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Abstract1

Magnetoencephalography (MEG) is used to study a wide variety of cognitive2

processes. Increasingly, researchers are adopting principles of open science and3

releasing their MEG data. While essential for reproducibility, sharing MEG4

data has unforeseen privacy risks. Individual differences may make a participant5

identifiable from their anonymized recordings. However, our ability to identify6

individuals based on these individual differences has not yet been assessed. Here,7

we propose interpretable MEG features to characterize individual difference. We8

term these features brainprints (brain fingerprints). We show through several9

datasets that brainprints accurately identify individuals. Furthermore, we10

identify consistent brainprints components that are important for identification.11

We study the dependence of identifiability on the amount of data available. We12

also relate identifiability to the level of preprocessing and the experimental task.13

Our findings reveal specific aspects of individual variability in MEG. They also14

raise concerns about unregulated sharing of brain data, even if anonymized.15
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Figure 1: Graphical abstract. Identifying which subject a segment of MEG data
belongs to is strikingly easy when other data from the same session is available for
every subject. We propose three types of interpretable features that can be used to
identify individuals across sessions with high accuracy. Identifiability of individuals is
influenced by factors such as resting state vs. task state, components of each feature,
the sample size and the level of preprocessing. Our results reveal aspects of individual
variability in MEG signals and highlight privacy risks associated with MEG data
sharing.
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Introduction16

The open science movement is a result of the increasing awareness of the importance17

of sharing data and code to promote scientific reproducibility [1]. Public repositories18

enable researchers to share their neuroimaging data (fMRI, EEG, MEG, etc.) while19

making sure to censor out individual information [2]. However, data anonymization20

does not always preserve privacy [3]. Combining different types of information using21

methods such as record linkage approaches [4] may cause serious privacy violations.22

This problem is exacerbated when multiple datasets that happen to contain the same23

individual are available, which is rather common in neuroimaging (e.g. [5]). Hence24

it is natural to ask if anonymized individuals can be identified from neuroimaging25

datasets and if so to what degree. Specifically, we ask: do individuals have a brainprint,26

a brain-activity analog of a fingerprint? If there is evidence for a brainprint, then27

researchers may be warned about how easily individual information can be inferred,28

and it may cause them (and the field) to act with more caution when publishing29

neuroimaging data online. For instance, it may pave the way for the adoption of more30

sophisticated data-release mechanisms like differential privacy [6] and homomorphic31

encryption [7].32

Assume there are two multi-individual neuroimaging datasets with overlapping33

participants: a "source" dataset and a "target" dataset. The question of interest is:34

can we accurately decide which individual in the source dataset corresponds to the35

individual in the target set? In other words, is there individual identifiability between36

the two datasets? The aforementioned question could arise naturally in practice: it37

is very common for university labs to recruit their own lab members for preliminary38

studies; these are anonymously released with an associated publication. Assume that39

one year later, lab member A relocates to city B, and privately volunteers for a study40

by a public hospital that tracks the effect of a drug (or some intervention) on patients41

in early stages of early-onset Alzheimer’s, while collecting MEG data. If this data is42

also anonymously released at a future point, brainprints could plausibly be used to43

detect a common participant, thus identifying that A has Alzheimer’s because only44

one member of the lab moved to city B. This would already be a gross unintended45

violation of privacy, but one can further imagine that an insurance company uses this46

to prove that a condition was pre-existing at the time of the first scan (before the47

individual themselves knew), or use it to decide individual-level pricing.48

2

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 7, 2021. ; https://doi.org/10.1101/2020.06.18.159913doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.18.159913


cross-session variability
(fixed individual)

high statistical
power for
average group
effects

unreliable
dataidentifiability

low

lo
w

high

hi
gh

w
ith
in
-s
es
si
on
va
ria
bi
lit
y

(a
cr
os
s
in
di
vi
du
al
s)

session-
specific
artifacts

Figure 2: Individual identifiability is a function of individual and session
variability in neuroimaging. Consider repeating an experiment in multiple sessions
for a group of individuals. Cross-session variability refers to the change in the recorded
data for the same individual across sessions, while within-session variability refers
to differences in a single session’s recorded data across individuals (keeping all other
variables, including the stimulus, unchanged). The ideal conditions for the scientific
discovery of an effect shared by the group is low within-session and low cross-session
variability. However, the combination of low within-session and high cross-session
variability indicates an artifact or a confound in the experiment design (e.g., each
month, one session is recorded for all individuals and the instrument has a drift over
time). High within-session variability paired with low cross-session variability leads
to individual identifiability with the individual’s data acting like a stable signature
that differentiates them from others. Finally, high within-session and cross-session
variability leads to unreliable data.

If high individual identifiability exists even if the source and target set were49

recorded in separate sessions for each individual, there might be essential differences50

in the patterns of the data among individuals which is preserved across scanning51

sessions. Namely, individual identifiability might be related to variability in brain52

structure or function (or other individual characteristics such as head size). In multi-53

individual, multi-session neuroimaging data, there exists “within-session" variability54

across individuals in the same session and "cross-session" variability of the same55

individual cross sessions [8]. For simplicity, consider the four scenarios in Figure 2.56

Low variability in both within-session (individuals are similar) and cross-session57

(an individual’s data is consistent across session) is likely to promote statistical58

power for detecting average group effects with fixed sample size, thereby facilitating59
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reproducibility [9, 10]. High cross-session and low within-session variability (e.g.60

individual 1’s data in session 1 is very different from their data for session 2, but61

somehow very similar to individual 2’s data in session 1) may indicate session-specific62

artifacts (e.g. the scanner was faulty during the recording of session 1 for all individuals).63

High cross- and within-session variability makes data unreliable. Finally, high within-64

session (individuals are different from each other) and low cross-session variability65

(individuals are similar to themselves) leads to individual identifiability. Individual66

identifiability in turn indicates consistent individual differences, which in themselves67

are an important topic of scientific enquiry [8, 11]. Understanding sources of consistent68

variability can help learn the underpinnings of disease or more generally to map the69

relationship of brain structure and activity to individual behavioral characteristics.70

Similar individual identification problems have been studied using EEG and fMRI71

for the purpose of biometric authentication and to investigate individual differences72

[12, 13, 14, 15, 16, 17, 18]. The term ‘brainprint’ has also been previously used to73

represent brain-specific information, such as morphology and event related potential74

biometrics [19, 20, 21], that can be used to identify individuals. Individual identification75

with MEG data, however, has not been fully explored. Due to availability of MEG76

datasets, only single-trial MEG data has been studied for person identification [22].77

Other MEG studies focusing on variability of individual data [8, 11] may not make78

connections with individual identifiability.79

In this paper, we argue that individuals can be easily identified with MEG data.80

