
Chen et al. Page 1 

1 
 

Data and text mining 

 

swCAM: estimation of subtype-specific expressions in 

individual samples with unsupervised sample-wise 

deconvolution 
 

Lulu Chen1, Chiung-Ting Wu1,#, Chia-Hsiang Lin2,#, Rujia Dai3, Chunyu Liu3, 

Robert Clarke4, Guoqiang Yu1, Jennifer E. Van Eyk5, David M. Herrington6, 

and Yue Wang1,† 

 

#Equal contribution;  

†Author for correspondence 

 
1Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State 

University, Arlington, VA 22203, USA; 2Department of Electrical Engineering, National 

Cheng Kung University, Tainan City, Taiwan 70101, ROC; 3Department of Psychiatry, 

SUNY Upstate Medical University, NY 13210, USA; 4The Hormel Institute, University of 

Minnesota, Austin, MN 55912; 5Advanced Clinical Biosystems Research Institute, Cedars 

Sinai Medical Center, Los Angeles, CA 90048, USA; 6Department of Internal Medicine, 

Wake Forest University, Winston-Salem, NC 27157, USA 

 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2021.01.04.425315doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.04.425315


Chen et al. Page 2 

2 
 

Abstract  

Motivation: Complex biological tissues are often a heterogeneous mixture of several 

molecularly distinct cell or tissue subtypes. Both subtype compositions and expressions in 

individual samples can vary across different biological states or conditions. Computational 

deconvolution aims to dissect patterns of bulk gene expression data into subtype 

compositions and subtype-specific expressions. Typically, existing deconvolution methods 

can only estimate averaged subtype-specific expressions in a population, while detecting 

differential expressions or co-expression networks in particular subtypes requires unique 

subtype expression estimates in individual samples. Different from population-level 

deconvolution, however, individual-level deconvolution is mathematically an 

underdetermined problem because there are more variables than observations. 

Results: We report a sample-wise Convex Analysis of Mixtures (swCAM) method that can 

estimate subtype proportions and subtype-specific expressions in individual samples from 

bulk tissue transcriptomes. We extend our previous CAM framework to include a new term 

accounting for between-sample variations and formulate swCAM as a nuclear-norm and 

��,�-norm regularized matrix factorization problem. We determine hyperparameter values 

using a cross-validation scheme with random entry exclusion and obtain a swCAM solution 

using an efficient alternating direction method of multipliers. The swCAM is implemented in 

open-source R scripts. Experimental results on realistic simulation data show that swCAM 

can accurately estimate subtype-specific expressions in individual samples and successfully 

extract co-expression networks in particular subtypes that are otherwise unobtainable using 

bulk expression data. Application of swCAM to bulk-tissue data of 320 samples from bipolar 

disorder patients and controls identified changes in cell proportions, expression and co-

expression modules in patient neurons. Mitochondria related genes showed significant 

changes suggesting an important role of energy dysregulation in bipolar disorder. 

Availability and implementation: The R Scripts of swCAM is freely available at 

https://github.com/Lululuella/swCAM. A user’s guide and a vignette are provided. 

Contact: yuewang@vt.edu 

Supplementary information: Supplementary data are available at Bioinformatics online. 
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1 Introduction  

Alteration of biological processes in particular cell or tissue subtypes may lead to 

development of disease (Fan, et al., 2020; Herrington, et al., 2018). In order to understand 

molecular mechanisms affecting disease it is critical to study molecularly distinct cell or 

tissue subtype-specific effects in the context of a complex ecosystem (Chasman and Roy, 

2017). However, these specific mechanisms are typically not revealed when a heterogeneous 

tissue is studied in bulk (Parker, et al., 2020). Computational deconvolution is a data-driven 

cost-effective technique to dissect patterns of bulk-tissue expression data into subtype 

compositions and subtype-specific expressions (Avila Cobos, et al., 2018; Chen, et al., 2020; 

Wang, et al., 2016). Importantly, unsupervised deconvolution of bulk tissue expression 

profiles has the advantage of observing subtype-specific expression patterns in the context of 

cell-cell and cell-matrix interactions that define the local tissue environment compared with 

single-cell or cell-sorted data where the effects of these interaction may be lost (Herrington, 

et al., 2018). Moreover, computational deconvolution has the potential of extracting novel yet 

reproducible biological information from vast amounts of existing bulk transcriptome data, 

resulting in gains in statistical power and opportunities for further insights for a wide range of 

previous experimental designs (Wang, et al., 2016). 

