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ABSTRACT   

Motivation:   Signal  peptides  are  responsible  for  protein  transport  and  secretion  and  are              
ubiquitous  to  all  forms  of  life.  The  annotation  of  signal  peptides  is  important  for                
understanding   protein   translocation   and   toxin   secretion   and   evolution.   
Results:   Here  we  explore  the  features  of  these  signal  sequences  from  eukaryotic  proteins.               
Strikingly,  we  find  that  the  signal  peptides  from  secretory  toxins  have  common  features               
across  kingdoms,  supporting  the  idea  of  horizontal  gene  transfer  or  convergence  of  toxin              
genes  across  kingdoms.  We  leverage  these  features  to  build  Razor,  a  simple  yet  powerful                
tool  specialised  in  identifying  signal  peptides  from  toxins  using  the  first  23  N-terminal               
residues.  We  demonstrate  the  usability  of  Razor  by  analysing  all  the  sequences  reviewed  by                
UniProt.  Indeed,  Razor  is  able  to  identify  toxins  using  their  N-terminal  sequences  only.               
Strikingly,  we  also  discover  that  many  defensive  proteins  across  kingdoms  harbour  a              
toxin-like  signal  peptide;  some  of  these  defensive  proteins  have  emerged  through             
convergent  evolution,  e.g.  defensin  and  defensin-like  protein  families,  and  phospholipase            
families.  In  sum,  Razor  uses  an  approach  independent  of  homology  search  to  identify  novel                
and   known   toxin   classes   across   species   using   N-terminal   residues.   
Availability   and   implementation:    Razor   is   available   as   a   web   application   
( https://tisigner.com/razor )   and   a   command-line   tool   
( https://github.com/Gardner-BinfLab/Razor ).   

  
  

INTRODUCTION   
Secretory  proteins  are  translocated  in  the  secretory  pathway  with  the  assistance  of  a  short                
peptide  extension  at  the  N-terminus.  This  special  targeting  peptide  is  known  as  the  Signal                
Peptide  (SP)   (von  Heijne,  1990) .  Secretory  pathways  and  their  corresponding  SPs  have              
evolved  across  organisms  to  carry  out  different  functions   (Hegde  and  Bernstein,  2006;  Owji               
et  al. ,  2018) .  Despite  being  ubiquitous  across  all  domains  of  life,  SPs  do  not  share  a                  
consensus.  Nevertheless,  a  SP  usually  consists  of  three  regions:  a  positively  charged             
domain  (N-region),  a  hydrophobic  core  (H-region),  followed  by  a  polar  but  electrically  neutral               
domain  (C-region)  containing  a cleavage  site   (von  Heijne,  1985,  1990;  Nielsen  and  Krogh,               
1998) .  Apart  from  translocating proteins,  SPs  are  also  responsible  for  several  other  roles,               
such  as  in  regulatory  functions,  antigen  presentation,  and  some  human  diseases   (Borrego   et               
al., 1998; Datta et al., 2007; Owji et al., 2018).
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An  important  group  of  secretory  proteins  is  toxins,  whose  precursors  almost  always  contain               
SPs   (Fry   et al. ,  2009) .  Toxins  have  evolved  in  all  domains  of  life  primarily  as  a  defense                   
mechanism  or  for  predation   (Casewell   et  al. ,  2013) .  Furthermore,  several  organisms  in  the               
animal  kingdom  have  evolved  to  create  venoms,  which  consist  of  a  complex  mixture  of                
different  types  of  toxins,  usually  with  a  specialised  apparatus  to  facilitate  their  delivery.  Such                
adaptations  may  have evolved  through  convergence  or  duplication  and  neofunctionalisation            
(Casewell,  2020) .  However,  a  recent  study  found  that  at  least  five  toxin  gene  families  were                 
horizontally  transferred  from  bacteria  and  fungi  to  centipedes   (Undheim  and  Jenner,  2021) ,              
suggesting  common  features  exist  in  these  gene  families.  Besides,  the  pharmacological             
actions  of  toxins  on  living  cells  are often  employed  to  develop  anti-toxins,  novel  drugs,  and                 
pathogen-resistant  transgenic  crops   (King,  2011;  Estrada   et  al. ,  2007;  Bidondo   et  al. ,  2019;               
Samy et al., 2017; Li et al., 2018). Hence, annotating SPs is essential in the functional and
structural  studies  of  proteins  in  fundamental  research,  commercial,  and  pharmaceutical            
industries.  In  addition,  understanding  the  presence  or  absence  of  SPs  in  the  genes  of                
interest  is  critical  for  choosing  the  appropriate  recombinant  protein  expression  and             
purification  systems,  as  the  intracellular  accumulation  of  secretory  proteins  and  toxins  may              
be  toxic  to  the  host  cells.  Indeed,  the  ability  of  SPs  to  translocate  proteins  has  been  utilised                   
in  recombinant  protein  expression  systems  for  high  quality  and  quantity  results             
(Futatsumori-Sugai  and  Tsumoto,  2010;  Cho   et  al. ,  2019;  Karyolaimos   et  al. ,  2019;  Peng   et                
al. ,   2019) .   
  

