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Abstract 

Large neuroimaging datasets, including information about structural (SC) and functional connectivity (FC), 

play an increasingly important role in clinical research, where they guide the design of algorithms for automated 

stratification, diagnosis or prediction. A major obstacle is, however, the problem of missing features (e.g., lack of 

concurrent DTI SC and resting-state fMRI FC measurements for many of the subjects). 

We propose here to address the missing connectivity features problem by introducing strategies based on 

computational whole-brain network modeling. Using two datasets, the ADNI dataset and a healthy aging dataset, 

for proof-of-concept, we demonstrate the feasibility of virtual data completion (i.e., inferring “virtual FC” from 

empirical SC or “virtual SC” from empirical FC), by using self-consistent simulations of linear and nonlinear 

brain network models. Furthermore, by performing machine learning classification (to separate age classes or 

control from patient subjects) we show that algorithms trained on virtual connectomes achieve discrimination 

performance comparable to when trained on actual empirical data; similarly, algorithms trained on virtual 

connectomes can be used to successfully classify novel empirical connectomes. Completion algorithms can be 

combined and reiterated to generate realistic surrogate connectivity matrices in arbitrarily large number, opening 

the way to the generation of virtual connectomic datasets with network connectivity information comparable to 

the one of the original data. 

 

Significance statement 

Personalized information on anatomical connectivity (“structural connectivity”, SC) or coordinated resting 

state activation patterns (“functional connectivity’, FC) is a source of powerful neuromarkers to detect and track 

the development of neurodegenerative diseases. However, there are often “gaps” in the available information, 

with only SC (or FC) being known but not FC (or SC). Exploiting whole-brain modelling, we show that gap in 

databases can be filled by inferring the other connectome through computational simulations. The generated 

virtual connectomic data carry information analogous to the one of empirical connectomes, so that machine 

learning algorithms can be trained on them. This opens the way to the release in the future of cohorts of “virtual 

patients”, complementing traditional datasets in data-driven predictive medicine. 
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Introduction 

One of the greatest challenges today is to develop approaches allowing the useful exploitation of large-scale 

datasets in biomedical research in general (Margolis et al., 2014) and neuroscience and neuroimaging in particular 

(Van Horn and Toga, 2014). Progress in this direction is made possible by the increasing availability of large 

public datasets in the domain of connectomics (Van Essen et al., 2013; Poldrack and Gorgolewski, 2014; Horien 

et al., 2020). This is true, in particular, for research in Alzheimer’s disease (AD), in which, despite decades of 

massive investment and a daunting literature on the topic, the partial and, sometimes contradictory nature of the 

reported results (World Alzheimer Report 2018) still prevents a complete understanding of the factors governing 

the progression of the disease (Braak & Braak, 1991; Braak et al., 2006; Komarova & Thalhauser, 2011; 

Henstridge et al., 2019) or of the diversity of cognitive deficits observed in different subjects (Iacono et al., 2009; 

Mungas et al., 2010; Allen et al., 2016). In AD research, datasets that compile rich and diverse genetic, 

biomolecular, cognitive, and neuroimaging (structural and functional) features for a large number of patients are 

playing an increasingly important role (Rathore et al., 2017; Iddi et al., 2019). Example applications include: the 

early diagnosis and prognosis by using MRI images (Dennis & Thompson, 2014; Chiesa et al., 2017; De Vos et 

al., 2018); the use of machine learning for automated patient classification (Cuingnet et al., 2011; Zhang et al., 

2012; Moore et al., 2019) or prediction of the conversion from early stages to fully developed AD (Rombouts et 

al., 2005; Moradi et al., 2015; Casanova et al., 2018), with signs of pathology difficult to distinguish from “healthy 

aging” effects (Doan et al., 2017); the extraction of decision networks based on the combination of semantic 

knowledge bases and data mining of the literature (Sanchez et al., 2011; Kodamullil et al., 2015; Iyappan et al., 

2016). 

Among the factors contributing to the performance of prediction and inference approaches in AD –and, more 

in general, other neurological or psychiatric diseases (Walter et al., 2016) or studies of aging (Cole and Franke, 

2017)– are not only the large size of datasets but also the multiplicity of features jointly available for each patient. 

Indeed, one can take advantage not only of the complementary information that different features could bring but 

also capitalize on possible synergies arising from their simultaneous knowledge (Wang et al., 2015; Zimmermann 

et al., 2016; Iddi et al., 2019). Unfortunately, even gold standard publicly available datasets in AD, such as the 

datasets released by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) consortium (Wyman et al., 2013; 

Beckett et al., 2015; Weiner et al., 2017), have severe limitations. Indeed, if they include neuroimaging features 

of different types –structural DTI and functional MRI– these features are simultaneously available for only a 

substantial minority of the subjects in the dataset (i.e., the feature coverage is not uniform over the dataset). In 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2020.01.18.911248doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.18.911248
http://creativecommons.org/licenses/by-nd/4.0/


addition, if the number of subjects included is relatively large (hundreds of subjects), it still is too small to properly 

qualify as “big data". Furthermore, the connectomic data themselves have an imperfect reliability, with a test/retest 

variability that can be quite large, making potentially difficult subject identifiability and, thus, personalized 

information extraction (Termenon et al., 2016).  

Here, we will introduce a new solution aiming at relieving the problems of partially missing features and 

limited sample size and illustrate their validity on the two independent example datasets. Specifically, we will 

focus on two examples of structural and functional neuroimaging datasets, as important proofs of concept: a first 

one addressing AD, mediated from the previously mentioned ADNI databases (Wyman et al., 2013; Beckett et 

al., 2015); and a second one investigating a cohort of healthy subjects over a broad span of adult age, to analyse 

the effects of normal aging (Zimmermann et al., 2016; Battaglia et al., 2020). It is important to stress however 

that the considered issues may broadly affect any other connectomic dataset gathered for data mining intents. 

To cope with missing connectomic features (and “filling the gaps” in neuroimaging datasets), we propose to 

build on the quickly maturating technology of mean-field whole-brain network modeling (see Deco et al., 2011 

for review). Indeed, computational modeling provides a natural bridge between structural and functional 

connectivity, the latter emerging as the manifestation of underlying dynamical states, constrained but not entirely 

determined by the underlying anatomy (Ghosh et al., 2008; Kirst et al., 2016). Theoretical work has shown that 

average functional connectivity properties in the resting-state can be accounted for by the spontaneous collective 

activity of brain networks informed by empirical structural connectivity (SC) when the system is tuned to operate 

slightly below a critical point of instability (Deco et al., 2011, 2012). Based on this finding, simulations of a model 

constructed from empirical DTI connectomes and then tuned to a suitable slightly sub-critical dynamic working 

point are expected to provide a good rendering of resting-state functional connectivity (FC). Such whole-brain 

simulations are greatly facilitated by the availability of dedicated neuroinformatic platforms –such as “The Virtual 

Brain” (TVB; Sanz-Leon et al., 2013, 2015; Woodman et al., 2014)– and data pre-processing pipelines (Schirner 

et al., 2015; Proix et al., 2016), enabling brain model personalization and clinical translation (Jirsa et al., 2017; 

Proix et al., 2017). It thus becomes possible to complete the missing information in a dataset about BOLD fMRI 

FC by running a TVB simulation in the right regime, embedding the available empirical DTI SC (SC-to-FC 

completion). Analogously, algorithmic procedures based on mean-field modeling steps (“effective connectivity” 

approaches by Gilson et al. (2016; 2018), here used for a different purpose) can be used to address the inverse 

problem of inferring a reasonable ersatz of SC from resting state FC (FC-to-SC completion). In this study we will 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2020.01.18.911248doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.18.911248
http://creativecommons.org/licenses/by-nd/4.0/


demonstrate the feasibility of both types of completion (SC-to-FC and FC-to-SC), applying alternative linear and 

nonlinear simulation pipelines to both the ADNI and the healthy ageing proof-of-concept datasets. 

Beyond a single step of virtual completion, by combining completion procedures – to map, e.g., from an 

empirical SC (or FC) to a virtual FC (or SC) and then, yet, to a “twice virtual” SC (or FC)– we can generate for 

each given empirical connectome a surrogate replacement, i.e. map every empirical SC or FC to a matching dual 

(bivirtual) connectome of the same nature. We show then that pairs of empirical and bivirtual dual connectivity 

matrices display highly correlated network topology features, such as node-level strengths or clustering and 

centrality coefficients (Bullmore & Sporns, 2009). We demonstrate along the example of relevant classification 

tasks (stratification of mild cognitive impairment (MCI) or AD patients from control subjects on the ADNI dataset 

and age-class prediction on the healthy aging dataset) that close performance can be reached using machine 

learning algorithms trained on actual empirical connectomes or on their duals. Furthermore, empirical 

connectomes can be correctly categorized by classifiers trained uniquely on virtual duals.  

To conclude, we provide systematic recipes for generating realistic surrogate connectomic data via data-

constrained mean-field models. We show that the information that we can extract from computationally inferred 

connectivity matrices are only moderately degraded with respect to the one carried by the original empirical data. 

This opens the way to the design and sharing of veritable “virtual cohorts” data, ready for machine-learning 

applications in clinics, that could complement actual empirical datasets –facilitating learning through “data 

augmentation” (Yaeger et al., 197; Taylor & Nitschke, 2018)– or, even, potentially, fully replace them, e.g. when 

the sharing of real data across centers is restricted due to byzantine regulation issues (not applying to their totally 

synthetic but operationally-equivalent ersatz, the virtual and bivirtual duals). 
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Materials and Methods 

 

Two datasets for proof of concept 

We applied our data completion pipelines in this study to two different and independent neuroimaging datasets, 

from which SC and FC connectivity matrices could be extracted for at least a part of the subjects. A first dataset 

was obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The 

ADNI was launched in 2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, 

MD. The primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron 

emission tomography (PET), other biological markers, and clinical and neuropsychological assessment can be 

combined to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). 

We refer in the following to this first dataset as to the ADNI dataset. 

A second dataset was generated by Petra Ritter and co-workers at the Charité Hospital in Berlin, with the aim 

of studying and investigating changes of structural and static and dynamic functional connectivity occurring 

through healthy aging. This dataset was previously investigated in Zimmermann et al. (2016) and Battaglia et al. 

(2020) among others. We refer to this second dataset in the following as to the healthy aging dataset.   

 

 

ADNI dataset 

 

Data Sample. Raw neuroimaging data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) GO/2 

studies (Wyman et al., 2013; Beckett et al., 2015) were downloaded for 244 subjects. These included T1w images 

for all subjects, as well as DWI and rsfMRI images for separate cohorts of subjects. An additional 12 subjects for 

which both DWI and rsfMRI were acquired in the same session were identified and their data also downloaded. 

A volumetric 96-ROI parcellation was defined on the MNI template and consisted of 82 cortical ROIs from 

the Regional Map parcellation (Kötter & Wanke, 2005) and an additional 14 subcortical ROIs spanning the 

thalamus and basal ganglia. Details on the construction of the 96-ROI parcellation can be found in Bezgin et al 

(2017). 

Among the 244 subjects we downloaded, 74 were control subjects, while the others were patients at different 

stages of the pathology progression. In this study, we performed a rough coarse-graining of the original ADNI 

labels indicating the stage or type of pathology. We thus overall labeled 119 patients as “MCI” (grouping together 
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the labels 4 patients as “MCI”, 64 as “EMCI” and 41 as “LMCI”) and 51 patients as “AD” (overall 170 “Patients” 

for the simple classification experiments of Figure 6). 

Overall, T1 and DTI were jointly available for 88 subjects (allowing to reconstruct structural connectivity 

(SC) matrix), and T1 and fMRI for 178 (allowing to reconstruct functional connectivity (FC)). However, among 

the 244 subjects we downloaded, only 12 subjects (referred to as the “SCemp+FCemp” subset) had a complete set 

of structural and functional images (T1, DTI, fMRI), hinting at how urgently needed is data completion. 

 

Data Preprocessing. Neuroimaging data preprocessing was done using a custom Nipype pipeline implementation 

(Gorgolewski et al., 2011). First, raw neuroimaging data were reconstructed into NIFTI format using the dcm2nii 

software package (https://www.nitrc.org/projects/dcm2nii/). Skull stripping was performed using the Brain 

Extraction Tool (BET) from the FMRIB Software Library package (FSL v5) for all image modalities prior to all 

other preprocessing steps. Brain extraction of T1w images using BET was generally suboptimal and was 

supplemented by optiBET (Lutkenhoff et al., 2014), an iterative routine that improved brain extractions 

substantially by applying transformations and back-projections between the native brain mask and MNI template 

space. Segmentation of the T1w images was performed using FSL’s FAT tool with bias field correction to obtain 

into three distinct tissue classes. 

To improve the registration of the ROI parcellation to native space, the parcellation was first nonlinearly 

registered to a publicly-available older adult template (aged 70-74 years, Fillmore et al., 2015) using the Advanced 

Normalization Tools (ANTS, Avants et al., 2011) software package before subsequent registrations.  

Diffusion-weighted images were preprocessed using FSL’s eddy and bedpostx tools. The ROI parcellation 

was first nonlinearly registered to each subject’s T1w structural image and then linearly registered to the DWI 

image using ANTS. 

rsfMRI data were preprocessed using FSL’s FEAT toolbox. Preprocessing included motion correction, high-

pass filtering, registration, normalization, and spatial smoothing (FWHM: 5 mm). Subjects with excessive motion 

were excluded from our sample. Global white matter and cerebrospinal fluid signals (but not global mean signal) 

were linearly regressed from the rsfMRI data. 

All images were visually inspected following brain extraction and registrations to ensure correctness. 

 

SC Construction. Details of tractography methods for reconstructing each subject’s structural connectome can be 

found in Shen et al (2019 a, b). Briefly, FSL’s probtrackx2 was used to perform tractography between all ROIs. 
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The set of white matter voxels adjacent to a grey matter ROI was defined as the seed mask for that particular ROI. 

Grey matter voxels adjacent to each seed mask were used to define an exclusion mask. For intra-hemispheric 

tracking, an additional exclusion mask of the opposite hemisphere was additionally defined. Tractography 

parameters were set to a curvature threshold of 0.2, 5000 seeds per voxel, a maximum of 2000 steps, and a 0.5 

mm step length. The connection weight between each pair of ROIs was computed as the number of streamlines 

detected between the ROIs, divided by the total number of streamlines sent from the seed mask. This connectivity 

information was compiled for every subject in a matrix of empirical structural connectivity SCemp. 

 

rsfMRI Timeseries and FC Construction. Empirical rsfMRI time-series for each ROI were computed using a 

weighted average approach that favored voxels nearer the center of each ROI (Shen et al., 2012). Each subject’s 

matrix of empirical functional connectivity FCemp was determined by Pearson correlation of these recorded rsfMRI 

time-series. 

 

Healthy aging dataset 

 

Data Sample. Forty-nine healthy subjects between the ages of 18 and 80 (mean 42.16 ± 18.37; 19 male/30 female) 

were recruited as volunteers. Subjects with a self-reported history of neurological, cognitive, or psychiatric 

conditions were excluded from the experiment. Research was performed in compliance with the Code of Ethics 

of the World Medical Association (Declaration of Helsinki). Written informed consent was provided by all 

subjects with an understanding of the study prior to data collection, and was approved by the local ethics 

committee in accordance with the institutional guidelines at Charité Hospital, Berlin.  

 

Acquisition procedures. Acquisition procedures for this data (Magnetic resonance acquisition procedure, dwMRI 

Data Preprocessing and Tractography, fMRI Data Preprocessing, computation of SC and FC connectome 

matrices) have been described by Zimmermann et al. (2013), where we redirect the reader interested in full detail. 

 

Briefly, functional and structural image acquisition was performed on a 3T Siemens Tim Trio Scanner MR 

equipped with a 12-channel Siemens head coil. After anatomical and dwMRI measurements, subjects were 

removed from the scanner and again put in later for the functional measurements. Data were obtained from 

subjects at resting state; subjects were asked to close their eyes, relax, and avoid falling asleep.  
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Anatomical and diffusion images were preprocessed using a fully automated open-source pipeline for extraction 

of functional and structural connectomes (Schirner et al., 2015). The pipeline performed the following steps. Using 

the FreeSurfer software toolbox (http://surfer.nmr. mgh.harvard.edu/), anatomical T1-weighted images were 

motion corrected and intensity normalized, nonbrain tissue was removed, and a brain mask was generated. White 

matter and subcortical segmentation was performed, and a cortical parcellation based on the probabilistic 

Desikan– Killiany Freesurfer atlas divided the gray matter into 68 ROIs (regions of interest, 34 per hemisphere) 

(Desikan et al., 2006). The diffusion data were further corrected (for head movement, eddy current distortions, 

etc.). Probabilistic fiber tracking was performed using MRTrix streamtrack algorithm.  

The fMRI resting-state preprocessing was performed using the FEAT (fMRI Expert Analysis Tool) Version 6.0 

first-level analysis software tool from the FMRIB (Functional MRI of the Brain) Software Library 

(www.fmrib.ox. ac.uk). MCFLIRT motion correction was used to adjust for head movement. Nuisance variables 

were regressed from the BOLD signal, including the six motion parameters, mean white matter, and CSF sig- 

nals. Regression of global mean was not performed. 

 

Two types of computational whole brain models 

To bridge between SC and FC via dynamics, we relied on computational modelling of whole-brain intrinsic 

dynamics. We used two categories of models differing in their complexity, Stochastic Linear Models (SLM) and 

fully non-linear Mean-Field Models (MFM). SLM procedures are used for linear SC-to-FC and FC-to-SC 

completions, while MFM procedures are used for analogous but nonlinear completions. 

