocalization analysis links multiple sclerosis GWAS loci to cell type specific 297 

eQTLs for CYP24A1 and CLECL1 298 

Two MS genes, CYP24A1 and CLECL1, showed cell type specific cis-eQTLs (Figure 5C and 299 

D). Another gene that was previously suggested to be neuron specific38, SLC12A5, did not show 300 

a significant ieQTL in our data. Our analysis used rs2259735 as the Cortex-EUR eQTL 301 
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instrument variable and suggested that higher expression of CYP24A1 is associated with 302 

increased MS risk (MR Wald ratio=0.13, p=1.7x10-9). We also observed colocalization of the 303 

cis-eQTL and the MS GWAS signal at this region (coloc PP4=0.99), suggesting the same 304 

underlying genetic signal. Furthermore, ieQTL analysis showed increasing expression of 305 

CYP24A1 with increasing neuronal proportions for the MS risk allele rs2248137 (interaction 306 

beta=2.85; interaction FDR=1x10-308; Figure 5C). Rs2248137 has previously been associated 307 

with MS39 and is in strong LD with SNP rs2259735 (r2=0.9). CYP24A1 is a mitochondrial 308 

cytochrome P450 hydroxylase that catalyzes the inactivation of 1,25-dihydroxyvitamin D3 309 

(calcitriol), the active form of vitamin D40. Loss of function mutations in CYP24A1 increase 310 

serum calcitriol and cause hereditary vitamin D-mediated PTH-independent hypercalcemia41,42. 311 

In the brain, vitamin D plays vital functions in regulating calcium-mediated neuronal 312 

excitotoxicity, reducing oxidative stress and regulating synaptic activity43. Epidemiological 313 

studies have proposed vitamin D deficiency as a risk factor for MS44,45, which has recently been 314 

validated through MR46–48.    Our findings are consistent with a previous report of a shared MS 315 

GWAS signal and CYP24A1 cis-eQTL signal with frontal cortex but not white matter, using a 316 

brain eQTL dataset derived from expression microarrays to confirm the findings in the same 317 

direction of effect49.  318 

 319 

As another MS signal that passed MR and colocalization, decreased expression of CLECL1 was 320 

associated with increased MS risk (MR Wald ratio=-0.16, p=1.58x10-9, coloc PP4>0.92). The 321 

ieQTL analysis indicated that the rs7306304 allele increased expression of CLECL1 with 322 

increasing macrophage proportion (interaction beta=-3.65; interaction FDR=1x10-308, Figure 323 

5D), confirming a previous finding of a microglia cell-type specific cis-eQTL for CLECL1 at this 324 
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MS risk locus39. Rs7306304 is in strong LD with the MS lead SNP, rs7977720 (r2=0.84)39. 325 

CLECL1 encodes a C-type lectin-like transmembrane protein highly expressed in dendritic and B 326 

cells that has been proposed to modulate immune response50. CLECL1 was previously found to 327 

be lowly expressed in cortical bulk RNA-seq data, while having a 20-fold higher expression in a 328 

purified microglia dataset39, suggesting that decreased CLECL1 expression increases MS 329 

susceptibility through microglia-mediated dysregulation of immune processes in the brain. 330 

 331 

MetaBrain allows for the identification of trans-eQTLs 332 

Trans-eQTL analysis can identify the downstream transcriptional consequences of disease 333 

associated variants. However, we have previously observed in blood that trans-eQTL effect-sizes 334 

are usually small. Here we studied whether this applies to brain as well. In order to maximize 335 

sample size and statistical power, we performed a trans-eQTL analysis in 3,111 unique 336 

individuals. We reduced the number of tests performed by limiting this analysis to 130,968 337 

unique genetic variants: these include variants that have been previously found to be associated 338 

with diseases and complex traits through GWAS and variants that were primary, secondary, 339 

tertiary or quaternary lead cis-eQTL SNPs from any of the aforementioned discovery datasets.  340 

 341 

We identified 3,940 trans-eQTLs (FDR<0.05), of which 2,589 (66%) were significant after 342 

removing trans-eQTLs for which the gene that partially map within 5Mb of the trans-eQTL SNP 343 

(Supplementary Note; Figure 6A; Supplementary Table 17). These 2,589 eQTLs reflect 373 344 

unique SNPs, and 1,263 unique genes. 222 (60%) of the trans-eQTL SNPs were a cis-eQTL 345 

SNP, of which 42 (19%) were a cis-eQTL index SNP in Cortex-EUR, and 22 (10%) in tissues 346 
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other than cortex. This suggests that trans-eQTLs can also be observed for cis-eQTLs index 347 

SNPs identified in other tissues (Supplementary Table 17).  348 

 349 

1,060 (83%) of the observed trans-eQTL genes were affected by 3 variants at 7p21.3 350 

(rs11974335, rs10950398 and rs1990622, LD r2>0.95; Figure 6A and B; Supplementary Table 351 

17). This locus is associated with several brain-related traits, including frontotemporal lobar 352 

degeneration51 and major depressive disorder52 (Supplementary Table 17). The trans-eQTL 353 

SNP rs1990622 in this locus is the lead GWAS SNP for the TDP-43 subtype of frontotemporal 354 

lobar degeneration (FTLD-TDP)53, just downstream of TMEM106B. Matching previous 355 

reports54,55, we observed that this locus was associated with predicted neuron proportions 356 

(Supplementary Tables 18-20). Moreover, the predicted neuronal proportions were lower in 357 

AD cases than controls (Supplementary Figure 25), which may explain why a large number of 358 

trans-eQTLs signals at this region were most pronounced in the AMP-AD datasets and had 359 

stronger effect sizes in AD samples (Supplementary Figure 26 and 27). We performed 360 

functional enrichment on the trans-eQTL genes using g:Profiler56and observed that upregulated 361 

trans-eQTL genes were enriched for neuron related processes such as synaptic signaling 362 

(p=1.3x10-28) and nervous system development (p=2.9x10-21). Downregulated genes were 363 

enriched for gliogenesis (p=1.6x10-8) and oligodendrocyte differentiation (p=3.1x10-6; 364 

Supplementary Table 21). Surprisingly, 21 of these trans-eQTLs were also significant (BH 365 

FDR<0.05) in the snRNA-seq data of excitatory neurons with 100% allelic concordance 366 

(Supplementary Figure 28; Supplementary Table 22), suggesting that some of these trans-367 

eQTLs might not be driven by differences in neuron proportions. A detailed description of this 368 

locus can be found in the Supplementary Note. 369 
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 370 

We observed trans-eQTLs from multiple independent genomic loci for 14 genes, suggesting 371 

convergent trans-eQTL effects (Supplementary Table 17). The genes with these convergent 372 

trans-eQTL effects were previously associated with immunological phenotypes (HBG2, PIWIL2, 373 

and SVEP1), brain-related phenotypes (DAZAP2), immunological and brain-related phenotypes 374 

(HMCES, KCNA5, MBTPS1, PRPF19, PTH2R and RFPL2) or other phenotypes (ANKRD2, 375 

PEX12, PROM1 and ZNF727).  376 

 377 

Encouragingly, some of these convergent trans-eQTLs have already been previously identified 378 

in blood. For example, two independent variants (rs1427407 on 2p16.1 and rs4895441 on 379 

6q23.3) affected hemoglobin subunit gamma-2 (HBG2) on 11p15.4 in trans (Figure 6C). These 380 

variants have previously been associated with fetal hemoglobin levels57–59 and various blood cell 381 

counts.  382 

 383 

We also observed converging effects that were not identified in blood. For instance, KCNA5 384 

(12p13.32) was affected by variants from three independent loci at 2p23.3 (rs930263), 4p15.32 385 

(rs2702575 and rs2604551) and 7p21.3 (rs10950398 and rs11974335) as described in Figure 386 

6C; Supplementary Table 17. KCNA5 encodes the potassium voltage-gated channel protein 387 

Kv1.5. Potassium voltage-gated channels regulate neuron excitability among other functions, and 388 

blockers for these channels have been suggested as a therapeutic target for multiple sclerosis 389 

patients60. Furthermore, KCNA5 has previously been associated with cardiovascular disease61, 390 

and has been suggested to modulate macrophage and microglia function62. Three cis-eQTLs 391 

were associated with rs930263, including ADGRF3, DRC1, and a secondary eQTL on HADHB. 392 
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rs930263 was previously associated with sleep dependent LDL levels63 and several blood 393 

metabolite levels64–67. The 4p15.32 locus was previously associated with insomnia and adult 394 

height68 and the 7p21.3 locus with depression and blood protein levels. These results thus 395 

suggest that several sleep related variants affect potassium voltage-gated regulation of neuron 396 

excitability. 397 

 398 

This is the first report of trans-eQTLs in the brain cortex for many of the variants identified, and 399 

our results indicate that many of these signals are brain-specific. We observed the trans-eQTL 400 

effect-sizes in brain are usually small, similar to what we previously observed in blood, 401 

emphasizing the importance of increasing the sample-size of brain eQTL studies. 402 

 403 

Brain co-regulation networks improve GWAS interpretation 404 

We generated brain-region specific co-regulation networks based on the RNA-seq data from 405 

8,544 samples (Supplementary Note, Supplementary Figures 29-30). We previously have 406 

done this for a heterogenous set of RNA-seq samples spanning across all available tissue types 407 

and cell lines (n=31,499)69,70, which showed that such a co-regulation network can be 408 

informative for interpreting GWAS studies69 and helpful in the identification of new genes that 409 

cause rare diseases70. 410 

 411 

We applied a new approach ('Downstreamer', in preparation, see Supplementary Note) that 412 

improves upon DEPICT, our previously published post-GWAS pathway analysis method69. 413 

Downstreamer can systematically determine which genes are preferentially co-regulated with 414 

genes that reside within GWAS loci. It does not use a significance threshold for a GWAS, but 415 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 5, 2021. ; https://doi.org/10.1101/2021.03.01.433439doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.01.433439


  
 

19 
 

instead uses all SNP information. In addition, Downstreamer accounts for LD and uses rigorous 416 

permutation testing to determine significance levels and control for Type I errors. 417 

 418 

We applied Downstreamer to schizophrenia (SCZ)71, PD72, MS37, AD73 and ALS GWAS 419 

summary statistics (Supplementary Table 23-27), using three different brain-derived co-420 

regulation networks: one based on all 8,544 brain samples, one limited to 6,527 cortex samples 421 

and one limited to 715 cerebellum samples. We observed that there were multiple sets of genes 422 

that showed strong co-regulation with genes inside the GWAS loci for these diseases. For MS 423 

and AD, these were mostly immune genes, whereas for PD, ALS and SCZ these were genes that 424 

are specifically expressed in brain (Supplementary Table 23-27).  425 

 426 

For ALS, we applied Downstreamer to summary statistics from a recent meta-analysis in 427 

individuals from European ancestry (Supplementary Table 28), and a trans-ethnic meta-428 

analysis including European and Asian individuals (EUR+ASN; Supplementary Table 23; van 429 

Rheenen et al., manuscript in preparation). To look for contributions of non-neurological cell 430 

types and tissues, we first used the previously published heterogenous network70 that comprises 431 

many different tissues and cell types, but did not identify genes that were significantly enriched 432 

for co-regulation with genes inside ALS loci. However, when we applied our method to the 433 

different brain co-regulation networks, we identified a set of 27 unique co-regulated genes 434 

(EUR+ASN summary statistics; Figure 7A; Supplementary Table 23), depending on the type 435 

of brain co-regulation network used. HUWE1 was shared between the brain and cortex co-436 

regulation network analysis, while UBR4 was shared between the cortex and cerebellum 437 

analysis. UBR4 is a ubiquitin ligase protein expressed throughout the body. A private UBR4 438 
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mutation, segregated with episodic ataxia in a large three-generation Irish family, implicates its 439 

role in muscle coordination74. UBR4 interacts with the Ca2+ binding protein, calmodulin and Ca2+ 440 

dysregulation has been linked to proteins encoded by ALS disease genes and motor neuron 441 

vulnerability75. We observed in the Downstreamer findings that many of these prioritized genes 442 

are co-regulated with each other (Figure 7B), and using our recently developed clinical symptom 443 

prediction algorithm70, there was an enrichment of genes implicated in causing gait disturbances 444 