Despite  the  immense  use  cases  of  toxins,  there  are  very  few  tools  to  predict  them,  such  as                   
ClanTox,  ToxinPred,  TOXIFY,  and  ToxClassifier,  some  being  specialised  such  as  SpiderP  for              
spider  toxins   (Naamati   et  al. ,  2010;  Gupta   et  al. ,  2013;  Wong   et  al. ,  2013;  Gacesa   et  al. ,                   
2016;  Cole  and  Brewer,  2019) .  Moreover,  these  methods  are  based  on  the  properties  of  the                 
mature  peptides  (or  the  propeptides),  rather  than  the  SPs.  To  address  these  issues,  we  first                 
examined  the  features  of  SPs  from  eukaryotic  proteins  and  toxins.  We  then  exploited  those                
features  to  build  Razor,  a  new  tool  for  annotating  SPs.  We  have  optimised  the  command-line                 
version  of  Razor  for  high-throughput  analysis  and  used  it  to  predict  new  SPs  by  scanning  all                  
the  sequences  reviewed  by  UniProt   (UniProt  Consortium,  2019) .  We  were  able  to  predict               
novel  toxins  and  defensive  proteins  using  only  the  first  23  N-terminal  residues,  as  evidenced               
by   the   protein   family   annotations.   
  
  

MATERIALS   AND   METHODS   
Datasets   
We  retrieved  the  training  dataset  for  the  state-of-the-art  SP  prediction  program  SignalP  5.0,               
which  is  a  curated  set  of  the  N-terminal  sequences  from  all  domains  of  life   (Almagro                 
Armenteros   et  al. ,  2019) .  To  get  the  full  sequences  and  annotations  of  eukaryotic  proteins,                
we  used  UniProt’s  ID  mapping  service   (UniProt  Consortium,  2019)  and  obtained  17,264  fully               
annotated  sequences,  of  which  2,609  sequences  have  been  experimentally  validated  to             
harbour  functional  SPs.  These  sequences  were  used  to  build  a  generic,  eukaryotic  SP               
classifier.  For  feature  analysis,  we  clustered  these  sequences  (60  N-terminal  residues)  at  an               
identity  threshold  of  70%  using  CD-HIT  v4.8.1   (Fu   et  al. ,  2012) .  A  single  representative                
sequence  was  retained  for  each  cluster  to  reduce  sequence  redundancy  (Supplementary             
Table   S1).   
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To  build  a  classifier  specialised  for  annotating  toxin  SPs,  we  manually  curated  a  separate                
positive  set  using  the  dataset  from  the  animal  toxin  annotation  project   (Jungo   et  al. ,  2012)                 
and  a  subset  from  the  above  training  set.  Other  SPs  were  assigned  as  a  negative  set.  We                   
then  clustered  the  sequences  as  above  and  analysed  the  representative  sequences             
(Supplementary   Table   S1).     
  