 

SLM models  

The SLM model used in this study is a linear stochastic system of coupled Ornstein-Uhlenbeck processes 

which is deeply investigated in (Saggio et al., 2016). For each brain region, neural activity 𝑥!(𝑡) is modeled as a 

linear stochastic model, coupled to the fluctuations of other regions: 

 

𝒙̇(𝑡) = 𝑨𝒙(𝑡) + 𝜎𝜉(𝑡)     (1) 

 

where A is the coupling matrix, 𝜉 is a normal Gaussian white noise, and 𝜎 the standard deviation of the local drive 

noise. The coupling matrix A can be written as: 
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     𝑨 =	−𝑰 + 𝐺.𝑾      (2) 

 

where I is the identity matrix, G is the global coupling parameter and W is a weight matrix set to match SCemp. 

The negative identity matrix guarantees that the nodes have a stable equilibrium point. If all the eigenvalues of A 

are negative, which happens for all positive values of G < Gcritic = 1 𝑚𝑎𝑥(𝜆!)⁄  (where 𝜆! are the eigenvalues of 

W), the system will be in an equilibrium state. After some mathematical steps (Saggio et al., 2016), the covariance 

matrix between regional fluctuations can be analytically expressed at this critical point Gcritic as: 

 

     𝑪 = "#!

$
𝑨"%      (3) 

 

whose normalized entries provide the strength of functional connectivity between different regions. The noise 

strength can be arbitrarily set at the critical point since it provides only a scaling constant to be reabsorbed into 

the Pearson correlation normalization. However, the only parameter that needs to be explored is 𝐺, whose range 

goes from Gmin = 0, i.e. uncoupled nodes, to slightly before Gcritic = 1 𝑚𝑎𝑥(𝜆!)⁄ , or Gmax = Gcritic –	𝜖. In Extended 

Data Figure 3-1A, running explicit simulations of SLM models for different values of coupling G and evaluating 

on the “FCemp + SCemp” subset of ADNI subjects the match between the simulated and empirical activity 

correlation matrices, we confirm (cf. e.g. Hansen et al., 2015) that the best match (max of Pearson correlation 

between the upper-triangular parts of the empirical and virtual FCs) is obtained at a slightly subcritical point	for 

G* = Gcritic –	𝜖. 

 

 

Linear SC-to-FC and FC-to-SC completion 

To infer FCSLM from SCemp , we chose to always use a common value G*ref = 0.83, which is the median of G* 

for all 12 “FCemp + SCemp” subjects in the ADNI and Healthy Ageing dataset (the error made in doing this 

approximation is estimated to be less than 1% in Extended Data Fig. 3-1 C). When the connectome FCemp is not 

known, equations (2) and (3) can directly be used to evaluate the covariance matrix C (setting σ = 1 and G = 

G*ref). We then estimate the regional fluctuation covariance from these inferences and normalize it into a Pearson 

correlation matrix to infer FCSLM (See pseudo-code in Table 1-1). Linear FCSLM completions for our ADNI dataset 

and for the Healthy Aging dataset can be downloaded as MATLAB® workspace within Extended Data 

FC_SLM.mat (available at the address https://github.com/FunDyn/VirtualCohorts).   
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To infer SCSLM from FCemp, we invert the analytical expressions of eqs. (2) and (3) and always set σ = 1 and 

G = G*ref leading to: 

 

     𝑾∗ = −𝑪"%/𝐺'()∗      (4) 

 

where C is the covariance matrix estimated from empirical BOLD time-series. The linearly completed SCSLM 

is then set to be identical to W* setting its diagonal to zero to avoid offsets, which would be meaningless given 

the conventional choice of noise σ which we have made (see Table 2-1). Note that all the free parameters of the 

SLM model appear uniquely as scaling factors and do not affect the (normalized) correlation of the inferred SCSLM 

with the SCemp. However, the absolute strengths of inferred structural connections remain arbitrary, with only the 

relative strengths between different connections being reliable (since unaffected by arbitrary choices of scaling 

parameters; see pseudo-code in Table 2-1). Linear SCSLM completions for the ADNI dataset and for the Healthy 

Aging dataset can be downloaded as MATLAB® workspace within Extended Data SC_SLM.mat (available at 

the address https://github.com/FunDyn/VirtualCohorts).   

 

 

MFM models 

For non-linear completion algorithms, we performed simulations of whole-brain mean-field models analogous 

to Deco et al. (2013) or Hansen et al. (2015). We used a modified version of the mean-field model designed by 

Wong and Wang (2006), to describe the mean neural activity for each brain region, following the reduction 

performed in (Deco et al., 2013). The resulting neural mass equations are given by: 

 

     *+"
*,
= "+"

-#
+ (1 − 𝑆!)𝛾𝑅! + 𝜎𝜂!(𝑡)      (5) 

 

     𝑅! =
./""0

%"(/1	["*(./""0)]
     (6) 

 

     𝑥! = 𝜔𝐽7𝑆! + 𝐽7𝐺 ∑ 𝐶!8𝑆8 + 𝐼98     (7) 

 

where 𝑆! represents NMDA synaptic input currents and 𝜏+ the NMDA decay time constant; 𝑅! is collective firing 

rates; 𝛾 = 0.641 is a kinetic parameter; 𝑎 = 270(𝑉. 𝑛𝐶)"%, 𝑏 = 108𝐻𝑧, 𝑑 = 0.154𝑠 are parameters values for 
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the input-output function; 𝑥!are the total synaptic inputs to a regions; 𝐽7 = 0.2609𝑛𝐴 is an intensity scale for 

synaptic currents; 𝜔 is the relative strength of recurrent connections within the region; 𝐶!8 are the entries of the 

SCemp matrix reweighted by global scale of long-range connectivity strength G as a control parameter; 𝜎 is the 

noise amplitude, and 𝜂! is a stochastic Gaussian variable with a zero mean and unit variance. Finally, 𝐼9 represents 

the external input and sets the level of regional excitability. Different sets of parameters yield different neural 

network dynamics and, therefore, patterns of FCMFM non-stationarity.   

To emulate BOLD fMRI signals, we then transformed the raw model output activity 𝑥! 	through a standard 

Balloon-Windkessel hemodynamic model. All details of the hemodynamic model are set according to Friston et 

al. (2003).  

 

 

Non-linear SC-to-FC completion 

In general, our simple MFM model has three free parameters at the level of the local neural mass dynamics 

(τ, 𝜔,	and I0) and one free global parameter G. Since changing the values of 𝜔 and I0 had lesser effects on the 

collective dynamics of the system (see Extended Data Figure 3-2), we set their values to ω = 0.9 and I0 = 0.32 

respectively and remain then just two free parameters which we allow to vary in the ranges G ∈ [1 3] and τ ∈ [1 

100] ms when seeking for an optimal working point of the model. As revealed by the analyses of Figure 3, the 

zone in this restricted parameter space associated with the best FC-rendering performance can be identified 

through the joint inspection of three scores, varying as a function of both G and τ. The first criterion is the spatial 

heterogeneity of activation (see Table 1, line 2.5) computed by taking the coefficient of variation of BOLDMFM 

time-series. 

By computing the Pearson correlation coefficient of upper-triangular between FCMFM and FCemp for every 

subject from “SCemp + FCemp” subset in the ADNI dataset (see Table 1, line 2.3), we obtained a best-fitting zone 

in a narrow concave stripe (see Figure 3A for one subject); (G*, τ*) parameter set, bring the system to this best-

fitting zone and values lower than this is (𝐺", 𝜏") set and higher values are (𝐺:, 𝜏:). Qualitatively analogous 

results are found for the healthy aging dataset. This non-monotonic behavior of yellow zone in G/τ plane occurs 

where three criteria are jointly met; the second criterion is the clustering coefficient of time-average FCMFM 

matrices (see Table 1, line 2.6) and finally, the third criterion is the clustering coefficient of dFCMFM matrices (see 

Table 1, line 2.6), where the dFC matrices were computed for an arbitrary window using the dFCwalk toolbox 

(Arbabyazd et al., 2020; https://github.com/FunDyn/dFCwalk.git). By knowing the optimal working point of the 
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system where all three criteria are jointly optimum (see Table 1, line 2), we freeze the algorithm and finally run a 

last simulation with the chosen parameters to perform non-linear SC-to-FC data completion (see Table 1, lines 

3 to 5). Non-linear FCMFM completions for our ADNI dataset and for the Healthy Aging dataset can be downloaded 

as a MATLAB® workspace within Extended Data FC_MFM.mat (available at the address 

https://github.com/FunDyn/VirtualCohorts). 

 

Non-linear FC-to-SC completion 

We implemented a heuristic approach to infer the most likely connectivity matrix (i.e. Effective Connectivity) 

that maximizes the similarity between empirical and simulated functional connectivity. As an initial point, we 

considered a random symmetric matrix and removed diagonal as SC*(0) (see Table 2, line 1) and run the algorithm 

in Table 1 in order to simulate the FC*(0). Then iteratively we adjusted the SC as a function of the difference 

between the current FC and empirical FC (see Table 2, line 2), in other words SC*(1) = SC*(0) + l∆FC(0) where 

∆FC(0) = FCemp – FC*(0) and l is the learning rate (see Table 2, line 3). The iteration will stop when the correlation 

between FCemp and FC*(k) reaches to the threshold CCtarget = 0.7 and giving the SC*(k) as SCMFM. All the parameter 

used in this section is identical to the non-linear SC-to-FC completion procedure. Nonlinear SCMFM completions 

for our ADNI and healthy aging datasets can be downloaded as a MATLAB® workspace within Extended Data 

SC_MFM.mat (available at the address https://github.com/FunDyn/VirtualCohorts).   

 

Trivial completion using the “other connectome” 

In the case in which one of the two connectomes is missing (e.g. just SC available but not FC) one may think 

to use the available connectome (in this example, SC) as a “good guess” for the missing one (in this example, 

FC). We refer to this trivial procedure as a completion using the other connectome. If the match quality between 

surrogate connectomes obtained via more complex procedures and the target empirical connectome to reconstruct 

happened to be comparable with the one that one can get via the trivial completion, then it would not be worth 

using more sophisticated methods. We assessed then, for comparison with other strategies, the performance of 

such trivial completion approach on the “SCemp + FCemp” subset of the ADNI dataset and on the whole Healthy 

Aging dataset. In order for a completion approach to be considered viable, it is necessary that it outperforms 

significantly this trivial completion via the “other type” connectome, which can be quantified by a relative 

improvement coefficient: 

∆;<=>=?@	= 	
CC[Virtual	Connectome, Actual	Connectome] 	− 	CC[Other	Connectome, Actual	connectome]	

CC[Other	Connectome, Actual	connectome]	 	% 
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Bi-virtual data completion 

The pipelines for data completion described above can be concatenated, by performing e.g. FC-to-SC 

completion on a virtually FC or SC-to-FC completion on a virtual SC (rather than actual FCemp or SCemp, 

respectively). In this way, one can create bi-virtual dual counterparts SCbi-MFM (FCbi-MFM) or SCbi-SLM (FC bi-SLM) 

for any of the available empirical SCemp (FCemp) by applying in sequence non-linear MFM-based or linear SLM-

based procedures for SC-to-FC and then FC-to-SC completion (or, conversely, FC-to SC followed by SC-to-FC 

completions). Linear and nonlinear bi-virtual completions for our ADNI and Healthy Aging datasets can be 

downloaded as MATLAB® workspaces within Extended Data SC_bivirt.mat and FC_bivirt.mat (available at the 

address https://github.com/FunDyn/VirtualCohorts).   

For every pair of subjects, we computed the correlation distance between the respective empirical connectomes 

(pairs of FCemp or SCemp) and the corresponding bivirtual duals (pairs of FCbi-MFM or SCbi-MFM) and plotted the 

empirical-empirical distances vs the corresponding bivirtual-bivirtual distances (cf. Figure 6) to reveal the large 

degree of metric correspondence between real and bivirtual dual spaces. This correspondence was also quantified 

computing Pearson Correlation between empirical and bivirtual pairwise distances. These correlations (computed 

as well for virtual connectomes, beyond the bivirtual duals) are tabulated in Table 4. 

 

Improvement by personalization 

 

Completion procedures map a connectome for a given subject to subject-specific virtual and bivirtual dual 

connectomes. The question is whether the similarity between empirical and completed connectomes is better when 

considering connectome pairs formed by an empirical and its subject-specific dual connectomes, or pairs made 

by an empirical and a generic virtual or bivirtual connectome, not specific to the considered subject. We expect 

that empirical-to-virtual match is improved by personalization. To quantify it, we introduce an Improvement by 

Personalization coefficient ∆Pers, evaluating it for all the types of completion. 

For simulated data one can define CCpersonalized  = CC[Connectomevirt(a subject), Connectomeemp(same subject)], 

where “Connectome” refers to the considered connectome matrix (of either the SC or the FC type) and the ondex 

“virt” to any type of completion (SLM- or MFM-based, virtual or bivirtual). Analogously, we define 

CCgeneric = Group average of CC[Connectomevirt(same subject), Connectomeemp(a different subject)]. The 

Improvement by Personalization coefficient is then defined as ∆Pers = (CCpersonalized - CCgeneric) / CCgeneric. This 
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coefficient significantly larger than zero denotes that completion pipelines get to improved results when 

completion is personalized. 

At least for Functional Connectivity, we can estimate from empirical data how much the improvement by 

personalization could be expected to be in the case in which a first FC extraction for a given subject had to be 

replaced by a second one coming from a second scan from the same subject vs a scan for another generic subject. 

To obtain such an estimate, we focus on a dataset mediated from the Human Connectome Project and conceived 

to probe test/retest variability (Termenon et al., 2016). In this dataset, 100 subjects underwent two resting state 

scans, so that two FCemp can be extracted for each of them. If we redefine CCpersonalized = CC[FCemp(same subject 

first scan), FCemp(same subject second scan)] and CCgeneric = Group average of CC[FCemp(same subject, first scan), 

FCemp(a different subject, first scan)], then we can evaluate an empirical ∆Pers = (CCpersonalized - CCgeneric) / CCgeneric. 

For empirical FCs from the Termenon et al. (2016) dataset we obtain an improvement by personalization of 

~+22%, to be used as a comparison level when looking at improvements by personalization in virtual and bivirtual 

connectomes. 

 

 

Network topology features and their personalized preservation through data completion 

To evaluate the correspondence between empirical and bivirtual connectomes we evaluated a variety of graph-

theoretical descriptors of the connectomes and compared them within pairs of empirical and bivirtual dual 

adjacency matrices. Every connectome, functional or structural, was described by a weighted undirected matrix 

Cij, where i and j are two brain regions, and the matrix entries denote the strength of coupling –anatomical or at 

the level of activity correlations– between them. For each brain region i, we then computed: its strength Si = Σj  Cij, 

indicating how strongly a given region is connected to its local neighborhood; its clustering coefficient 

Clui = |triangles involving i| / |pairs of neighbors of i| (with |⋅|	denoting the count of a type of object), determining 

how densely connected are between them the neighbors of the considered region; and its centrality coefficient, 

quantifying the tendency for paths interconnecting any two nodes in the networks to pass through the considered 

node. In particular, we computed here centrality using a version of the PageRank algorithm (Brin and Page, 1998) 

for weighted undirected networks in an implementation from the Brain Connectivity Toolbox (Bullmore & 

Sporns, 2009), with a typical damping parameter of 0.9. Without entering in the details of the algorithm (see Brin 

and Page, 1998 for details), a node is deemed important according to PageRank centrality if it receives strong 

links from other important nodes sending selective and parsimonious in their connections, i.e. sending only a few 
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strong links. Strengths, clustering, and centrality measures provide together a rich and detailed portrait of 

complementary aspects of network topology and on how it varies across brain regions. We computed then the 

correlations between the above graph theoretical features for matching regions in empirical connectomes and their 

bivirtual counterparts. Note that the number of network nodes were different for connectomes in the ADNI and 

in the healthy aging datasets, since the used reference parcellations included a different number of regions in the 

two cases. However, graph theoretical metrics can be computed in precisely the same way and we perform in this 

study uniquely within-dataset analyses. In Figure 8 we show point clouds for all subjects of the ADNI dataset 

pooled together. Analogous plots for the healthy aging dataset are shown in Figure 8-1.  

We then computed correlations between vectors of graph-theoretical features over the different brain regions 

within specific subjects. This analysis is an important probe of the personalization quality in data completion, 

since every subject may have a different spectrum of graph-theoretical properties across the different regions and 

that it is important that information about these topological specificities is maintained by completion. These 

within-subject correlations –often higher than global population correlations, since not disturbed by variations of 

mean feature values across subjects– are summarized in Table 3 for the ADNI dataset and in Table 3-1 for the 

healthy aging dataset. In these tables, we provide both absolute correlation values and the indication of how each 

correlation is improved by computing it within subjects rather than across the whole sample. Correlations were 

evaluated over data points belonging to the interquartile range of empirical data and then extrapolated to the whole 

range to avoid estimation to be fully dominated by cloud tails of extreme outliers. 