(Figure 7C). These genes are associated with ALS (highlighted in blue), brain-related disorders 445 

(including DNAJC5, HTT, HUWE1, TSC1 and YEATS2) or muscle-related disorders (including 446 

KMT2B). While various loci have been identified for both familial and sporadic forms of ALS, 447 

the function of the positional candidate genes within these loci is still unclear. Our 448 

Downstreamer analysis identified genes that show strong coregulation with positional candidate 449 

genes inside ALS loci, suggesting that these positional candidates must have a shared biological 450 

function. 451 

 452 

For MS, the heterogeneous network, including many blood and immune cell type samples, 453 

identified 257 unique genes that showed significantly enriched co-regulation with genes inside 454 

MS loci (Figure 7D; Supplementary Table 27), and many were immune genes, which is also 455 

expected for this disease. However, when we applied the brain co-regulation networks, we 456 

identified a much smaller set of genes, and these genes showed strong enrichment for genes 457 

involved in the neurotrophin signaling pathway (Figure 7E and F). Neurotrophins are 458 

polypeptides secreted by immunological cell types. In the brain, neurotrophin concentrations are 459 

important to promote the survival and proliferation of neurons as well as synaptic transmission. 460 

In MS patients, neurotrophin reactivity is higher in MS plaques, whereby neurotrophins are 461 
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released by peripheral immune cells directly to the inflammatory lesions, suggesting a protective 462 

role of this signaling process76,77. Neutrophins are also released by glial cells in the brain, 463 

including microglia and astrocytes, and their role in stimulating neuronal growth and survival 464 

could also contribute to an overall neuroprotective effect78. In the heterogeneous network, we 465 

observed high expression for these genes in immune-related tissues (Supplementary Figure 466 

31A), supporting the “outside-in hypothesis” that the immune system may be a potential trigger 467 

for MS37,79. The brain specific network showed high expression in spinal cord and cerebellum 468 

but lower expression in cortex samples (Supplementary Figure 31B), which could be 469 

highlighting the specific biological processes taking place in these CNS regions that lead to 470 

disease. For example, the cerebellum is responsible for muscle coordination and ataxia occurs in 471 

approximately 80% of MS patients with symptoms80. We speculate that both dysregulation of the 472 

immune system and dysregulation of certain neurological processes is a prerequisite for 473 

developing MS. 474 

 475 

Discussion 476 

We here describe an integrated analysis of the effects of genetic variation on gene expression 477 

levels in brain in over 3,000 unique individuals. This sample size yielded sufficient statistical 478 

power to identify robust cis-eQTLs and to our knowledge for the first-time brain trans-eQTLs 479 

that emanate from SNPs previously linked to neurodegenerative or psychiatric diseases. 480 

 481 

We compared cis-eQTLs in MetaBrain to cis-eQTLs in eQTLGen from a set of 31,684 blood 482 

samples. We observe a large proportion of shared cis-eQTLs between brain and blood, most of 483 

which have the same allelic direction of effect. Our analysis also permitted us to identify cis-484 
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eQTL effects that are independent of the primary cis-eQTLs. Some of these independent effects 485 

reflect SNPs that are also the index variants for several neurological and psychiatric disorders, 486 

making them particularly interesting for subsequent follow-up. Recent observations have 487 

revealed that SNPs with the strongest cis-eQTL effects are depleted for GWAS associations81. 488 

Thus, secondary, tertiary or quaternary cis-eQTL SNPs could potentially be even more 489 

interesting to follow-up than certain primary cis-eQTL SNPs to link association signals to 490 

function. 491 

 492 

We studied different regions in the brain, permitting us to identify brain-region specific eQTLs. 493 

For this, to exclude spurious differences that may arise from different cell type proportions 494 

across brain regions, we first inferred cell type percentages for the major brain cell types. We 495 

then applied an eQTL interaction model (i.e., using the cell type percentage x genotype as 496 

interaction term), permitting us to identify 1,515 cis-eQTLs that show cell type specificity. Most 497 

of these cell type dependent effects were observed for oligodendrocytes and neurons, the two 498 

most common cell types in the brain for which statistical power to observe such effects was the 499 

strongest. Still, we could identify 461 cell type dependent eQTLs also for macrophages, 500 

endothelial cells, or astrocytes. While we found strong concordance with immunohistochemistry 501 

results, our findings are largely based on a deconvolution approach, which in future studies will 502 

benefit from validation in purified cell types, e.g. using population-based single-cell RNA-seq 503 

datasets as they are now becoming available82,83. Such single-cell eQTL studies can gain 504 

substantial statistical power by limiting analyses to the large set of primary, secondary, tertiary 505 

and quaternary cis-eQTLs our study reveals for bulk brain samples. 506 

 507 
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To our knowledge, this is the best powered Mendelian randomization and colocalization analysis 508 

using brain cis-eQTLs as instruments for bipolar disease, epilepsy, frontotemporal dementia, 509 

multiple sclerosis, cognitive function and years of schooling GWAS outcomes. Interestingly, 510 

also for schizophrenia three signals for CILP2, MAU2 and TM6SF2 met our criteria that had not 511 

been reported in a recent psychiatric genomics consortium study84, further emphasizing the value 512 

of our well-harmonized, large eQTL data set in the tissue type of interest (Supplementary 513 

Note). Our results also identify increased CYP24A1 expression as associated with multiple 514 

sclerosis risk and propose neurons as the most susceptible cell type to CYP24A1 expression 515 

changes and likely active vitamin D levels. The potentially novel role of CYP24A1 in brain could 516 

play an important role in MS etiology, as may lowered expression of CLECL1 in microglia. 517 

 518 

The 2,589 identified trans-eQTLs allowed us to gain insights into downstream molecular 519 

consequences of several disease-associated genetic variants. Our trans-eQTL analysis focused on 520 

a single brain region and SNPs with a known interpretation (i.e. trait-associated variants and cis-521 

eQTL SNPs). We therefore expect that a genome-wide approach will identify many more trans-522 

eQTLs. 2,218 of the trans-eQTLs were located in a 7p21.3 locus and the genes were strongly 523 

correlated with neuron proportions, indicating that cell type proportions can heavily impact 524 

trans-eQTL identification. However, 21 of these trans-eQTLs replicated in snRNA-seq data, 525 

suggesting that some of these trans-eQTLs may also exist in single cells. Excluding the 7p21.3 526 

locus, we identified 371 trans-eQTLs located elsewhere in the genome, which are less likely due 527 

to neuron proportion differences. For several neurological and psychiatric conditions, our 528 

analyses indicate pathways that may help to elucidate disease causes and putative intervention 529 

points for future therapies.  530 
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 531 

We used the brain-specific co-regulation networks to study several brain-related GWAS studies, 532 

with the aim to prioritize genes that show significantly enriched co-regulation with genes inside 533 

the associated GWAS loci. For ALS this revealed a limited, but significant set of genes which do 534 

not map within associated ALS loci, but that link genes within multiple ALS loci. Follow-up 535 

research on these prioritized genes might therefore help to better understand the poorly 536 

understood causal pathways that cause ALS. While it is tempting to speculate that these 537 

prioritized genes might represent genes that could serve as potential targets for pharmaceutical 538 

intervention, follow-up research is needed in order to establish whether these genes play a 539 

relevant role in ALS. 540 

 541 

Our study had several limitations. For instance, we performed single tissue eQTL analyses that 542 

were limited to a single RNA-seq sample per individual, excluding many RNA-seq samples from 543 

the analysis. A joint analysis across tissues, including multiple RNA-seq samples per individual 544 

using for example random effects models would further improve power85,86, which would be 545 

especially useful for the future identification of trans-eQTLs. Additionally, LD overlap analysis, 546 

Mendelian randomization and colocalization are sensitive to many factors, including eQTL and 547 

GWAS study sample size, effect size, variant density, LD structure and imputation quality. 548 

Differences between study designs may consequently influence the results of such analyses. For 549 

example, our colocalization and LD overlap analysis did not include the MAPT gene for 550 

Alzheimer’s disease. The effect sizes of the cis-eQTLs for this gene were limited in our study, 551 

since our alignment strategy could not account for the different long-range haplotypes in this 552 

locus causing the H1/H2 haplotype separating SNP rs8070723 to have a p-value of 0.2 553 
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(Supplementary Note). We note that this might be an issue for other genes as well. Future 554 

studies using graph-based alignment tools or long read sequencing methods would be required to 555 

ultimately determine the true effects on such genes. Our approach combined Mendelian 556 

randomization and colocalization, as it is possible for the cis-eQTL instrument to coincidentally 557 

share association with the GWAS trait due to surrounding LD patterns in the genomic region. 558 

We opted to perform single SNP MR because other approaches, such as inverse variance 559 

weighted87 (IVW) MR, pool the estimates across many SNP instruments, which for many genes 560 

were not available. Potentially, methods such as IVW could be applied to our dataset in the 561 

future when genome-wide trans-eQTL analysis would identify many more independent 562 

instruments per gene. However, MR analyses using QTLs could be susceptible to confounding 563 

because of horizontal pleiotropy88, where a single gene is affected by multiple indirect effects, 564 

which is likely to be exacerbated by including trans-eQTLs. Our colocalization analysis used a 565 

more lenient posterior probability (PP4) threshold of >0.7, which we selected because we 566 

performed colocalization only in loci having a significant MR signal, limiting potential false 567 

positives. However, our colocalization approach assumed the presence of a single association in 568 

each locus, which might not be optimal for cis-eQTL loci harboring multiple independent 569 

variants, such as for the TREM2 gene (Supplementary Note). Consequently, our approach may 570 

have not detected colocalizing signals in some loci. Recently, colocalization methods were 571 

published89 that do not have this assumption, and consequently may improve future 572 

colocalization results.      573 

    574 

With the numbers of GWAS loci for brain-related traits and diseases steadily climbing, we 575 

expect that our resource will prove itself as a highly valuable toolkit for post-GWAS brain 576 
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research and beyond. Among others, we demonstrate how our dataset can be utilized to 577 

disambiguate GWAS loci, point to causal pathways and prioritize targets for drug discovery. To 578 

our knowledge, this is the largest non-blood eQTL analysis ever conducted, providing insights 579 

into the functional consequences of many disease associated variants. We expect that through 580 

future integration with single-cell eQTL studies that have higher resolution but lower power, our 581 

results will help to pinpoint transcriptional effects in specific brain cell types for many disease-582 

associated genetic variants. 583 

584 
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Methods 585 

Dataset collection and description 586 

We collected human brain bulk RNA-seq datasets from different resources. Briefly, we collected 587 

previously published samples from the AMP-AD consortium6 (AMP-AD MAYO6, ROSMAP6 588 

and MSBB6), Braineac7, the PsychENCODE consortium8 (Bipseq4, BrainGVEX4, CMC9, GVEX, 589 

and UCLA_ASD4) from Synapse.org using the Python package synapseclient90. The NABEC and 590 

GTEx datasets were retrieved from NCBI dbGaP, and TargetALS data was provided directly by 591 

the investigators. For an overview of the number of samples per dataset, see Supplementary 592 

Table 1. 593 

 594 

Additionally, we collected public brain bulk RNA-seq samples from the European Nucleotide 595 

Archive (ENA; Supplementary Table 28). To select only the brain samples, we first 596 

downloaded the SkyMap database91, which provides readily mapped read counts and sample 597 

annotations. We performed rigorous quality control on this dataset, and selected ENA, excluding 598 

for example brain cell lines, brain cancer samples, and samples with RNA spike ins (See 599 

Supplementary Note for more details on this method, Supplementary Figure 1), resulting in 600 

1,759 samples, and 9,363 samples when combined with the previously published datasets 601 

