
Temporal correlation between oscillating force dipoles drives 3D single cell migration
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Directional cell locomotion requires symmetry breaking between the front and rear of the cell.
How this manifests itself for cells moving in physiological 3D matrices is often elusive. We take
inspiration from the scallop theorem proposed by Purcell for micro-swimmers in Newtonian fluids:
self-propelled objects undergoing persistent motion at low Reynolds number must follow a cycle of
shape changes that breaks temporal symmetry. We report similar concepts for cells crawling in 3D.
We quantified cell motion using a combination of 3D live cell imaging, visualisation of the matrix
displacement and a minimal model with multipolar expansion. We show that cells embedded in 3D
matrix form myosin-driven force dipoles at both sides of the nucleus, that locally and periodically
pinch the matrix. The existence of a phase shift between the two dipoles is required for directed cell
motion which manifests itself in cycles in the dipole-quadrupole diagram, a formal equivalence to
the Purcell cycle. We confirm this mechanism by triggering local dipolar contractions with a laser,
which leads to directed motion. Our study reveals that the cell controls its motility by synchronising
dipolar forces distributed at front and back. This result opens new strategies to externally control
cell motion as well as for the design of micro-crawlers.

At cellular scales inertia is negligible which puts some
particular constraints on self-propelled microscopic ob-
jects [1, 2]. Low Reynolds number microswimmers in
Newtonian fluids must obey the scallop theorem, stating
that the cyclic sequence of shape changes they perform
to swim cannot be symmetrical in time [1, 3–6]. In his
seminal work, Purcell illustrated such behaviour as closed
trajectories encompassing a finite area in some properly
chosen phase space [1]. Cells moving in complex envi-
ronments such as the extracellular matrix are not bound
to obey the scallop theorem, which stems from the time-
reversibility of the Stokes equation. They could instead
leverage the visco-elastic nature of the environment [7, 8]
or the complex dynamics of adhesion and detachment [9].
This makes the search for unifying principles underlying
3D cell movement challenging.

To search for generic readouts for cell migration, we
designed an assay where cell migration and the spatial
distribution of cell matrix interaction could be tracked
simultaneously and quantified over time. In our experi-
ment, cells moved in a Cell Derived Matrix (CDM), ob-
tained using a protocol adapted from [10]. Briefly, a
confluent monolayer of NIH3T3 cells expressing fluores-
cently labeled fibronectin was triggered to synthesise a
thick (13µm - Fig.S1) matrix. Cells were removed after
eight days by lysis. The resulting CDM was physiologi-
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cal and sufficiently soft and elastic to relate cell dynamics
to matrix deformation (Fig.1 and Material and Methods
I.B.1), see also [11]. The CDM behaved as a soft and elas-
tic material of elastic modulus ≈ 50 Pa as determined by
optical tweezers micromanipulation of embedded beads,
see Material and Methods I.B.5, Fig.S1 and Movie 1. For
migration experiments, cells were plated at low density,
spontaneously penetrated the matrix and could be fol-
lowed individually. The CDM was easily deformed by
cells as they moved (Fig.1 a, b and Movies 2-3-4). This
enabled us to quantify the associated matrix deforma-
tion [12] via the Kanade-Lucas-Tomasi (KLT) tracker
method [13] (Fig.1 b). In our assay we image the net-
work deformation, the cellular machinery responsible for
force-generation and the focal contacts which promote
adhesion and force transmission between the cell and the
CDM. Key molecular players were fluorescently labelled:
(i) the fibronectin network within the CDM (Fig.1a); (ii)
components of the cell cytoskeleton, acto-myosin and mi-
crotubules (Fig.1 a, c, d and Movies 3,5); and (iii) zyxin
in focal contacts (Fig.S2, Fig.S5 and Movie 4).