We measure identifiability as identification accuracy with three interpretable MEG81

features on multiple public and private MEG datasets. We show that identifiability82

is not a product of environmental artifacts and specific features have a consistent83

performance between task and resting state data. We further dissect the contribution84

of each features into sub-features to understand what may be leading to the high85

identifiability. Factors such as the amount of data and level of preprocessing are also86

shown to have influence on identifiability. Our analysis not only confirms the worrisome87

potential of privacy being compromised by released MEG data via extracting simple88

features but also leverage the interpretability of the features to explain the underlying89

mechanism for the high identifiability, thereby relating it to individual variability.90
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Results91

We organize our results from simple datasets to more complicated ones in our context,92

to a closer investigation of the methodology itself. We first use machine learning tools93

as well as interpretable features to show that identification is easy when the MEG94

sessions were collected on a single visit. We then show that the proposed features95

also achieve high accuracy on datasets of multiple visits to the scanner, and some96

feature is even consistent on datasets between different tasks. We finally show which97

components of each feature is important for individual identification, and that sample98

size and level of preprocessing will also affect identification accuracy.99
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Figure 3: High within-session identification accuracy on HP data with three
interpretable features. (a) Shape of the HP data before featurization. The HP
data consists of participants reading a book chapter one word at a time for 0.5s each.
The data is resampled to have the dimension [102 channels, 100 time points, n trials]
where each trial corresponds to one word and n to the number of words. (b) The
spatial correlation feature sp is a 102× 102 Pearson’s correlation coefficient matrix
computed across the time points and trials. (c) The temporal correlation feature tp is
a 100× 100 Pearson’s correlation matrix computed across the channels and trials. (d)
The frequency feature fq is a vector in R51 where 51 is the number of frequency bands.
The power at each band was averaged across channels and trials. (e) Identification
accuracy with the three features. The accuracy was averaged across 100 identification
runs of 8 individuals. The red dashed line represents the chance level (= 0.125). The
error bars are the SE across individuals and identification runs and are invisible due
to their small values.

Within-session identification is surprisingly easy. To measure identifiability,100

we consider the test accuracy of a classifier trained to identify participants from their101

MEG recording. We first focus on within session identifiability. In this context, we102

assume that each participant undergoes one session. A classifier is trained on a subset103
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of the session, in which each trial is labeled with the identity of the participant it104

corresponds to. In our framework, we refer to the training set as the source set. Then,105

on held-out test data, the classifier predicts which participant is associated with each106

test trial. We refer to the test set as the target set. As an example, we investigated107

individual identifiability on a MEG dataset of eight participants during a reading task.108

Participants were asked to read a chapter of Harry Potter [23] while each word was109

presented for 0.5s on a screen. The Harry Potter (HP) data is a single-session dataset:110

the data for each individual were collected on a single visit of the MEG scanner.111

Hence the source and target set are non-overlapping subsets of that single session.112

We trained a random forest classifier [24] using the MEG recording of all channels at113

a randomly selected time point, a flattened vector representing the snapshot of the114

topographic map (topomap) of the brain activity. Under this setting, we are asking115

if there is any individual-specific information contained in the topomap, the basic116

element of MEG recording. We split the dataset into 10 non-overlapping folds and use117

one as the target (testing) set and the other nine as the source (training) set. This118

10-fold cross-validation scheme yielded a high identification accuracy (0.94) while the119

chance accuracy is only 0.125. This surprisingly high accuracy on merely 0.05s of120

MEG data suggests the existence of strong patterns detected by the random forest121

classifier. This strong pattern may be contained on the transient spatial distribution122

of an individual’s MEG activity and is strongly distinctive of an individual. This high123

accuracy with the limited amount of information used suggests that within-session124

identification is a strikingly easy task.125

126

Interpretable MEG features yield high identification accuracy. The random127

forest classifier may not enclose enough information to explain the high identifiability of128

the HP data because of the black-box nature of the algorithm. The topomap mainly con-129

tains the spatial information: how heterogeneous the amplitude of the signal is across130

channels at a certain time point. High identifiability may also be attained using tempo-131

ral and frequency information. We proposed three interpretable features for individual132

identification to further disseminate the individual-specific information. These features133

are interpretable because they bear biological meanings and hence can be used to134

interpret the high identification accuracy. The three features were based on n randomly135

selected trials (words) and have the shape [102 channels, 100 time points, n trials]136
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(Figure 3(a)). sp (Figure 3(b)) is the spatial correlation between different sensors137

which may be related to individual-specific correlated activities between areas of the138

brain or the anatomy of the individual (e.g. brain size) [8, 25]. tp (Figure 3(c)) is139

the temporal correlation between the time points into a trial. A high value in the tp140

matrix indicates highly synchronous brain signals between two temporal points, which141

might be related to participant specific stimulus processing latencies. A relevant study142

shows that the temporal change of brain activities in auditory steady-state responses143

are different between individuals [26]. fq (Figure 3(d)) represents the distribution of144

the power intensity of signal frequency. Individual differences might also manifest as145

differences in the power distribution along frequency bands [27, 22].146

We used the 1-Nearest Neighbor (1NN) identification procedure, similar to Finn et147

al. [15], to test if the three features are brainprints for the within-session identification148

task. For a given feature such as sp, the feature is computed for each participant on149

the source set using n trials. Target set features are also computed (but unlabeled)150

with the same number of trials. The 1NN classifier simply assigns each target feature151

to the participant with the closest source feature (we use correlation to measure152

distance). The matching process is repeated for 100 runs to account for the variance153

of the feature on the sampled trials. The simplicity of this 1NN classifier optimizes the154

interpretability of the result. With n = 300 trials all three features achieve near-perfect155

identification accuracy (Figure 3 (e), the accuracy for sp, tp and fq is respectively156

1± 0, 0.9825± 0.0046, 0.995± 0.0025,mean± SE, p < 0.0002, see Supplement F for157

how we computed the p-values). In fact, the high identifiability can be attained with158

as few as n = 100 trials (Supplement C). The high identifiability with sp, tp and159

fq suggests they are brainprints, at least for identifying individuals within a session.160

Therefore, multiple features capturing different aspects of the MEG activity can be161

used for identifying individuals.162

Cross-session identification confirms the existence of brainprints. The high163

within-session identification accuracy suggests sp, tp, and fq are individual-specific164

within a session. Artifacts such as environmental noise and equipment configurations,165

however, might be the main contributing factor to within-session identification accuracy.166

Hence, we examined the consistency of the three features when the same type of167

task data was collected from each individual on multiple sessions. This setting tests168

if the features are preserved over time, i.e. if they are indeed brainprints and not169
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mere artifacts. If the identifiability is significantly lower on multi-session datasets, the170

high identifiability on the HP data may be a mere result of session-specific artifacts,171

since the recording session for each individual is performed on different days. If high172

cross-session identifiability is observed, sp, tp, and fq can be considered genuine173

brainprints because they are unique to individual and invariant between sessions. This174

would also suggest low cross-session and high within-session variability (Figure 2).175