(Supplementary Table 1). 602 

 603 

RNA-seq data 604 

RNAseq data was processed using a pipeline built with molgenis-compute92. FASTQ files were 605 

aligned against the GENCODE93 v32 primary assembly with STAR94 (version 2.6.1c), while 606 

excluding patch sequences (see Supplementary Note) with parameter settings: 607 
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outFilterMultimapNmax = 1, twopassMode Basic, and outFilterMismatchNmax = 8 for paired-608 

end sequences, outFilterMismatchNmax = 4 for single-end sequences. Gene quantification was 609 

performed by STAR, similar to gene quantification using HTSeq95 with default settings. The 610 

gene counts were then TMM96 normalized per cohort using edgeR97 (version 3.20.9) with R98 611 

(version 3.5.1). 612 

 613 

To measure FASTQ and alignment quality we used FastQC99 version 0.11.3), STAR metrics, and 614 

Picard Tools100 (version 2.18.26) metrics (MultipleMetrics, and RNAseqMetrics). Samples were 615 

filtered out if aligned reads had <10% coding bases (Supplementary Figure 3A), <60% reads 616 

aligned (Supplementary Figure 3B), or <60% unique mapping. 117 of the RNA-seq samples 617 

did not pass this filter, mostly from GTEx97. The other quality measurements were visually 618 

inspected but contained no outliers. 619 

 620 

RNA-sequencing library preparation, and other technical factors can greatly influence the ability 621 

to quantify of gene expression. Therefore, for a given sample such factors often influence the 622 

total variation. For example, such issues can be caused by problems during RNA-seq library 623 

preparation that led to an increased number of available transcripts to quantify, or conversely, a 624 

lack of variation in quantified transcripts (compared to other samples in the dataset). We 625 

therefore opted to identify RNA-seq outliers that were not explained by poor RNA-seq alignment 626 

metrics. For this purpose, we performed PCA on the RNA data prior to normalization: we 627 

reasoned that the first two components capture excess or depletion of variation caused by 628 

technical problems. We identified 20 samples that were outliers in the PCA plot of the RNA-seq 629 

data, where PC1 was more than 4 standard deviations from the mean (Supplementary Figure 630 
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3A). Twenty outlier samples were removed and the principal components were recalculated 631 

(Supplementary figure 3B). We detected and removed 45 additional outlier samples. We 632 

confirmed no additional outlier samples in the third iteration and principal component 633 

calculation, (Supplementary Figure 3C) and 8,868 samples were taken through additional QC. 634 

 635 

We next removed genes with no variation and then log2-transformated, quantile normalized and 636 

Z-score transformed the RNA-seq counts per sample. PCA on the normalized expression data 637 

showed that datasets strongly cluster together (Supplementary Figure 4A), likely due to dataset 638 

specific technical differences (e.g., single-end versus paired-end sequencing). To correct for this, 639 

the normalized expression data was correlated against 77 covariates from different QC tools 640 

(FastQC99, STAR94, and Picard Tools100), such as percent protein coding, GC content, and 5' 641 

prime/3' prime bias. The top 20 correlated technical covariates (% coding bases, % mRNA bases, 642 

% intronic bases, median 3' prime bias, % usable bases, % intergenic bases, % UTR bases, % 643 

reads aligned in pairs, average mapped read length, average input read length, number of 644 

uniquely mapped reads, % reads with improper pairs, number of reads improper pairs, total 645 

sequences, total reads, % chimeras, number of HQ aligned reads, number of reads aligned, HQ 646 

aligned Q20 bases, HQ aligned bases) were regressed out of the expression data using a linear 647 

model. After covariate correction, clustering of datasets in PC1 and PC2 were no longer present 648 

(Supplementary Figure 4B).  649 

 650 

Our collection of RNA-seq samples consisted of 36 different tissue labels, many of which were 651 

represented by only a few samples. Therefore, we next defined major brain regions present in our 652 

dataset, including samples from amygdala, basal ganglia, cerebellum, cortex, hippocampus and 653 
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spinal cord. We noted that some samples (especially from ENA) were not annotated with a 654 

specific major brain region. To resolve this, we performed PCA over the sample correlation 655 

matrix and then performed k-nearest neighbors on the first two PCs (k=7) to classify samples to 656 

the major brain regions. Using this approach, we defined a set of 86 amygdala, 574 basal ganglia, 657 

723 cerebellum, 6,601 cortex, 206 hippocampus, 252 hypothalamus and 285 spinal cord samples 658 

(Supplementary Table 1, Figure 2A). 659 

 660 

Genotype data and definition of eQTL datasets 661 

The genotype data for the included datasets was generated using different platforms, including 662 

genotypes called from whole genome sequencing (WGS; AMP-AD, TargetALS12, GTEx3), 663 

genotyping arrays (NABEC11, Braineac7), and haplotype reference consortium (HRC)101 imputed 664 

genotypes (PsychENCODE datasets), or were called from RNA-seq directly (ENA dataset; see 665 

Supplementary Note). In total, 22 different genotyping datasets were available, reflecting 6,658 666 

genotype samples (Supplementary Table 1).  667 

 668 

We performed quality control on each dataset separately, using slightly different approaches per 669 

platform. For the array-based datasets, we first matched genotypes using GenotypeHarmonizer102 670 

using 1000 genomes phase 3 v5a (1kgp) as a reference, limited to variants having MAF >1%, 671 

<95% missingness and Hardy-Weinberg equilibrium p-value <0.0001. Genotypes were then 672 

imputed using HRC v1.1 as a reference on the Michigan imputation server103. In all HRC 673 

imputed datasets, variants with imputation info score <0.3 were removed. For the WGS datasets, 674 

we removed indels and poorly genotyped SNPs having VQSR tranche <99.0, genotype quality 675 

<20, inbreeding coefficient <-0.3 and >5% missingness, setting genotype calls with allelic depth 676 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 5, 2021. ; https://doi.org/10.1101/2021.03.01.433439doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.01.433439


  
 

31 
 

<10 and allelic balance <0.2 or >0.8 as missing. WGS datasets were not imputed with HRC. 677 

Considering the small size of some of the datasets, we decided to focus further analysis on 678 

variants with MAF >1% and Hardy-Weinberg p-value >0.0001. 679 

 680 

In each dataset, we removed genetically similar individuals by removing individuals with pihat 681 

>0.125, as calculated with PLINK 2.0104. Additionally, we merged genotypes with those from 682 

1kgp, pruned genotypes with --indep-pairwise 50 5 0.2 in PLINK, and performed PCA on the 683 

sample correlation matrix. We performed k-nearest neighbors (k=7) on the first two PCs, using 684 

the known ancestry labels in 1kgp, to assign an ancestry to each genotyped sample. The majority 685 

of included samples was of EUR descent: 5,138 samples had an EUR assignment, 805 samples 686 

had an AFR assignment, and 573 samples were assigned to the other ethnicities (Supplementary 687 

Table 1, Figure 2B). 688 

 689 

For the purpose of eQTL analysis, we next assessed links between RNA-seq and genotype 690 

samples and noted that some individuals had multiple RNA-seq samples (e.g. from multiple 691 

brain regions) or multiple genotype samples (e.g. from different genotyping platforms). In total, 692 

we were able to determine 7,644 links between RNA-seq samples and genotype samples 693 

(Supplementary Table 1), reflecting 3,525 unique EUR individuals, 624 unique AFR 694 

individuals and 510 unique individuals assigned to other ethnicities. We then grouped linked 695 

RNA-seq samples based on ethnicity and tissue group to prevent possible biases on eQTL 696 

results. For those individuals with multiple linked RNA-seq samples, we selected a sample at 697 

random within these groups. Within each tissue and ethnicity group, we then selected unique 698 

genotype samples across datasets in such a way to maximize sample size per genotype dataset. 699 
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For the eQTL analysis per tissue, we only considered those datasets having more than 30 unique 700 

linked samples available, and for which at least two independent datasets were available. Using 701 

these criteria for sample and dataset selection, we were able to create 7 eQTL discovery datasets: 702 

Basal ganglia-EUR (n=208), Cerebellum-EUR (n=492), Cortex-EUR (n=2,970), Cortex-AFR 703 

(n=420), Hippocampus-EUR (n=168) and Spinal cord-EUR (n=108; Supplementary Table 1, 704 

Figure 2C). 705 

 706 

eQTL analysis 707 

Our dataset consists of different tissues and ethnicities, and samples have been collected in 708 

different institutes using different protocols. Consequently, combining these datasets to perform 709 

eQTL analysis is complicated, due to possible biases each of these factors may introduce. To 710 

resolve this issue, we opted to perform an eQTL meta-analysis within each of the defined eQTL 711 

discovery datasets. To reduce the effect of possible gene expression outliers, we calculated 712 

Spearman’s rank correlation coefficients for each eQTL in each dataset separately, and then 713 

meta-analyzed the resulting coefficients using a sample size weighted Z-score method, as 714 

described previously14. While we acknowledge that this method may provide less statistical 715 

power than the commonly used linear regression, we chose this method to provide conservative 716 

effect estimates. To identify cis-eQTLs, we tested SNPs located within 1 Mb of the transcription 717 

start site, while for the identification of trans-eQTLs, we required this distance to be at least 5 718 

Mb. For both analyses, we selected variants having a MAF>1%, and a Hardy-Weinberg p-value 719 

>0.0001. Using the GENCODE v32 annotation, we were able to quantify 58,243 genes, of which 720 

19,373 are protein coding. While non-coding genes have been implicated to be important for 721 

brain function105, these genes generally have poor genomic and functional annotations, meaning 722 
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that it is often unknown in which pathway they function, and that there is uncertainty about their 723 

genomic sequence. We therefore focused our eQTL analyses on protein coding genes. 724 

 725 

To correct for multiple testing, we reperformed the cis- and trans-eQTL analyses, while 726 

permuting the sample labels 10 times. Using the permuted p-values, we created empirical null 727 

distributions and determined a false discovery rate (FDR) as the proportion of unpermuted 728 

observations over the permuted observations and considered associations with FDR<0.05 as 729 

significant. To provide a more stringent FDR estimate for our cis-eQTL results, we limited FDR 730 

estimation to the top associations per gene, as described previously14. We note that our FDR 731 

estimate is evaluated on a genome-wide level, rather than per gene, and consequently FDR 732 

estimates stabilize after a few permutations106. 733 

 734 

Since cis-eQTL loci are known to often harbor multiple independent associations, we performed 735 

an iterative conditional analysis, where for each iteration, we regressed the top association per 736 

gene from the previous associations, and re-performed the cis-eQTL analysis until no additional 737 

associations at FDR<0.05 could be identified. 738 

 739 

Since a genome-wide trans-eQTL analysis would result in a large multiple testing burden 740 

considering the billions of potential tests, we limited this analysis to a set of 130,968 variants 741 

with a known interpretation. This set constituted of variants that were either previously 742 

associated with traits, having a GWAS p-value <5x10-8 in the IEU OpenGWAS database107 and 743 

EBI GWAS catalog108 on May 3rd, 2020, and additional neurological traits (see Supplementary 744 

Table 17) or were showing an association with FDR<0.05 in any of our discovery cis-eQTL 745 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 5, 2021. ; https://doi.org/10.1101/2021.03.01.433439doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.01.433439


  
 

34 
 

analyses (including secondary, tertiary and quandary associations identified in the iterative 746 

conditional analysis). Cis-eQTLs in Cortex-EUR were highly concordant when replicated in 747 

Cortex-AFR (Figure 3C). Consequently, to maximize the sample size and statistical power, we 748 

meta-analyzed Cortex-EUR and Cortex-AFR datasets together. However, for the trans-eQTL 749 

analysis we omitted ENA, to prevent bias by genotypes called from RNA-seq samples. 750 

Additionally, For the trans-eQTL analysis, we did not correct the gene expression data for 10 751 

PCs, since trans-eQTLs can be driven by cell proportion differences17, and many of the first 10 752 

PCs in the MetaBrain dataset were correlated with estimated cell type proportions 753 