During observation some wild-type cells showed per-
sistent motion while others did not move. Interestingly
both motile and non-motile cells exhibited local zones of
contraction-extension, equivalent to two force dipoles on
either side of the nucleus (Fig.1 b). These deformations
were cyclic, with periods of ≈ 10 mins and amplitudes
of typically 2.5 µm, reminiscent of previous reports of
cell autonomous contractile oscillations [14]. Periods of
oscillations were comparable for motile and non-motile
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cells (Fig.2 g,i), see Material and Methods I.B.6 for quan-
tification of the oscillations. The phases of contraction
correlated with the formation of local myosin clusters
(Fig.1 c). This is consistent with the observation of dis-
tinct myosin-driven contraction centres in the migration
of neurons on 2D surfaces [15]. We observed more protru-
sive activity at one of the two ends of elongated cells, in
both motile and non-motile cells. This apparent spatial
polarisation was not sufficient to elicit directed motion.
On the other hand, the temporal cross-correlation func-
tion of contraction-extension at the two cell ends revealed
striking differences between motile and non-motile cells.
While non-migrating cells showed no clear phase shift
between the two ends, with a cross-correlation peak at
t = 0, migrating cells showed a persistent time lag of ≈ 2
min (Fig.2 j,k). A system undergoing directed motion
must exhibit time reversal asymmetry. In our case, this
asymmetry manifests itself through a time lag between
the contraction-extension cycles of the two force dipoles.

The most intuitive way to visualise time reversal sym-
metry breaking is through the existence of cycles in a
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FIG. 1. Key players in cell motility. a) Left panel (and Movie
4): A cell deforms the fibronectin (FN) network when migrat-
ing (FN in yellow and mCherry LifeAct for actin filaments in
red). Right panel: Enlargement of the white windows of the
left panel. Black arrows highlight displacement of fibers due
to cell movement. b) Overlay of phase contrast image and
KLT calculation of mesh displacement (green arrows - with
scale bar shown) with local contraction and extension dipoles
indicated with white windows. c) Myosin clusters form locally
within cells and are correlated with local contraction. Bot-
tom: KLT deformation (green arrows) and myosin mCherry
signal. Top: Enlargement of the white window of the bottom
panel showing the myosin mCherry signal. d) α-tubulin stain-
ing of a cell inside CDM. Microtubules extend from the cen-
trosome to the periphery of the cell (see also Movie 5). Scale
bars: (a) 25µm (10µm in the enlargments) (b,c,d) 10µm.
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FIG. 2. Dynamics of matrix deformation for migrating and
non-migrating cells. a) Snapshots overlaying phase contrast
images and KLT calculation of matrix rate of deformation
(green arrows) showing a contraction/extension center, scale
bar 10µm, time in minutes. b-c) Schematics of the alternat-
ing phases of contraction and extension for a non-migrating
cell (b) and a migrating cell (c). d-e) Heatmap of the di-
vergence of the corresponding matrix displacement. Contrac-
tile and extensile force dipoles correspond to blue and yellow
spots, respectively. Non-migrating cells (d) show two oscillat-
ing dipoles (their centres are approximately indicated by the
solid black lines) that appear to be in phase opposition, while
migrating cells (e) show a more complex spatio-temporal pat-
tern. The blue and red solid lines in (e) indicate the two
sides of the nucleus. f) Typical correlation function of the
contraction-extension time series at the back of non-migrating
cells, with a first peak at ≈ 5 min. g) Average periods of
contraction-extension cycles, which is similar (≈ 7−8 min) at
the front and back of the cell, and slightly higher (≈ 9.5 min)
for nocodazole treated cells, which show no permanent cell
polarisation. h) Correlation function at the back of migrating
cells, with a first peak at ≈ 10 min. i) Average period of
the contraction-extension cycles for migrating cells. j ) Typ-
ical cross-correlation function between back and front rates
of deformations. k) Distribution of the values of the time-lag
for migrating and non-migrating cells (with nmot = 12 motile
cells, nnomot = 8 non-motile cells, and N > 3 biological re-
peats).