The  SP  classifiers  were  compared  using  an  independent  test  set  retrieved  from  UniProt  on                
16  February  2021.  In  particular,  the  eukaryotic  SP  classifier  was  evaluated  using  241  SPs              
with  experimental  evidence  and  52,055  non-SPs,  whereas  the  toxin  SP  classifier  was              
evaluated  using  a  subset  of  this  independent  set  (toxin  SPs=47,  non-SPs=52,055).  We  also               
scanned the reviewed sequences from UniProt (N=561,776, retrieved on 2 September
2020).   
  

Bit   score   
The   bit   scores   of   the   N-terminal   residues   were   computed  as:   

 ( )Bit scoreresidue = log2
Normalised count of  residue in the positive set

Normalised count of  residue in the background set  

  
For  eukaryotic  proteins,  the  positive  set  and  the  background  set  were  SPs  and  non-SPs,               
respectively. For toxins, the positive set and the background set were toxin SPs and
non-toxin   SPs,   respectively.   
  

Protein   sequence   properties   
The  standard  protein  sequence  properties,  implemented  in  BioPython,  were  calculated  using             
the  Bio.SeqUtils.ProtParam  module  v1.73   (Cock   et  al. ,  2009) .  These  features  include  GRand              
AVerage  of  hydropathicitY  (GRAVY),  Flexibility,  Helix,  Sheet  and  Turn  propensities,            
Instability  Index,  Aromaticity,  and  Isoelectric  Point.  An  additional  feature  included  is  the              
Solubility-Weighted   Index   (SWI;    (Bhandari    et   al. ,   2020) .   
  

SP   classifiers   
We  built  a  random  forest  classifier  based  on  several  sequence  features  (GRAVY,  flexibility,               
helix,  and  SWI),  as  well  as  the  counts  of  residues  (R,  K,  N,  D,  C,  E,  V,  I,  Y,  F,  W,  L,  Q,  and  P)                           
of  the  first  30  N-terminal  residues.  The  residues  were  chosen  such  that  they  maximised                
Matthew's  correlation  coefficient  (MCC)  in  five-fold  cross-validations.  After  the           
cross-validation  step,  we  generated  five  random  forest  models,  which  are  used  for  scoring               
the  N-terminal  of  a  given  sequence.  The  scores  from  these  classifiers  are  comparable  to  the                 
S-score  of  SignalP 4.0  except  that  our  scores  are  non-position-specific   (Petersen   et  al. ,               
2011) .   
  

For  the  prediction  of  the  cleavage  site,  we  took  a  total  of  30  residues  such  that  the  cleavage                    
site  is  aligned  in  between  positions  15  and  16  in  order  to  capture  the  major  differences  in                   
residue  distribution  around  the  cleavage  site.  We  built  a  20×30  matrix  and  populated  it  with                 
the  hydrophobicity  scale   (Kyte  and  Doolittle,  1982)  as  initial  weights.  We  then  used               
multi-objective  simulated  annealing   (Kirkpatrick   et  al. ,  1987)  at  each  position  such  that  the              
new  weights  maximised  the  AUC  and  precision-recall  curve  based  on  the  training  set.  The                
scoring  of  the  cleavage  site  (C-score)  is  done  using  the  random  forest  classifier  trained  on                 
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the  aligned  set  encoded  using  the  optimised  weight  matrix.  Small  limitation  of  our  approach                
is  that  we  are  unable  to  detect  the  correct  cleavage  site  if  it  is  located  before  the  15th                    
position.   Yet,   based   on   training   data,   this   is   rarely   observed   (N=13).   
  

After  detecting  the  cleavage  site,  the  final  score  for  classification  (Y-score)  is  the  geometric                

mean  ,  where  S  is  the  S-score  and  C  is  the  max  of  C-scores  along  the  sequence.   Y = √S × C                 

For  the  final  classifier,  we  chose  a  threshold  of  Y-score  that  maximised  the  MCC  after                 
five-fold   cross-validations   (MCC=0.914)   on   the   training   set.   