We tested the three features on two multi-session datasets: FST [28], a four-176

session dataset where four individuals were shown pictures of familiar and unfamiliar177

faces and SEN, a three-session dataset where four individuals were shown sentences.178

Since each individual has recordings conducted on different days, we can set the179

target and source data to be from different sessions (Figure 4 (a)), to test the role180

of environmental artifacts and further confirm the existence of the brainprints. In181

addition to identification accuracy, we used a relaxed version, the rank accuracy, which182

captures more information in a failure case where an individual is mis-identified. Rank183

accuracy captures the rank of the correct assignment out of all possible assignments;184

it is 1 if the target feature of each individual have the largest similarity to the source185

features for that individual, and is 1
K

if the similarity is the smallest. The chance rank186

accuracy is K+1
2K

.187

Both tp and fq achieved almost perfect average identification and rank accuracy on188

both FST and SEN data whereas sp achieved lower but still well above-chance accuracy189

(Figure 4 (c),(f)). The high cross-session identification accuracy of sp, tp, and fq190

confirms that it is reasonable to call them brainprints for individual identification in191

MEG. The lower identification accuracy for sp was due to low accuracy on a two of192

the individuals ( Figure 4 (d),(g)) in both datasets. However, identification accuracy193

of these individuals is not consistently low across all session pairs (Figure 4 (b),(e))194

indicating that sp only perform worse for these subjects between certain sessions.195

For SEN data, the MEG recording of two subjects were taken on the same day for196

session 1 and 2. Since the identification accuracy of sp corresponding to these two197

pair of sessions (1 vs 2 and 2 vs 1) did not yield higher accuracy than the average (the198

mean identification accuracy between these two session pairs is 0.655, lower than 0.72,199

the mean across all cross-session pairs), the accuracy for sp was not inflated due to200

this issue with duplicated recording times. In line with the results on the HP dataset,201

sp, tp, and fq are the brainprints that are consistent even between recording sessions202

with tp, fq leading to higher identifiability.203
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Figure 4: Cross-session identification on FST and SEN data confirms ex-
istence of brainprints. (a) Schema of the cross-session identification task. For
one identification run, the features of each individual are computed using randomly
sampled trials (N = 300) from both the source and target session. Target session
features are then classified by selecting the individual with the largest similarity score
in the source session. (b) Heat maps of the cross-session identification accuracy using
the three features on FST data. Each grid represents the average accuracy across 4
individuals and 100 identification runs. The within-session accuracy (diagonal entries)
are computed using the same source-target splitting procedure as on the Harry Potter
data to avoid data leakage. (c) Average cross-session identification accuracy and rank
accuracy for each feature on FST data. Within-session accuracy (diagonal entries
in (b)) were excluded in computation. Error bars are the SE across cross-sessions
(N = 12), individuals (N = 4), and identification runs (N = 100) and are invisible due
to small values. Red dashed lines are the chance level for the identification accuracy
(= 0.25) and rank accuracy (= 0.625). (d) Identification and rank accuracy on FST
data by individual. Within-session accuracy were excluded in computation. Error
bars are the SE across cross-sessions (N = 12) and and identification runs (N = 100)
and are invisible due to small values. The red dashed lines are the same as in (c).
(e)-(g), same as (b)-(d) but on SEN data with the same number of individuals
and identification runs (N = 4 and N = 100) but different number of cross-sessions
(N = 6). The high identification accuracy with the three features on multi-session
datasets confirms these features can be brainprints for individual identification.
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Figure 5: Consistent sp for cross-task identification on Human Connectome
Project data. (a) Heat maps of the cross-task identification accuracy using the three
features on HP data. Both resting and working memory (WM) data were recorded on
the same day. Each grid represents the average accuracy across 77 individuals and 100
identification runs. The within-task accuracy (diagonal entries) are computed using
the same source-target splitting procedure as on the Harry Potter data to avoid data
leakage. (b) Average cross-task identification accuracy and rank accuracy for each
feature on HCP data. Within-task accuracy (resting vs. resting, WM vs. WM) are
excluded in computation. Error bars are the SE across cross-task sessions (N = 2),
individuals (N = 77), and identification runs (N = 100) and are invisible due to
small values. The red dashed lines are the chance level for the identification accuracy
(= 1

77
) and rank accuracy (= 39

77
). (c) Identification (upper three rows) and rank

(lower three rows) accuracy on HP data by individual. Within-task accuracy are
excluded in computation. Error bars are the SE across cross-task sessions (N = 2) and
identification runs (N = 100) and are invisible due to small values. The red dashed
lines are the same as in (b). These results indicate that sp is consistent even when
performing different tasks (resting vs WM) in the source and target session.

Spatial brainprints are consistent across resting-state and tasks. The high204

performance and interpretability of the brainprints make it enticing to study the factors205

and the underlying mechanism for identification. We looked at the performance of206

these features between two sessions of different types collected on the same day to207

test their consistency between different brain states. We compared the features using208

the Human Connectome Project (HCP) MEG data [5] between a resting-state session209

in which individuals (N=77) rest and do not perform a task and a task-MEG session210

where these same individuals view images and perform a working memory task.211

Consistent with the cross-session results in Figure 4, sp yielded a high identification212

accuracy (Figure 4 (b), 0.77± 0.0034, mean ± SE, p < 0.0002), well above the 0.013213

random baseline. This suggests that the spatial fingerprint is consistent between214

different brain states which confirms a similar finding in fMRI [15]. The by-individual215

identification accuracy (Figure 5(c)) shows that there was a small subset of individuals216
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whose accuracy is below random, which may be due to the lack of head position217

correction in the HCP collection protocol. tp and fq did not perform as well as218

sp, suggesting that the temporal rhythm and frequency involved might be different219

between resting-state and task [29, 30].220
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Figure 6: Identification accuracy of components of the features. See Supple-
ment D for a,b on FST data. (a) Identification accuracy of the sub-features of sp
on SEN data. Each grid represents the identification accuracy using the correspond-
ing entries of sp averaged across cross-sessions (N = 6), individuals (N = 4), and
identification runs (N = 100). Inset is the plot of the sensor group layout and edges
correspond to the sensor group pair with over 0.7 accuracy for both FST and SEN. The
topomap is plotted using the python MNE package [31]. (b) Identification accuracy of
the sub-features of tp on SEN data. Each grid represents the identification accuracy
using the corresponding entries of tp averaged across the same dimensions as in a.
Inset is an example MEG signal of one individual averaged across channels (N = 102)
and trials (N = 1000). Arrows correspond to the entries of the heatmap with over 0.9
accuracy for both FST and SEN. (c) Identification accuracy of the sub-features of fq
on SEN (upper plot) and FST (lower plot) data. Each dot represents the identification
accuracy using the corresponding entries of tp averaged across cross-sessions (N = 6
for SEN and 12 for FST), individuals (N = 4), and identification runs (N = 100).
Accuracy values of f larger than 60 Hz were truncated since the curve became flat.
Error bars are SE across cross-sessions, individuals, and identification runs and are
invisible due to small values. The curve peaks at f = 6 Hz for SEN and f = 8Hz for
FST. The accuracy of some components of a feature is consistently higher than the
rest on both datasets, indicating that some parts of a certain feature may be more
important in identifying individuals.