We extracted then the community structure of empirical and bivirtual dual connectomes using the Louvain 

algorithm (Blondel et al., 2008), with default parameter Γ = 1 and “negative symmetric” treatment of negative 

matrix entries (once again, in the implementation of the Brain Connectivity Toolbox). To compare the resulting 

community assignments to different regions across pairs of dual empirical and bivirtual connectomes we 

computed the Mutual Information between the respective labelings and normalized it in the unit range by dividing 

it by the largest among the entropies of the community labelings of each connectome. Such normalised mutual 

information measure is not sensitive to changes in names of the labels and can be applied independently on the 

number of retrieved communities. Chance levels for relative mutual information can be estimated by permuting 

randomly the labels and finding the 99th percentile of values for shuffled labels. Average Mutual Information 

between community labels are tabulated as well in Table 3 for the ADNI dataset and in Table 3-1 for the healthy 

aging dataset, once again giving absolute values and relative improvements of personalized with respect to generic 

correspondence. 
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Supervised subject classification 

To show the possibility to extract personalized information relevant for subject characterization, we performed 

different machine-learning supervised classification tasks using as input features derived from empirical and 

(bi)virtual connectomes. The input and target features to predict were different for the ADNI and the healthy aging 

datasets. 

Concerning the ADNI dataset, we separated subjects in two subgroups: “controls” and “patients” (“MCI” or 

“AD”). Subjects (the actual ones or their associated virtual counterparts) are thus labeled as “positive” when 

belonging to the patient subgroup or “negative” otherwise. Note that our classifiers were not sufficiently powerful 

to reliably discriminate subjects in three classes (“control”, “MCI” and “AD”) on this dataset, at least under the 

simple classification strategies we used. For illustration, we constructed classifiers predicting subject category 

from input vectors compiling the total connectivity strengths (in either SC or FC connectomes, real, virtual, or 

bivirtual) of different brain regions. The dimension of the input space was thus limited to the number of regions 

in the used 96-ROIs parcellation, which is of the same order of the number of available subjects in the overall 

dataset. 

Concerning the healthy aging dataset, we separated subjects in four age classes with 13 subjects in class I (age 

= 18-25), and 12 subjects in classes II (age = 26-39), III (age = 40-57), and IV (age = 58-80) and used as target 

labels for classification the ordinal of the specific age class of each subject.  As input vectors we used in this case 

the top 10 PCA of upper-triangular of connectome. In both cases, we chose as classifier a boosted ensemble of 50 

shallow decision trees. For the ADNI dataset, we trained it using the RUSBoost algorithm (Seiffert et al., 2010), 

particularly adapted to data in which the number of input features is large with respect to the training dataset size 

and in which “positive” and “negative” labels are unbalanced. For the healthy aging dataset, we used a standard  

random forest method (Breiman, 2001). For both datasets, for training and testing we split the dataset into 5 folds, 

each of them with a proportion of labels maintained identical to the one of the full dataset and performed training 

on three of the five folds and testing on the remaining two folds (generalization performance). We considered 

classifiers in which the training features were of the same type of the testing features (e.g. classifiers trained on 

SCemp and tested on SCemp data; or classifiers trained on FCMFM and tested on FCMFM data in Figure 7D-left and 

7E-right; etc.). We also considered classifiers in which the type of data differed in training and testing (e.g. 

classifiers trained on SCbi-MFM and tested on SCemp data, in Figure 7F). In all cases, generalization performance 
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was assessed on data from different subjects than the ones used for training (i.e. prediction performed on the folds 

of data not actually used for training). The split in random folds was repeated 1000 times, so to be able to evaluate 

median performances and their confidence intervals, given by 5th and 95th percentile performances over the 1000 

repetitions of training and testing. We measured performance based on confusion matrices between predicted and 

actual class labels and, just for the binary classification problem on the ADNI dataset, on the Receiver Operator 

Curve (ROC) analysis as well. For ROC analysis, we quantified fractions of true and false positives (numbers of 

true or false positives over the total number of actual positives) during generalization, which depend on an 

arbitrary threshold to be applied to the classifier ensemble output to decide for positivity of not of the input data. 

Receiver operator curves (ROC) are generated by smoothly growing this threshold. An Area Under the Curve 

(AUC) was then evaluated as a summary performance indicator, being significantly larger than 50% in the case 

of performance above chance level. The ROC curves plotted in Figure 7B and 7C, as well as their associated 95% 

confidence range of variation are smoothed using a cubic smoothing spline based on the cloud of TP and FP 

values at different thresholds over the 1000 individual training and testing classification runs. We report 

confidence intervals for AUCs only for “direct” classifications (pooling performances for classifiers trained on 

either SCemp or FCemp and tested on same-type empirical connectomes) and “virtual” classifications (pooling 

performances for classifiers trained on any type of virtual or bivirtual connectomes and tested on same nature 

virtual or empirical connectomes) since confidence intervals for more specific types of classifiers were largely 

overlapping.  

 

Virtual cohorts 

To generate virtual cohorts, i.e. synthetic datasets made of a multitude of virtual connectomes beyond 

individual subject or patient data completion, we artificially boosted the size of the original dataset by generating 

a much larger number of virtual subjects with multiple alternative (but all equally valuable) completions of the 

missing connectomic data. Concretely, to generate the virtual cohort dataset illustrated in Figure 9A, we took the 

88 subjects in the SCemp only plus the 12 subjects in the SCemp + FCemp subsets of the ADNI dataset (including 21 

AD subjects, 35 MCI, and 32 Control subjects) and run for each of them the non-linear SC-to-FC completion 

algorithm 100 times, using each time a different random seed. The net result was a group of 100 alternative FCMFM 

instances for each of the subjects, yielding in total a virtual cohort of 8800 FCMFM matrices to be potentially used 

for classifier training. Such a cohort can be downloaded as a MATLAB® workspace within Extended Data 

FC_cohort.mat (available at the address https://github.com/FunDyn/VirtualCohorts). To generate Figure 9A, 
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showing a dimensionally reduced representation of the relative distances between these 8800 virtual matrices, we 

used an exact t-SNE projection (Van Der Maaten and Hinton, 2008) of the vectors of upper-triangular parts of the 

different FCMFM ‘s toward a two-dimensional space, using a default perplexity value of 30 and no-exaggeration. 

On the same t-SNE projection, beyond the FCMFM connectomes within the virtual cohort connectomes we 

show as well additional FC connectomes, for the sake of comparison (using the same t-SNE neural network 

adopted for projecting the virtual cohort connectomes on the Euclidean plane). Specifically, for the 12 subjects 

with available FCemp in addition to SCemp, we also show the projected positions corresponding to the real FCemp. 

Moreover, we also show positions of bivirtual FCs generated from the FCemp only subset paired to the 

corresponding FCemp projection. 

 

Results 

 

Connectomic data may have gaps: the example of ADNI 

The first dataset we have chosen to focus in the framework of this study corresponds to one of the earliest and 

most popular available datasets in AD research, including a substantial amount of structural and functional 

connectomic information, i.e. the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database 

(adni.loni.usc.edu). ADNI is impressive for the variety of features it aimed at systematically gathering (Figure 

1A). Importantly, based on the T1, DTI and resting-state (rs) BOLD fMRI images available through the ADNI 

data-sets, state-of-the-art processing pipelines can be used to extract subject-specific Structural and resting-state 

Functional Connectomes, compiled into connectivity matrices adapted to the brain parcellation of choice (Figure 

1B, see Materials and Methods for details). 

We had access to 244 overall subjects (119 labeled as “MCI” and 51 as “AD”, thus 170 “Patients”, in addition 

to 74 control subjects, see Materials and Methods) for which MRI data had been gathered. We could extract an 

FC matrix for 168 subjects (starting from rsfMRI) and a SC matrix (starting from DTI) for 88 subjects. However, 

only for a minority of 12 subjects rsBOLD and DTI information were both available. In a majority of cases, either 

DTI or rsBOLD were missing (Figure 1C). This reduced number of “complete” subjects constitutes a serious 

challenge to attempts of automatedly categorize them through machine learning or inference approaches 

capitalizing on both SC and FC features simultaneously. As a matter of fact, the total numbers of AD- and MCI-

labeled subjects in this complete subset decreased respectively to just 2 and 4, against 6 controls. In these 
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conditions, the development of effective data completion strategies would be an important asset toward the 

development of classifier schemes exploiting FC/SC synergies. Therefore, approaches to “fill gaps” (completion) 

and, possibly, even artificially boosting sample size (augmentation) are veritably needed. 

 

Control dataset: healthy aging 

To confirm the robustness of all following analyses performed on the first ADNI dataset, we also consider in 

the following comparisons with analogous analyses conducted on a second control dataset. In this previously 

analysed dataset (Zimmermann et al., 2016; Battaglia et al., 2020), we considered 49 healthy adult subjects 

covering an age-span from 18 to 80 years that we split in four age-classes (see Material and Methods for details). 

For all these 49 subjects, both FCemp and SCemp are simultaneously available, thus extending the number of subjects 

for which a ground truth connectome against which evaluate the performance of each tested completion pipeline 

is possible. 

We also note that connectomes in the two ADNI and healthy aging datasets were defined in terms of different 

brain parcellations, involving a different number of regions. This fact will allow further testing the robustness of 

our analyses against changes of the used parcellation. 

 

 

Linking SC and resting-state FC via computational modeling 

As previously mentioned, FC and SC are related only indirectly through the rich non-linear dynamics 

supported by brain networks (Ghosh et al., 2008; Deco et al., 2011; Kirst et al., 2016). Mean-field modeling of 

large-scale brain networks has emerged initially as the key tool to predict the emergent dynamic patterns of 

resting-state FC, from spontaneous dynamics constrained by SC (Ghosh et al., 2008). It is thus natural to propose 

the use of model-based solutions to perform data-completion, which, in both the SC-to-FC and FC-to-SC 

directions, requires to capture the inter-relation between the two as mediated by dynamics. 

Large-scale mean-field brain network models are specified by: i) a parcellation of cortical and subcortical 

brain areas; ii) a co-registered input SC matrix in the same parcellation; iii) a forward solutions linking source and 

sensor space; iv) a neuronal mass model, describing the non-linear dynamics of the regions at each of the nodes 

of the SC matrix; v) a choice of a few global parameters (e.g. scale of strength of inter-regional connectivity or 

speed of signal propagation along fiber tracts); vi) an external input given to the different regions, that, in the 

simplest case, corresponds to simple white noise uncorrelated across each of the different sites and of 
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homogeneous strength. The Virtual Brain enables the complete workflow from brain images to simulation (TVB; 

Sanz-Leon et al., 2013, 2015). Personalization is accomplished by the subject-specific structural skeleton –

ingredients (i) through (iv)–, which has been demonstrated to be individually predictive (Proix et al 2017; Melozzi 

et al 2019). Simulations of the model can be run to generate surrogate BOLD time-series of arbitrary length (see 

Materials and Methods for details) and the associated simulated resting-state FC, time-averaged (static FC) or 

even time-resolved (FC dynamics or dFC, Hansen et al., 2015). The thus obtained simulated FC will depend on 

the chosen global parameters, setting the dynamic working point of the model. The model dynamics will 

eventually switch between alternative dynamical regimes when its global control parameters cross specific critical 

points. Tuning global parameters will thus uniquely determine, in which regime the model operates. Mean-field 

large scale models constrained by empirical SC tend to generate simulated resting-state FC that best matches 

empirical observations when the dynamic working point of the model lies in the proximity of a model’s critical 

point (Deco et al., 2011; Deco et al., 2013; Hansen et al., 2015; Triebkorn et al., 2020).  

We here chose one of the simplest possible whole-brain network model designs, which emphasizes activity-

based network organization (as opposed to reorganization due to synchronization) and thus ignores inter-regional 

propagation delays. This approach is frequently used in the literature (e.g., Deco et al., 2013; Hansen et al., 2015; 

Aerts et al., 2018) and has the advantage of avoiding the need for complex delay differential equation integration 

schemes (see Discussion for more details). Activation-based approaches adopt particularly simple neural mass 

models such as the reduced Wong-Wang model (Deco et al., 2013), in which the dynamics of an isolated brain 

region is approximated by either one of two possible steady states, one “down state” at low firing rate and an “up 

state” at high firing rate, a feature initially meant to mimic bi-stability in working memory or decision making 

(Wong & Wang, 2006). By varying G the model will switch from a low-coupling regime, in which all regional 

activations are low to a high-coupling regime, in which all regional activations are high, passing through an 

intermediate range, in which both regimes can exist in a multistable manner and regions display spatially and 

temporally heterogeneous activations (a changing mix of high and low firing rates). The best fit between simulated 

and empirical FC occurs slightly before the critical rate instability, at which modes of activity with low firing rate 

disappear (Deco et al., 2013). 

As alternatives to the just described non-linear mean-field models (MFMs) of resting-state brain dynamics, 

simpler stochastic linear models (SLMs) have also been considered (Goñi et al., 2014; Messé et al., 2014; Saggio 

et al., 2016).  In these models, the activity of each region is modeled as a stochastic process (linear, in contrast to 

the non-linear neural mass dynamics of conventional MFMs), biased by the fluctuations of the other regions 
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weighted by the SC connectome (see Materials and Methods). SLMs have also two different regimes. In the first 

regime, the activities of all regions converge to a fixed-point of constant mean fluctuating activities, while, in the 

second, regional activities diverge with exponential growth. Once again, the best fit between the simulated and 

the empirical resting-state FCs is observed when tuning the model parameters slightly below the critical point 

(Hansen et al., 2015; Saggio et al., 2016). 

MFMs and SLMs provide thus two natural ways to generate simulated resting-state FCs, depending on the 

chosen dynamic regime, starting from a selected SC. Strategies have also been devised to approximately solve the 

inverse problem of determining which SC matrix should be used as input to a model in order to give rise to a 

simulated FC matching a specific, pre-determined target matrix. For the SLM, a simple analytic solution to the 

inverse problem exists (Saggio et al., 2016). For MFMs, inverse problems have not been studied with the same 

level of rigor, but algorithms have been introduced that iteratively adjust the weights of the SC matrix currently 

embedded in the model to improve the fit between simulated and target FCs (Gilson et al., 2016; 2018). We will 

show later that these algorithms, although initially designed to identify changes of “effective connectivity” 

occurring between resting state and task conditions, have the potential to cope with the actual problem of MFM 

inversion, providing reasonably good ansatz for SC inference. 

As linear approaches are significantly faster than non-linear approaches, it is important to study their 

performance alongside nonlinear approaches to confirm the actual justification of the use of more complicated 

algorithms. We will see that for one of the two considered datasets, the ADNI one, non-linear methods are superior 

for the data completion applications we are interested in. However, performance of completion happened to be 

slightly superior for the SLM-based than for the MFM-based methods in the case of the second healthy aging 

dataset (hence the interest of exploring and benchmarking both linear and nonlinear completion strategies). 

 

 

Model-driven data completion 

Figure 2 summarizes many of the modeling operations described in the previous section framing them in the 

specific context of connectomic data completion. MRI data can be used to generate empirical SC matrices SCemp 

(from DTI) or FCemp (from rs fMRI BOLD). By embedding the empirical matrix SCemp into a non-linear MFM or 

a linear SLM, it is possible to compute surrogate FC matrices (Figure 2A, upward arrows), denoted, respectively, 

FCMFM and FCSLM. The MFM and SLM global parameters are suitably tuned (slightly subcritical) then FCMFM and 

FCSLM will be maximally similar to the empirical FCemp (dynamic working point tuning, represented by dashed 
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grey arrows in Figure 2A). Starting from the empirical matrix FCemp, one can then infer surrogate SC matrices 

(Figure 2A, downward arrows), either by using a linear theory –developed by Saggio et al. (2016)– to compute a 

surrogate SCSLM; or by exploiting non-linear effective connectivity algorithm –generalized from Gilson et al. 

(2016; 2018)– to infer a surrogate SCMFM starting from a random initial guess (see later section). 

When connectomic data are incomplete (only SCemp or only FCemp are available, but not both simultaneously), 

computational simulation or inference procedures can be used to fill these gaps: by using FCMFM or FCSLM as 

virtual replacements for a missing FCemp (Figure 2B); or by using SCMFM or SCSLM as virtual replacements for a 

missing SCemp (Figure 2C). The quality of the model-generated virtual SCs and FCs can be assessed by comparing 

them with the actual empirical counterparts for the small subset of subjects for which both SCemp and FCemp are 

simultaneously available. Optimizing the quality of the virtually completed matrices on subjects for which both 

empirical connectomes are available (as, e.g. the subset of ADNI “SCemp+FCemp” subjects), also allows 

extrapolating target criteria for identifying when the model is operating a suitable dynamic working point, that 

can be evaluated solely based on simulated dynamics when a fitting target matrix is missing and thus fitting quality 

cannot be explicitly measured (cf. Figures 3 and 4). We can thus translate these criteria into precise algorithmic 

procedures that inform linear or non-linear SC-to-FC and FC-to-SC completion (see Tables 1, 2 and 1-1, 2-1). 

We now, provide more details on implementation and performance for each of the four mentioned types of 

data completion. 