properly chosen phase space. This phase space may be
based on a multipole expansion of the traction force ex-
erted by the cell on its surrounding. This approach
was pioneered by Tanimoto & Sano for Dictyostelium
discoideum crawling on deformable 2D substrate [2].
In particular, they showed that crawling Dictyostelium
discoideum exhibits cycles of finite area in the dipole-
quadrupole phase space. In the present work, the trac-
tion forces exerted by the cell are analysed indirectly
through the deformation of the matrix. Indeed, our char-
acterisation of the mechanical properties of the CDM
show that it locally behaves as a linear elastic mate-
rial with a well defined elastic modulus (Material and
Methods I.B.5, Fig.S1). This supports the approxima-
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FIG. 3. Multipole analysis of the matrix deformation rate. a) Snapshots of a cell with: matrix rate of deformation, green
arrows, the main dipole axis, blue, the axis of the cell motion, red. b) Schematic representation of dipoles (D) and quadrupoles
(Q) of the 1D matrix displacement (rate) distributions. The distribution on top has non-zero dipole but vanishing quadrupole,
and that on the bottom has vanishing dipole and non-zero quadrupole. c) Time series of the main dipole, blue, and quadrupole,
magenta, - projected on the cell axis - for a migrating cell (squares) and a non-migrating cell (circles), sampling approximatively
1/10 of the duration of the entire experiment. d-e) Cell trajectory in the dipole/quadrupole phase space for a migrating cell
(d) and a non-migrating cell (e). The migrating cell follows a cycle with a finite area and the non-migrating cell does not. The
error bars are obtained following the procedure described in Material and Methods I.B.7. The individual cycles for different
radii are shown in light gray. f) Snapshots of a cell which in the course of the same experiment displays a transition from
migrating to non-migrating behaviour (Lifeact in red and fibronectin in yellow), scale bar 10µm. (g) Cell positions in the x-y
plane (blue and orange curves) showing a transition from migrating to non-migrating phase (red dashed line at around 32min).
(h) Trajectories in the dipole/quadrupole phase space for three different time intervalles showing cycles with finite area in the
migrating phase and with vanishing area in the non-migrating phase (see also Movie 7).

tion of a linear relationship between the moments of the
force distribution and the moments of the resulting ma-
trix displacement distribution. Note however that the
relationship could be more complex due to matrix het-
erogeneities.

We analysed the 2D projection of the 3D deformation
field of the CDM and compute the dipolar and quadrupo-
lar moments of the rate of matrix deformation, Material
and Methods I.B.4. Briefly (see details in Material and
Methods I.B.7), we extracted the 2D projected velocity

vector field u
(n)
i for the component i of the change of

substrate deformation between two consecutive frames
at position n of the mesh. The dipole is a tensor defined

as Sij =
Dij+Dji

2 with Dij =
∑

n ∆
(n)
i u

(n)
j , where ∆

(n)
i is

the i-th component of the vector joining the cell centre
and the point n on the mesh. Similarly, the quadrupole

tensor is defined as Qijk =
∑

n ∆
(n)
i ∆

(n)
j u

(n)
k . We then

consider the projection of these quantities on the main
axis identified by the average direction of the cell trajec-
tory and we call these components the main dipole, D,
and the main quadrupole, Q , see Fig.3b for a sketch of
the physical/geometrical meaning of these quantities.

We determine the time variation of the dominant com-
ponents of the dipole and quadrupole matrices. The
dipole/quadrupole observed for non-migrating cells are
comparable in magnitude to those of migrating cells
(Fig.3 a,b). This shows that the absence of migration
is not due to the lack of traction forces (see also Fi.S4).
The cell trajectory represented in the dipole/quadrupole
phase space showed a cycle enclosing a finite area for mi-
grating cells, but a vanishing area for non-migrating cells
(Fig.3 c,d, and more examples Fig.S5). To further test
the relationship between finite cycle area and motility of
individual cells, we analyzed the migration of the same
cell that underwent motion and then stopped (Fig.3 f-h
and Movie 7). Strikingly, we observed that the cycles
switched from a finite area while the cell was moving to
a vanishing area when the cell stopped (Fig.3 h). The fi-
nite area is a direct illustration of the fact that the phase
shift between the contraction-extension cycles at the two
ends of migrating cells observed in Fig.2j,k also mani-
fests itself in the pattern of matrix displacement. This is
a clear signature of time reversal symmetry breaking.