The rank accuracy of tp and fq (Figure 5(b), 0.82±0.0017 and 0.85±0.0016, mean221

± SE, p < 0.0002 for all) are much higher than the baseline (0.506). The majority of222
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the individuals also have higher rank accuracy than baseline for tp and fq (Figure 5(c)).223

The higher rank accuracy suggests that tp and fq may still contain individual-specific224

information but are not strong enough to achieve a high identification accuracy. Since225

the individuals perform different tasks on the source and target session, the rank226

accuracy indicates the potential consistent brainprint the generalizes beyond the task.227

It is noticeable that for the HCP dataset, the recording sessions of one individual228

were recorded on the same day. Hence one may exercise caution when extend the229

conclusions to cross-session datasets.230

Not every part of a brainprint is equally important. What contributes to the231

high identifiability of the three brainprints? Understanding the relative contribution232

of the components of brainprints could help understand individual identifiability and233

variability. We divided the three brainprints into sub-features and looked at their234

identification accuracy to see which components contain the most individual-specific235

information. sp was divided into correlations between groups of sensors. tp was236

divided into correlations between time intervals. fq was divided into frequencies within237

a sliding window. We use the SEN and FST dataset to focus on cross-session patterns.238

For both SEN and FST, the correlations between sensors within Left Occipital239

(LO) and between LO and Right Parietal (RP) yielded high accuracy (Figure 6 (a),240

inset, and Supplement D). LO is involved in visual processing [32] and RP is involved241

in sensory integration [33], both of which are functions recruited by the experimental242

task. Due to the nature of the sampled signal and the physical properties of the skull,243

each MEG sensor samples coarsely from the brain, making it hard to say whether244

MEG spatial correlation effectively corresponds to functional connectivity, especially245

for nearby sensors [8]. However, the fact that correlations between faraway groups of246

sensors, for example, LT and RT, still have good accuracy suggesting it may be due247

to actual functional correlation between these areas, but it could still be the case that248

it is the difference in skull shapes that contributes to the high sp accuracy.249

For both SEN and FST, the super-diagonal of the heat map for temporal sub-250

features (Figure 6 b and Supplemental Section D) had high accuracy. The super-251

diagonal entries correspond to the cross-correlation of the MEG signal between two252

consecutive segments of 0.05 s. Hence the rhythm of the signal within a short segment253

of time contributes to identifiability, which can also be seen from the banded structure254

of tp (Figure 2(c)). Moreover, the correlations between fourth and fifth 0.05 s yield255
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considerably high accuracy on both datasets tp (Figure 6(b) inset). These time periods256

overlap with the time we expect the brain is processing word and picture stimuli [34].257

The power intensity of frequencies between 4 and 13 Hz yielded the highest accuracy258

on both SEN and FST data (Figure 6 c), the peak is 6 Hz for SEN adn 8 Hz for FST.259

These peaks roughly corresponds to the Theta and Alpha frequency band which are260

related to the resting state, memory, and mental coordination [35]. The accuracy is also261

moderately high on part of Beta band (14-31 Hz) where attention and concerntration262

are recruited[35].263

Identifiability changes with data size and preprocessing. The last dimensions264

that we investigate is the dependence of individual identification on the amount of265

available data and on the level of data preprocessing.266

We look at the identification accuracy using the three brainprints while increasing267

the sample size n. The identification accuracy increases with the amount of data268

used for computing sp, fp, and fq (Figure 7(a)) as the sampling variance becomes269

smaller. In general, with 50s of data, the brainprints perform well on cross-session270

identification of the same task. sp becomes reasonably accurate on the HCP dataset271

with 100 trials corresponding to 250s of recording, possibly because more trials are272

required to accurately compute features that are distinguishable within a larger pool273

of individuals. For FST and SEN, the identification accuracy of sp saturates at fewer274

number of trials than tp and fq. It is possible that sp requires fewer trials to be275

estimated robustly.276

Preprocessing may also affect identification accuracy. We compared the difference in277

the identification and rank accuracy between the raw and preprocessed data (Figure 7278

b,c). The changes in accuracy were all statistically significant (Figure 7(b,c), p < 10−26,279

two-sided paired t-test) when the raw data was preprocessed for all the three features280

(Figure 7(b)). For both FST and SEN, preprocessing yielded better accuracy for281

tp and fq. However, for sp, the results point in opposite directions: preprocessing282

increases identifiability for FST and decreases it for SEN. There was one difference283

in the preprocessing pipeline for both datasets: FST preprocessing did not include284

head position correction due to a lack of head position recordings. Head position285

correction might be changing the signal in non-homogenous ways thereby undermining286

the identifiability with sp.287
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Figure 7: Factors affecting identification accuracy. (a) Identification accuracy
with respect to the number of trials (sample size) used for the featurization of FST,
SEN, and HCP data. Each dot represents the identification accuracy averaged across
individuals, identification runs, and cross-sessions (or cross-task sessions) excluding the
within-session or within-task results. Error bars are the SE across the corresponding
cross-sessions (or cross-task sessions), individuals, and identification runs of each
dataset and are invisible due to small values. (b)-(c) Identification (b) and rank (c)
accuracy of the three features computed on raw and fully preprocessed FST and SEN
data. The same color represents the same feature as in (a). For (b), the identification
accuracy across sessions (N = 12 for FST and = 6 for SEN), individuals (N = 4), and
identification runs (N = 100) are put into one vector (of N = 4800 entries for FST
and 2400 entries for SEN) for each feature and level of preprocessing. The heights
of the bar plots are the mean of the corresponding vector and the error bars are its
SE and are invisible due to small values. A two-sided paired t-test is performed on
the binary vectors of the same feature and dataset between the raw and preprocessed
data. The p-values for all pairs are less than 0.001. For (c), the rank accuracy were
put into one vector in the same way as in (b). The heights of the bar plots are the
mean of the corresponding vector and the error bars are its s.d. A two-sided paired
t-test is performed on the vectors of the same feature and dataset between the raw
and preprocessed data. The p-values for all pairs are less than 0.001.
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Discussion288

An individual can be identified with a number of differential characteristics, including289

their real ‘fingerprints’. Existing studies have suggested the existence a fingerprint in290

brain signals (e.g. [14, 15]). In this paper, we argued that such brainprints also exist in291