(Supplementary Figure 32). To test for trans-eQTLs, we assessed those combinations of SNPs 754 

and genes where the SNP-TSS distance was >5 Mb, or where gene and SNP were on different 755 

chromosomes. We note that we did not evaluate eQTLs where the SNP-TSS distance was >1 Mb 756 

and <5 Mb, which potentially excludes detection of long-range cis-eQTLs or short-range trans-757 

eQTLs. We expect however, that this excludes only a limited number of eQTLs, since we 758 

observed that this distance was <31Kb for 50% of cis-eQTLs (Figure 3B), indicating most cis-759 

eQTLs are short-ranged. Additionally, we reasoned that the >5 Mb cutoff would prevent 760 

identification of false-positive trans-eQTLs due to long-range LD.  761 

 762 

Estimation of cell type proportions and identification of cell type mediated eQTLs 763 

By leveraging cell type specific gene expression collected through scRNA-seq, a bulk tissue 764 

sample can be modelled as a parts-based representation of the distinct cell types it consists of. In 765 

such a model, the weights of each part (i.e. cell type proportions) can be determined by 766 

deconvolution. In the deconvolution of the MetaBrain bulk expression data we used a single-cell 767 

derived signature matrix including the five major cell types in the brain: neurons, 768 
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oligodendrocytes, macrophages, endothelial cells and astrocytes. This signature matrix was 769 

generated in the context of the CellMap project (Zhengyu Ouyang et al.; manuscript in 770 

preparation). In short, we created pseudo-bulk expression profiles by extracting gene expression 771 

values for specific cell types of interest from annotated single cell and single nuclei expression 772 

matrices. Using differential expression analysis and applying several rounds of training and 773 

testing, we selected 1,166 differentially expressed genes and calculated the average read counts 774 

per cell type. We then filtered out genes that had no variation in expression, leaving a total of 775 

1,132 genes. We extracted the corresponding TMM normalized gene counts of these signature 776 

genes for all European cortex samples in MetaBrain. After correcting the counts for cohort 777 

effects using OLS, but not for any other technical covariates, we applied log2 transformation on 778 

both the signature matrix as well as the bulk gene count matrix. Subsequently we applied non-779 

negative least squares (NNLS)109 using SciPy (version 1.4.1)110 to model the bulk expression as a 780 

parts-based representation of the single-nucleus derived signature matrix. First introduced by 781 

Lawson and Hanson109, NNLS method is the basis of numerous deconvolution methods to date. 782 

In short, NNLS attempt to find a non-negative weight (coefficient) for each of the cell types that, 783 

when summed together, minimizes the least-squares distance to the observed gene counts. 784 

Lastly, we transformed the resulting coefficients into cell type proportions by dividing them over 785 

the sum of coefficients for each sample. The resulting cell proportions are then used to identify 786 

cell type mediated eQTL effects. For this we applied Decon-eQTL22 (version 1.4; default 787 

parameters) in order to systematically test for significant interaction between each cell type 788 

proportion and genotype, while also controlling for the effect on expression of the other cell 789 

types. The resulting p-values are then correct for multiple testing using the Benjamini-Hochberg 790 

method on a per-cell-type basis. 791 
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 792 

Cell type specific ROSMAP single-nucleus datasets 793 

In order further confirm cell type specific eQTL effects, we used the ROSMAP single-nucleus 794 

data, encompassing 80,660 single-nucleus transcriptomes from the prefrontal cortex of 48 795 

individuals with varying degrees of Alzheimer’s disease pathology111. We used Seurat version 796 

3.2.2112 to analyze the data. First, we removed the genes that did not pass filtering as described 797 

previously111
, leaving us with 16,866 genes and 70,634 cells for further analysis. After this, we 798 

normalized the expression matrix on a per individual per cell type basis using sctransform113 and 799 

visualized the normalized expression matrix using UMAP dimensionality reduction114. We 800 

observed that cell types, as defined by Mathys et al115., for the majority cluster together 801 

(Supplementary Figures 33 and 34). We then created expression matrices for each broad cell 802 

type (excitatory neurons, oligodendrocytes, inhibitory neurons, astrocytes, oligodendrocyte 803 

precursor cells, microglia, pericytes and endothelial cells) by calculating the average expression 804 

per gene and per individual basis. We then used these cell-type datasets for eQTL mapping using 805 

the same procedure as the bulk data. To correct for multiple testing, we confined the analysis to 806 

only test for primary cis- and trans-eQTLs found in MetaBrain cortex, while also permuting the 807 

sample labels 100 times. Lastly, we calculated the Spearman correlation between gene 808 

expression levels and genotypes and their 95% confidence intervals116.  809 

 810 

Single SNP Mendelian Randomization analysis 811 

Mendelian Randomization (MR) was conducted between the Cortex-EUR eQTLs and 31 812 

neurological traits (21 neurological disease outcomes, 2 quantitative traits and 8 brain volume 813 

outcomes) (Supplementary Table 11). Cortex-EUR eQTLs at genome-wide significant 814 
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(p<5x10-8) were selected and then LD clumped to obtain independent SNPs to form our set of 815 

instruments. LD clumping was carried out using the ld_clump() function in the ieugwasr 816 

package117 on the default settings (10,000 Kb clumping window with r2 cut-off of 0.001 using 817 

the 1000 Genomes EUR reference panel). SNP associations for each of the eQTL instruments 818 

were then looked up in the outcome GWASs of interest. If the SNP could not be found in the 819 

outcome GWAS using a direct lookup of the dbSNP rsid, then a proxy search was performed to 820 

extract the next closest SNP available in terms of pairwise LD, providing minimum r2 threshold 821 

of 0.8 with the instrument. Outcome GWAS lookup and proxy search was performed using the 822 

associations() function in the ieugwasr package. To ensure correct orientation of effect alleles 823 

between the eQTL instrument and outcome GWAS associations, the SNP effects were 824 

harmonized using the harmonise_data() function in TwoSampleMR87. Action 2 was selected 825 

which assumes that the alleles are forward stranded in the GWASs (i.e. no filtering or re-826 

orientation of alleles according to frequency was conducted on the palindromic SNPs). Single 827 

SNP MR was then performed on the harmonized SNP summary statistics using the 828 

mr_singlesnp() function in TwoSampleMR. Single SNP MR step computes a Wald ratio, which 829 

estimates the change in risk for the outcome per unit change in gene expression, explained 830 

through the effect allele of the instrumenting SNP. We reported all the MR findings that passed a 831 

p-value threshold of 5x10-5, but note that the Bonferroni-corrected p=0.05 threshold for multiple 832 

testing correction is p=1.865x10-7. We did not implement multi-SNP analysis (such as the 833 

Inverse Variance Weighted method), because there are a small number of instrumenting SNPs 834 

available per gene, which could result in unreliable pooled MR estimates for genes.  835 

 836 
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Colocalization 837 

Following the MR analysis, colocalization analysis was performed on the MR findings that 838 

passed the suggestive threshold to determine if the eQTL and trait shared the same underlying 839 

signal. We ran colocalization36 using both the default parameters (p1=p2=10-4 and p12=10-5) and 840 

parameters based on the number of SNPs in the region (p1=p2=1/(number of SNPs in the region) 841 

and p12=p1/10). We considered the two traits, eQTL and GWAS outcome to colocalize if either 842 

of the two parameters yielded PP4>0.7. Additionally, colocalization was systematically analyzed 843 

against one trait to compare to robustness of the Cortex-EUR eQTLs with existing cortex eQTL 844 

data sets (see Supplementary Note). 845 

  846 
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URLs 847 

Picard: http://broadinstitute.github.io/picard/ 848 

dbGAP: https://dbgap.ncbi.nlm.nih.gov  849 

European Nucleotide Archive: http://www.ebi.ac.uk/ena 850 

ieugwasr package: https://mrcieu.github.io/ieugwasr/ 851 

TwoSampleMR: https://mrcieu.github.io/TwoSampleMR/ 852 

 853 

Accessions 854 

TargetALS12 TargetALS data was pushed directly from the NY Genome center to our sftp 855 

server.  856 

CMC118 CMC data was downloaded from https://www.synapse.org/ using synapse client 857 

(https://python-docs.synapse.org/build/html/index.html). Accession code: syn2759792 858 

GTEx86 GTEx was downloaded from SRA using fastq-dump of the SRA toolkit 859 

(http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=software&m=software&s=softw860 

are). Access has been requested and granted through dbGaP. 861 

Braineac7 Braineac data has been pushed to our ftp server by Biogen. 862 

AMP-AD5 AMP-AD data has been downloaded from synapse13. Accession code: syn2580853. 863 

snRNA-seq was collected using Synapse accession code: syn18485175. IHC data: 864 

https://github.com/ellispatrick/CortexCellDeconv/tree/master/CellTypeDeconvAnalysis/Data 865 

ENA13 ENA data has been downloaded from the European Nucleotide Archive. The identifiers 866 

of the 76 included studies and 2021 brain samples are listed in Supplementary Table 29.  867 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 5, 2021. ; https://doi.org/10.1101/2021.03.01.433439doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.01.433439


  
 

40 
 

CMC_HBCC: CMC_HBCC data was downloaded from https://www.synapse.org/ using 868 

synapse client (https://python-docs.synapse.org/build/html/index.html). Accession code: 869 

syn10623034 870 

BrainSeq BrainSeq data was downloaded from https://www.synapse.org/ using synapse client 871 

(https://python-docs.synapse.org/build/html/index.html). Accession code: syn12299750 872 

UCLA_ASD UCLA_ASD data was downloaded from https://www.synapse.org/ using synapse 873 

client (https://python-docs.synapse.org/build/html/index.html). Accession code: syn4587609 874 

BrainGVEx BrainGVEx data was downloaded from https://www.synapse.org/ using synapse 875 

client (https://python-docs.synapse.org/build/html/index.html). Accession code: syn4590909 876 

BipSeq BipSeq data was downloaded from https://www.synapse.org/ using synapse client 877 

(https://python-docs.synapse.org/build/html/index.html). Accession code: syn5844980 878 

GTEx GTEx data was downloaded from dbgap. Accession code: phs000424.v7.p2 879 

NABEC NABEC data was downloaded from dbgap. Accession code: phs001301.v1.p1 880 

CellMap single-cell and single-nuclei RNA-seq datasets were downloaded from Gene 881 

Expression Omnibus (GEO), BioProject, the European Genome-phenome Archive (EGA) and 882 

the Allan Brain Atlas. Accession codes: GSE97930, GSE126836, GSE103723, GSE104276, 883 

PRJNA544731, PRJNA434002, phs000424, phs001836. 884 

  885 
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Figure Legends 1307 
Figure 1. Overview of the study. We downloaded publicly available RNA-seq and genotype 1308 
data from 15 different datasets consisting 8,727 RNA-seq measurements from 7 main brain 1309 
regions in 6,518 individuals. We performed cis-, trans- and interaction-eQTL analysis, built a 1310 
brain-specific gene coregulation network and prioritized genes using Mendelian randomization, 1311 
colocalization and the co-regulation network. 1312 

 1313 

Figure 2. Overview of the datasets. (A) The number of samples per included cohort, with each 1314 
color representing one of the 7 major brain regions. (B) The number of genotypes per cohort, 1315 
with each color representing a population. (C) The number of individuals per cohort, with each 1316 
color representing an eQTL dataset. The number of individuals is different from the intersection 1317 
between the number of RNA-seq samples and number of genotypes, because not all samples 1318 
with genotypes have RNA-seq samples and vice-versa, and some individuals with genotypes 1319 
have multiple RNA-seq measurements. (D) PCA dimensionality reduction plot of the normalized 1320 
expression data after covariate correction. Each dot represents an RNA-seq sample and is colored 1321 
by brain region. The figure shows that the samples cluster mainly on brain region. 1322 