To test whether we could correlate the oscillations at
the two cell ends with molecular actors, we tracked cell
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motion in the presence of the microtubule depolymeriz-
ing agent, nocodazole. Nocodazole treated cells undergo
oscillations driven by local force dipoles with typical pe-
riods similar to wild type cells (∼ 10min, Fig.2 g) but do
not maintain a fixed cell-polarization (Movie 12). In this
case, oscillations at different cell ends were in phase and
cells did not show directed motion. This suggests that the
coupling between oscillators needed to promote directed
motion could involve microtubules. Indeed, the micro-
tubular network spans the entire the cell body (Fig.1d
and Movie 5). It seems natural to assume that this trans-
fers information between the two sides of the cell. This
suggestion is consistent with the notion that the micro-
tubular network regulates the polarity of migrating cells
[16, 17].

The geometry and dynamics of the distribution of
matrix displacement call for a direct comparison with
models of self-propelled objects made of discrete moving
beads [3, 4, 6, 8, 9, 19]. Fig.4a,b displays an idealised
cell with two pairs of beads exerting time-shifted oscil-
latory force dipoles at its two ends. The cell activity is
characterised by the amplitude d and period T of the os-
cillations and a phase shift ψ = 2π∆T/T between oscilla-
tions at the two ends. The simplest self-propelled object
is a micro-swimmer embedded in a newtonian fluid and
migrating due to hydrodynamic interactions [3, 4, 6]. In
this case, the period of oscillation is the only time scale in
the problem and, in the limit of small oscillation ampli-
tudes, the net cell velocity over a cycle follows the scaling
[6]

Vswim =
d2

LsT
fs(ψ) (1)

where fs(ψ) is a periodic function of the phase shift satis-
fying fs(ψ = 0) = 0, i.e. no velocity without phase shift,
as required by the scallop theorem, and Ls ∝ r4/(aD2)
is a length scale entirely set by the cell geometry (r is
the distance between the dipoles, D the dipole size and
a the bead size - Fig.4 a).

A key aspect of cell crawling, which is absent for micro-
swimmers, is the dynamics of cell attachment and de-
tachment from the surrounding matrix. Our observa-
tions suggest that dipole contraction is associated with
an active contraction of acto-myosin clusters and that
dipole extension corresponds to the elastic relaxation of
the CDM following local cell detachment, i.e. the loss of
focal contacts, see Movie 4 and [20]. The kinetics of cell
binding/unbinding to the extracellular matrix defines ad-
ditional dynamic parameters, which can at the simplest
level, be captured by a velocity scale vadh [19]. For cells
crawling on a rigid substrate - and in the limit of small
oscillation amplitudes and fast binding kinetics - the net
crawling velocity can be written as [19]:

Vcrawl =
d3

vadhLcT 2
fc(ψ) (2)

where fc(ψ = 0) = 0 as for swimmers, and the length-
scale Lc ∝ r2/a also includes additional dimensionless

factors related to substrate dissipations (see [19] for more
details).