MEG data and, in fact, there are multiple of them that capture different information292

from the MEG data. We showed that these brainprints are likely not by-products of293

environmental artifacts and may pertain to the underlying brain response to stimuli.294

These analyses, apart from adding to the existing evidence of the brainprints, may295

bear alarming meanings in privacy issues and provoke thoughts on how scientific296

conclusions based on multiple individuals have to be examined carefully given these297

consistent individual-specific features.298

In this section, we first discuss the implications of these results in detail, following299

the same order of the previous section. We then mention limitations and potential300

improvement to our analysis of brainprints.301

Within-session identifiability. Using the HP data, we showed that both random302

forest classification with topomaps and 1NN classification with certain interpretable303

features can be used to correctly identify individuals when the data is collected on a304

single session. The high accuracy based on merely 0.5s of data for sp and 25s for tp305

and fq is striking since small amounts of data usually leads to inaccurate estimates of306

these features, unless the underlying patterns are strong. The easy task of identifying307

individuals on single-session dataset points to strong individual-specific patterns which308

may or may not be brain-activity related.309

Uniqueness of brainprints. The three features we proposed may not be the only310

characteristics of MEG data that can be used for individual identification. However,311

these features represent fundamental aspects of MEG data (and even time series in312

general) hence they may be a vital first step to understand brainprints. Specifically,313

we propose the temporal feature, tp, because of the high temporal-resolution of MEG314

data. This feature may have not been used for other types of neuroimaging datasets,315

suggesting that different features may be informative depending on the nature of316

dataset of interest.317
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Cross-session identifiability. The high cross-session identification accuracy using318

sp confirms it is a brainprint, and supports the previous literature on the similar319

features in fMRI and EEG [15, 36]. The higher accuracy by sp, tp and fq suggest320

that multiple aspects of the individual activity captured by MEG may be used for321

identification. The generally lower accuracy from sp might be the result of the change322

of alignment of sensors for each individual. However, since necessary steps have taken323

in the preprocessing pipeline to align the sensors (Supplement A) and each MEG324

sensor measures brain activity from a non-trivially large area, it remains unclear if325

the issue is the alignment. Another interpretation of this result is that the temporal326

and frequency information is more consistent for an individual across time and the327

spatial information may slowly evolve over time (e.g., when the individual slowly328

moves during the recording).329

Some source-target session pairs have lower identification accuracy than others for330

sp (Figure 4 (b),(e)) and the identification accuracy is not necessarily reciprocal, for331

example, 0.76 vs 1 (mean, session 3 as source, session 2 as target vs session 2 as source,332

session 3 as target) in FST. The lower accuracy of sp of on specific source-target333

sessions of specific individuals suggests that the identifiability of sp may not be334

uniform over time and individuals.335

The three highly identifiable features on FST and SEN represent an alarming336

message for experimentalists to consider before releasing MEG data. The existence of337

brainprints are also examples of certain functions of the MEG data with high cross-338

individual variability preserved across sessions, which has been widely discussed on339

various types of neuroimaging data [8, 37, 11, 38, 39]. For example, the high accuracy340

with tp suggests the existence of individual variability in their temporal response to341

the same stimuli. Understanding brainprints will facilitate the understanding of the342

underlying anatomical and functional variability between individuals.343

Cross-task identifiability. The consistent performance of sp on the HCP data344

is in line with a previous study on fMRI of overlapping individuals that the spatial345

connectome is preserved between tasks [15]. The rank accuracy of tp and fq on HCP346

data indicates the potential of these two features to be consistent within individuals347

(Figure 5(c)) because the majority of individuals still have higher than chance rank348

accuracy than identification accuracy. The current underperformance of these two349

features, as expected, is likely due to the different temporal dynamics between the350
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resting and task data. This difference may be eliminated by removing the trial part351

from the task MEG, focusing on inter-trial intervals or baseline periods, and hence352

boost the identification accuracy of tp and fq. More complicated matching method353

may be proposed to further boost the performance of these two brainprints. The354

within-task identification accuracy (Figure 4 (a)), on the other hand, is still high for355

all features. With the large pool of participants, the high accuracy confirms the strong356

individual-specific information contained in the three features within a certain task.357

Interpretability of brainprints. For the three brainprints, higher accuracy seems358

to be associated with the components of features with more stimuli-driven activity:359

the occipital lobe, the time around the stimulus, and frequency bands the with360

highest power intensities (Supplement E). Indeed, MEG signal is most sensitive to361

transient, coordinated firings of many neurons that happen after stimulus onset.362

This commonality indicates the possibility that higher accuracy is related to event-363

related signals, which in turn suggests that identifiability might be caused by different364

individuals responding differently to the stimulus. This dependence on stimulus may365

explain the low accuracy with tp and fq on HCP data and also suggest that the366

identifiability originates from brain-related activities instead of session- and individual-367

specific artifacts.368

However, these accuracy patterns of specific components of a feature could also369

be explained by a signal-to-noise ratio argument: regions, time-points, or frequencies370

related to stimulus processing correspond to parts of the underlying brain signal with371

higher amplitudes (while the ambient noise amplitude is constant). It might be that372

the increase in signal magnitude make the (spatial, temporal or frequency) activity373

patterns that are specific to a individual more detectable by increasing their amplitude374

relative to the ambient noise, even if these patterns are not inherently related to375

stimulus processing and are just consistent features of a individual’s brain activity.376

Sample size and level of preprocessing. sp accuracy tends to saturate with377

fewer number of trials than the other two featuers on FST and SEN data but with378

more trials on HCP data (Figure 7(a)). This difference is likely due to the difference379

in the maximum accuracy a feature can attain: in HCP data, tp and fq has much380

lower maximum accuracy and will reach the peak with smaller number of trials. In381

FST and SEN data, the spatial pattern may require fewer trials to estimate accurately,382
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as compared to the temporal and frequency features.383