 1323 

Figure 3. Conditional cis-eQTLs. (A) The number of conditional cis-eQTLs per eQTL dataset. 1324 
(B) Comparison of characteristics between primary and non-primary eQTLs, where each row 1325 
compares the eQTL genes for that rank with eQTL genes from the previous rank. P-values are 1326 
calculated using a Wilcoxon test between significant and non-significant genes. (left) The 1327 
difference in mean gene expression levels; (middle) the difference in distance between the most 1328 
significant SNP-gene combination and the transcription start site (TSS); (right) the difference in 1329 
probability for loss of function intolerance (pLI) score. For primary, secondary and quaternary 1330 
eQTLs, non-significant eQTLs have higher pLI scores. (C) Replication of primary cis-eQTLs 1331 
between the cortex eQTLs of different ethnicities and (D) the different brain regions for the 1332 
European datasets. n indicates sample size of each dataset. Numbers in boxes indicate the 1333 
number of eQTLs that are significant in both the discovery and the replication dataset, and the 1334 
percentage of those that shows the same direction of effect. (E) Replication of primary cis-1335 
eQTLs of Cortex-EUR (discovery) in all the GTEx tissues (replication). Each dot is a different 1336 
GTEx tissue, the x-axis is the number of eQTLs that is significant in both discovery and 1337 
replication, and the y-axis is the percentage that shows the same direction of effect.  1338 

 1339 

Figure 4. Cell type interacting eQTLs. (A) Spearman correlations between the 5 predicted cell 1340 
count proportions. Lower triangle is within cortex samples, upper triangle is within cerebellum 1341 
samples. (B) Predicted cell type proportions (x-axis) compared to cell type proportions measured 1342 
using immunohistochemistry (IHC; y-axis) for 42 ROSMAP samples. Values in the plot are 1343 
Pearson correlation coefficients. Cell count predictions for most cell types closely approximates 1344 
actual IHC cell counts, although neurons are underestimated. (C) Number of cell type interacting 1345 
eQTLs for Cortex-EUR deconvoluted cell types. The majority of interactions are with neurons 1346 
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and oligodendrocytes. Notably, most interactions are unique for one cell type in 90% of the 1347 
cases. (D, E, F) Replication of cell type interacting eQTLs for STMN4 (D), FAM221A (E) and 1348 
SLC25A27 (F), consisting of the scatterplot of the interaction eQTL in MetaBrain Cortex-EUR 1349 
bulk RNA-seq (left) and a forest plot for the eQTL effect in the ROSMAP snRNA-seq data 1350 
(right). Scatterplot: the x-axis shows the estimated cell type proportion, the y-axis shows the 1351 
gene expression, each dot represents a sample. Colors indicate SNP genotype, with yellow being 1352 
the minor allele. Values under the alleles are Spearman correlation coefficients. Forest plot: 1353 
Spearman coefficients with effect direction relative to the minor allele when replicating the 1354 
eQTL effect in ROSMAP single nucleus data (n=38). Error bars indicate 95% confidence 1355 
interval. Each row denotes a cell type specific dataset: excitatory neurons (EX), oligodendrocytes 1356 
(OLI), inhibitory neurons (IN), astrocytes (AST), oligodendrocyte precursor cells (OPC), 1357 
microglia (MIC), pericytes (PER) and endothelial cells (END). Cell types highlighted in bold 1358 
reflect the equivalent to the cell type used in the interaction eQTL.  1359 

 1360 

Figure 5. Mendelian randomization and colocalization of brain-related traits. (A) Number 1361 
of significant Mendelian randomization (MR) signals (blue) and those with both MR and Coloc 1362 
significant signals for 15 brain-related traits. (B) SNP and effect allele (EA), eQTL beta and 1363 
GWAS odds ratio for 20 multiple sclerosis (MS) genes that are both MR and Coloc significant, 1364 
and their Wald ratio p-value. Cell type interaction eQTL for CYP24A1 (D) and CLECL1 (E), 1365 
showing interactions with predicted neuron, and macrophage proportions respectively. The x-1366 
axis shows the estimated cell type proportion, the y-axis shows the gene expression, each dot 1367 
represents a sample. Colors indicate SNP genotype, with yellow being the MS risk allele. Values 1368 
under the alleles are Spearman correlation coefficients. 1369 

 1370 

Figure 6. Trans-eQTLs in brain. (A) Location of identified trans-eQTLs, with the SNP 1371 
position (x-axis) and gene position (y-axis) in the genome. Size of the dots indicate the p-value 1372 
of the trans-eQTL (larger is more significant). 7p21.3, the locus with most (83%) of the trans-1373 
eQTLs, is highlighted. (B) Three SNPs in the 7p21.3 locus and the number of datasets and 1374 
number of up- and down-regulated trans-eQTL genes each SNP has. For rs1990622, a SNP 1375 
associated with frontotemporal lobar degeneration, the 35 genes it affects in trans and the 1 gene 1376 
it affects in cis are shown. (C) Two examples of convergent effects, where multiple independent 1377 
SNPs affect the same genes in trans. Left: trans-eQTLs of rs1427407 and rs4895441 on HBG2 1378 
and right trans-eQTL of rs930263, rs2604551, and rs10950398 on KCNA5. 1379 

 1380 

Figure 7. Gene co-regulation (A) Genes that are co-regulated with genes that are within 1381 
amyotrophic lateral sclerosis (ALS) loci. Co-regulation scores between genes are calculated 1382 
using all MetaBrain samples, MetaBrain cerebellum samples, or MetaBrain cortex samples. 1383 
Except for URB4, cortex and cerebellum networks find different co-regulated genes for ALS. (B) 1384 
Co-regulation network using all MetaBrain samples for all genes prioritized for ALS by 1385 
Downstreamer. (C) Top 5 Human Phenotype Ontology (HPO) enrichments for the 1386 
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Downstreamer prioritized ALS genes. (D) Genes that are co-regulated with genes that are within 1387 
multiple sclerosis loci. Co-regulation scores between genes are calculated using a heterogeneous 1388 
multi-tissue network, MetaBrain cerebellum samples, or MetaBrain cortex samples. Most genes 1389 
are found using a large heterogenous co-regulation network. (E) Co-regulation network of all 1390 
MetaBrain samples for 33 genes prioritized by Downstreamer in cortex. Colors indicate the 1391 
neutrophin signaling pathway enrichment Z-scores. (F) Top 5 KEGG enrichments for the 1392 
Downstreamer prioritized multiple sclerosis genes in cortex. 1393 

  1394 
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Supplementary Figure Legends 1395 
 1396 

Supplementary Figure 1. European Nucleotide Archive brain sample selection. (A) 1397 
Principal component (PC) analysis on the expression data of 74,052 samples included in the 1398 
SkyMap database shows clustering on tissue type but also many outliers with high PC1 scores. 1399 
(B) Coloring on single and paired-end sequencing shows no clear clustering. (C) Coloring single 1400 
cell identifies the samples with high PC1 scores as single-cell samples. (D) Mean % reads 1401 
mapped, number of reads, and max reads per bin of PC1. (E) Re-calculation of PCs on all 1402 
samples with PC score <0 in panel A-D, after covariate correction. (F) Brain and Tissue score 1403 
calculated by correlating expression of known tissue and brain samples to each of the PCs. (G) 1404 
As panel F, cancer score was calculated by correlating expression of known cancer genes to all 1405 
PCs. 1406 

 1407 

Supplementary Figure 2. RNA-seq alignment QC. The two main RNA-seq QC metrics used 1408 
for filtering samples. (A) Percentage coding bases colored by dataset and (B) percentage of reads 1409 
aligned colored per dataset. Red dotted line is the threshold for filtering (10% for coding bases 1410 
and 60% for percentage reads aligned respectively). Triangles are samples filtered out by any of 1411 
the RNA-seq QC metrics. 1412 

 1413 

Supplementary Figure 3. Sample filtering by PCA. Principal component analysis (PCA) plot 1414 
before normalization and covariate removal. For all plots the red line indicates 4 standard 1415 
deviations from the mean and red dots are samples to be filtered out. (A) PCA on all samples 1416 
after removing alignment QC outliers. (B) PCA on samples after removal of outlier samples 1417 
from A. (C) PCA on samples after removal of outlier samples of A and B.  1418 

 1419 

Supplementary Figure 4. PCA before and after covariate correction. (A) PC1 and PC2 on 1420 
normalized expression data before covariate correction, colored on dataset. (B) PC1 and PC2 on 1421 
normalized expression data after covariate correction. 1422 

 1423 

Supplementary Figure 5. Assigning ethnicity through principal component analysis. For 1424 
each of the included datasets principal component (PC) scores are calculated on their genotypes. 1425 
Samples are clustered with the 1000 genome samples (left). Right panels show dataset genotype 1426 
samples without 1000g samples on the right projected on the same PCs. Using k-nearest 1427 
neighbors clustering, samples are assigned an ethnicity based on their closeness to the 1000g 1428 
samples of a population. 1429 

 1430 
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Supplementary Figure 6. eQTL Z-score comparison between datasets. The pairwise 1431 
spearman correlation and concordance of direction of the eQTL Z-scores between all cohorts, 1432 
and between each cohort and the meta-analysis Z-score. As two examples, (A) shows the Z-score 1433 
comparison between Cortex-EUR eQTL datasets EUR-LIBD_h650 and EUR-UCLA_ASD, and 1434 
(B) shows the Z-score comparison between the meta-analysis Z-score and the Cortex-EUR 1435 
cohort EUR-AMPAD-ROSMAP-V2. (C) shows the correlation for each pairwise combination of 1436 
cohorts between each other (small dots), and with the meta-analysis Z-scores (large dots). (D) 1437 
shows the directional concordance for each pairwise combination of cohorts between each other 1438 
(small dots), and with the meta-analysis Z-scores (large dots). The dots in (C) and (D) that 1439 
correspond to the (A) and (B) plots are shown by the grey dottes lines. 1440 

 1441 

Supplementary Figure 7. Reads mapping on patch chromosome version of MAPT. Number 1442 
of reads mapped to the MAPT gene located on the primary assembly (ENSG00000186868) and 1443 
the MAPT genes located on the patch chromosomes (ENSG00000276155 and 1444 
ENSG00000277956). Each dot is an individual, and the color shows if they are homozygous 1445 
reference (0/0), heterozygous (0/1), or homozygous alternative (1/1) for a SNP (rs34619181) 1446 
located in the MAPT gene. Left plot compares counts mapped to ENSG00000186868 (ref) to 1447 
those mapped to ENSG00000276155 (patch), middle plot compares ENSG00000186868 (ref) 1448 
and ENSG00000277956 (patch), right plot compares ENSG00000276155 (patch) and 1449 
ENSG00000277956 (patch). 1450 

 1451 

Supplementary Figure 8. EQTL z-scores in the MAPT locus. Z-scores (y-axis) of the MAPT 1452 
locus (x-axis) for all the datasets used in the Cortex-EUR meta-analysis. Left upper plot shows 1453 
the meta-analysis Z-score. Blue dots are the SNPs that are in high LD with the top SNP.  1454 

 1455 

Supplementary Figure 9. Colocalization locus plot for MAPT. Y-axis shows the 1456 
colocalization log10(-p-value). X-axis shows the position of the SNPs (dots). Color is the LD 1457 
with rs56240678. 1458 

 1459 

Supplementary Figure 10. (A) Mean of log2 of the expression (x-axis) and standard deviation of 1460 
the log2 of expression for primary, secondary, tertiary, and quaternary eQTL genes. eQTLs that 1461 
have only one independent SNP effect have higher mean expression but lower standard deviation 1462 
than genes with multiple independent effects. (B) g:profiler enrichment for all genes with a 1463 
single independent eQTL effect. (C) g:profiler enrichment for all genes with multiple 1464 
independent eQTL effects. 1465 

 1466 

Supplementary Figure 11. Properties of cerebellum specific eQTLs. (A) UpSet plot of the 1467 
number of eQTL genes per brain region for European datasets. (B) The distribution of 1468 
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log2(TMM+1) expression in cortex (x-axis) and cerebellum (y-axis) of the 846 eQTL genes that 1469 
were only significant in cerebellum. Blue line is the minima of the bimodal distribution and is 1470 
used as cut-off point in panel C (C) The expression in cortex (x-axis) and cerebellum (y-axis) of 1471 
the 846 eQTL genes that were only significant eQTLs in cerebellum. The blue line is the cut-off 1472 
from panel B. (D) The expression (dots) and standard deviation (lines) of the transcription 1473 
factors that are enriched for binding to transcription sites around the 662 genes for cortex (x-1474 
axis) and cerebellum (y-axis). The 5 transcription factors that are labelled are lower expressed in 1475 
cortex and higher expressed in cerebellum. 1476 