    Typically, existing deconvolution methods can only estimate averaged subtype 

expressions that are shared in a population (Avila Cobos, et al., 2018; Wang, et al., 2016), 

while detecting differential expressions or co-expression networks in particular subtypes 

requires subtype-specific expressions in individual samples (unique for each individual) 

(Zhang and Horvath, 2005; Zhang, et al., 2009). When multiple measures of bulk-tissue 

expression from the same individuals are available, population-level deconvolution methods, 

such as Convex Analysis of Mixtures (CAM - unsupervised) (Wang, et al., 2016) or Multi-

measure Individual Deconvolution (MIND - supervised) (Wang, et al., 2020), can be readily 

applied but with reduced statistical power and subtype-resolution. Correspondingly, some 

semi-supervised methods have recently been proposed to exploit single-measure bulk data, 

including Tensor Composition Analysis (TCA) on DNA methylation data (Rahmani, et al., 

2019), CIBERSORTx and Bayesian MIND (bMIND) on gene expression data (Newman, et 

al., 2019; Wang, et al., 2020). TCA works specifically on DNA methylation data, based on an 

assumed model similar to MIND, and requires a priori knowledge or estimate of subtype 

proportions, CIBERSORTx relies on subtype expression signatures derived from single-cell 

or bulk-sorted reference profiles and uses pseudo non-negative least squares to achieve high-
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resolution expression purifications leveraging grouped sample structures, and bMIND uses 

again information from scRNA-seq data fully, as prior information, to refine subtype 

expression estimates per bulk sample.    

    To address the critical problem of the absence of fully unsupervised individual-level 

deconvolution methods, we develop a sample-wise Convex Analysis of Mixtures (swCAM) 

method to estimate constituent proportions and subtype-specific expressions in individual 

samples from bulk-tissue data (unique for each individual). We extend our previous CAM 

framework to include a new term that accounts for subtype variation among samples. 

Because individual-level deconvolution is mathematically underdetermined with more 

variables than observations, we formulate swCAM as a nuclear-norm and ℓ�,� -norm 

regularized low-rank matrix factorization problem (Hastie, et al., 2015). We obtain the 

swCAM solution using a modified and efficient alternating direction method of multipliers 

(ADMM) in which hyperparameter values are determined by a cross-validation scheme with 

random entry exclusion (Chi, et al., 2017). Specifically, the nuclear-norm regularization term 

focuses on modeling the between-sample subtype variation of low-rank gene co-expression 

function modules (Zhang and Horvath, 2005), and encourages a unique and biologically 

plausible solution (Supplementary Information). Experimental results on realistic simulation 

data sets show that swCAM can accurately estimate subtype-specific expressions of major 

subtypes in individual samples and successfully extract co-expression networks in particular 

subtypes that are otherwise unobtainable using bulk expression data. The swCAM tool 

enables statistically-principled large-scale subtype-level downstream analyses, such as 

detecting differentially expressed genes or differential dependency networks in particular 

subtypes.  

2 Method  

2.1 Problem formulation of swCAM 

Population-level unsupervised deconvolution by CAM considers a classical linear latent 

variable model � � ���, where � is the bulk-level expression matrix (sample vs gene), � is 

the sample-wise subtype proportion matrix (sample vs subtype), and �� is the population-level 

subtype expression matrix shared across individuals (subtype vs gene) (Chen, et al., 2020; 

Wang, et al., 2016). To achieve individual-level unsupervised deconvolution, we extend the 

existing model to include a new term � that accounts for subtype variation among samples, 

see Figure 1. Specifically, we define the sample-wise subtype expression matrix as �� � �� �

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2021.01.04.425315doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.04.425315


Chen et al. Page 5 

5 
 

∆��, where ∆�� is the subtype variation matrix associated with sample 
. Correspondingly, the 

bulk-level expression ��  associated with sample 
 is given by �� � ��
�� � ∆���, #
1�
where ��  is the ith row vector of subtype proportion matrix.  

Let �� � �∆���
��, … , ∆��� 
���  host the � th columns in all ∆��  associated with 

subtype �, and assume �� is a low-rank structured sparse matrix (Hastie, et al., 2015), the 

swCAM approach seeks to simultaneously estimate the subtype variation matrix ∆�� for all 

samples by optimizing the following objective function, given the estimated �  and ��  by 

CAM (Chen, et al., 2020; Wang, et al., 2016): 

argmin
�∆
�����

�

12 ����  ��
�� � ∆�������

���

� ! �����
�

���

, ". $.  �� � ∆�� & ', #
2�  

where ( is the number of samples, ) is the number of subtypes, � ��  denotes L2 norm, � �
 denotes nuclear norm, and ! is the regularization hyperparameter. The premise behind 

a nuclear norm regularized subtype variation term �� is that there is only a small number of 

molecular function modules influencing the subtype variation and other noise-nature 

variations are of no biological meaning (Zhang and Horvath, 2005).  