The artifact removal and temporal filtering in the preprocessing pipeline might384

have prevented session-specific noise from contaminating individual-specific features,385

resulting in higher accuracy for tp and fq. The seemingly contradictory accuracy on386

sp does not justify our results: identifiability using sp increases after prepossessing387

when not performing head position correction but decreases when performing it. On388

the one hand, it is expected that head position correction would improve identifiability389

by recentering each individual’s data to the same position in each session. On the390

other hand, head position correction may remove individual-specific information such391

as the head shape, causing the decrease in the accuracy of sp. Future work and392

analysis of additional datasets are required to investigate this result. The difference in393

the accuracy between raw and preprocessed data suggests, for example, encrypting394

the data with session-specific noise may lower identification accuracy.395

Limitations. Due to the availability of the multi-session MEG data, more experi-396

ments are needed to generalize the conclusions of this paper to a larger population397

and more types of tasks. For example, the cross-session identifiability results depend398

on 4 subjects and may suffer from high variance. A larger population (with multiple399

sessions for each participant) may benefit the interpretation of brainprints to eventually400

attribute the high identifiability of certain components of features to the underlying401

brain mechanism.402

Throughout the paper, we assumed both the target and source datasets had the403

same pool of participants in the scope of this paper. If we don’t know if one individual404

from the target set is included in the source set, other classification methods which allow405

for abstaining from classification (e.g. [40, 41]) may be used to account for the case406

when no label in the source set can be assigned to the individual. This situation is an407

example of a more realistic identification problem because an individual’s participation408

in multiple MEG studies is usually unknown to the public.409

Future solutions. More complicated features can be proposed which combine the410

spatial, temporal, and frequency information to improve identifiability. For example,411

functional connectivity at different frequency bands has been used to identify twins412

from other participants [17]. New feature similarity function that focuses on the413

structure of the correlation matrices may also be used to improve accuracy [42].414
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Metric learning techniques [43] can also be used to learn the similarity function in415

a surpervised manner which may boost the performance with sufficient amount of416

labeled MEG data.417

On the other hand, given the high identification accuracy with brainprints in this418

study, privacy-preserving algorithms need to be proposed to account for this privacy419

issue. Federated learning method [44] may be a promising framework as data collected420

from multiple sessions and sites can be analyzed together without revealing critical421

information of each specific dataset.422
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Methods423

Within- vs cross- session. We call a pair of source and target sets "within-session"424

if, for each individual, both datasets were collected in the same visit to the scanner.425

For example, two blocks of a resting-state recording of a participant collected on the426

same day are within-session. If the two datasets are collected on different days for427

each individual, they are "cross-session". For example, a resting state recording on428

day 1 and another resting-state recording on day 2 are cross-session. Individuals with429

within-session data may be easier to identify since the source and target data were430

collected under almost the same environment.431

432

Within-session data. Individuals were asked to read a chapter of Harry Potter433

[23] while each word was presented for 0.5 s on a screen. There were 306 sensors at434

102 locations where each location has one magnetometer and two planar gradiometers435

whose signal was averaged. The sampling frequency of the data was 1000 Hz which was436

further downsampled to 200 Hz. Details about the preprocessing of all the datasets437

in this paper can be found in Supplement A. The data was parsed into trials where438

each trial corresponds to the MEG recording when an individual was reading a word.439

Specifically, the trials of individual k is {Xk
i ∈ R102×100}Iki=1 where Ik is the number440

of trials for individual k, 102 represents the number of spatial channels, and 100441

represents the number of temporal points in the trial. Since the recording of each442

individual was collected in one session, we simply split the data into a target and443

source dataset for the within-session identification task.444

445

Cross-session data. We considered the following two datasets which have record-446

ings on multiple days:447

1- FST data [28], shared online:1 individuals saw faces with each face appearing448

on the screen. Each trial lasted 0.5 s. There were 4 individuals and 4 sessions. The449

sampling frequency was 1000 Hz and was downsampled to 200 Hz. Intervals between450

consecutive sessions were several days.451

2- SEN data (unpublished anonymized citation): individuals read sentences. Each452

1https://figshare.com/articles/FST_raw_data/4233107
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trial lasted 0.5 s. There were 4 individuals and 3 sessions. The sampling frequency453

was 1000 Hz and was downsampled to 200 Hz. Intervals between consecutive sessions454

ranged from days to weeks. In this dataset, two sessions for two individuals were455

recorded at the same day.456

The shape of one trial of the two datasets is 102 channels by 100 time points, the457

same as the Harry Potter data. We used 300 trials to create features for each run of458

identification. For the within-session identification (diagonal entries of Fig 3 (b) (c)),459

we split the recording for each individual into non-overlapping source and target set460

before featurization.461

462

Task vs resting data. We looked at the Human Connectome Project data2[5] .463

There were two sessions, one resting-state recording and one working-memory (WM)464

task recording where the stimuli were images for the participants to remember. Each465

trial of the WM corresponded to the 2.5 s of the recording after the onset of the466

stimulus. The two datasets had 77 individuals in common and we only looked at these467

individuals. There were 146 channels and the signal was downsampled to 200 Hz. The468

two sessions were collected on the same day with a break of several hours. We used469

200 trials for featurization for each run of identification due to fewer number of total470

trials as compared to the aforementioned datasets.471

472

Random forest identification with raw features. We trained a random forest473

classifier with 256 estimators by first concatenating all the trials of all the individuals474

along the time dimension, resulting in X ∈ R102×N where N =
∑8

k=1 100Ik is the total475

number of time points of all the individuals. The training data is {X(:, i) ∈ R102}Ni=1476

is a falttened vector with 102 entires corresponding to the signal across all channels477

at one time point, and the training label is yi ∈ {1, 2, · · · , 8}. Data was z-scored by478

channel separately on training and testing data.479

480

Interpretable MEG features. Let X ∈ R102×100×n represent the recording used481

for featurization, with 102 channels, 100 time points, and n randomly sampled trials.482

2https://www.humanconnectome.org/study/hcp-young-adult
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The three features were defined as follows:483

1- Spatial correlation (sp): Pearson correlation between channels averaged over484

time. X was reshaped into R102×100n before the correlations between rows of the485

reshaped matrix were computed.486

2- Temporal correlation (tp): Pearson correlation between time points averaged487

over channels. X was reshaped into R100×102n before the correlations between rows of488

the reshaped matrix were computed.489

3- Frequency (fq): power spectrum averaged over channels. Power spectrum of490

X(i, :, j) was computed using a Tukey window with shape parameter of 0.25 and491

window size of 100 time points for i = 1, · · · , 102, j = 1, · · · , n. The final power492

spectrum was obtained by averaging across i, j.493

494

Identification using 1NN. We performed R = 100 identification runs. In iden-
tification run r, we randomly split the Harry Potter dataset into non-overlapping
source and target set, z-scored the source and target by channel separately, and
computed the feature xαi,r,F averaged over n = 300 randomly sampled trials using data
α ∈ {target, source} for individual i and F ∈ {sp, tp, fq}. The features from the
target to the source set were matched with a labeling with replacement protocol :