  
We  then  built  models  specialised  in  annotating  the  toxin  SPs  based  on  hydrophobicity,  SWI,                
flexibility,  and  turn.  These  features  were  selected  such  that  they  maximised  the  MCC  using                
five-fold  cross-validations  on  the  training  set.  The  N-terminal  length  of  23  was  found  to                
generate  the  maximum  median  MCC  score  for  the  toxin  SP  classifier  (MCC=0.741,  see  also                
Supplementary  Table  S2).  Similar  to  the  SP  prediction  models,  the  toxin  SP  classifiers               
consist   of   five   models   each.   
  

Performance   measures   
We  use  MCC  as  a  measure  of  performance  to  correctly  identify  eukaryotic  SPs.  We  also  use                  
cleavage  site  precision   and  recall  ,  where   is  the     CS /N )( P = Ncorr P    CS /N )( R = Ncorr   Ncorr    

number of the correctly identified cleavage site, is the number of predicted SPs andNP N

is   the   number   of   SPs    (Almagro   Armenteros    et   al. ,   2019;   Savojardo    et   al. ,   2018) .   
  

Tool   
We  developed  Razor  for  annotating  SPs  using  the  eukaryotic  and  toxin  SP  classifiers  (Fig                
1).  Razor  accepts  either  a  nucleotide  sequence  or  a  protein  sequence.  Sequences  with  a                
length  of  lower  than  30  residues  are  padded  with  Serine  (Ser,  S),  because  it  shows  equal                  
enrichment  across  all  datasets,  in  particular  after  the  H-region  (Fig  2).  Razor  is  available                
both  as  a  command-line  tool  ( https://github.com/Gardner-BinfLab/Razor )  and  a  web           
application  ( https://tisigner.com/razor ).  For  the  web  application,  predictions  from  five  models            
are  displayed  as  stars.  The  final  score  is  the  median  of  scores  from  five  models  and  is                   
displayed  along  with  the  region  for  SP.  A  plot  of  C-scores  along  the  sequence  is  also                  
displayed  along  with  the  annotation  for  the  cleavage  site.  In  addition,  we  integrated  the                
Razor  web  application  with  our  protein  expression  and  solubility  optimisation  tools,  TIsigner              
and  SoDoPE,  respectively   (Bhandari   et  al. ,  2020,  2021) .  Our  web  tools  assist  users  in                
annotating  SPs  and  protein  domains,  and  making  the  decisions  from  gene  cloning  to  protein                
expression   and   purification.   
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Fig   1.   Flow   chart   of   toxin   SP   classification   using   Razor.   
  
  

Statistical   analysis   
Data  analysis  was  performed  using  pandas  v1.0.3   (McKinney,  2010) .  Hydrophobicity  and             
SWI  were  smoothed  for  the  classifier  training  using  the  Savitzky-Golay  filter  implemented  in               
SciPy  v1.4.1   (Virtanen   et  al. ,  2020) .  Random  forest  classifier  and  MCC  computation  were               
done  using  scikit-learn  v0.23.1   (Pedregosa   et  al. ,  2011) .  Plots  were  generated  using             
Matplotlib   v3.1.3   and   Seaborn   v0.10.0    (Hunter,   2007;   Waskom    et   al. ,   2020) .   
  

Code   and   data   availability   
Jupyter   notebooks   for   reproducing   our   analyses   are   available   at   
https://github.com/Gardner-BinfLab/Razor_paper_2021 .  The  source  code  for  Razor,  our  SP          
annotation   server   can   be   found   at    https://github.com/Gardner-BinfLab/TISIGNER-ReactJS .   