 

Linear SC-to-FC completion 

In linear SC-to-FC completion, a simple SLM (see Materials and Methods) is constructed based on the 

available SCemp and its direct simulations or even, in a much faster manner, analytical formulas deriving from the 

model’s theory are used to generate the associated virtual Pearson correlation matrix FCSLM (Extended Data Figure 

3-1). In this stochastic linear modeling scheme, once the driving noise strength is arbitrarily chosen and fixed and 

the input connectome SCemp is specified, there remains a single parameter to adjust, the global scale of long-range 

connectivity strength G. Extended Data Figure 3-1A shows a systematic exploration, performed on subjects from 

the ADNI “SCemp+FCemp” subset, of how the completion quality depends on tuning this parameter G. As shown 

by the main plot in Extended Data Figure 3-1A for a representative subject, increasing G the correlation between 

the empirical FCemp and the simulated FCSLM, derived here from direct SLM simulations, initially grows to peak 

in proximity of a critical value G*. The correlation then drops dramatically when further increasing G beyond the 

critical point G*. 
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The exact value of G* depends on the specific personalized SCemp connectome embedded into the SLM and 

is therefore different for each subject. The small boxplot inset in Extended Data Figure 3-1A gives the distribution 

of the personalized G* over all the subjects in the ADNI “SCemp+FCemp” subset. However, when performing linear 

FC completion because BOLD data and FCemp are missing, the exact location of the fitting optimum cannot be 

determined. To perform linear SC-to-FC completion for the ADNI subjects with missing BOLD we chose to 

always use a common prescribed value G*ref = 0.83, set to be equal to the median of the personalized G* over the 

“SCemp+FCemp” subset of ADNI subjects. 

Once a G*ref value and a noise strength are set, the linear completion can be further sped-up by the fact that 

the covariance matrix FCSLM for these frozen parameters can be analytically evaluated, as discussed in Saggio et 

al. (2016). Therefore, one can directly apply the SLM analytical formulas (see Material and Methods) on the 

available SCemp as input, without the need for performing direct simulations to generate surrogate BOLD first.  

Extended Data Figures 3-1B-C analyze the expected performance of this “simulation-less” procedure, as 

benchmarked by applying it on the ADNI “SCemp+FCemp” subset. The boxplot in 3-1B (leftmost box) reports a 

median Pearson correlation between the linear virtual FCSLM and the actual empirical FCemp close to ~0.24 for the 

ADNI dataset. This correlation is larger and rise to ~0.37 for the healthy aging dataset, in which FCSLM are 

generated from SCemp using precisely the same algorithm. Panel 3-1C indicates then the percent loss in correlation 

that has been caused by using the common value G*ref and the analytical formula to evaluate the linear virtual 

FCSLM rather than direct simulations at the actual personalized optimum G* for each of the ADNI “SCemp+FCemp” 

subjects. The median quality loss is approximately 0.5%, indicating that the lack of personalized tuning of the 

SLM working point is only a minor issue and that is acceptable to speed-up completion by relying on analytical 

evaluations.  

Table 1-1 provides a pseudo-code for the linear SC-to-FC completion procedure (see Materials and Methods 

for all details). Linear SC-to-FC completions for the DTI-only subjects in the considered ADNI dataset and the 

Healthy Ageing dataset can be downloaded as part of Extended Data FC_SLM.  

The median Pearson correlations of ~0.24 or ~0.37 between the linear virtual FCSLM and the actual empirical 

FCemp for the ADNI and the healthy aging datasets respectively are significant but still absolutely weak. A way to 

assess whether linear SC-to-FC completion is worthy, despite these low correlation values, it is possible to 

compare the achieved reconstruction quality with the one that one could trivially achieve by simply taking the 

SCemp connectome itself as surrogate FC, since we know that SC and FC connectomes are already strongly related 

(Hagmann et al., 2008). This strategy of using the “other connectome” to perform FC completion would be even 
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faster than SLM-based completion.  We thus computed the percent improvement in rendering FCemp via FCSLM 

for subjects in the ADNI “SCemp+FCemp” subset and for subjects in the healthy aging datasets. As shown in 

Extended Data Figure 2-1A, for the ADNI dataset, the use of FCSLM resulted systematically in a worse performance 

(median drop ∆;<=>=?@=	-15%, see Materials and Methods for definition) in reproducing the actual FCemp than using 

the other available connectome SCemp. However, in the case of the healthy aging dataset, the use of FCSLM resulted 

in a clearly better performance than when using “the other connectome” (median improvement ∆;<=>=?@=	+40%). 

Thus, the performance of linear SC-to-FC completion can be good but was not robustly maintained across the two 

considered datasets. 

 

Non-linear SC-to-FC completion 

In non-linear SC-to-FC completion, a more complex MFM (see Materials and Methods) is constructed based 

on the available SCemp and is simulated to generate surrogate BOLD data and the associated Pearson correlation 

matrix FCMFM (Figure 3). Non-linear mechanistic MFM models are supposedly more compliant with 

neurophysiology than the phenomenological SLMs. Furthermore, because of their non-linearities, they are 

potentially able to capture complex emergent collective dynamics resulting in non-trivial dFC (which SLMs 

cannot render, cf. Hansen et al., 2015). However, MFMs have also more parameters and are computationally 

costlier to simulate than SLMs. 

We chose here to limit ourselves to MFMs based on a reduced Wong-Wang regional dynamics (see Materials 

and Methods for model equations), which has previously been used to successfully reproduce rsFC (Deco et al., 

2013) and dFC (Hansen et al., 2015) starting from empirical SC, despite its relative simplicity with respect to 

other possible neural masses implemented in the TVB platform. In addition to the global scale of long-range 

connectivity strength G, the MFM model dynamics depend also on regional dynamics parameters. In Figure 3, 

we froze all local parameters but the NMDA decay time-constant τ, since they affected the dynamic behavior of 

the model less than the other control parameters and, in particular, did not alter qualitatively the repertoire of 

accessible dynamical regimes (compare Figure 3A with Extended Data Figure 3-2). The simulated collective 

dynamics and the resulting non-linear virtual FCMFM will depend on the choice of the free control parameters G 

and τ. In Figure 3A, we have explored the dependency of the correlation between FCMFM and the actual empirical 

FCemp as a function of G and τ achievable over the subjects in the ADNI “SCemp+FCemp” subset. As evident in 

Figure 3A, this dependence is non-monotonic and the best-fitting qualities are concentrated in a narrow concave 

stripe across the G/τ plane. Panels 3B and 3C report zoom of Figure 3A into increasingly smaller regions, revealing 
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an extended zone of high fitting quality which some absolute optimum parameters G* and τ* (here G* = ~ 1.5 

and τ* = 25). 

Remarkably, this best-fitting quality zone on the G/τ plane is associated as well to other properties that can be 

evaluated just based on the simulated dynamics (and, therefore even when the actual target FCemp is unknown and 

missing). We found that the best fit quality systematically occurs in a region where three criteria are jointly met 

(Figures 3D-F).  

First, there is a mixture of “ignited” regions with large activation and of not yet ignited regions with a weaker 

firing rate (spatial heterogeneity, Figure 3D). Conversely, when moving out of the best-fitting zone, the activity 

becomes more spatially homogeneous, either with all regions stable at low (for G <<< G*) or high (for G >>> G*) 

firing rates. 

Second, the time-averaged FCMFM has a complex modular organization between order and disorder, associated 

to high average clustering coefficient, in contrast with the absence of clustering observed for G <<< G* or 

G >>> G* (structured FC, Figure 3E). 

Third, the simulated collective dynamics give rise to meta-stability of FC along time, i.e. to a non-trivially 

structured dFC, which alternates between “knots” of transiently slowed-down FC network reconfiguration and 

“leaps” of accelerated reconfigurations. Such non-triviality of dFC can be detected by the inspection of the so-

called dFC matrix (Hansen et al., 2015; Arbabyazd et al., 2020; Battaglia et al., 2020; Lombardo et al., 2020), 

representing the similarity between FC matrices computed at different time-windows (see Materials and 

Methods). In this dFC matrix analysis, dFC “knots” are visualized as blocks with high inter-FC correlations, while 

dFC “leaps” give rise to stripes of low inter-FC correlation. The prominence of the block structure of the dFC 

matrix can be measured by the dFC clustering coefficient (see Material and Methods), higher when the dFC 

matrix includes more evident knots. The dFC clustering coefficient is higher in the best fit zone, while it drops 

moving outside it toward G <<< G* or G >>> G* (structured dFC, Figure 3F). 

By scanning the G/τ plane in search of a zone with simultaneous spatial heterogeneity of activations, structured 

FC and structured dFC, the MFM model parameters can be tuned to bring it in a zone invariantly resulting in 

relatively higher fitting quality. Figure 3G shows the analysis of the expected performance of this procedure, as 

benchmarked by applying it on the ADNI “SCemp+FCemp” subset (on the left) and the healthy aging dataset (on 

the right). We measured a median Pearson correlation between the non-linear virtual FCMFM and the actual 

empirical FCemp close to ~0.32 for both datasets, which is larger than for FCSLM in the case of the ADNI but slightly 

maller in the case of healthy aging datasets. 
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Table 1 provides a compact pseudo-code for the non-linear SC-to-FC completion procedure (see Materials 

and Methods for all details). Non-linear SC-to-FC completions for the DTI-only subjects in the considered ADNI 

dataset can be downloaded as part of Extended Data FC_MFM. 

The value of correlation with FCemp achieved by FCMFM can thus be larger than the one achieved by FCSLM 

and also appear more robust, since attained in both datasets. Nevertheless, it remains necessary to check, as 

previously for the FCSLM, that it constitutes an improvement on the trivial strategy over taking the “other 

connectome” as substitute (i.e. taking FC to be identical to SCemp). In Extended Data Figure 2-1A, we show that 

this is indeed the case, unlike for linear SC-to-FC completion. The procedure sketched in Table 1-1 led to a median 

improvement on using the “other connectome” approaching ~20% for both datasets that can go as high as +60% 

in some subjects.  

 

 

Linear FC-to-SC completion 

In linear FC-to-SC completion, we use once again the analytic theory derived for the SLM (Saggio et al., 2016) 

to deterministically compute a surrogate SCSLM as a function of the available FCemp or, more precisely, of the 

resting-state BOLDemp time-series used to derive FCemp. In this scheme, the linear virtual SCSLM is indeed taken to 

be directly proportional to the inverse covariance of the BOLD time-series (see Materials and Methods). The 

proportionality constant would depend on the free parameters chosen for the SLM, serving as a link between FC 

and SC. Here we set arbitrarily this constant to the unit value. 

Extended Data Figure 4-1 shows the analysis of the expected performance of this procedure, as benchmarked 

by applying it on the ADNI “SCemp+FCemp” subset. For this ADNI dataset, we measured a median Pearson 

correlation between the linear virtual SCSLM and the actual empirical SCemp close to ~0.22. On the healthy aging 

dataset, this correlation rose even up to ~0.42. 

Table 2-1 provides a pseudo-code for the linear FC-to-SC completion procedure (see Materials and Methods 

for all details). Linear FC-to-SC completions for the BOLD-only subjects in the considered ADNI  and the Healthy 

Ageing datasets can be downloaded as part of Extended Data SC_SLM. 

As for SC-to-FC completions, we confirmed if the performance reached by linear FC-to-SC completion is 

superior to the one that is obtainable through the trivial strategy of using “the other connectome” (in this case, the 

available FCemp). In Extended Data Figure 2-1B, we show that using SCSLM rather than FCemp as an ersatz for 

SCemp leads to drops of improvements in quality with a pattern similar to the reverse SC-to-FC completion, i.e. a 
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drop in quality, with a median value of approximately -20%, for the ADNI dataset but an increase of nearly ~50% 

for the healthy aging dataset. Once again, thus, linear FC-to-SC completion can yield good results, but this 

performance did not robustly generalize through datasets.  

 

 

 

Non-linear FC-to-SC completion 

Non-linear FC-to-SC completion consists in the inference of a SCMFM matrix that, used as input to an MFM, 

produces as output a simulated FC* matrix highly correlated with the available empirical FCemp (Figure 4).  This 

non-linear inverse problem is more sophisticated than linear FC-to-SC completion, because, for the MFM a theory 

providing an explicit formal link between input structural connectome (SC*) and output functional connectome 

(FC*) is not available, unlike for the SLM. Note indeed that MFMs, at the best-fitting dynamic working point, 

give rise not just to a single dynamical mode, but to a multiplicity of them (Deco & Jirsa 2012; Hansen et al., 

2015; Golos et al., 2015) and that each of them may be associated, in general, to a different state-specific FC 

(Battaglia et al., 2012; Hansen et al., 2015; Kirst et al., 2016) so that the final static FC* results from averaging 

over a mixture of different states sampled in stochastic proportions. Therefore, to derive the FC* associated with 

a given input SC*, it is necessary to run explicit MFM simulations, long enough to sample a variety of possible 

dynamical states. 

Gilson et al. (2016; 2018) have introduced iterative optimization procedures aiming at updating a current guess 

for the input SC* to a model in order to improve the match between the model output FC* and a target FCemp. 

They initially conceived such a procedure as a form of “effective connectivity” analysis, aiming at constructing 

models which capture the origin of subtle changes between resting state and task conditions. Thus, starting from 

an empirical SC connectivity and from a model reproducing suitably rest FC, they slightly adjusted SC weights 

through an iterative procedure to morph simulated FC in the direction of specific task-based FCs. Nothing 

however prevents to use the same algorithm in a more radical way, to grow from purely random initial conditions 

a suitable effective connectome, as an ersatz of missing SCemp, compatible with the observed FCemp. 

In this “effective connectivity” procedure connectome weights are iteratively and selectively adjusted as a 

function of the difference occurring between the current FC* and the target FCemp. Such optimization leads to 

infer refined connectomes, that, with respect to empirical DTI SC matrix, may display non-symmetric connections 

(distinguishing thus between “feeder” and “receiver” regions as in Gilson et al., 2016) or enhanced inter-
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hemispheric connections, usually under-estimated by DTI (as in Gilson et al., 2018). Here we use a similar 

algorithm to learn a suitable non-linear virtual SCMFM. 

The initial SC*(0) is taken to be a matrix with fully random entries. An MFM embedding such SC*(0) is built 

and simulations are run to generate an output FC*(0) which is compared to the target FCemp of the subject for which 

FC-to-SC completion must be performed. The used SC*(0) is then modified into a different 

SC*(1) = SC*(0) + l∆FC(0) matrix, by performing a small update step in the direction of the gradient defined by the 

difference ∆FC(0) = FCemp - FC*(0). A new simulation is then run to produce a new FC(1). The produce is repeated 

generating new SC(i) = SC(i-1) + l∆FC(i-1) until when the difference between FC(i) and the target FCemp becomes 

smaller than a specified tolerance, i.e. |∆FC(i)| < ε. The last generation SC(i) is then taken as non-linear virtual 

surrogate SCMFM (see Materials and Methods for details). 

Figure 4A provides an illustration of the nonlinear FC-to-SC completion when applied to subjects in the ADNI 

ADNI “SCemp+FCemp” subset. In the first step, the matrix SC*(0) is random and there is no correlation between the 

output FC*(0) and FCemp. Advancing through the iterations, SC*(k) develops gradually more complex internal 

structures and correspondingly, the correlation between FC*(k) and FCemp increases until when it reaches the 

desired quality threshold, here set to CCtarget = 0.7. This threshold quality is usually reached after ~1500 iterations. 

In the ADNI “SCemp+FCemp” subset we take advantage of the availability of the actual SCemp to quantify as well 

the convergence of SC*(k) toward SCemp. Figure 4A shows that advancing through the iterations, the correlation 

between SC*(k) and SCemp improves, in agreement with our hypothesis that effective connectivity can provide a 

reasonable replacement for structural connectivity. The expected quality of reconstruction, as estimated from 

results on the ADNI “SCemp+FCemp” subset is reported in Figure 4B and amounts to an expected correlation 

between SCMFM and SCemp of ~0.31. For the healthy aging dataset, we obtain a slightly smaller median value of 

~0.28, but the difference is not statistically significant. 

Table 2 provides a compact pseudo-code for the non-linear FC-to-SC completion procedure (see Materials 

and Methods for all details). Non-linear FC-to-SC completions for the BOLD-only subjects in the considered 

ADNI dataset can be downloaded as part of Extended Data SC_MFM.   

As for SC-to-FC completion, we then confirmed if the nonlinear FC-to-SC completion SCMFM does provide a 

superior reconstruction of SCemp than the trivial alternative offered by just taking the “other connectome” (the 

available FCemp). As shown in Figure 2-1B, the use of nonlinear FC-to-SC completion led to a median 

improvement on the order of ~15% for the ADNI dataset and of ~10% for the healthy aging dataset. If the 

improvement achieved by non-linear completion is smaller than for linear completion in the healthy aging dataset, 
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nonlinear FC-to-SC completions succeeds in the ADNI dataset where its linear counterpart failed. Therefore, 

nonlinear FC-to-SC computational generation provides a worthy strategy for data completion, although not yet as 

efficient as SC-to-FC completion. 

We note that non-linear FC-to-SC completion, as for non-linear SC-to-FC completion, is a non- deterministic 

procedure, meaning that a different SCMFM is generated depending on the starting initial condition SC*(0). 

However, the different non-linear virtual surrogates lie at distances from the common actual ground truth SCemp 

which are tightly concentrated around the median correlation. As revealed by Figure 4C, the reported correlations 

between SCMFM and SCemp were within a narrow interval of ±2.5% of the relative difference from the median 

distance for all the tested random initial conditions (30 per subject, see Materials and Methods), showing that the 

expected performance is poorly affected by the initial conditions. This stochastic aspect of the non-linear 

completion algorithm is going to allow us to generate not just one but arbitrarily many completions, starting from 

each available empirical connectivity matrix (see later section). 

 

Virtual and bi-virtual duals 

SLMs and MFMs have thus the capacity to bridge from SC to FC or from FC to SC in a way that, in most 

cases, goes beyond capturing the mere similarity between the empirical SCemp and FCemp connectomes. When 

using these models for data completion, the input matrix is always an empirical matrix (SCemp or FCemp) and the 

output a surrogate virtual matrix (respectively, FCvirt or SCvirt, where the index “virt” refers generally to any 

completion algorithm, i.e. either using the SLM or the MFM models). However, the algorithms presented in 

Tables 1, 2 and 1-1, 2-1 can still be applied even when the input connectivity matrix is already a virtual matrix. 