These simple models predict how the velocity should
vary with the period of oscillation T . The result depends
on whether the amplitude of oscillations d is fixed or is
a function of T . For oscillations of constant amplitude,
the net velocity of both swimmers and crawlers decreases
if the period of oscillation increases. On the contrary,
the velocity is expected to increase with the period if
the amplitude increases linearly with the period: d ∼ T ,
as can be expected if the self-propelled object operates
under constant force - or equivalently constant contrac-
tion/extension rate.
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FIG. 4. Persistent speed is related to the period of os-
cillations. a) Schematics of dipoles distribution highlight-
ing quantities used in the theoretical model: two dipolar
units (“A” and “B”) made up of disks of radius a, through
which cells exert traction forces on the extracellular environ-
ment. The dipoles, at distance r apart, oscillate with period
T , with minimum amplitude D and a maximum amplitude
D + d. b) Model dynamics. Left: Alternate phases of exten-
sion/contraction are imposed to the two dipoles, defining a
cycle (“1, 2, 3, 4, 1...”) that is not time-reversible. Right:
the extension/contraction rates of dipole “A” and “B” are
shown in red and black, respectively, in unit d/T . The cell
velocity, calculated using the model discussed in [6], is shown
in green in the same units. It oscillates between positive and
negative values - with a non-vanishing mean - with a period
equal to that of individual dipoles. c) Typical plot of the ex-
perimentally measured instantaneous speed of a migrating cell
over time, showing oscillation with a non-vanishing mean. d)
Persistent speed as a function of speed period for control cells
and cells treated with specific cytoskeleton inhibitors: 10µM
ROCK inhibitor Y-27632; 10µM MLCK inhibitor ML-7; 100
µM lamellipodia growth promoter C8 [18] and 50 µM Arp2/3
inhibitor CK666, see Material and Methods I.B.2. Each data
point corresponds to one cell. The plot displays a decay con-
sistent with a power law. The continuous lines show the fits
for V ∼ 1/T (dark blue) and V ∼ 1/T 2 (light blue), following
Eqs.(1,2).
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The temporal oscillations of the instantaneous cell ve-
locity is a good readout for the dynamics of internal force
generation. For such self-propelled objects, the instanta-
neous velocity oscillates around the average values given
by Eqs.1 or 2 with a time dependence that reflects the
dynamics of the underlying force dipoles. An example
of such (theoretical) velocity oscillations can be seen on
Fig.4 b. Experimental observations indeed report strong
oscillations of the instantaneous cell velocity (Fig.4 c).

To test how the period of oscillation of migrating cells
influenced their velocity, we tracked cell motion for a va-
riety of specific inhibitors that impact on oscillation peri-
ods, see Material and Methods I.B.6, Fig.S3 and Movies
10-12. We plotted the cell velocity as a function of os-
cillation period for all conditions (Fig.4 d). An inverse
correlation between period and velocity is evident from
the data. This is consistent with locomotion being driven
by controlling cell deformation instead of cell traction
forces. Similar conclusions have been reached in the dif-
ferent context of adherent epithelial cells [21].

Altogether, these results suggest that the temporal
coupling between spatially distributed force dipoles along
the cell promotes cell motion. To verify this, we needed
to find a way to externally trigger localised cellular force
dipoles. We leveraged the fact that localized laser ab-
lation led to the recruitment of actin cytoskeleton and
localised cell contraction associated to a pinching of the
matrix (Fig.5 a-b and Movie 8). We then used this
method to locally impose cellular force dipoles, by trig-
gering local contractions alternatively at either sides of
the cell. We imposed correlated contractions by select-
ing a constant time interval between consecutive laser
ablations: this triggered translocation. This shows that
externally induced force-dipoles are sufficient to promote
directed cell motion (Fig.5 c-d and Movie 9).

Acto-myosin complexes are likely to be the functional
elements that control the dynamics of the individual con-
tractile units. Remarkably, the dynamics of individual
dipoles appear similar in migrating and non-migrating
cells, suggesting that the same force generation machin-
ery is equally active in both types of cells, and that it is
the synchronisation between individual units that makes
movement possible. Altering the dynamics of individual
units can affect motion, in particular, faster oscillations
can lead to faster motion, but the coordination between
units is key in enabling cell translocation.