  
  

RESULTS   
Toxin   SPs   have   distinct   sequence   properties  
We  investigated  the  sequence  composition  of  SPs  by  first  aligning  the  sequences  from  the                
N-terminal  residue  or  by  centering  at  the  cleavage  sites,  followed  by  computing  bit  scores  for                 
each  residue  (Fig  2).  These  approaches  provide  sufficient  leverage  to  enumerate  the              
tripartite  domains  of  SPs  (N-,  H-,  and  C-domains).  In  general,  hydrophobic  residues  are               
enriched  towards  the  N-termini  (H-region),  which  are  characteristic  features  of  SPs   (von              
Heijne,  1990)  (Supplementary  Fig  S1).  Strikingly,  the  SPs  of  toxins  show  a  strong               
abundance  of  isoleucine  (I)  and  lack  leucine  (L)  and  alanine  (A)  residues  in  contrast  to  other                  
eukaryotic  SPs  (Fig  2).  This  is  supported  by  an  amino  acid  composition  analysis  of  the                 
N-terminal  subsequences  (Supplementary  Fig  S2).  We  also  analysed  other  features  of  these              
N-terminal  subsequences,  including  GRAVY,  structural  flexibility,  helix,  sheet  and  turn            
propensities,  instability  index,  aromaticity,  isoelectric  point,  and  SWI.  Interestingly,  isoelectric            
point   appears   as   a   prominent   feature   of   toxin   SPs   (Supplementary   Fig   S3).   
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The  cleavage  sites  mark  the  end  of  SPs  and  the  beginning  of  the  mature  region  (or  the                   
propeptide),  which  is  a  unique  feature  of  SPs  (Fig  2).  By  aligning  the  sequences  at  the                  
cleavage  sites,  we  observed  a  clear  emergence  of  (−3,−1)  rule  preceding  the  cleavage  sites,               
i.e.  a  distinctive  presence  of  small  and  charged  residues  such  as  alanine  (A)  and  valine  (V)                  
(von   Heijne,   1983) .   
  

  
Fig  2.  The  Signal  Peptides  (SPs)  from  toxins  are  enriched  with  isoleucine  residues  in                
contrast  to  other  eukaryotic  SPs.  The  bar  plot  shows  Kyte  and  Doolittle’s  hydrophobicity               
scale.  The  heatmaps  show  the  enrichment  of  residues  in  bit  scores  by  aligning  SPs  from  the                  
N-termini  (left)  and  at  the  cleavage  sites  (right,  black  vertical  line).  The  unfilled,  red                
rectangles  indicate  the  enrichment  of  isoleucine  residues  (I).  The  white  spaces  correspond              
to  the  absence  of  residues  at  certain  positions  due  to  limited  sample  size  (261  toxin  SPs  and                   
1,738   non-toxin   SPs   that   have   been   experimentally   validated).   
  
  

Razor   accurately   predicts   toxin   SPs   
By  taking  these  important  features  into  account,  we  built  SP  classifiers  to  annotate               
eukaryotic  and  toxin  SPs  using  random  forest  (Fig  1).  Only  SPs  with  experimental  evidence                
were  used  for  training.  We  compared  these  classifiers  using  an  independent  test  set,  where,                
the  MCC,  and  the  cleavage  site  precision  and  recall  of  Razor  for  eukaryotic  SP  prediction                 
were  0.405,  0.136,  0.596,  respectively  (SPs  vs  non-SPs,  see  Supplementary  Fig  S4,  Table               
S3  and  S4).  More  importantly,  Razor  outperforms  state-of-the-art  in  toxin  SP  prediction,              
achieving  an  MCC  score  of  0.611,  and  the  cleavage  site  precision  and  recall  of  0.355  and                  
0.831,   respectively   (toxin   SPs   vs   non-SPs,   see   Fig   3,   and   Supplementary   Table   S5   and   S6).   
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Fig  3.  Razor  outperforms  other  tools  in  predicting  toxin  SPs.  Benchmarks  were  carried               
out  using  an  independent  test  set  (47  experimentally  validated  toxin  SPs  and  52,055               
non-SPs).   (A)  Receiver  operating  characteristic  curves   (B)  and  precision  recall  curves   (C)  of               
the  SP  prediction  tools.  Areas  under  the  curves  are  shown  in  parentheses.  The  dotted  lines                 
show  the  performance  of  a  random  classifier.   (C)   Matthew’s  Correlation  Coefficients  (MCC)              
of  the  SP  prediction  tools.  The  cleavage  site  (CS)  precisions   (D)  and  recalls   (E)  of  windows                  
surrounding  the  cleavage  sites  are  shown.  Data  are  available  in  Supplementary  Tables  S5               
and   S6.   
  