 1477 

Supplementary Figure 12. Cortex primary eQTL replication in GTEx. The replication 1478 
between primary cis-eQTLs of Cortex-EUR (discovery) with all the GTEx tissues (replication). 1479 
The x-axis is the number of eQTLs that is significant in both discovery and replication, and the 1480 
y-axis is the percentage that shows the same direction of effect. 1481 

 1482 

Supplementary Figure 13. Comparison of meta-analysis Z-scores for eQTLs detected in the 1483 
different MetaBrain datasets (x-axis), and eQTLgen (y-axis).  1484 

 1485 

Supplementary Figure 14. Distribution of predicted cell proportions. The distribution of the 1486 
predicted cell proportions (x-axis) for cortex and cerebellum samples (y-axis). 1487 

 1488 

Supplementary Figure 15. Cell type proportions per brain region are comparable, with the 1489 
exception of the spinal cord. Visualization of the cell type proportions with one row per cell 1490 
type and colors indicating brain region. (A) Density plot where the x-axis shows the predicted 1491 
cell type proportion, and the y-axis shows the frequency. (B) Boxplot of the predicted cell type 1492 
proportion. Boxes represent the 25th and 75th percentiles and internal line represents the median. 1493 
The whiskers represent 1.5 multiplied by the inter-quartile range. Outliers are shown as 1494 
individual points.  1495 

 1496 

Supplementary Figure 16. Cell type fractions per brain tissue shows little differences with 1497 
the exception of the spinal cord. Visualization of the cell type proportions with one row per 1498 
brain region and colors indicating cell types. (A) Density plot where the x-axis shows the 1499 
predicted cell type proportion, and the y-axis shows the frequency. (B) Boxplot of the predicted 1500 
cell type proportion. Boxes represent the 25th and 75th percentiles and internal line represents the 1501 
median. The whiskers represent 1.5 multiplied by the inter-quartile range. Outliers are shown as 1502 
individual points. 1503 

 1504 
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Supplementary Figure 17. Cell type mediated eQTLs in cerebellum are mostly mediated by 1505 
astrocytes and macrophages. The number of cell type interacting eQTLs for cerebellum 1506 
deconvoluted cell types. We did not identify eQTLs that were shared between cell types. 1507 

 1508 

Supplementary Figure 18. Replication of cortex cis-eQTLs in snRNA-seq data. Each figure 1509 
in this plot represents a comparison between bulk RNA-seq (y-axis) and single-nucleus RNA-seq 1510 
(x-axis). Each dot represents one cis-eQTL, and the legend shows the Pearson correlation 1511 
coefficient. Each column is a comparison between equivalent (and where not possible; similar) 1512 
cell types in both datasets. Each row illustrates a different filtering on which eQTLs are shown 1513 
and/or a different value on the y-axis. The x-axis always denotes the overall z-score of the eQTL 1514 
effect in the single nucleus dataset of that respective column. (A) Meta-analysis eQTL z-score 1515 
(y-axis) in Cortex-EUR bulk RNA-seq data, no filtering is applied. (B) Meta-analysis eQTL z-1516 
score (y-axis) in Cortex-EUR bulk data, eQTLs are filtered based on the Decon-QTL Benjamini-1517 
Hochberg corrected p-value <0.05 in each respective column. (C) same as row B but now 1518 
showing the log betas of the interaction model on the y-axis. (D) Meta-analysis eQTL z-score (y-1519 
axis) in bulk data for eQTLs that are significantly replicating in each respective dataset. Dots are 1520 
colored if they are significantly cell type mediated (BH FDR<0.05) by the respective cell type in 1521 
bulk data. (E) y-axis shows the log betas of the interaction model (y-axis) and filtering eQTLs on 1522 
both significantly replicating in each respective dataset, as well as being significantly cell type 1523 
mediated in bulk data. 1524 

 1525 

Supplementary Figure 19. Bulk interacting eQTLs replicating in single-nucleus ROSMAP. 1526 
Replication of cell type interaction eQTLs for STMN4 (A), FAM221A (B), NKAIN1 (C) and 1527 
SCL25A27 (D). First column: Boxplots of the eQTL effect in Cortex-EUR bulk RNA-seq. 1528 
Second column: Cell type interacting eQTL effect in Cortex-EUR bulk RNA-seq. The x-axis 1529 
shows the estimated cell type proportion, the y-axis shows the gene expression, each dot 1530 
represents a sample, and the colors indicate the SNP genotype, with yellow being the minor 1531 
allele. Values under the alleles are Spearman correlation coefficients. Third column: Forest plot 1532 
of the spearman coefficient with effect direction relative to the minor allele when replicating the 1533 
eQTL effect in ROSMAP single nucleus data (n=38). Error bars indicate 95% confidence 1534 
interval. Each row denotes a cell type specific dataset: excitatory neurons (EX), oligodendrocytes 1535 
(OLI), inhibitory neurons (IN), astrocytes (AST), oligodendrocyte precursor cells (OPC), 1536 
microglia (MIC), pericytes (PER) and endothelial cells (END). The bold cell type corresponds to 1537 
the cell type that showed an interaction effect in bulk RNA-seq. Fourth column: Cell type 1538 
interacting eQTL effect in ROSMAP single-nucleus RNA-seq (n=38) of the bold highlighted cell 1539 
type in the third colum.  1540 

 1541 

Supplementary Figure 20. Mendelian Randomization summary. Each plot is for a different 1542 
trait (Intelligence, Intracranial volume, Putamen volume, Years of schooling, Alzheimer’s 1543 
disease, Amyotrophic Lateral Sclerosis, Depression (broad), Frontotemporal Dementia, 1544 
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Parkinson’s disease, Bipolar disorder, Generalized epilepsy, juvenile myoclonic epilepsy, 1545 
multiple sclerosis and schizophrenia). For each SNP the effect allele (EA) is given, the eQTL 1546 
beta of the EA on the given gene, the odds ratio (disease traits) or beta (quantitative traits) of the 1547 
EA on the phenotype, and the Wald ratio p-value of the mendelian randomization analysis. 1548 

 1549 

Supplementary Figure 21. Colocalization regional plots for five suggestive MR findings in 1550 
Cortex-EUR that were replicated in eQTLGen with allelic discordance. Regional plots were 1551 
made for five MR findings (CASS4 for Alzheimer’s disease, TMEM170B for intelligence, 1552 
GATAD2A for schizophrenia and years of schooling, and ZCWPW1 for years of schooling) in 1553 
Cortex-EUR (top), eQTLGen (middle) and outcome GWAS (bottom) to show colocalization. 1554 
These five findings all passed suggestive threshold (p<5x10-5) in Cortex-EUR, with eQTL 1555 
effects replicated in eQTLGen (p<0.05), showed colocalization for both Cortex-EUR and 1556 
eQTLGen but opposite directions of effect.  1557 

 1558 

Supplementary Figure 22. Colocalization regional plots for two suggestive MR findings for 1559 
multiple sclerosis that showed opposite directions of effect between Cortex-EUR and 1560 
eQTLGen. Regional plots were made for two suggestive MR findings for MS (KMT5A, 1561 
RNF19B), both of which were suggestive signals in Cortex-EUR as well as eQTLGen (p<5x10-1562 
5). Opposite directions of effect were observed between Cortex-EUR and eQTLGen but 1563 
colocalization was only found in Cortex-EUR. 1564 

 1565 

Supplementary Figure 23. Scatterplots comparing MR effects for multiple sclerosis derived 1566 
using instruments from the metabrain versus eQTLGen studies. The top panel shows the 1567 
WR comparison on the same gene but with the different SNP instruments selected by each study 1568 
(matching on the top WR finding if gene instrumented with multiple SNPs in the study) and the 1569 
bottom panel the WR comparison between MetaBrain instruments and eQTLGen matching on 1570 
both the same gene and SNP instrument. Genes which showed opposite direction of WR effect 1571 
between MetaBrain and eQTLGen are colored in red and the genes with the same direction in 1572 
blue. 1573 

 1574 

Supplementary Figure 24. Log10 of median expression of brain and blood tissue samples in 1575 
GTEx for 28 multiple sclerosis genes for which there are no significant eQTLgen instruments in 1576 
brain and blood.  1577 

 1578 

Supplementary Figure 25. Cell type proportions in Alzheimer's disease patients. Predicted 1579 
cell count proportions for the AMP-AD samples that were used in the Cortex-EUR eQTL 1580 
analysis for individuals with Alzheimer’s disease and non-neurological controls. Each dot is the 1581 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 5, 2021. ; https://doi.org/10.1101/2021.03.01.433439doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.01.433439


  
 

59 
 

predicted cell proportion for one sample. Numbers under the boxplots indicate the number of 1582 
samples plotted. Values above the line are p-values from a t-test between groups. 1583 

 1584 

Supplementary Figure 26. Forest plots for rs1990622 trans-eQTLs. Forest plots for each of 1585 
the trans-eQTL genes associated with rs1990622. Each plot shows the trans-eQTL beta and 95% 1586 
confidence interval for each of the included datasets and the meta-analysis. Effect directions are 1587 
relative to the A allele of rs1990622. Sizes of dots are relative to sample size of each dataset. 1588 
Trans-eQTL effects are most pronounced in AMP-AD datasets. 1589 

 1590 

Supplementary Figure 27. Summary of 7p21.3 locus trans-eQTLs. (A) Forest plots showing 1591 
effect sizes for rs1990622 (yellow; beta and 95% confidence interval) for cis-eQTL gene 1592 
THSD7A, trans-eQTL gene CALB2, and association of rs1990622 with estimated neuron 1593 
proportion. Right panel shows average estimated neuron proportions per dataset (blue violin 1594 
plots). EQTL and neuron proportion associations are most pronounced in AMP-AD datasets, 1595 
while average neuron proportions are comparable. (B) Trans-eQTL meta-analysis Z-scores for 1596 
rs11974335, rs10950398 and rs1990622 (x-axis), and the correlation of those trans-eQTL genes 1597 
with predicted neuron proportion (y-axis) are highly correlated. (C) Comparison of trans-eQTL 1598 
Z-scores between Alzheimer's disease patients (x-axis) and neurotypical controls (y-axis) shows 1599 
that eQTL Z-scores are higher in patients. 1600 

 1601 

Supplementary Figure 28. Replication of cortex trans-eQTLs in single-nucleus data. Each 1602 
figure in this plot represents a comparison between bulk RNA-seq (y-axis) and single-nucleus 1603 
RNA-seq (x-axis). Each dot represents one trans-eQTL, and the legend shows the Pearson 1604 
correlation coefficient. Each column is a comparison between equivalent (and where not 1605 
possible; similar) cell types in both datasets. Each row illustrates a different filtering on which 1606 
eQTLs are shown and/or a different value on the y-axis. The x-axis always denotes the overall z-1607 
score of the eQTL effect in the single nucleus dataset of that respective column. (A) Meta-1608 
analysis eQTL z-score (y-axis) in Cortex-EUR bulk RNA-seq data, no filtering is applied. (B) 1609 
Meta-analysis eQTL z-score (y-axis) in Cortex-EUR bulk data, eQTLs are filtered based on the 1610 
Decon-QTL Benjamini-Hochberg corrected p-value <0.05 in each respective column. (C) same 1611 
as row B but now showing the log betas of the interaction model on the y-axis. (D) Meta-analysis 1612 
eQTL z-score (y-axis) in bulk data for eQTLs that are significantly replicating in each respective 1613 
dataset. Dots are colored if they are significantly cell type mediated (BH FDR<0.05) by the 1614 
respective cell type in bulk data. (E) y-axis shows the log betas of the interaction model (y-axis) 1615 
and filtering eQTLs on both significantly replicating in each respective dataset, as well as being 1616 
significantly cell type mediated in bulk data.  1617 