In this case, the input could be surrogate matrices (SCvirt or FCvirt) from data completion and the output would be 

bi-virtual (respectively, FCbivirt or SCbivirt), i.e. twice virtual, since, to obtain them starting from an empirical input 

connectome, two different model-based procedures have to be chained. The final result of passing an original 

empirical connectome through two chained completion procedures is then a bi-virtual surrogate matrix of the 

same type (structural or functional) of the initially fed connectome. In other words, SCemp is mapped to a SCbivirt 

(passing through an intermediate FCvirt step) and FCemp is mapped to an FCbivirt (passing through an intermediate 

SCvirt step). If the information loss is not too high, pairs of virtual and bivirtual SC and FC connectomes should 

be shared instead of pairs involving empirical connectomes, potentially reducing difficulties to disclosing in public 

personal clinical data (see Discussion). 
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The virtual and bivirtual matrices obtained by operations of data-completion can be seen as a set of 

connectomes dual to the original real connectome. In mathematics, one often speaks of “duality” relations when 

two alternative spaces are put into relation by an element-to-element structure-preserving mapping. Here, one 

could reinterpret our algorithmic procedures for SC-to-FC or FC-to-SC completion as mapping between 

alternative “spaces” in which to describe the inter-relations between the connectomes of different subjects. 

Although our definition of duality is not as rigorous as in more mathematical contexts (as in the case, e.g., of 

linear algebra dual or bidual spaces; or in graph theory, where duality refers to node-to-link transformations), we 

will see that dissimilarities or similarities between the personalized connectomes of different subjects are 

substantially preserved by the application of completion procedure that maps an original space of empirical 

connectomes into a dual space of virtual connectomes. In other way, the information carried by a set of 

connectomes and by the set of their dual counterparts is, at least in part, equivalent (cf. Figures 5, 6, 7, Table 3 

and Discussion).  In this view, the first “dualization” operation would map a real connectome to a virtual 

connectome of a different type (a virtual dual, swapping SC with FC). The second dualization would then map it 

to a bivirtual dual of the same type (mapping SC to SC and FC to FC; cf. Figure 5A-B left cartoons and 7A). If 

the completion quality is good, then empirical connectomes and their bi-virtual duals should be highly related 

between them. Before, discussing more in detail the crucial issue of the preservation or loss of personalized 

information in duals, we start here by performing a self-consistency check of the data completion procedures and 

compare thus the start (FCemp or SCemp) and the end (FCbivirt or SCbivirt) points of dualization chains. 

Figure 5 shows the correspondence between empirical and bi-virtual SC and FC pairs, both when using SLM- 

and MFM-based procedures. We first evaluated the quality of SCbivirt generation, over the ADNI-subset of 88 

subjects for which a SCemp matrix was available and over the healthy aging dataset (Figure 5A). Considering the 

nonlinear bi-virtual completion chain SCemp to FCMFM to SCbi-MFM we obtained a median correlation between SCemp 

and SCbi-MFM of ~0.58 for ADNI dataset and ~0.64 for the healthy ageing dataset. This quality of rendering aligned 

well with the performance of the linear bi-virtual completion with a correlation between SCemp and SCbi-SLM of 

~0.63 for the ADNI dataset. On the healthy aging dataset, linear bivirtual duals SCbi-SLM were of exceptionally 

high quality, reaching a correlation with SCemp nearly as high as ~0.92. 

We then evaluated the quality of FCbivirt generation over the ADNI-subset of 168 subjects for which an FCemp 

matrix was available and over the healthy aging dataset (Figure 5B). Considering the non-linear bi-virtual 

completion chain FCemp to SCMFM to FCbi-MFM the median correlation between FCemp and FCbi-MFM was of ~0.59 for 

the ADNI dataset and of ~0.45 for the healthy aging dataset. Moving to linear bivirtual FCbi-SLM, the performance 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2020.01.18.911248doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.18.911248
http://creativecommons.org/licenses/by-nd/4.0/


on the healthy aging dataset was of ~0.42, equivalent to the non-linear duals. However, linear bivirtual dualization 

failed for the ADNI dataset, with a correlation dropping to ~0.12, not surprisingly given the poor quality of already 

the first step from FCemp to SCMFM. Even in this latter case, nevertheless, the empirical-to-bi-virtual correlations 

remained significant.  

 

Are dual connectomes still personalized? 

Although significant, correlations between virtual and bivirtual with matching empirical connectomes can be 

small. Is this average performance sufficient not to lose subject-specific information through the various steps of 

transformation? The most straightforward way to answer to this question is to check whether FC(bi)virt or SC(bi)virt 

connectomes are closer to the FCemp or SCemp of the same subject from which they derive than to the ones of other 

generic subjects. Since SCs and FCs are related but not identical and their divergence can be stronger or weaker 

depending on the subjects (Zimmermann et al., 2019) the answer to this question is not obvious and must be 

checked. 

We therefore introduced a measure of the improvement in connectome matching obtained by using 

personalized virtual and bivirtual duals rather than generic connectomes. The coefficient ∆Pers (see Materials and 

Methods) quantifying the percent improvement obtained by using personalized connectomes are tabulated in 

Table 5 for the different types of completion. 

 

Improvements by personalization were always positive, indicating that on average some subject-specific 

information is preserved. These numbers, however, are diverse between datasets and completion types. 

Furthermore, they should be compared with the uncertainty itself existing on empirical connectomes. Indeed the 

∆Pers analysis implicitly assume that empirical connectomes are exact reference comparison terms. In reality, there 

is a strong uncertainty on empirical connectome themselves, with an elevated test-retest variability within 

individual subjects (Wang et al., 2012; Chen et al., 2015; Termenon et al., 2016). In particular, the connectomic 

dataset released together with the study by Termenon et al. (2016) allows an evaluation of what would be the 

expected “empirical personalization improvement” in the case in which we actually had to compare two 

connectomes obtained empirically for a same subject and assess how more similar are they between them, than to 

a connectome of the same type but obtained from a different subject. Termenon et al. (2016) considers data 

mediated from the Human Connectome Project and provides for 100 subjects two different FCemp matrices 

deriving from different scans. Using a definition of the ∆Pers coefficient analogous to the one used for virtual and 
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bivirtual completions but adapted to these test-retest empirical dataset, one can estimate a value of ∆Pers of about 

~+22% for empirical FCs. In other words, the similarity between two FCemp from a same subject is expected to 

be only a 22% larger than similarity with FCemp from different subjects. We do not dispose of an analogous 

estimation for SCemp connectomes, however we expect personalization improvements to be even in this case 

comparable in value, if not smaller, given that inter-subject variability for SCemp connectomes tend to be smaller 

than for FCemp (Zimmermann et al., 2019).  

The ∆Pers registered for bivirtual dual connectomes are of the same order of magnitude than this empirical 

expectancy allowing us to conclude that they are “personalized” at least as much as empirical connectomes (and 

at least according to this rough ∆Pers measure). In some cases, notably for nonlinear bivirtual FC duals, the 

similarity with the original empirical connectome is way larger than what expected for empirical test-retest scans, 

probably due to the fact, that the effective connectivity algorithm used for FCemp to SCMFM nonlinear completion 

emphasize similarities between SC and FC, thus allowing FCbi-MFM to more faithfully mirror FCemp without being 

fully identical to it (average correlation between FCbi-MFM and FCemp is of ~0.4-0.6, cf. Figure 5B). Remarkably, 

this strong preservation of personalization by bivirtual duals is achieved despite smaller relative improvements 

by personalization at the first step of the dualization chain, e.g. the transition from empirical to simple virtual 

duals. This means that the variability generated in the simulation leading to virtual duals, although large must 

maintain important subject-specific features useful to regenerate a good personalization at the following stage of 

generating the bivirtual dual. This also means that the ∆Pers measure could be a too rough and not sensitive enough 

metric of personalization, since it weights equally any difference or similarity in the connectomes, independently 

from their relevance. Better, complementary measures of personalization are thus needed. 

Since individual connectomes are affected by a necessary uncertainty a more reliable measure of the quality 

of personalization can be achieved by looking at the capacity of dualization to preserve overall preservation of 

inter-subject relations rather than specific individual data-points. Indeed, individual connectomes could be 

distorted through the mapping into dual virtual and bivirtual spaces, but if the distortion is such to maintain the 

subject’s connectome close to other subjects’ connectome to which it was close and far from other subjects’s 

connectome from which it was far, then the possibility to discriminate subject categories based on connectome 

features could still be preserved. Therefore, we computed the distances between the empirical connectomes SCemp 

(or FCemp) of different subjects and the inter-subject distances for corresponding pairs of subjects but, this time, 

between their bivirtual dual connectomes SCbi-virt (or FCbi-virt). As shown in Figure 6 and Extended Data Table 5-

1, the correlation between the inter-subject distances in real and bidual spaces were noticeable and significant, for 
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both ADNI and healthy aging datasets and for both MFM- and SLM-based approaches (Table 5-1), apart from 

the very poor performance of bivirtual linear FC completion in the ADNI (expected, given previously reported 

failures in this case). We also noticed that distances between bivirtual duals were often amplified, with respect to 

the original empirical distances. The space of dual bivirtual connectomes can thus be considered as a “virtual 

mirror” of the real connectome space, reproducing to a reasonable extent despite some deformation of the 

geometry of the original distribution of subjects. 

 

Subject classification based on real and virtual connectomes 

The compilation of large datasets, including connectivity data from structural and functional neuroimaging is 

considered essential for the development of algorithmic patient stratification and predictive approaches. Here, we 

have described approaches for connectomic data completion and studied their consistency. We now show that 

such completion procedures are also compliant, in perspective, with the extraction via machine learning 

algorithms of the personalized information preserved in duals. 

As a first proof-of-concept, we studied here two simple (and academic) supervised classification problems in 

which subjects are separated into different classes based on connectomic features –empirical and/or virtual– used 

as input. First, in the ADNI dataset, we try separating subjects into two subgroups of control and patients (i.e., 

MCI or AD) subjects. Second, in the healthy aging dataset, we separate subjects into four classes of age, from the 

youngest to the oldest. Importantly, input features can be computed from all different types of connectomes: (at 

least for the subjects for which they were available): empirical SCemp or FCemp; their virtual duals FCMFM or SCMFM; 

or their bivirtual duals SCbi-MFM or FCbi-MFM (see Figure 7). 

 

Discriminating control and patient subjects in the ADNI dataset 

For the first toy classification problem, we used target classification labels already provided within the ADNI 

dataset, assuming them to be exact (see Materials and Methods for a summary of the used stratification criteria). 

We performed then classification based on input vectors of regional node strengths estimated subject-by-subject 

from the connectome matrices of interest (Q = 96 input features, corresponding to the number of brain regions in 

the used parcellation, see Materials and Methods). As supervised classifier algorithm, we chose a variant (Seiffert 

et al., 2010) of the random forest algorithm, which is particularly suitable when the number of input features is of 

the same order of the number of available data-points in the training set (Breiman, 2001), as in our case.  
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Examples of ADNI classifications based on empirical connectomes are shown in Figures 7, notably, based on 

SCemp matrices (green line, Figure 7B) or on FCemp matrices (green line, Figure 7C). The available subjects were 

randomly split into a training set and a testing set (with maintained relative proportions of the different 

classification labels). Figures 7B and 7C describe the average generalization performance for classifiers trained 

on the training set and evaluated on a testing set. Training and testing on real empirical connectomes, we achieved 

a moderate but significantly above chance level classification performance, as revealed by the green Receiver-

Operator-Curves (ROC) in Figures 7B and 7C, for both SCemp and FCemp connectomes, deviating away from the 

diagonal (corresponding to chance level classification performance). As a more quantitative measure, one can 

also measure the median Area Under the ROC Curve (AUC), here equal to ~0.69 for the SCemp on SCemp classifier 

and to ~0.75 for the FCemp on FCemp classifier. AUC scores for different types of classification on the ADNI dataset 

are compiled in Extended Data Tables 3-1 and 3-2. 

We considered then ADNI classification based on virtual and bivirtual duals instead of empirical connectomes. 

In this case of “dual space classification” (Figure 7B), virtual and bivirtual duals are used both when training the 

classifiers and when evaluating them. Therefore, to classify a new empirical connectome with a “dual space 

classifier”, it is first necessary to “lift” it in dual space, i.e. to map it via data completion algorithms to the suitable 

type of dual for which the classifier has been trained. Figure 7B shows two examples of dual space ADNI 

classification based on FCMFM (blue curve, median AUC ~0.64) and SCbiMFM (magenta curve, median AUC 

~0.59), respectively virtual dual and bivirtual duals of the real connectomes SCemp. Once again, for both virtual 

and bivirtual duals, classification performance remained above chance level. While the classification performance 

drops slightly with respect to classification with the actual empirical connectomes, this drop was not significant 

for a broad range of the most conservative decision thresholds. Above chance-level classification is thus possible 

as well using dual connectomes generated from data completion, achieving performances substantially equivalent 

to the one obtained for empirical connectomes. 

We considered finally the case of ADNI classifiers trained on bivirtual duals and then evaluated on empirical 

connectomes (Figure 7C). In this case of “cross-space classification”, the trained classifier is able to operate in a 

performing manner as well on a different type of connectomes (e.g. empirical) than the one for which it has been 

trained (e.g. bivirtual dual). Therefore, to classify a new empirical connectome with a “cross-space classifier”, it 

is not necessary to first lift in dual space as for dual space classifiers. Figure 7C shows an example of cross-space 

classification trained on bivirtual dual FCbiMFM and then tested on FCemp (orange curve, median AUC ~0.70). 

Remarkably, the performance was not significantly different for most decision thresholds from classification 
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trained and tested on empirical FCemp connectomes. Therefore, classification of empirical connectomes based on 

classifier trained on virtual connectomes is possible as well. 

Significant classification was possible even for some other combinations of connectomes (see Extended Data 

Tables 3-1 and 3-2), however performance was poorer in most cases. We did not attempt classification based on 

SLM-based virtual and bivirtual duals, given the deceiving quality of connectome rendering by these linear 

methods (in the ADNI dataset). 

 

 

Discriminating age classes in the healthy aging dataset 

For the second toy classification problem, we split the subjects in the healthy aging datasets into four age 

categories and used the ordinal number of the age class from I to IV as target classification label. As input features 

we did not use any more high-dimensional vectors of connection strengths but the loadings on the first 10 principal 

components of each connectivity matrices. As classifier we still used random forests Breiman algorithm (see 

Materials and Methods for full detail). As before, we highlight here a few examples of classification with real 

empirical connectomes (Figure 7D), classification in dual space (Figure 7E) and cross-space classification (Figure 

7F). We characterize performance both in terms of general accuracy (fraction of subjects correctly classified in 

their age class) and of detailed confusion matrices between the actual and the predicted age classes, revealing 

typical error syndromes. General accuracies were typically above the chance level of ~25%, approaching (or 

exceeding), for instance, ~37% for classifiers: trained and tested on SCemp (Figure 7D, left, ~37% accuracy) or 

FCemp (Figure 7D, right, ~43% accuracy); or, in virtual dual space, on SCSLM (Figure 7E, left, ~45% accuracy) or 

FCMFM (Figure 6D, left, ~43% accuracy). For cross-space classification examples, accuracies dropped but 

remained, e.g., of ~35% for classifiers trained on SCMFM and generalized on FCemp (Figure 7F, left) or of ~30% 

when trained on FCSLM and tested on FCemp. More examples are shown in Figure 7-1, including for classifiers 

using bivirtual connectomes (e.g. classifiers trained and tested on FCbi-SLM with an accuracy of ~42%; but a 

minority of classifications were below chance level, e.g. trained on FCbi-SLM and tested on FCemp, with an accuracy 

of only ~19%). 

General accuracy does not reflect fully the performance, since it averages over all possible classes. The 

capability to proper classify subjects of specific classes could be much larger. For instance, all but one of the 

classifiers highlighted in Figures 7D-F would classify elderly subjects in the IVth age class (58-80 yrs) with 

accuracies exceeding ~60%. Furthermore, when misclassified, subjects tended to be attributed to neighboring but 
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not radically different age classes –e.g. class I (18-25 yrs) with class II (26-39), or class IV (58-80 yrs) with class 

III (40-57)–, more rarely mixing up classes with stronger age separation. Such misclassification may also reflect 

meaningfully differences between subjects, whose connectome could look “younger” or “older” than the median 

of their age class, possibly reflecting cognitive differences, large within each age class (cf. Glisky, 2007; Battaglia 

et al., 2020). The analysis of factors explaining misclassification goes however beyond the scope of the present 

study. 

As a matter of fact, we are still far from providing authentically useful examples of classification, neither on 

the ADNI dataset nor on the healthy aging dataset. However, this was not our aim here, the chosen classification 

problems themselves being rather academic and serving as first proofs-of-concept. Importantly, we can at least 

show that dual and cross-space classification performance, if not good, was not much worse than for real empirical 

connectomes. This step is already sufficient to show that empirical and virtual duals share an extractable part of 

information and that this shared information can be still relevant for classification.  

Such information preservation, despite loose correspondence, can be explained by revealing the similarity of 

network topology features between real connectomes and their bivirtual duals, independently from our capacity 

to achieve more or less performing classifications based on these features. 