  

Defensive   proteins   harbour   a   toxin-like   SP   
The  training  set  for  the  toxin  SP  classifier  was  mainly  composed  of  the  SPs  from  animal                  
toxins,  e.g.  snake  three-finger  toxins,  scorpion  toxins,  and  phospholipase  A 2 ,  and  plant              
toxins,  e.g.  ribosome-inactivating  proteins  (Fig  4A).  To  further  assess  our new  toxin  SP               
classifier,  we  scanned  the  reviewed  sequences  from  UniProt  (N=561,776).  A  total  of  910              
sequences   were   predicted   positive   from   all   SP   detection   models.     
  

In  Fig  4,  we  excluded  potential  false  positive  hits,  i.e.  computationally  annotated              
transmembrane  proteins  by  UniProt  (N=33).  The  remaining  sequences  were  divided  into  two              
groups  based  on  the  presence  or  absence  of  toxin  annotation.  From  these  probable  toxin                
SPs,  759  sequences  had  annotations  for  toxins.  They  included  protein  families  such  as               
scorpion  toxin,  phospholipase  A 2  and  ribosome-inactivating  protein  (Fig  4B).  The  remaining            
110  sequences  had  no  annotations  for  toxins.  These  sequences  were  clustered  at  an  identity                
threshold  of  70%,  which  gave  rise  to  100  representative  sequences.  Interestingly,  many  of               
these  proteins  without  toxin  annotations  have  some  defensive properties  such  as             
antibacterial  peptides  and  cyclotides.  Furthermore,  other  defensive  proteins  such  as            
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beta-defensin  and  defensin-like  (DEFL)  are  the  results  of  convergent  evolution.  For  example,              
beta-defensin-like  motifs  are  also  found  in  toxins  from  lepidosauria  (rattlesnakes  and             
bearded  dragons)  and  mammalia  (platypus)   (Fry   et  al. ,  2009,  2010;  Whittington   et  al. ,  2008) .               
This   suggests   why   their   SPs   show   some   remote   similarity   with   toxin   SPs.   
  

  
Fig  4.  Razor  identifies  SPs  from  toxins  along  with  several  classes  of  defensive               
proteins.   The  reviewed  sequences  from  UniProt  were  examined  (N=561,776).   (A)  Heatmap             
shows  the  abundance  of  protein  families  in  the  training  toxin  sequences  with  SPs  by  taxa.  A                  
total  of  237  of  261  training  toxins  had  protein  family  annotations.   (B)  Heatmaps  show  the                 
abundance  of  protein  families  in  the  sequences  predicted  to  harbour  toxin  SPs.  A  total  of                 
753  of  759  toxins  predicted  to  harbour  toxin  SPs  had  protein  family  annotations  (top).  A  total                  
of  110  other  types  of  proteins  were  predicted  to  harbour  toxin  SP,  in  which  76  of  them  had                    
protein  family  annotations  (bottom).  The  scale  bars  indicate  the  frequencies  of  protein              
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families.  Those  protein  families  that  have  defensive  properties  are  marked  with  †  (bottom).               
Protein  families  that  are  in  common  between  the  training  and  predicted  toxin  SP  sequences                
are  bolded  (bottom  panel).  Protein  subfamily,  family  and  superfamily  are  shown  in  grey,               
black  and  brown,  respectively.  Fungi a ,  Eurotiomycetes;  Fungi b ,  Sordariomycetes;  Fungi c ,           
Agaricomycetes;  CLN5,  Ceroid-Lipofuscinosis  Neuronal  protein;  ComF,  Competence  protein          
F;  CRISP,  Cysteine  RIch  Secretory  Protein;  DEFL,  DEFensin  Like;  EMC7,  ER  membrane              
protein  complex  subunit  7;  FSAP,  Frog  Skin  Antimicrobial  Peptide;  GPLD1,            
Glycosyl-phosphatidylinositol-specific  phospholipase  D;  HAND,  Helical       
Arthropod-Neuropeptide-Derived;  RALF,  Rapid  ALkalinization  Factor;  RLP,  Receptor  Like          
Protein;   SLPTX,   Scoloptoxin;   UPF,   Uncharacterised   Protein   Family.   