 1618 

Supplementary figure 29. Comparison of AUC distribution for different eigenvector cut-1619 
offs. The quality of the gene network that we built for MetaBrain is measured by an AUC for 1620 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 5, 2021. ; https://doi.org/10.1101/2021.03.01.433439doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.01.433439


  
 

60 
 

each gene derived from a leave-one-out procedure. One of the parameters to build the network is 1621 
the number of eigenvectors to use after PCA over the gene correlation matrix. Here we show for 1622 
the 6 annotation categories (KEGG, REACTOME, GO Biological Process, GO Molecular 1623 
Function, GO Cellular Component, and HPO) the AUC mean (dot) and standard deviation (lines) 1624 
at different eigenvector cut-offs. The red dot and line indicate the eigenvector cut-off that was 1625 
used for that annotation category. 1626 

 1627 

Supplementary Figure 30. Heatmaps of the Pearson correlation of the AUC values between 1628 
different eigenvector cut-offs. Correlation was calculated between the different eigenvector 1629 
cutoffs for the 6 annotation categories. 1630 

 1631 

Supplementary Figure 31. (A) UMAP representation of heterogeneous gene network. Immune 1632 
and blood cell types show increased gene expression levels for genes prioritized using 1633 
Downstreamer for multiple sclerosis, while decreased expression is observed in brain related 1634 
tissues. (B) Within MetaBrain, those same genes show lower expression in cortex, but higher 1635 
expression in spinal cord and cerebellum. 1636 

 1637 

Supplementary Figure 32. Spearman correlation heatmap of predicted cell fractions versus 1638 
principal components calculated using all MetaBrain samples. A heatmap showing the first 1639 
fifty principal components as the columns and the five cell types for which we predicted 1640 
proportions as rows. Each cell is colored based on the spearman correlation coefficients. Blue 1641 
denotes a negative correlation, red a positive correlation and white denotes no correlation. 1642 

 1643 

Supplementary Figure 33. SnRNA-seq visualization by cell type. UMAP dimensionality 1644 
reduction plot of 39 snRNA-seq samples from ROSMAP. Each dot represents a single cell 1645 
(n=70,634). The dots are colored by their corresponding cell type: excitatory neurons (EX), 1646 
oligodendrocytes (OLI), inhibitory neurons (IN), astrocytes (AST), oligodendrocyte precursor 1647 
cells (OPC), microglia (MIC), pericytes (PER) and endothelial cells (END). 1648 

 1649 

Supplementary Figure 34. SnRNA-seq visualization by cell type. UMAP dimensionality 1650 
reduction plot of 39 snRNA-seq samples from ROSMAP. Each dot represents a single cell 1651 
(n=70,634). The dots are colored by their corresponding cell type subcluster: excitatory neurons 1652 
(EX), oligodendrocytes (OLI), inhibitory neurons (IN), astrocytes (AST), oligodendrocyte 1653 
precursor cells (OPC), microglia (MIC), pericytes (PER) and endothelial cells (END). 1654 

 1655 

1656 
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Table descriptions 1657 
Table 1. Prioritized genes from the Mendelian Randomization analysis on MetaBrain 1658 
eQTLs versus brain related outcomes. Harmonized eQTL and GWAS SNP effects and single 1659 
SNP Wald Ratio estimates are reported in the table for all genes with Wald Ratio effects at 1660 
P<1.865x10-7.  Columns are genomic position, rsid and alleles for SNP instrument (EA: Effect 1661 
allele. NONEA: non-effect allele. proxy SNP: rsid of proxy SNP replacement used for outcome 1662 
if instrument not present in GWAS), the SNP effects (beta, SE, p) for the MetaBrain eQTLs 1663 
followed by the SNP effects for the brain related outcomes and then the Wald Ratio effects.  1664 

  1665 
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Supplementary Table descriptions 1666 
Supplementary table 1. Number of samples and individuals.  1667 
Sheet Genotype QC: The number of genotype individuals and samples pre-QC (column C-H) 1668 
and post-QC (column I-N) for the different RNA-seq (column A) and genotype (column B) 1669 
datasets. Columns are: PreQC: Number of initial genotype samples processed for QC. PostQC: 1670 
Number of genotype samples left after QC filtering. RNA-seq dataset: Name of the complete 1671 
dataset. Genotype dataset: Name of the genotype dataset. Some datasets have multiple genotype 1672 
platforms, or multiple smaller datasets that are part of the larger RNA-seq dataset. Individuals: 1673 
The number of individuals per dataset. EUR: Number of genotype samples per dataset of 1674 
individuals of European population. AFR: Number of genotype samples per dataset of 1675 
individuals of African population. EAS: Number of genotype samples per dataset of individuals 1676 
of East-Asian population. SAS: Number of genotype samples per dataset of individuals of South-1677 
Asian population. AMR: Number of genotype samples per dataset of individuals of Ad Mixed 1678 
American population. 1679 
Sheet RNA-QC: The number of RNA-seq samples at different steps of QC and for different 1680 
brain regions. Cells A2-F18 have the number of samples at different QC steps. Columns are: 1681 
Dataset: dataset name. Number of RNA-seq samples: Number of RNA-seq samples processed 1682 
to go through QC. Alignment QC: Number of RNA-seq samples left after filtering on alignment 1683 
QC (e.g. percent reads aligned). RNA-seq PCA outliers - step 1: Number of RNA-seq samples 1684 
left after filtering samples >4SD from mean of PC1. RNA-seq PCA outliers - step 2: Number of 1685 
samples left after recalculating PCA and again removing samples >4SD fom mean of PC1. 1686 
Covariate removal: Number of samples left after covariate removal. RNA Tissue grouping: 1687 
the meta-data across different datasets uses different granularity of tissue annotation. Tissues 1688 
were grouped accordingly.  1689 

Sheet Sample Links: RNA-seq samples linked to genotype samples. Left top: numbers of RNA-1690 
seq sample linked to a genotype sample per dataset, per population. Top right: number of unique 1691 
individuals per dataset per population. Middle: number of uniquely linked individuals per 1692 
dataset, per population and per tissue group. Bottom: numbers of individuals used from each 1693 
dataset and population for cis- and trans-eQTL analysis.  1694 

 1695 

Supplementary table 2. Cis-eQTL summary statistics. 1696 

Cis-eQTL summary statistics listing index variant per gene (FDR<0.05). One sheet per eQTL 1697 
discovery dataset. Genomic positions are GRCh38. eQTL Rank: whether the eQTL is a primary, 1698 
secondary, tertiary, quaternary, or higher eQTL. 1699 

 1700 

Supplementary table 3. Number of cis- and trans-eQTLs. For each dataset the number of cis- 1701 
and trans-eQTL SNPs, genes, and SNP-gene combinations found at FDR<0.05. Columns are: 1702 
Basalganglia, Cerebellum, Cortex, Hippocampus, Spinalcord: the five different brain regions 1703 
for which eQTL calling was done. EUR: Number of eQTLs with samples from European 1704 
population. AFR: Number of eQTLs with samples from African population. EAS: Number of 1705 
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eQTLs with samples from East-Asian population. EUR+AFR, wo ENA, no PCA: Number of 1706 
eQTLs with samples from EUR and AFR populations, excluding samples from the ENA cohorts, 1707 
and using gene expression levels that were not corrected for principal components. 1708 

 1709 

Supplementary table 4. Gene set enrichment summary statistics for primary and higher 1710 
rank eQTLs. Gene set enrichment summary statistics generated using g:Profiler for genes 1711 
having a primary eQTL effect (sheet Primary eQTL), and those also having a secondary eQTL 1712 
(sheet Non-primary eQTL). 1713 

 1714 

Supplementary table 5. Gene set enrichment summary statistics generated using g:Profiler for 1715 
genes having an eQTL effect in cerebellum. 1716 

 1717 

Supplementary table 6. GTEx cis-eQTL replication. Replication between cis-eQTLs of 1718 
different MetaBrain regions and all GTEx tissues. Discovery was performed in each MetaBrain 1719 
dataset while excluding GTEx, and then replicated in each GTEx tissue. Tested eQTLs: those 1720 
eQTLs that were also present in the GTEx dataset. Proportion shared and FDR<0.05: 1721 
proportion of tested eQTLs that was also significant in GTEx. Concordant and FDR<0.05: 1722 
number of tested eQTLs that was also significant and for which the allelic direction was 1723 
concordant. Concordance: proportion of concordant tested and significant eQTLs. 1724 

 1725 

Supplementary table 7. eQTLgen cis-eQTL replication. MetaBrain cis-eQTLs (FDR<0.05) as 1726 
discovery cohort and eQTLgen eQTLs as replication cohort. Top table: FDR<0.05 in MetaBrain 1727 
discovery only (FDR<1 in eQTLGen). Bottom table: FDR<0.05 in both MetaBrain and 1728 
eQTLgen datasets. Shared: number of shared eQTLs. Concordant: number of shared eQTLs 1729 
that has the same allelic direction of effect. Concordant over total: proportion of concordant 1730 
eQTLs over the total number of eQTLs discovered. Concordant over shared: proportion of 1731 
concordant eQTLs over number of shared eQTLs. 1732 

 1733 

Supplementary table 8. Cell type deconvolution summary statistics. Sheet cortex: All 1734 
Decon-eQTL results for cortex. Sheet cerebellum: All Decon-eQTL results for cerebellum. 1735 
Columns for both sheets are: Gene: deconvoluted eQTL gene ensebl ID. Gene symbol: 1736 
deconvolution eQTL gene symbol. SNP: deconvoluted eQTL SNP. Alleles: SNP alleles. Effect 1737 
Allele: the allele to which the betas are directed. Columns ending with p-value: p-value for the 1738 
cell-type interaction. Columns ending with beta: beta for the cell-type proportion term. 1739 
Columns ending with beta:GT: beta for the genotype x cell-type interaction term. 1740 

 1741 
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Supplementary table 9 Replication of the MetaBrain cortex primary cis-ieQTLs in 1742 
ROSMAP single-nucleus data. For each of the deconvoluted cell-types, the FDR and betas are 1743 
listed. For each of the cell types in the single nucleus data, the FDR and eQTL Z-scores are 1744 
listed. All betas andZ-scores are relative to the Effect Allele. 1745 

 1746 

Supplementary table 10. eQTL SNPs in linkage disequilibrium with GWAS SNPs. The 1747 
GWAS SNPs that are in high linkage disequilibrium (LD) with the cis-eQTL SNPs. Each sheet is 1748 
a different metabrain eQTL datasets from EUR populations. The sheet Included Traits lists 1749 
GWAS traits that were tested. Columns are: eQTL rank: the rank of conditional eQTLs 1750 
(1=primary, 2=secondary, etc). GWASID: GWAS ID of the GWAS SNP. Trait: Name of the 1751 
GWAS trait. Index variant: the GWAS variant. Index Variant P: GWAS p-value. Index 1752 
Variant Alleles: Alleles of the GWAS variant. Index Variant Effect: GWAS effect. Linked 1753 
EQTL SNP: the eQTL SNP. LD(rsq): the LD r2. LinkedEQTLGenes: the eQTL genes that the 1754 
linked SNP affects. Linked EQTL Gene Symbols: HGNC name of the linked genes. Linked 1755 
EQTL Alleles: Alleles of the eQTL SNP. Linked EQTL Effect Allele: The allele that is related 1756 
to the effect direction. Linked EQTL Zscores: Z-scores of the eQTL effect. Linked EQTL P: 1757 
p-value of the eQTL effect. GWAS Cluster Size: Number of GWAS SNPs in LD with Index 1758 
Variant. SNPs In GWAS Cluster: SNPs that are in LD with the Index Variant. 1759 

 1760 

Supplementary table 11. List of traits used in Mendelian randomization and colocalization 1761 
analysis. 1762 