 

Matching network topology between real and virtual connectomes 

The connectome matrices describe the weighted undirected topology of graphs of structural or functional 

connectivity. All information conveyed by these connectomes about pathology or other conditions is potentially 

encoded into this network topology. While genuine model-free analyses of network topology across all scales are 

still under development –see for instance, promising topological data analyses approaches (Petri et al., 2014; 

Sizemore et al., 2018)–, classic graph theoretical features provide a first multi-faceted characterization of the 

specific features of each individual connectome object (Bullmore & Sporns, 2009). We evaluated here for each 

empirical connectome SCemp or FCemp a spectrum of different graph theoretical features. In particular we evaluated 

for both the ADNI and the healthy aging datasets and for each brain region within each of the connectomes (see 

Materials and Methods for details): the total strengths (sum of the connection weights of all the links incident the 

region); the clustering coefficients (tendency of the regions neighboring to the considered node to also be 

interconnected between them); and the centrality coefficients (tendency for any path linking two different nodes 

in the network to pass through the considered node), evaluated via the PageRank algorithm (Brin & Page, 1998). 

We also evaluated for each connectome its modular partition into communities, by using a Louvain algorithm 
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with default parameters (Blondel et al., 2008). Finally, we also inspected the global link weight distributions. We 

then evaluated analogous quantities for the dual connectomes associated with each of the connectomes, focusing 

here, for conciseness and simplicity, on bivirtual duals, sharing a common nature (Structural or Functional) with 

their correspondent empirical partner. 

In Figure 8 we illustrate this correspondence between graph-theoretical features evaluated for different 

real/bivirtual dual connectome pairs in the ADNI dataset. An analogous figure for the healthy aging dataset is 

shown in Figure 8-1, showing qualitatively equivalent results. To compare node degrees, clustering and centrality 

features we plot, for every brain region in every connectome, the feature value evaluated in a real connectome 

against the corresponding feature value evaluated in the associated bivirtual dual. To compare community 

structures, we evaluate for every real/bivirtual dual connectome pair the relative mutual information MI 

normalized by entropy H (see Materials and Methods) between the community labels extracted for the two 

connectomes, with 0% ≤ MI/H ≤ 100% and 100% corresponding to perfect overlap. We show results for ADNI 

(or healthy aging) SC real/bivirtual dual pairs in Figure 8A (Figure 8-1A) and for FC pairs in Figure 8B (Figure 

8-1B). In all cases we find correspondence between real and bivirtual dual connectome features significantly 

above chance levels. Highly significant real/bivirtual dual correlations subsist for regional strengths and 

centralities. For ADNI FC, these correlations can become as high as CCmedian = 0.66 (95% bootstrap confidence 

interval) for regional strengths and CCmedian = 0.55 (95% bootstrap confidence interval) for regional centralities. 

Correlations are found even for regional clustering coefficients, even if the small values of clustering coefficients 

observed in SCemp connectomes are systematically overestimated in the denser bivirtual dual SCbiMFM. Finally, 

concerning community matching, for SC and FC real/bivirtual dual pairs we found a median relative mutual 

information of ~61% and ~45% respectively, for the ADNI dataset, safely above chance level (estimated at ~16%, 

permutation-based 95% confidence interval). (see Table 3 for the superior correspondence at the single subject 

level). For the healthy ageing dataset, for both SC and FC these correlations were even higher (Figure 8-1) with 

CCmedian ≈	0.8 for regional strengths, centralities, and clustering coefficients of SC real/bivirtual dual parts and 

CCmedian ≈	0.7 for the FC real/bivirtual dual parts. Finally, for the community matching for SC pairs the median 

relative mutual information was ~44% and for FC pairs ~50% (see Table 4 for the superior correspondence at the 

single subject level for healthy ageing dataset). 

The analyses of Figure 8, and Figure 8-1 are performed at the ensemble level, i.e. pooling network features 

estimated from different subjects into a same point cloud. However, network features can have important 

variations of values not only across regions but also across subjects, which is expected to be a key indicator of 
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subject-specific traits useful for classification. The capability to preserve these traits would thus be a crucial factor 

allowing the achievement of personalization when generating virtual and bivirtual duals. Therefore, we computed 

correlations between vectors of regional features in real and empirical connectomes but now limited to be within 

individual subjects obtaining thus, for every feature type, a different correlation value for every subject. Table 3 

(for the ADNI dataset) and Table 4 (for the healthy aging dataset) show that within-subject correlations were also 

high (apart for SC clustering) and, for FC, even superior to ensemble-level correlations, manifesting, once again, 

the personalized nature of bivirtual dual connectomes. Indeed, when computing personalized correlations for pairs 

of real and bivirtual connectomes associated to a same matching subject, they resulted systematically superior to 

unpersonalized control correlations evaluated over real/bivirtual connectome pairs assembled out of different 

subjects (see Materials and Methods). Percent improvements in same-subject real/dual correlations with respect 

to average correlations in cross-subject pairs are compiled as well in Table 3 and Table 4. Personalization can 

lead to very strong percent improvements in real/virtual topology correlations, particularly in the case of FC 

connectomes. The operation of dualization thus preserves aspects of network topology which are specific to each 

subject and not just generic to a connectome ensemble.  

Finally, we plot in Figure 6-1, global distributions of link weights for the different types of connectomes and 

both datasets. Most distributions displayed an overall similarity in shape: SC weights distributions with a peak at 

small values and a fat right tail; FC weights distribution more symmetric and with a broader peak at intermediate 

strengths. These different distribution shapes reflect that SCemp networks are diluted matrices with a few strong 

connections only, while FCemp networks have a higher and more uniform density of connections. Virtual and 

bivirtual SC connectomes tend to have fatter right tails (and even displaced mode peaks for SCMFM), reflecting 

that, in absence of any arbitrary sparsification strategy, completion pipelines generate surrogate SCs without the 

sparsity constraint and, thus, with less near-zero link weights. Such systematic discrepancy, well visible in Figure 

6-1, however, does not prevent correlations between single subject-specific connectivity traits to remain strong, 

which is a necessary condition for personalized predictive information preservation. 

 

Virtual cohorts 

All nonlinear data completion algorithms involve a stochastic component. Therefore, by construction, each 

simulation run will provide different virtual and bi-virtual connectomes, associated with the same empirical seed 

connectome. This property allows the generation of an arbitrarily large ensemble of surrogate virtual 

connectomes, forming the virtual cohorts associated with a specific subject (see Materials and Methods). Every 
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virtual cohort maintains a strict relation to its empirical counterparts because all the matrices in the cohort are dual 

to the same original empirical connectome. In particular, distances between virtual connectomes sampled within 

two different virtual cohorts were always closely correlated to the distance between the respective seed 

connectomes of the two cohorts. The close relationship between the original data and the respective virtual cohorts 

(already studied in Figure 6 for individual instances of bivirtual connectomes) is visually manifested in Figure 9A 

where a distance-respecting non-linear t-SNE projection (Van Der Maaten & Hinton, 2008) has been used to 

represent in two dimensions the virtual cohorts of surrogate virtual FCMFM’s associated to the 88 subjects with 

available SCemp in the ADNI dataset (among which, thus, also the 12 of the “SC+FC” subset). Every dot 

corresponds here to the two-dimensional projection of a high-dimensional virtual dual FCMFM (100 different 

virtual FCMFM’s have been generated starting from each one of the 88 SCemp connectomes). Clusters of dots (color-

coded by their nature, of control subjects or MCI and AD patients) are visually evident in the projection indicating 

that the distance between dual connectomes within each virtual cohort is smaller than the distance between dual 

connectomes belonging to different cohorts. 

We also plotted, for comparison, the cloud of the projected FCemp connectomes for the twelve subjects of the 

ADNI “SC+FC” dataset for which it was available, and connected these projections via a thin line to the projection 

of one of their virtual FCMFM images in the corresponding subjects’ virtual cohorts. The projections for all the 

FCemp connectomes seem to collapse in a single additional cluster close to the center of the global t-SNE map. 

This collapse manifests that empirical connectomes and virtual connectomes live in different spaces, as previously 

stressed (Figure 7A). Eventually, when projecting a sample composed of hundred more virtual than empirical 

connectomes, the two-dimensional rendering of the original high-dimensional metric relations is dominated by 

virtual connectomes. Therefore, the cloud of the empirical connectomes’ projections appears, using a figurative 

image, as a “distant galaxy”, with the dots (“stars”) associated to different subjects appearing grouped in a small 

region of the observation field. Nevertheless, the distances between stars within the distant galaxy are mirrored 

by the distances between the foreground FCMFM cohorts “globular clusters” mapped to each of these distant 

background FCemp stars. The thin lines linking FCemp to one of their FCMFM images reveal indeed the global t-SNE 

projection contains an exploded view of the projection of the original “SC+FC” subset FCemp connectomes (further 

confirming for virtual cohorts the preservation of inter-subject distances in bivirtual duals revealed by Tables 3 

and 4). 

A further analogy could be drawn between generating a cohort of virtual connectomes rather than a single virtual 

connectome and between generating an ensemble of slightly rotated or distorted images (Figure 9B). Different 
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connectomes in a same cohort could be conceptualized as different “views” of the same connectome (as the four 

representative connectomes in the top of Figure 9B, sampled within the cohort of a same subject) much like 

different transformations of a single image that modify the exact appearance but do not prevent losing the identity 

of the depicted object (as the four warped kittens at the bottom of Figure 9B). For these reasons, the generation 

of virtual cohorts including a larger number of identity-preserving redundant connectome items may become in 

perspective beneficial to classifiers training, as a form of “data augmentation”, commonly used in machine 

learning applications in image recognition (Taylor & Nitshcke, 2018; see Discussion). 

 

 

Discussion 
 

We have here demonstrated the feasibility of connectomic dataset completion using algorithms based on mean-

field computational modeling. In particular, we have completed an ADNI gold standard connectomic dataset and 

verified that analogous completion performance could be reached on a control healthy aging dataset. We have 

then shown that machine learning classifiers trained on virtual connectomes can reach comparable performance 

to those trained on empirical connectomes. This renders the classification of novel empirical connectomes via 

classifiers trained exclusively on virtual connectomes possible. Furthermore, the generation of virtual and bivirtual 

dual connectomes is a procedure preserving at least some personalized information about detailed network 

topology. As a consequence, virtual cohorts offer an immense opportunity to enable or unblock, and, in 

perspective, possibly improve machine learning efforts on large patient databases.  

Incomplete datasets for clinical research are certainly among the factors contributing to slow progress in the 

development of new diagnostic and therapeutic tools in neurodegenerative diseases and Alzheimer’s disease (AD) 

in particular. Our data completion procedures provide a step forward toward “filling dataset gaps” since they 

allowed us to infer Functional Connectivity when only Structural Connectivity was available or Structural 

Connectivity (SC) when only Functional Connectivity (FC) were available. Such procedures for data completion 

could easily be implemented within popular neuroinformatic platforms as The Virtual Brain (TVB). TVB provides 

practical graphical interfaces or fully scriptable code-line environments for “plug-and-play” large-scale brain 

network behavior, signal emulation, and dataset management, including simulating SC and FC with adjustable 

complexity MFMs or SLMs (Sanz-Leon et al., 2013). In this way, capitalizing on the software built-in capabilities, 

even the more elaborated non-linear completion algorithms could become accessible to non-expert users with 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2020.01.18.911248doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.18.911248
http://creativecommons.org/licenses/by-nd/4.0/


only a little training. The possibility of having access to both types of connectomic information brought up by 

model-based data completion is vital because structural and functional connectivity convey complementary 

information. It has been shown for instance, that analyses of SC-to-FC inter-relations can yield better 

characterizations and group discriminations than analyses of SC or FC alone in a variety of pathologies or 

conditions (Zhang et al., 2011; Davis et al., 2012; Zimmermann et al., 2016; Straathof et al., 2019).  

Indeed, FC networks in the resting-state do not merely mirror SC but are believed to be the by-product of 

complex dynamics of multi-scale brain circuits (Honey et al., 2007; Deco et al., 2011). As such, they are 

constrained but not entirely determined by the underlying anatomy (encoded in the SC matrix), as also confirmed 

by the fact that variability between FCs of different subjects may be larger than the one between SCs 

(Zimmermann et al., 2019). Indeed, FC also carries valuable information about the dynamic regime giving rise to 

the observed resting-state activity fluctuations (Hansen et al., 2015) and FC differences are thus leveraged by the 

nonlinear effects of dynamics that small variations in SC can have and that MFM models can in principle capture. 

In particular, brain networks are thought to operate at a regime close to criticality. For a fixed SC, the resulting 

FC would be different depending on how closely dynamics is tuned to be in proximity of a critical working point 

(Deco et al., 2013; Hansen et al., 2015). This information that brain networks are supposed to operate close to a 

critical boundary is used to generate the surrogate virtual FCMFM, when performing non-linear SC-to-FC 

completion. Thus, FCMFM carries indirectly extra information about a (putative) dynamic regime that was not 

conveyed by the original empirical SC (nor by virtual completions with linear SLM-based pipelines). This 

effective “reinjection” of information could potentially compensate for unavoidable loss –cf. “data processing 

inequality” (Cover & Thomas, 2006)– along the algorithmic processing chain represented by completion. This 

could be a possible explanation for the superior performance of nonlinear methods in the ADNI dataset 

completion. For this compensation to happen, however, the guess about the right working point should be close 

to reality. In this paper we were implicitly supposing that all the subjects have the same working point of dynamic 

operation (e.g. the same distance from critical rate instability, Hansen et al., 2020). Now, pathology or aging may 

precisely be also altering this working point itself, making of our assumption in MFM-based completion only an 

approximation. For instance, the distributions of matching between empirical and virtual community structure in 

FC connectomes for the healthy aging dataset (Figure 8-1B) are clearly bimodal, indicating that the used 

completion ansatz may be more appropriate for certain subjects than for others. Thus, diverse working points of 

dynamic operation for different subjects, here not accounted for, may contribute to the inferior performance of 
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nonlinear methods in the healthy aging dataset. We defer to future studies considerations about how to further 

optimize the selection of a working point. 

When both empirical SC and FC were available, we could measure the quality of reconstruction achieved by 

our models. The correlation reached between empirical and reconstructed connectivity matrices is only moderate, 

however. There are multiple reasons for this limited performance. One evident reason is the simplicity of the 

neural mass model adopted in our proof-of-concept illustration. The Wong-Wang neural mass model is able only 

to express two states of lower or higher local activation (Wong & Wang, 2006). Instead, neuronal populations can 

display a much more extensive repertoire of possible dynamics, including e.g., coherent oscillations at multiple 

frequencies, bursting, or chaotic trajectories (Stefanescu & Jirsa, 2008; Spiegler et al., 2011). Synchronization in 

a network depends on various factors, including frequency, network topology, and time delays via signal 

propagation, all of which have been ignored here and in large parts of the literature (Deco et al., 2009; Petkoski 

& Jirsa, 2019). It is acknowledged that delay-less approaches serve as a useful approximation (Deco et al. 2015). 

Nevertheless, we are aware that our choice to restrict our analyses on the subset of activation-based mechanisms 

introduces critical limitations. Indeed, our models, ignoring delay-mediated synchronization, are incapable of 

capturing a range of dynamic oscillatory behaviors, such as multifrequency coupling or multiphase coupling. 

More sophisticated mean-field virtual brain models could thus reach superior performance (see e.g. Stefanovski 

et al., 2019), going beyond the first proof-of-concept examples presented here. 

Yet, even such a simple model, achieving such a limited reconstruction performance proved to be consistent 

and useful. First, when concatenating data completion pipelines to give rise to bi-virtual data, we found a robust 

self-consistency, i.e. remarkable matching between e.g. the original SC (or FC) and the bi-virtual SCbi-MFM (or 

FCbi-MFM) generated via the intermediated FCMFM (or SCMFM) step. This self-consistent correspondence is not 

limited to generic correlations but captures actual personalized aspects of detailed network topology (Table 3 and 

Figure 8 for the ADNI dataset and Table 4 and Extended Data Figure 8-1 for the healthy ageing dataset). Second, 

classification performance reached based on empirical data could be nearly equated by classifiers trained on 

virtual or bivirtual dual connectomes (Figure 7). Therefore, even if the reconstruction quality of our model-based 

completion procedures is modest, a meaningful relationship with the original seed data is still maintained, even 

after two steps of virtual completion. The use of simple models has the additional advantage of being less 

computationally expensive to simulate. SLMs are even simpler and faster to run than our basic MFMs and their 

performance was better than the one of nonlinear models in many aspects when dealing with the healthy aging 

dataset. Note that SLMs have been shown to be very performing in rendering static aspects of FC in other contexts 
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as well (Hansen et al., 2020; Messé et al., 2014). However, linear models were down-performing on the ADNI 

dataset, while nonlinear models performance seemed more stable across datasets. This shows once again that 

linear and nonlinear models may capture different facets of the actual, possibly unknown empirical connectomes 

and that there is an interest in computing and sharing both type of surrogates, given their potential 

complementarity. 

In terms of computation costs, basic MFMs as our virtual brains based on the Wong-Wang model, provide a 

reasonable compromise between computational speed and the need to render structured brain dynamics beyond 

mere Gaussian fluctuations (Haken, 1983) constrained by SC. The most expensive aspect of nonlinear completion 

procedures –both SC-to-FC and FC-to-SC– is however their iterative nature. Indeed, not just one, but many virtual 

brain simulations must be performed, to scan parameter space for the best working point for FC simulation (cf. 