Acto-myosin networks commonly show oscillatory dy-
namics in vitro and in vivo in a variety of systems and
over a large range of length scales [14]: single filaments in
motility assays [22–24], cells [25] and cell fragments [26],
and even entire organisms [27]. The biological function
of these generic dynamics is often unclear. However in
our case, they appear to be essential. We conjecture that
cellular systems could adapt their velocity by modulat-
ing the oscillation period. In this context, it would be
interesting to test this proposal by combining tracking of
single moving cells and local matrix deformations in vivo.
If confirmed, this would provide an outstanding example
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FIG. 5. Cell motion is triggered by means of laser in-
duced force dipoles. a) Schematic of laser ablation experi-
ment. b) (Left panel: Lifeact, middle panel: phase contrast
and KLT) Ablation at the back of the cell (white arrow) im-
mediately followed by an extension, and later by a contraction
of the matrix, (both highlighted using white square window).
scale bar LifeAct: 10µm KLT: 20µm. Right panel. Bottom:
Plot of the displacement rate along the cell axis at different
time (colour coded) showing extension and contraction. Top:
Heatmap of displacement rates indicating the initial exten-
sion and the subsequent contraction. c) Top: sequence of
snapshots during laser ablation on cell expressing mCherry
LifeAct. Intensity drops locally immediately after the cut,
followed by a local recruitment of actin, scale bar 20µm,
scale bar in zoom 5µm. Bottom: the intensity heatmap re-
veals a focused actin flow (see also Movie 8). As shown in
the deformation map, the contraction precedes this flow. d)
Consecutive ablations (indicated with white arrows) mimics
contraction-extension cycles at the front and back of cell. Ab-
lation is performed in the following order: at the cell back, at
the front and then at the back again. In all panels, scale bar
10µm and time in mm : ss. Note cell motion to the right (see
also Movie 9), scale bar 10µm. The cell is outlined in red and
the back of the nucleus with a blue dashed line.

of a physiological relevance for such oscillations.
The phase-shift between contractile units encodes cell

polarity. Its maintenance in the course of time requires
the existence of a polarity memory. If this type of phase
locking can be expected in non-linear systems [28], it is
more demanding in the cellular context, where it is chal-
lenged by strong fluctuations in protein concentrations
and activities. Our results suggest that the microtubular
network is involved. However, other cytokeletal elements
and their interplay with adhesion dynamics are likely to
play a role as well. Disentangling the interplay between
mechanics and biochemical regulation in this process re-
mains an important open question.

Cells moving in 2D or in micro-channels often display
clear spatial polarisation, characterised by F-actin flow-
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ing from the front to the back of the cell – so-called actin
retrograde flow – [29, 30]. In this case, the lack of time
reversal symmetry – the fact that the system looks dif-
ferent when the movie is played backward – clearly mani-
fests itself by the existence of a coherent actin flow at the
scale of the entire cell. Consequently, the cell velocity is
directly related to the dynamics of the actin flow. Many
cells, especially mesenchymal cells moving in 3D matri-
ces, do not show such polarised actin flow, but instead
display sequences of protrusion/retraction at both ends
of the cell. Although the local actin dynamics within
these protrusions is comparable to whole cell retrograde
flow in fast moving cells, the existence of multiple com-
peting protrusions leads to frequent stochastic retraction
[31]. Such cells may nevertheless display directed mo-
tion, but at much slower net velocity. It is then challeng-
ing to identify the occurence of time reversal symmetry
breaking. Our results show that the lack of time reversal
symmetry in cells moving in 3D CDM is associated to
a time shift between the oscillating dynamics of the two
cell ends.

We propose that temporal correlations between dis-
tinct contraction-extension units along the cell body is
a general principle used by mesenchymal cells to achieve
directional motility in 3D. This suggests new strategies
to control the motion of cell by externally modulating
the local contractile activity, for which we give a proof-
of-principle using a standard laser setup. This concept
could also be used to design synthetic micro-crawlers.

Whereas there exists many examples of artificial micro-
swimmers (see [32] for a review), there is to our knowl-
edge no realisation of micro-crawler in regimes where in-
ertia is negligible.
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