ŷ(xtarget
i,r,F ) = arg max

j∈{1,2,··· ,K}
m(xtarget

i,r,F , xsource
j,r,F )

where K = 8 is the total number of individuals and m(·, ·) is the similarity function495

measuring the similarity between the two features. We used Pearson correlation496

as our similarity function. The identification accuracy for individual i and fea-497

ture F is 1
R

∑R
r=1 1ŷ(xtarget

i,r,F )=i. The averaged identification accuracy for feature F is498

1
KR

∑K
i=1

∑R
r=1 1ŷ(xtarget

i,r,F )=i. The random baseline is 1
K
.499

When the source set and target set were from the same session, we split the dataset500

into non-overlapping sets as we did in the within-session identification. We didn’t501

split data when the source and target data are from different sessions since there is502

no potential data leakage. We z-scored the data by channel on the source and target503

separately.504

505
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Rank accuracy. The rank accuracy of individual i on one run of identification (sup-506

pressing notations of feature F and run r) is defined as 1
K
rank(m(xtarget

i , xsource
i ))507

where K is the number of individuals, rank(m(xtarget
i , xsource

i )) is over {m(xtarget
i508

, xsource
j ), j = 1, 2, · · · , K}. The rank accuracy equals to 1 if the feature of the same509

individual has the largest similarity between the source and target sets among all K510

individuals, and is 1
K

if the similarity is the smallest. The rank accuracy captures511

more information in a failure case where an individual is mis-identified. The random512

baseline for the rank accuracy is K+1
2K

.513

514

Sub-features. Each feature was decomposed as follows:515

1- sp: The sensors were partitioned into 8 subgroups according to the map in516

Figure 1 of [45]: Left Frontal (LF), Right Frontal (RF), Left Temporal (LT), Right517

Temporal (RT), Left Parietal (LP), Right Parietal (RP), Left Occipital (LO), Right518

Occipital (LO). Each subfeature was the rows and columns of the spatial correlation519

matrix corresponding to the sensors in one of the eight groups: let Σs ∈ R102×102 be520

the spatial correlation matrix, then the subfeature corresponding to the correlation521

between RT and LT, for example, is Σs(indRT , indLT ) where indRT is the set of channel522

indices in the RT group and indLT corresponds to the LT group.523

2- tp: The 100 temporal points were divided into 10 consecutive segments con-524

taining 10 time points. Each subfeature was the rows and columns of the temporal525

correlation matrix corresponding to one of the ten segments: let Σt ∈ R100×100 be the526

spatial correlation matrix, then subfeature corresponding to the correlation between527

the first and second time segment, for example, is Σt(1 : 10, 11 : 20).528

3- fq: Each subfeature was the segment of the frequency feature vector correspond-529

ing to [f, f + 10] Hz where f ∈ {0, 2, · · · , 90} Hz.530

Raw vs preprocessed data. In Figure 6 (b), we compare the identification accuracy531

between the raw and preprocessed data for FST and SEN dataset. The details of532

the full preprocessing pipeline is included in the supplement. In FST dataset, for a533

given feature and dataset, there were 4800 binary matching results (12 cross-session534

comparisons × 4 individuals × 100 identification runs) where each one corresponds535

to the result of deciding which individual from the source session matches the one536

individual from the target session. A Pearson’s χ2 test was performed to determine537
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if there is a significant difference in the identification accuracy between the raw and538

preprocessed data. In SEN dataset, for a given feature and dataset, there were539

2400 binary matching results (6 cross-session comparisons × 4 individuals × 100540

identification runs) instead.541
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Supplementary Material699

A. Data preprocessing700

Here we list the preprocessing steps applied to the four types of datasets: Harry Potter701

(HP), SEN, FST, and Human Connectome Project (HCP). A summary is listed in702

table 1. For all datasets, we used an order 8 Chebyshev type I anti-aliasing filter703

in Python Scipy package[46] for downsampling. For any within-session identification704

task, data was z-scored within its corresponding type of dataset (target vs source).705

Some steps of preprocessing were performed using the python MNE package [31].706

1- HP/SEN: The 306-channel Elekta Neuromag system was used for the707

recording. Source-space separation (SSS) along with Maxwell filtering and their708

temporal extension (tSSS) [47, 48] were used for bad channel correction, head709

position correction, and electromagnetic artifacts removal. Empty room artifacts710

were removed. 1 ∼ 150 Hz bandpass filter and 60 & 120 Hz notch filter were711

used to remove line noise. Heartbeats and eyeblinks artifacts were removed with712

signal-space projection (SSP) [49]. The data was downsampled to 200 Hz and713

z-scored by channel within each individual and session.714

2- FST (preprocessing pipeline was included in the source code): The 306-715

channel Elekta Neuromag system was used for the recording. Source-space separa-716

tion (SSS) along with Maxwell filtering and their temporal extension (tSSS) were717

used for bad channel correction and electromagnetic artifacts removal. Empty room718

artifacts were removed. We didn’t perform head position correction since there719

was no head position data. 1 ∼ 150 Hz Bandpass filter and 60 & 120 Hz Notch720

filter were used to remove line noise. Heartbeats and eyeblinks artifacts were also721

removed with SSP. The data was downsampled to 200 Hz and z-scored by channel722

within each individual and session.723

3-HCP: Both resting and WM datasets were already preprocessed and down-724

loaded from the HCP database3. The details of the preprocessing pipeline can725

be found at https://www.humanconnectome.org/storage/app/media/docume726

ntation/s1200/HCP_S1200_Release_Reference_Manual.pdf. MAGNES 3600727

(4D Neuroimaging, San Diego, CA) system was used for the recording. For WM728

data, we looked at the TIM partition which corresponds to −1.5 ∼ 2.5 s relative to729

3https://www.humanconnectome.org/study/hcp-young-adult
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the onset of the image. For both resting and WM data, the sampling frequency730

of the preprocessed data is 508.63 Hz, and 2 s of data were selected from each731

trial. This corresponds to the whole 1018 time points in the resting data and732

[763 : 1780]-th time point for the WM data (corresponding to 0 ∼ 2 s relative to733

the onset of the image). The 2 s data was then downsampled to 101.73 Hz. Data734

was z-scored by channel within each individual and each data type (resting and735

WM). We looked at the 146 channels which were marked "good" among all the 77736

overlapping individual between resting and WM.737

Table 1: Summary of the preprocessing stpes for HP, SEN, FST, and HCP data
Steps HP/SEN FST HCP

bad data corrected corrected removed
head position corrected not corrected not corrected4

electromagnetic artifacts removed using SSS removed using SSS removed with bad data
empty room artifacts removed removed removed5

band filtering 1 ∼ 150 Hz 1 ∼ 150 Hz 1.3 ∼ 150 Hz
notch filtering 60 & 120 Hz 60 & 120 Hz 59− 61&119− 121 Hz

ECG (heartbeat) artifacts removed with SSP removed with SSP removed with ICA
EOG (eyeblink) artifacts removed with SSP removed with SSP removed with ICA

downsampling 200 Hz 200 Hz 101.73 Hz
z-scoring by channel within individual, session same same

shape of a trial
[channels, timepoints]

[102, 100] [102, 100] [146, 204]

4No continuous recording of head position was available in HCP data
5page 68 of https://www.humanconnectome.org/storage/app/media/documentation/s1200/