Figure 3) or to grow from random initial conditions an effective connectivity matrix sufficiently mature to render 

genuine aspects of SC (cf. Figure 4). Note however that, in reality, the number of iterations can be dramatically 

reduced by choosing good guesses for initial conditions. In the case of SC-to-FC completion, the a priori 

knowledge that best working point lie close to a critical line and that the monitored metrics landscape is convex, 

a bisection search strategy (Boyd & Vanderberghe, 2004) can be used instead of exhaustive grid search. In the 

case of FC-to-SC completion, starting from an initial SC* conditions close to a generic group-averaged SC 

connectome rather than fully random can speed-up convergence. 

We have provided in Figure 7 the first proof of concept of the possibility to use virtual and bivirtual 

connectomes for performing subject classification. For the purpose of classification, data completion procedures 

are seen as veritable computational bridges between alternative “spaces” in which to perform machine learning, 

linked by duality relations (Figure 7A). We propose in this respect two possible types of strategy. The first one is 

to abandon the “real space” of actual empirical connectomes and to operate directly in dual spaces (Figure 7B). 

In these approaches, empirical connectomes would have to be transformed into their virtual or bivirtual dual 

counterparts as a necessary pre-processing step. In the second type of strategy, classifiers trained in dual spaces 

are used to operate in the real space. While such approach doesn’t require the virtualization of empirical input 

connectomes prior to their classification, performance could be potentially reduced by a possible systematic 

mismatch in input feature distributions between real and dual spaces (Figure 8 and Extended Data Figure 8-1 

show, for instance, some network features such as, respectively, SC clustering or SC weights themselves tend to 

get overestimated in dual connectomes). The specific examples highlighted in Figures 7B and 7C for ADNI patient 

discrimination and Figures 7D-F for healthy aging age class prediction show comparable qualities of classification 
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for dual space and cross-space classifications (in both cases, not significantly decreases with respect to 

classification in real space). Generally, we were able only to reach poor classification performances, barely above 

chance level. However, the performance was not significantly better for direct classification based on empirical 

connectomes. As a matter of fact, we have to acknowledge that we are still far from being able to reliably 

discriminate subject classes based on connectome features, independently from training being performed on real 

or dual connectomes. We would like to stress that the number of used input features –e.g. K = 96, corresponding 

to the number of regions in the used parcellation (see Materials and Methods) for which connectivity strengths 

were computed in the ADNI dataset classification problem – is comparable to the number of subjects in the 

considered dataset (N = 88 or 178 respectively for ADNI subjects with available SCemp or FCemp). Therefore, it is 

not surprising that high performances are difficult to access, even when using classification approaches specially 

adapted to this situation, as in our case. Superior classification performance could be potentially reached via a 

more careful feature selection (Guyon & Elisseeff, 2003) that goes beyond the scope of the current study. 

Hopefully, future attempts to classification will be able to approach more robustly these tendential performances. 

Given the high degree of personalized correspondence between real and dual connectomes (cf. Table 3 for the 

ADNI dataset and Table 4 for the healthy ageing dataset), we are confident that any performance level reached 

by future classifiers trained in real space could be closely approached by classifiers trained in dual virtual and 

bivirtual spaces. 

In perspective, the use of virtual connectomes could become beneficial to the training of machine learning 

algorithms in a further way. The use of a wider ensemble of surrogate date with statistical distributions of multi-

dimensional features equivalent to the original data is a common practice in machine learning, known as data 

augmentation (Yaeger et al., 1997; Taylor & Nitshcke, 2018), as previously mentioned. Data augmentation is e.g. 

very popular in object recognition (where surrogate training data are produced by clipping or variously 

transforming copies of the original training images). Data augmentation aims to expand the training dataset 

beyond the initially available data to boost the learning by a classifier of the target categories (e.g. object 

identities). Crucial for dataset augmentation applications is that the surrogate data generated are not just identical 

to the actual data with some added noise but are genuinely new and can serve as actual good guesses for alternative 

(unobserved) instances of data-points belonging to the same category (cf. Figure 9B). Indeed, if information 

cannot be created (Cover & Thomas 2006), redundant information can nevertheless improve the performance of 

decoding and classification (Guyon & Elisseeff, 2003). Computational models such as MFM do not provide 

mappings between input and output connectomes, but rather between statistical ensembles of connectomes, with 
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both mean and correlated dispersion realistically shaped by trustworthy non-linear dynamics. In other words, 

differences between alternative connectomes in a generated surrogate virtual cohort are not mere “noise”, but 

reflect realistic data-compliant possibilities of variation. The different connectome realizations sample indeed the 

specific landscapes of possible FCs that may be compatible with a given SCs, degenerate because the allowed 

dynamics to unfold along with low-dimensional manifolds, rather than being frozen in strict vicinity of a trivial 

fixed point (Mehrkanoon et al., 2014; Pillai & Jirsa, 2017). Therefore, given that inter-relations between virtual 

cohorts mirror inter-relations between empirical subjects (Figures 6 and 8, Extended Data Figure 8-1, Tables 3, 

4, 5, and Extended Data Table 5-1), the generation of surrogate virtual cohorts of arbitrarily large size could 

provide natural candidates for future data augmentation applications. 

Yet, by capitalizing exclusively on redundancy, augmentation cannot replace the gathering of more empirical 

data (Carrillo et al., 2012; Toga et al., 2016). Unfortunately, federation (or even mining) of data is often impeded 

by unavoidable juridical concerns linked to strict and diverse regulations (Dulong de Rosnay, 2017; Thorogood 

et al., 2018) The use of virtual cohorts may once again relieve this burden. Virtual cohorts maintain their statistical 

relation to the original data, in a way sufficiently good to be exploitable for classification, but do not precisely 

match the original data, maintaining an inherent variability. This fact may constitute a feature rather than a bug, 

in the context of data sharing. Indeed, if virtual data carry information operationally equivalent to the one carried 

by empirical data, they do not carry exactly the same information. It is not, therefore, possible to exactly 

reconstruct the original subject data from virtualized connectomes, and privacy concerns would be considerably 

reduced if not entirely removed by sharing dual space images of actual data –eventually demultiplied into virtual 

cohorts– rather than the original real space data. We thus anticipate a near future in which virtual cohorts, 

providing vast numbers of virtual and bi-virtual connectivity information, will play an increasing role in massive 

data-driven explorations of factors predictive of pathology and, in particular, neurodegenerative disease 

progression. 
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Tables 

Table 1. Pseudo-code for non-linear SC-to-FC completion (FC virtual duals to SC) 

 

algorithm non-linear SC-to-FC completion is 

  

external input:  empirical SC (SCemp) 

output: non-linear virtual FC (FCMFM) 

fixed parameters: noise level (σ), simulation time (T), range to scan Gstart ≤ G ≤ Gstop, range to scan 

τstart ≤ τ ≤ τstop, other frozen Wong-Wang neural mass parameters  

  

begin 

1. Construct a MFM embedding SCemp and the default frozen Wong-Wang neural mass parameters 

for Gstart ≤ G ≤ Gstop 

 for τstart ≤ τ ≤ τstop 

2.1 Simulate the MFM with current parameter values for a short time 0.2*T (discarding 

an initial transient) 

2.2 Compute surrogate BOLD from MFM time-series via Balloon-Windkessel model 

2.3 Compute Corr(BOLD), i.e. the time-averaged FC matrix 

2.4 Compute stream of time-resolved FC(t) and the associated dFC matrix 

2.5 Compute and store Crit1[G, τ] (Spatial heterogeneity of activations) 

2.6 Compute and store Crit2[G, τ] (Clustering Coefficient of time-averaged FC matrix) 

2.7 Compute and store Crit3[G, τ] (Clustering Coefficient of dFC matrix) 

end 

end 

3. Identify G* and τ* for which Crit1[G, τ], Crit2[G, τ] and Crit3[G, τ] are jointly optimum 

4. Simulate the MFM with parameter values G* and τ* for a time T (discarding an initial transient) 

5. Compute surrogate BOLD from MFM time-series via Balloon-Windkessel model 

6. Compute C = Corr(BOLD), i.e. the time-averaged FC matrix at G* and τ* 

return FCMFM = C  

end 
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Table 2. Pseudo-code for non-linear FC-to-SC completion (SC virtual duals to FC) 

 

algorithm non-linear FC-to-SC completion is 

  

external input:  empirical FC (FCemp) 

output: non-linear virtual SC (SCMFM) 

fixed parameters: FC* fitting quality (CCtarget), initial guess SC*(0), learning rate λ, noise level (σ), 

simulation time (T), range to scan Gstart ≤ G ≤ Gstop, range to scan τstart ≤ τ ≤ τstop, other frozen 

Wong-Wang neural mass parameters  

  

begin 

 1. FC*(0) = non-linear SC-to-FC completion starting from SC*(0) 

 2. Dist = corr(FC*(0), FCemp) 

 3. iteration = 0 

while (Dist ≤ CCtarget) 

 iteration = iteration + 1 

 SC*(iteration) = SC*(iteration - 1) + λ*(FC*(iteration) - FC*(iteration)) 

 FC*(iteration) = non-linear SC-to-FC completion starting from SC*(iteration) 

  Dist = corr(FC*(iteration), FCemp) 

end 

return SCMFM = SC*(iteration)  

end 
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Table 3. Single-subject correlations between network features in real and bivirtual dual connectomes for 

the ADNI dataset 

 

 

 SC FC 

 
Median and range 

Within subject 

cross-subject 

∆% 
Median and range 

Within subject 

cross-subject 

∆% 

Strength 
0.16 ± 0.20 

25 ± 18 
0.77 ± 0.18 

342 ± 8 
0.13 ± 0.17 0.17 ± 0.20 

Clustering 
-0.05 ± 0.12 

-17 ± 24 
0.65 ± 0.24 

359 ± 13 
-0.06 ± 0.11 0.14 ± 0.21 

Centrality 
0.21 ± 0.18 

24 ± 12 
0.66 ± 0.20 

312 ± 10 
0.16 ± 0.15 0.16 ± 0.18 

Communities 
59% ± 10% 

23 ± 2 
45% ± 10% 

260 ± 6 
47% ± 8% 12% ± 6% 

 

Indicated values for real/bivirtual dual correlations (for strength, clustering and centrality coefficients) or 

relative mutual information (for communities) are mean ± standard deviation of the mean over subjects.  
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Table 4. Single-subject correlations between network features in real and bivirtual dual connectomes for 

the healthy ageing dataset 

 

 SC FC 

 
Median and range 

Within subject 

cross-subject 

∆% 
Median and range 

Within subject 

cross-subject 

∆% 

Strength 
0.80 ± 0.04 

5 ± 1 
0.65 ± 0.18 

75 ± 7 
0.76 ± 0.07 0.37 ± 0.16 

Clustering 
0.83 ± 0.06 

6 ± 1 
0.64 ± 0.22 

70 ± 8 
0.79 ± 0.08 0.38 ± 0.19 

Centrality 
0.80 ± 0.05 

4 ± 1 
0.63 ± 0.18 

65 ± 7 
0.76 ± 0.06 0.38 ± 0.16 

Communities 
44% ± 8% 

16 ± 3 
53% ± 10% 

10 ± 3 
38% ± 8% 48% ± 12% 

 

Indicated values for real/bivirtual dual correlations (for strength, clustering and centrality coefficients) or 

relative mutual information (for communities) are mean ± standard deviation of the mean over subjects..  
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Table 5. Percent improvement in connectome matching obtained by using personalized virtual and 

bivirtual duals 

 
Type of completion ∆Pers ADNI ∆Pers Healthy aging 

SCemp to FCvirt linear +26% ± 7% +12% ± 4% 

 nonlinear +17% ± 5% +13% ± 4% 

SCemp to SCbivirt linear +40% ± 18% +23% ± 8% 

 nonlinear +17% ± 5% +13% ± 4% 

FCemp to SCvirt linear +51% ± 35% +28% ± 22% 

 nonlinear +200% ± 37% +87% ± 19% 

FCemp to FCbivirt linear +46% ± 70% +17% ± 28% 

 nonlinear +297% ± 140% +108% ± 52% 

FCemp test/retest ∆Pers +22% ± 13% 

 

Indicated values for real/virtual and bivirtual dual are mean ± standard deviation of the mean over subjects.  
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Figures 

 

 

 

Figure 1. Connectomic information extracted from the ADNI dataset has gaps. A) The different dataset 

releases by the ADNI consortium include a variety of information relative to different biomarkers and imaging 

modalities. Here, we focus on structural and functional MRI features and, chiefly:  T1, DTI (allowing to extract 

empirical structural connectomes); and resting-state fMRI BOLD time-series (allowing to extract empirical 

functional connectomes). B) Matrices SCemp and FCemp summarizing connectomic information about, respectively 

structural connectivity (SC) and functional connectivity (FC) are obtained via elaborated multi-step processing 

pipelines, using various software including FreeSurfer, FSL, ANTS, and MRtrix3. C) The total number of subjects 

in Healthy ageing dataset is 49 between the ages of 18 and 80 (mean = 42.16 ± 18.37; 19 male/30 female) in 

which with approximately equal number of subjects they were divided into 4 categories (I:IV). The total number 

of ADNI-derived subjects investigated in this study is 244, in which 74 subjects were control, while 119 subjects 

labeled as MCI, and 51 subjects as AD. Out of these 244, FCemp could be extracted for 168 subjects, and SCemp 

for 88. However, SCemp and FCemp were both simultaneously available for just a minority of 12 subjects (referred 

to as the “SCemp+FCemp subset”). The available data is shown in blue and the missing data in grey, the SCemp+FCemp 

subset is shown in pink.  
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Figure 2. From mean-field modeling to connectomic data completion. A) We present here a graphical 

summary of the various computational simulation and inference strategies used in this study to bridge between 

different types of connectivity matrices. Mean-field simulation and the associated analytic theory can be used to 

generate virtual FC, through simulations of resting-state whole-brain models embedding a given input SC 

connectome (ascending arrows). Algorithmic procedures, that may still include computational simulation steps, 

can be used to perform the inverse inference of a virtual SC that is compatible with a given input FC (descending 

arrows). Both simulation and inference can be performed using simpler linear (green arrows) or non-linear (blue 

arrows) approaches. When the input SC (or FC) connectomes used as input for FC simulation (or SC inverse 

inference) correspond to empirical connectomes SCemp (or FCemp), derived from T1 and DTI (fMRI) images, then 

model simulation (inversion) can be used to complete gaps in the dataset, whenever FCemp (or SCemp) is missing. 

We refer then to these operations as: B) SC-to-FC completion; and, C) FC-to-SC completion. Both exist in linear 

and non-linear versions. 
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Figure 3. Non-linear SC-to-FC data completion. Simulations of a non-linear model embedding a given 

input SCemp matrix can be used to generate surrogate FCMFM matrices. A) Systematic exploration (here shown for 

a representative subject) of the dependency of the correlation between FCemp and FCMFM on the MFM parameters 

G (inter-regional coupling strength) and τ (synaptic time-constant of within-region excitation) indicates that the 

best fitting performances are obtained when parameters are concentrated in a narrow concave stripe across the 

G/τ plane. B) Enlarged zoom of panel A over the range G ∈ [1 3] and τ ∈ [10 30]. C) For a value of τ = 25, 

representatively chosen here for illustration, we identify a value G* for which the Pearson correlation between 

FCemp and FCMFM reaches a clear local maximum. Panels A-C thus indicate that it makes sense speaking of a best-

fit zone and that reliable nonlinear SC-to-FC completion should be performed using MFM parameters within this 

zone. Three criteria help us identifying parameter combinations in this best fitting zone when the actual FCemp is 

unknown.  D) First criterion: we define the spatial coefficient of variation of the time-series of simulated BOLD 

activity TSMFM as the ratio between the variance and the mean across regions of the time-averaged activation of 
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different regions. The best fit zone is associated with a peaking of this spatial coefficient of variation, associated 

with a maximally heterogeneous mix or low and high activation levels for different regions (see time-series in 

lower cartoons). E) Second criterion: in the best fitting zone, the resulting FCMFM is neither randomly organized 

nor excessively regular (synchronized) but presents a complex clustering structure (see lower cartoons), which 

can be tracked by a peak in the clustering coefficient of the FCMFM, seen as weighted adjacency matrix. F) Third 

criterion: in the best fitting zone, resting-state FCMFM display a relatively richer dynamics than in other sectors of 

the parameter space. This gives rise to an “dFC matrix” (correlation between time-resolved FC observed at 

different times) which is neither random nor too regular but displays a certain degree of clustering (see lower 

cartoons). The emergence of complex dynamics of FC can be tracked by an increase in the clustering coefficient 

of the dFC matrix extracted from simulated resting-state dynamics. G) The boxplot shows the distribution of 

correlations between the actual FCemp and FCMFM estimated within the best fitting zone for all subjects from the 

“SCemp + FCemp” ADNI subset and the ageing dataset. See Extended Data Figure 3-1 for linear SC-to-FC 

completion and Extended Figure 3-2 for dependency of MFM best fit zone on additional parameters. 
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Figure 4. Non-linear FC-to-SC data completion. An iterative procedure can be used to perform resting-state 

simulations of an MFM model starting from a randomly guessed structural connectome SC* and progressively 

modify this SC* to make it compatible with a known target FCemp.  A) Starting from an initial random SC*(0) 

matrix, there is no correlation between the target FCemp and the generated FC*(0) matrix. However, by adjusting 

the weights of the used SC* through the algorithm of Table 2, SC* gradually develops a richer organization, 

leading to an increase of the correlation between FC* and FCemp (violet dashed line) and in parallel, of the 

correlation between SC* and SCemp (violet solid line), as shown here for a representative subject within the 

“SCemp+FCemp” subset. The algorithm stops when the correlation between FC* and the input target FCemp reaches 

a desired quality threshold (here 0.7 after 2000 iterations) and the SC* at the last iteration is used as virtual 

surrogate SCMFM. B) The boxplot shows the distribution of correlation between SCemp and SCMFM for all subjects 

in the “SCemp + FCemp” ADNI subset and the Healthy Ageing dataset. C) The correlation between SCemp and 

SCMFM can vary using different random initial connectomes SC*(0). Here we show a boxplot of the percent 

dispersions of the correlation values obtained for different initial conditions around the median correlation value. 
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The fact that these dispersions lie within a narrow interval of ±2.5% indicates that the expected performance is 

robust against changes of the initial conditions. See Extended Data Figure 4-1 for linear FC-to-SC completion. 
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Figure 5. Bi-virtual connectomes. This figure shows the correspondence between empirical and bi-virtual SC 

and FC pairs, both when using chained linear (SLM-based) and nonlinear (MFM-based) completion procedures. 