 1763 

Supplementary table 12 eQTL SNPs which showed evidence of genetic colocalization with 1764 
tested brain-related traits. ID, Chromosome, Position, SNP, Effect Allele, Non Effect Allele: 1765 
Position of instrumenting SNP with effect allele used during the harmonization procedure. Proxy 1766 
used, Proxy SNP: whether proxy lookup had to be performed to find SNP in outcome GWAS 1767 
and the rsid of the proxy used. MetaBrain SNP effects: gene name and summary statistics for 1768 
the instrument-exposure SNP association (MetaBrain eQTL). Outcome SNP effects: outcome 1769 
name (neurological trait) and summary statistics for the harmonized instrument-outcome SNP 1770 
association. MR effects: single SNP Wald ratio effect between the instrumented eQTL and 1771 
neurological outcome. Coloc results: colocalization probability of both traits sharing the same 1772 
causal variant in the region. Decon-QTL results: eQTL SNP: the SNP that was tested for cell 1773 
type mediated effects. In some cases a SNP which is in high LD with the instrument SNP is used 1774 
for Decon-QTL. LD R-squared: the LD between SNP and eQTL SNP. Columns listing Decon-1775 
QTL results: beta: the beta of the interaction term in the Decon-QTL model with respect to the 1776 
Effect Allele column. FDR: the Benjamini-Hochberg corrected interaction p-value. Mendelian 1777 
Disorders: overlap of genes with Development Disorder Genotype - Phenotype Database 1778 
(DDG2P) and OrphaNet.  1779 

 1780 
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Supplementary Table 13. Colocalization results for latest AD GWAS loci with MetaBrain 1781 
Cortex-EUR primary eQTLs (columns A to P were adapted from Schwartzentruber et al. for 1782 
comparisons and columns Q to Y are MetaBrain findings. Category - 1: previously identified 1783 
and replicated in MetaBrain Cortex-EUR, 2: novel results found by MetaBrain Cortex-EUR, 3: 1784 
previously identified but not replicated in MetaBrain Cortex-EUR. 1785 

 1786 

Supplementary table 14.  Mendelian Randomization comparison between MetaBrain and 1787 
eQTLGen on multiple sclerosis outcome. (a) Wald Ratio comparison on the same gene using 1788 
different SNP instruments.  For this analysis, the Wald Ratio effects for the top hit eQTL for 1789 
each gene within each study were compared.  (b) Wald Ratio comparison on the same gene 1790 
fixing on the same eQTL instrument between studies.  For this analysis, the eQTLGen Wald 1791 
Ratios were re-derived using the second Taylor expansion error term on the same SNP 1792 
instruments as MetaBrain.   1793 

 1794 

Supplementary table 15. Colocalization of MR suggestive hits with high LD but allelic 1795 
discordance. This table displays the colocalization results for 31 suggestive MR findings from 1796 
Cortex-EUR with eQTL instruments replicated in eQTLGen (p<0.05) but allelic discordance 1797 
(opposite directionalities of alleles). Highlighted rows are findings with colocalization in both 1798 
Cortex-EUR and eQTLGen. 1799 

 1800 

Supplementary table 16. Comparison of MR suggestive hits for MS between metaBrain 1801 
and eQTLGen. This table displays 157 suggestive MR signals for multiple sclerosis in Cortex-1802 
EUR and the replication MR and colocalization results of corresponding genes in eQTLGen. 1803 

 1804 

Supplementary table 17. Trans-eQTL summary statistics. Sheet Trans-eQTLs: all trans-1805 
eQTLs detected in this study (FDR<0.05). Percentage cross-mapping: percentage of the gene 1806 
that can be mapped within 5Mb of the trans-eQTL SNP. Sheet Trans-eQTLs no crossmap: trans-1807 
eQTLs that remain significant after cross-mapping eQTLs have been removed. Sheet Trans-1808 
eQTLs with cis per trait: in this sheet, trans-eQTLs are annotated with cis-eQTLs for the same 1809 
SNP, and subsequently split per trait annotation for the SNP. Consequently, a single trans-eQTL 1810 
may be represented by multiple rows. Sheet Convergent trans-eQTLs: genes on which multiple 1811 
independent loci have a trans-eQTL, split per annotated trait. Sheet TraitsAndNrOfSNPs: list of 1812 
traits included in the analysis, and the number of included SNPs per trait. 1813 

 1814 

Supplementary table 18. Summary statistics for associations between SNPs and predicted 1815 
cell-type proportions. Sheet Cortex-EUR: associations (FDR<0.05) while limiting to Cortex-1816 
EUR samples. Sheet Cortex-EUR+AFR-woENA: associations (FDR<0.05) for the analysis 1817 
including AFR samples, but excluding ENA samples. 1818 
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 1819 

Supplementary table 19. Differences in predicted neuron proportions between included 1820 
datasets. T-test p-values comparing neuron proportions for pairwise comparisons between the 1821 
datasets included in the trans-eQTL analysis. 1822 

 1823 

Supplementary table 20. Gene-cell count correlations and 7p21.3 trans-eQTL Z-scores. 1824 
Trans-eQTL Z-scores for three SNPs (rs11974335, rs10950398, and rs1990622), and 1825 
correlations of the trans-eQTL genes with predicted neuron proportions. 1826 

 1827 

Supplementary table 21. Gene set enrichments for 7p21.3 trans-eQTL genes. Gene set 1828 
enrichments calculated using g:Profiler. Sheet downregulated genes: gene set enrichments for 1829 
genes that show downregulation due to the 7p21.3 trans-eQTL effect alleles. Sheet upregulated 1830 
genes: gene set enrichments for genes that show upregulation due to the 7p21.3 trans-eQTL 1831 
effect alleles. 1832 

 1833 

Supplementary table 22. Replication of the MetaBrain cortex primary trans-ieQTLs in 1834 
ROSMAP single-nucleus data. For each of the deconvoluted cell-types, the FDR and betas are 1835 
listed. For each of the cell types in the single nucleus data, the FDR and eQTL Z-scores are 1836 
listed. All betas and Z-scores are relative to the Effect Allele. 1837 

 1838 

Supplementary table 23. Downstreamer results for amyotrophic lateral sclerosis in EUR 1839 
and Asian populations. Sheet overview: lists set of ontologies tested for this phenotype. Sheet 1840 
GenePrioritization_MetaBrain: gene prioritization performed in all MetaBrain samples. Sheet 1841 
GenePrioritization_MetaBrainCortexOnly: gene prioritization performed in MetaBrain cortex 1842 
samples. GenePrioritization_MetaBrainCerebellumOnly: gene prioritization performed in 1843 
MetaBrain cerebellum samples. Sheets Reactome_MetaBrain, GO_BP_MetaBrain, 1844 
GO_CC_MetaBrain, GO_MF_MetaBrain, KEGG_MetaBrain, and HPO_MetaBrain: gene set 1845 
enrichments for coregulated genes identified using Downstreamer. Sheets 1846 
Expression_MetaBrain, Expression_HCA, and GtexV8_relative: expression enrichment using all 1847 
MetaBrain samples, Human Cell Atlas, and GTEx v8. 1848 

 1849 

Supplementary table 24. Downstreamer results for Parkinson’s disease. Sheet overview: 1850 
lists set of ontologies tested for this phenotype. Sheet GenePrioritization_MetaBrain: gene 1851 
prioritization performed in all MetaBrain samples. Sheet 1852 
GenePrioritization_MetaBrainCortexOnly: gene prioritization performed in MetaBrain cortex 1853 
samples. GenePrioritization_MetaBrainCerebellumOnly: gene prioritization performed in 1854 
MetaBrain cerebellum samples. Sheets Reactome_MetaBrain, GO_BP_MetaBrain, 1855 
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GO_CC_MetaBrain, GO_MF_MetaBrain, KEGG_MetaBrain, and HPO_MetaBrain: gene set 1856 
enrichments for coregulated genes identified using Downstreamer. Sheets 1857 
Expression_MetaBrain, Expression_HCA, and GtexV8_relative: expression enrichment using all 1858 
MetaBrain samples, Human Cell Atlas, and GTEx v8. 1859 

 1860 

Supplementary table 25. Downstreamer results for schizophrenia. Sheet overview: lists set 1861 
of ontologies tested for this phenotype. Sheet GenePrioritization_MetaBrain: gene prioritization 1862 
performed in all MetaBrain samples. Sheet GenePrioritization_MetaBrainCortexOnly: gene 1863 
prioritization performed in MetaBrain cortex samples. 1864 
GenePrioritization_MetaBrainCerebellumOnly: gene prioritization performed in MetaBrain 1865 
cerebellum samples. Sheets Reactome_MetaBrain, GO_BP_MetaBrain, GO_CC_MetaBrain, 1866 
GO_MF_MetaBrain, KEGG_MetaBrain, and HPO_MetaBrain: gene set enrichments for 1867 
coregulated genes identified using Downstreamer. Sheets Expression_MetaBrain, 1868 
Expression_HCA, and GtexV8_relative: expression enrichment using all MetaBrain samples, 1869 
Human Cell Atlas, and GTEx v8. 1870 

 1871 

Supplementary table 26. Downstreamer results for Alzheimer’s disease. Sheet overview: 1872 
lists set of ontologies tested for this phenotype. Sheet GenePrioritization_MetaBrain: gene 1873 
prioritization performed in all MetaBrain samples. Sheet 1874 
GenePrioritization_MetaBrainCortexOnly: gene prioritization performed in MetaBrain cortex 1875 
samples. GenePrioritization_MetaBrainCerebellumOnly: gene prioritization performed in 1876 
MetaBrain cerebellum samples. Sheets Reactome_MetaBrain, GO_BP_MetaBrain, 1877 
GO_CC_MetaBrain, GO_MF_MetaBrain, KEGG_MetaBrain, and HPO_MetaBrain: gene set 1878 
enrichments for coregulated genes identified using Downstreamer. Sheets 1879 
Expression_MetaBrain, Expression_HCA, and GtexV8_relative: expression enrichment using all 1880 
MetaBrain samples, Human Cell Atlas, and GTEx v8. 1881 

 1882 

Supplementary table 27. Downstreamer results for multiple sclerosis. Sheet overview: lists 1883 
set of ontologies tested for this phenotype. Sheet GenePrioritization_MetaBrain: gene 1884 
prioritization performed in all MetaBrain samples. Sheet 1885 
GenePrioritization_MetaBrainCortexOnly: gene prioritization performed in MetaBrain cortex 1886 
samples. GenePrioritization_MetaBrainCerebellumOnly: gene prioritization performed in 1887 
MetaBrain cerebellum samples. Sheets Reactome_MetaBrain, GO_BP_MetaBrain, 1888 
GO_CC_MetaBrain, GO_MF_MetaBrain, KEGG_MetaBrain, and HPO_MetaBrain: gene set 1889 
enrichments for coregulated genes identified using Downstreamer. Sheets 1890 
Expression_MetaBrain, Expression_HCA, and GtexV8_relative: expression enrichment using all 1891 
MetaBrain samples, Human Cell Atlas, and GTEx v8. 1892 
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Supplementary table 28. Downstreamer results for amyotrophic lateral sclerosis in EUR 1894 
population. Sheet overview: lists set of ontologies tested for this phenotype. Sheet 1895 
GenePrioritization_MetaBrain: gene prioritization performed in all MetaBrain samples. Sheet 1896 
GenePrioritization_MetaBrainCortexOnly: gene prioritization performed in MetaBrain cortex 1897 
samples. GenePrioritization_MetaBrainCerebellumOnly: gene prioritization performed in 1898 
MetaBrain cerebellum samples. Sheets Reactome_MetaBrain, GO_BP_MetaBrain, 1899 
GO_CC_MetaBrain, GO_MF_MetaBrain, KEGG_MetaBrain, and HPO_MetaBrain: gene set 1900 
enrichments for coregulated genes identified using Downstreamer. Sheets 1901 
Expression_MetaBrain, Expression_HCA, and GtexV8_relative: expression enrichment using all 1902 
MetaBrain samples, Human Cell Atlas, and GTEx v8. 1903 

 1904 

Supplementary table 29. ENA accession IDs. List of study accession IDs collected from 1905 
European Nucleotide Archive. Columns are: study_accession: ID of the study in ENA. 1906 
run_accession: ID of all the ENA runs included in this study (before quality control) 1907 
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