HCP_S1200_Release_Reference_Manual.pdf
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B. Sensor layout for FST, SEN, and HP data738
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Figure 8: Layout of the sensors for FST, HP, and SEN data (306-channel
Elekta Neuromag system). Channel numbers are consistent with the channel
index in Figure 11. Inset is the partitioning of the sensors same as Figure 6 (a) of the
main text.
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C. Identification accuracy vs. sample size for Harry739

Potter data740
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Figure 9: Identification accuracy of sp,tp, and fq on the Harry Potter data.
Each dot was averaged across individuals (8) and identification runs (100). Error bars
are the SE across individuals and identification runs and are invisible due to small
values. Each trial is 0.5s in length. The trends for tp and fq are similar to that of the
cross-session data (SEN and FST). sp requires as few as one trial to achieve a perfect
accuracy. This indicates strong spatial patterns in the HP data which are specific to
each individual. This is expected since HP does not have more than one session, and
the identification accuracy for sp may be lower if there are multiple sessions in HP
data, similar to what we have observed on FST and SEN data.
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D. Identification accuracy with components of brainprints for741

FST data742
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Figure 10: Identification accuracy with sub features for a: sp and b: tp in
FST data (similar to Figure 6 in the main text). For both FST and SEN, the
within-LO and LO-RP correlations yield high identification accuracy. Similarly, for
both FST and SEN, the super-diagonal and the correlations between the fourth and
fifth 0.05 s yield high accuracy. The consistency of the results on the two datasets
suggest that our conclusions in Section 4.2 are not due to experiment-specific artifacts.
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E. Example brainprints of FST data743

Note: we have emphasized the importance of preserving individual privacy throughout744

the paper. Since the FST dataset is published online and our way of computing745

brainprints (as either discussed in the main text or the source code) will eventually be746

publicly available, showing individual brainprints will not reveal new information about747

the individuals. Hence we decided to include the following examples of brainprints to748

show more intuition behind the high identification accuracy of the three brainprints.749

(.Figures in the next page).750
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Figure 11: Example sp (spatial connectivity) of FST data. Each heatmap
represents a 102× 102 spatial correlation matrix. For better illustration we clipped
the correlation into [0,1]. The general patterns of the correlation matrices are similar
to each other. Some subsets of the heatmap, for example, the bottom-right corner,
the top-left corner, and the red rectangle areas are more consistent within a individual
and different between individuals. This suggests that only the interactions among
a subset of sensors are individual-specific. The red rectangle areas, in particular,
roughly correspond to the correlations within the left occipital (LO) lobe which yields
the highest identification accuracy on both FST and SEN data (see Figure 6(a) and
Figure 10). More complicated comparison algorithms may be proposed to focus on
these specific subsets to improve the identification accuracy.
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Figure 12: Example tp (temporal connectivity) of FST data. Each heatmap
represents a 100× 100 temporal correlation matrix. For better illustration we clipped
the correlation into [0,1]. The banded structure of the matrices are preserved for
the same individual across sessions, and are different between individuals in terms of
the number of bands and the relative locations of the bands. The banded structure
indicates that there are stronger correlations of the signal with itself at certain lags.
In other words, looking at the auto-correlation of the signal or even cross-correlation
between different channels may reveal interesting results about the temporal dynamics
of the brain activities. The individual-specific band structures also confirm the findings
in Figure 6 (b) that correlations of the signal with itself at certain lags are best able
to identify individuals.
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Figure 13: Example fq (frequency) of FST data. Each plot represents spectrum
(averaged across channels) vs. frequencies (Hz), where the range of frequencies is
[0, 100] with a 2 Hz increment. For all individuals, there are two peaks in the power
spectrum. The two peaks correspond to around 5 and 10 Hz. The relative height of
the two peaks as well as the shape of the curve near the two peaks are consistently
unique to an individual across sessions and different across individuals. There are also
small peaks near 20 Hz for some individuals. These frequencies with higher amplitudes
seem to align with the results shown in Figure 6 (c) where the frequency band near 10
Hz yields the highest identification accuracy. Hence the components of fq associated
with more stimuli-driven activity or larger signal-to-noise ratio seem to yield better
results.
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F. Statistical significance of the results751

The identification and rank accuracy were averaged across subjects, identification runs,752

and session pairs. The reported accuracies, being so large, are both statistically and753

practically significant, and are nearly impossible to attribute to random chance, but754

accurately quantifying the uncertainty is challenging in our setup. Since featurization755

for each session of each subject was done before the matching, there is some weak756

dependence on the accuracy between subjects, session, and identification runs. This757

dependence makes it hard to analytically obtain a p-value for the accuracy. One758

numerical alternative is to permute the original recording within each session across759

subjects before performing matching, but this is computationally expensive as it760

involves loading and computing large chunks of data 1000s of times. Hence we provide761

below a (natural, but approximate) permutation-based method for a p-value to test762

the null that the match is a random guess.763

Let yi denote the true labels of session i. Note that yi = [1, 2, 3, 4]T for any session.764

The permutation test is performed as follows:765

Algorithm 1: Null distribution for the identification/rank accuracy
Nnull ← {}: samples for the null distribution
T : number of permutation runs
for t← 1 to T do

yit ← permute(yi),∀i
Re-compute the average accuracy, at, using {yit}i
Nnull = Nnull ∪ {at}

end
return Nnull

To calculate the p-value, we simply compute p = 1
T

∑T
t=1 1a≤at , where a is the766

observed average accuracy of a feature across subjects, sessions, and identification runs.767

Algorithm 1 permutes the labels for each session independently but the permutation768

remains unchanged for the same source-target pair across identification runs. We769

summarize the p-values for the identification and rank accuracy of three features770

on the FST, SEN, and HCP data using T = 4999 permutation runs. For all the771

p-values, since we have not encountered any at that exceeds the accuracy number, their772

values are simply 1
T+1

= 0.0002. We emphasize that even though these p-values are773

technically only approximate due to some weak dependence, the fact that we did not774
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see a single permutation which achieved a higher accuracy than ours should convince775

even rigorous skeptics that it is nearly impossible to explain away our accuracies to776

chance.777

Table 2: Statistical significance for the accuracy numbers
Data Feature id acc p-val: id rank acc p-val: rank
FST sp 0.816 0.0002 0.936 0.0002
FST tp 0.978 0.0002 0.994 0.0002
FST fq 0.962 0.0002 0.991 0.0002
SEN sp 0.719 0.0002 0.888 0.0002
SEN tp 0.983 0.0002 0.996 0.0002
SEN fq 0.991 0.0002 0.998 0.0002
HCP sp 0.771 0.0002 0.974 0.0002
HCP tp 0.159 0.0002 0.819 0.0002
HCP fq 0.229 0.0002 0.845 0.0002
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