A) For 88 subjects from the ADNI-subset with only SCemp available, considering the linear bi-virtual completion 

chain SCemp to FCSLM to SCbi-SLM, we obtained a median correlation between SCemp and SCbi-SLM equal to 0.63 and 

0.92 for 49 subjects from the Healthy Ageing dataset (green boxplot); simultaneously, considering the non-linear 

bi-virtual completion chain SCemp to FCMFM to SCbi-MFM, we obtained a median correlation between SCemp and 

SCbi-MFM equal to 0.58 for the ADNI datast and 0.64 for the Healthy Ageing dataset (blue boxplot). B) For 168 

subjects from the ADNI-subset with only FCemp available, considering the linear bi-virtual completion chain FCemp 

to SCSLM to FCbi-SLM, we obtained a median correlation between FCemp and FCbi-SLM equal to 0.12 and 0.42 for 49 

subjects from Healthy Ageing dataset (green boxplot); simultaneously, considering the non-linear bi-virtual 

completion chain FCemp to SCMFM to FCbi-MFM, we obtained a median correlation between FCemp and FCbi-MFM 

equal to 0.59 for the ADNI dataset and 0.45 for the Healthy Ageing dataset (blue boxplot).  
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Figure 6. Inter-subject distances for empirical – bivirtual pairs. We show here the distances between the 

empirical SCemp (or FCemp) of different subjects and the inter-subject distances for their corresponding pairs of 

subjects from bivirtual SCbi-MFM (or FCbi-MFM). A-B) For the ADNI dataset the correlation between the inter-subject 

distances in real and dual spaces for SC (between SCemp and SCbi-MFM) were significant and equal to 0.39, and for 

FC pairs (between FCemp and FCbi-MFM) equal to 0.43. C-D) The same inter-subject distances for the healthy ageing 

dataset were measured, with correlation values equal to 0.53 and 0.40 for SC and FC empirical-bivirtual pairs, 

respectively.  
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Figure 7. Classification of MCI patients based on empirical and virtual connectomes and virtual cohorts. 

A) Data completion procedures can be seen as bridges between different connectome spaces, mapping empirical 

connectomes in “real space” to subject-specific dual connectomes in virtual or bivirtual spaces, depending on the 

number of virtualization steps applied to the original connectome. Subjects classifications into controls (light blue) 

or MCI (yellow) and AD (red) patients are shared between empirical connectomes and their virtual and bivirtual 

duals. Virtual duals have a different nature than their associated empirical connectomes (empirical SCs are 

mapped to virtual FCs and vice versa), while bivirtual duals have the same nature. B-C) Performance of tree 
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ensemble classifiers discriminating control from patient subjects, evaluated via Receiver Operator Curve analysis 

(fractions of true vs false positive, as a function of applied decision threshold; generalization performance via 

crossvalidation; thick lines indicate median performance, shaded regions 95% confidence intervals). In panel B,  

we show example of classification in dual space, compared with a real connectome space classification: in green 

classification with classifiers trained on empirical SCs evaluated on other empirical SCs; in blue, classifiers 

trained on virtual FCs evaluated on other virtual FCs (or the virtual duals of other empirical SCs); in magenta, 

classifiers trained on bivirtual SCs evaluated on other bivirtual SCs (or the bivirtual duals or other empirical SCs). 

In panel B, we show an example of cross-space classification, compared with a real connectome space 

classification: in green classification with classifiers trained on empirical FCs evaluated on other empirical FCs; 

and in orange, classification with classifiers trained on bivirtual FCs evaluated directly on other empirical FCs, 

without prior “lifting” into bivirtual dual space. In all the shown cases, classifications performed with classifiers 

trained in virtual or bivirtual connectomes are slightly less performing than for classifiers trained on empirical 

data, but the drop in performance is not significant for most thresholds. D-F) The confusion matrix for 

classification of four age classes of the healthy ageing database using the random forest Breiman algorithm is 

shown. D) When the classifier was trained and tested on the empirical SC and FC connectome, the accuracy was 

closed to ~0.37 and ~0.43 respectively. E) The classification accuracy for the classifier which was trained and 

tested on the virtual connectomes was above the chance level (~0.25) with ~0.43 for SCSLM and ~0.43 for FCMFM 

connectomes which the performance was better or equivalent to the empirical connectome (D). F) Here we shown 

the classification performance of cross-training, when the classifier was trained on SCMFM and tested on FCemp 

with accuracy equal to ~0.35 (F-left) and when the classifier was trained on FCSLM and tested on FCemp with 

accuracy of ~0.30 (F-right) (see Extended Data Figure 7-1 for the classification performances on other virtual 

connectomes from healthy ageing dataset). 
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Figure 8. Correspondence of network topology between empirical and their bivirtual dual connectomes 

(ADNI dataset). The bivirtual dual connectomes share the same nature (SC or FC) of the corresponding empirical 

connectome. Therefore, network topology can be directly compared between empirical and bivirtual SCs or 

empirical and bivirtual FCs. A-B) We show here scatter plots of connectivity strengths (top left), local clustering 

coefficients (top right) and local centrality coefficients (bottom left) for different brain regions and subjects, 

plotting feature values for empirical connectomes vs their bivirtual counterparts. We also show histograms over 

different subjects of the relative mutual information (normalized between 0 and 1, the latter corresponding to 
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perfect matching) between the community structures (bottom right) of empirical connectomes and their bivirtual 

duals. Results are shown in panel A for SC and in panel B for FC connectomes for the ADNI dataset (see Extended 

Data Figure 8-1 for analogous results holding for the  healthy ageing dataset). In both cases, there is a remarkable 

correlation at the ensemble level between network topology features for empirical bivirtual connectomes (see 

Table 3 for the even superior correspondence at the single subject level for the ADNI dataset).  
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Figure 9 – The Virtual cohorts. We created virtual cohorts of surrogate FC data, generating 100 different 

FCMFM matrices for each of the 88 subjects in the ADNI dataset with an available SCemp. A) Shown here is a low-

dimensional t-SNE projection of the resulting 8800 virtual FCMFM ‘s, colored depending on the associated subject 

label (“blue” for control subjects, “yellow” for MCI patients, and “red” for AD patients). For the subjects in the 

ADNI “FC+SC” subset, we also projected the actual empirical FCemp connectome and link their projections to 

one virtual connectome within the cohort for the matching subjects. All FCemp connectomes appear grouped in a 

single cluster, since all far away to connectomes in dual space (they belong to a different space, so appear as 

“distant” in this projected view emphasizing differerencies within virtual space). However, virtual cohorts inter-

relations reproduce an exploded view of the fine structure of this All FCemp cluster.  Virtual connectomes within 

a same virtual cohort are closer between them than connectomes belonging to different cohorts since they maintain 

a strict relation to their empirical counterparts and are thus good candidates for data augmentation applications. 

B) We show, on top, example alternative connectomes within a representative cohort for a single subject that 

could be used as alternative identity preserving distorted connectomes for data augmentation applications, 

analogously to slightly distorted versions of object images (on the bottom) used to boost training of object 

classifiers. 
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Extended data 

 

Extended Data 1. MATLAB® workspaces including virtual SC and FC connectomes generated with our data 

completion pipelines as well as virtual cohorts. All workspaces are available at the address 

https://github.com/FunDyn/VirtualCohorts.   

 

Extended Data Table 1-1. Pseudo-code for linear SC-to-FC completion 

 

algorithm linear SC-to-FC completion is 

  

external input:  empirical SC (SCemp) 

output: linear virtual FC (FCSLM) 

fixed parameters: noise level (σ), guess for optimal G (G*ref) 

  

begin 

1. Evaluate the covariance matrix C from SCemp based on SLM theory for different range of G 

2. Choose G* as a G which rise to maximum correlation between FCemp and FCSLM for each subject 

3. Choose G*ref as the median of G* for all subjects 

4. Re-evaluate the covariance Matrix C for G*ref 

return FCSLM = C  

end 

 

Extended Data Table 2-1. Pseudo-code for linear FC-to-SC completion 

 

algorithm linear FC-to-SC completion is 

  

external input:  empirical FC (FCemp) 

output: linear virtual SC (SCSLM) 

fixed parameters: noise level (σ), guess for optimal G (G*ref) 

  

begin 

1. Evaluate the inverse matrix C-1 from FCemp 

2. Build a matrix S proportional to C-1 according to SLM theory and drop its diagonal  

return SCSLM = S  
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end 

Extended Data Table 3-1. Discriminating control and patient subjects in the ADNI subset with only SC 
connectomes. 
 

 
Tested on SCemp FCMFM SCbiMFM 

Trained on 

SCemp 0.69 [0.61 < AUC < 0.74] n.s. 0.55 [0.51 < AUC < 0.60] 

FCMFM 0.54 [0.50 < AUC < 0.59] 0.64 [0.57 < AUC < 0.69] 0.62 [0.54 < AUC < 0.68] 

SCbiMFM 0.56 [0.51 < AUC < 0.62] 0.62 [0.53 < AUC < 0.68] 0.59 [0.52 < AUC < 0.64] 

 
Indicated values are median and 5% and 95% percentiles over crossvalidation replicas of the indicated 

classification.  

 
 

Extended Data Table 3-2. Discriminating control and patient subjects in the ADNI subset with only FC 
connectomes. 
 

Tested on FCemp SCMFM FCbiMFM 

Trained on 

FCemp 0.75 [0.70 < AUC < 0.79] 0.71 [0.65 < AUC < 0.79] 0.65 [0.58 < AUC < 0.71] 

SCMFM 0.69 [0.61 < AUC < 0.75] 0.73 [0.67 < AUC < 0.78] 0.55 [0.50 < AUC < 0.61] 

FCbiMFM 0.70 [0.65 < AUC < 0.76] n.s.  n.s. 

 

Indicated values are median and 5% and 95% percentiles over crossvalidation replicas of the indicated 

classification.  
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Extended Data Table 5-1. Inter-subject distances for empirical – bivirtual pairs. 
 

 
Type of completion Inter-distance correlation 

ADNI Healthy aging 

SCemp to SCemp vs SCbiSLM to SCbiSLM 0.39*** [0.37, 0.41] 0.81*** [0.79, 0.83] 

SCbiMFM to SCbiMFM 0.39*** [0.36, 0.43] 0.53*** [0.48, 0.57] 

FCemp to FCemp vs FCbiSLM to FCbiSLM 0.06*** [0.5, 0.8] 0.55*** [0.50, 0.58] 

FCbiMFM to FCbiMFM 0.43*** [0.42, 0.44] 0.40*** [0.36, 0.44] 

 
 
Indicated values are median and 5% and 95% percentiles over bootstrap with replacement replicas of correlation 

computation 
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Extended Data Figure 2-1. Viability of data completion. We checked whether the performance of data 

completion based on the algorithmic procedures of Tables 1 and 2 or 1-1 and 2-1 is superior to the one of a trivial 

strategy in which the target connectome to reconstruct is just taken to be identical to the “other connectome” (i.e. 

using SC, when trying to reconstruct missing FC; or using FC, when trying to reconstruct missing SC). A-B) We 

computed percent improvement in data completion over the trivial “other connectome” strategy using a SLM-

based or an MFM-based data completion method, focusing on the “SCemp + FCemp” subset for which both ground 

truth connectomes are known. A) Percent improvements in data completion when completing FC from SC. B) 

Percent improvements in data completion when completing SC from FC. For the SLM-based functional data 

completion approach, the use of  FCSLM on the ADNI dataset resulted in a worse performance (median drop 

∆;<=>=?@=	-15%, see Materials and Methods for definition), however, for the healthy ageing dataset the use of 

FCSLM resulted in a clearly better performance than when using “the other connectome” (median improvement 
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∆;<=>=?@=	+40%); similarly, applying the SLM-based approach for the structural data completion, the use of SCSLM 

rather than FCemp as an ersatz for SCemp leads to drops of improvements in quality with a median value of 

approximately -20%, for the ADNI dataset but an increase of nearly ~50% for the healthy aging dataset. Thus, the 

performance of linear data completion can yield to good results, but this performance did not robustly generalize 

through datasets. On the other hand, for the MFM-based functional data completion, the median improvement 

was close to ~20% for both datasets which can go as high as +60% in some subjects; using the same approach but 

for the structural data completion, the performance was lower than non-linear SC-to-FC data completion, with 

median improvement of ~15% for the ADNI dataset and of ~10% for the healthy aging dataset. 
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Extended Data Figure 3-1. Linear SC-to-FC data completion. The functional data completion can also be 

done using the linear model starting from SCemp matrices. A) the systematic exploration (for a representative 

subject) of the dependency of correlation between FCemp and FCSLM on the SLM parameter G (global scale of 

long-range connectivity strength) shown by the violet line indicates that the best fitting value G* (dashed line) 

can be obtained slightly before the critical point of the system Gcritic =  1 𝑚𝑎𝑥(𝜆!)⁄  which since the SCemp matrices 

are normalized to one 1 𝑚𝑎𝑥(𝜆!)⁄  = 1 and Gcritic = 1. The green lines display 5 and 95 percentiles of bootstrap 

resampling. The inset boxplot gives the distribution of G* over all the subjects in the “SCemp + FCemp” subset; for 

the SLM SC-to-FC completion, we used a common value G*ref = 0.83, equal to the median of the boxplot. B) The 

boxplot reports the distribution of Pearson correlation between FCemp and FCSLM for all subjects from the “SCemp 

+ FCemp” subset with a median equal to 0.243 for the ADNI dataset and 0.377 for the Healthy Ageing dataset. C) 

In case of using the common value G*ref  for all subjects instead of the actual personalized optimum G* for each 
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subject in the “SCemp + FCemp” subset, the value of quality loss for each subject is shown in the boxplot with 

median equal to 0.5%.  
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Extended Data Figure 3-2. The dependency of best MFM fit zone on additional regional dynamics 

parameters. In the non-linear data completion, the global parameters of the MFM model are G (inter-regional 

coupling strength), τ (synaptic time-constant of within-region excitation), 𝜔 (relative strength of recurrent within-

region connections) and I (external input) which parameters G and τ were investigated in this paper (see Figure 

3). Here we showed for different values of 𝜔 and I, the narrow concave stripe of Figure 3.A as the representative 

of the best fitting zone is slightly shifted in the G/τ plane, suggesting G and τ are more sensitive parameters and 

need to be explored rather than 𝜔 and I. 
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Extended Data Figure 4-1. Linear FC-to-SC data completion. Using the linear model, it is equivalently 

possible to infer the structural SCSLM matrices from FCemp. Since in this approach the free parameters of SLM 

model appear as scaling factor, they don’t affect the correlation of the inferred SCSLM with the SCemp so there is 

no need for parameter exploration here. The distribution of the correlation values for all the subjects from the 

“SCemp + FCemp” ADNI subset is shown in the boxplot with median equal to 0.21 and 0.42 for the Healthy Ageing 

dataset.  
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Extended Data Figure 6-1. The global distributions of link weights for all different types of connectomes. 

Most of the distributions show similarity in shape with their empirical counterparts (pink). SC weights 

distributions with a peak for small values and a fat right tail; FC weights distributions with more symmetric and 

a broader peak at intermediate strengths.  
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Extended Data Figure 7-1. Age class discriminations on the healthy ageing dataset. A) The classification 

performances when the classifier was train and tested on the same virtual connectome is above chance level 

(~0.25) with maximum accuracy of ~0.42 for FCSLM-bi and minimum accuracy of ~0.29 for FCMFM-bi. B) The 

classification accuracy dropped when the classifier was trained on the virtual connectome and tested on the 
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empirical connectome. The only cases where the accuracy was above chance level was when the classifier was 

trained on SCSLM and SCSLM-bi and tested on FCemp connectome, with an accuracy of ~0.28.  
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Extended Data Figure 8-1. Correspondence of network topology between empirical and their bivirtual dual 

connectomes (healthy aging dataset). We show here scatter plots of connectivity strengths (top left), local 

clustering coefficients (top right) and local centrality coefficients (bottom left) for different brain regions and 

subjects, plotting feature values for empirical connectomes vs their bivirtual counterparts and the histograms over 

different subjects of the relative mutual information (normalized between 0 and 1, the latter corresponding to 

perfect matching) between the community structures (bottom right) of empirical connectomes and their bivirtual 

duals. Results are shown in panel A for SC and in panel B for FC connectomes for the healthy ageing dataset (see 
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Figure 8 for the comparison with the ADNI dataset). Again for both cases, we see a remarkable correlation at the 

ensemble level between network topology features for empirical bivirtual connectomes (see Table 4 for the 

superior correspondence at the single subject level for the ageing dataset).  
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