  

DISCUSSION   
We  have  studied  the  features  of  SPs  from  eukaryotic  proteins.  While  SPs  share  a  common                 
hydrophobic  nature,  we  have  found  several  differences  between  toxin  SPs  and  other              
eukaryotic  SPs  in  their  residue  compositions  and  consequently  the  sequence  properties.  We              
have  used  these  features  to  develop  Razor  for  annotating  eukaryotic  SPs,  which  have               
specialised  functionalities  in  annotating  toxin  SPs.  Razor  outperforms  other  sophisticated            
methods  in  predicting  toxin  SPs.  Using  Razor,  we  were  able  to  predict  several  classes  of                 
probable  toxins,  which  are  yet  to  be  annotated  (Fig  4).  Our  predicted  results  consist  of  toxins                  
and  defensive  proteins  from  diverse  species,  which  gives  us  an  overview  of  the  source  of                 
toxins.   
  

Since  toxins  and  defensive  proteins  occur  naturally  in  organisms  to  attack  and  neutralise               
foreign  invaders,  many  of  our  predicted  results  include  proteins  involved  in  innate  immune               
response  and  signalling.  Some  of  the  frequently  observed  biological  processes  of  these              
proteins  were  ‘killing  of  cells  of  other  organism  [GO:0031640]’,  ‘defense  response  to  fungus               
[GO:0050832]’,  ‘defense  response  to  bacterium  [GO:0042742]’  and  ‘innate  immune           
response  [GO:0045087]’  (Supplementary  Fig  S5  and  S6).  Many  toxins  and  defensive             
proteins  are  commercially  important.  For  example,  plant  toxins  such  as  defensin-like  protein,             
animal  toxins  such  as  cecropin  are  used  to  develop  disease-resistant  transgenic  crops   (Stotz               
et  al. ,  2009;  Lacerda   et  al. ,  2014;  Wu   et  al. ,  2016;  Boccardo   et  al. ,  2019;  Ali   et  al. ,  2018) .                     
Similarly,  the  cytotoxic  activity  of  phospholipase  A 2  on  cancer  cells  makes  it  a  promising                
candidate  for  cancer  therapy   (Xiao   et  al. ,  2017;  Hiu  and  Yap,  2020;  Lomonte  and  Rangel,                 
2012) .     
  

Taken  together,  Razor  uses  an  approach  independent  of  homology  search  to  identify  known               
and  novel  toxin  classes  across  species.  Razor  was  able  to  identify  previously  unannotated               
SPs  and  a  spectrum  of  toxins  and  defensive  proteins  simply  using  the  first  23  N-terminal                 
residues.  This  also  suggests  a  possible  evolutionary  constraint  on  SPs  driven  by  the              
specialisation  of  the  toxin  secretory  systems  (or  convergent  evolution),  and  supports  the  idea               
of  horizontal  gene  transfer  of  several  toxin  gene  classes   (Undheim  and  Jenner,  2021) .               
Therefore,  accurate  annotation  of  toxin  SPs  can  enhance  comparative  genomics  analysis             
and  genome  sequencing  projects.  Razor  might  also  be  useful  in  other  research  areas  such                
as   recombinant   protein  expression,   toxicology,   transgenics,   and   drug   design.   
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