2.2 Optimization of swCAM objective function 

The swCAM objective function given in (2) is convex with respect to the block-wise 

variables � * ���� , … , ��� ��  or � * �vec
����, … , vec
��� �� , where vec
. �  is the matrix 

vectorization operator (Supplementary Information). We propose to solve (2) by adapting the 

computationally efficient ADMM strategy and its default mathematical notations (Chi, et al., 

2017), naturally decoupling the non-smooth regularization term from the smooth loss term. 

Specifically, we reformulate (2) into a new form where the primal variable is “split” into 

several parts, with the associated objective function “separable” across such splitting (Chi, et 

al., 2017).   

 Let . * �� , / * �� ��� , 0� * �1 1�� , 0� *  �0� 0��� , 2� * �', 1� , 0� *�3�� 4567
����, '�  ( 4  denotes the Kronecker product), and 2� * �', 1, ', '� , with � �0, … , ). We can simplify (2) into its equivalent form, given below 

argmin
�,�

12 �9
:�  .��� � ! ��2�/�
�

���

� ;�
2�/�, ". $. 0�: � 0�/ � 0�, #
3�  

where ;�
·� is the indicator function for the non-negative orthant;  ;�
2�/� � ;�
�� � 0 if � & '���� (;�
:� � �∞, otherwise), see Figure 2. The linear transformation 9 in the first 
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term is 9
�?�, … , ?��� � �@�?� , … , @�?�� with @� � ���4;��, 
 � 1, … , (. Note that the 

two split block variables : and /  in (3) is associated with the ADMM framework and 

notations (Boyd, et al., 2011). When (3) is solved, the solution �  of (2) can be readily 

extracted from / (Supplementary Information). 

2.3 Regularization of between-sample variation 

Nuclear-norm based regulation on between-sample variation � aims to detect unique and 

meaningful patterns of interest for each individual sample in reference to noise effect. When 

setting hyperparameter !, a larger value will coerce overall between-sample variation to be 

zero, while a lower value will encourage stronger subtype-specific between-sample variation.  

 Cross-validation is a popular and effective strategy for tuning hyperparameters to 

reach a good balance between underfit and overfit. In a classical setting, one round of cross-

validation excludes a certain portion of samples and uses the model learned from the 

remaining samples to predict the excluded ones. Then every model is assessed by 

summarizing prediction performances across multiple rounds. In swCAM, however, the 

estimate of subtype expression in individual samples cannot be directly used to predict the 

excluded samples. Alternatively, we propose to randomly exclude entries rather than samples 

in �  matrix, see Figure 3, a strategy similar to the one widely used in missing value 

imputation. Specifically, we randomly remove some entries in � matrix and accordingly 

rewrite the objective function (2) as  

argmin
�∆
�����

�

12 �AB��
���  B��C��
�� � ∆���DA
�

�

�

���

� ! �����
�

���

, ". $.  �� � ∆�� & ', #
4�  

where BΩ�
��� denotes the modified ��  vector with its entries in Ω� untouched while others set 

to zero. The workflow of 10-fold cross-validation is summarize as follows:  

(1) Randomly split all entries into 10 folds of roughly equal size; 

(2) Remove onefold and use the remaining 9-folds to solve (4) with varying values of ! G �!�, !� , … �; 
(3) Use estimated ∆��
!� to reconstruct � and record only the predicted values; 

(4) Repeat (2)-(3) steps to reconstruct �H
!� with all missing entries predicted; 

(5) Calculate root-mean-square error (RMSE) 

I(JK
!� � L 1(M � � N���  �H��
!�O��

���

�

���

#  

(6) Determine the optimal value !
 yielding the minimum RMSE. 
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Warm start can be used in step (2) with a decreasing sequence of !. Again, the optimization 

problem (4) can be solved by the ADMM algorithm (Supplementary Information). 

2.4 Sparsity regularization 

Based on the further assumption that only a small number of genes are involved in each of 

functional modules, we propose to impose a row-sparsity regularization using ℓ�,�-norm on 

the between-sample variation term �. The alternative swCAM objective function becomes, ". $.  �� � ∆�� & ', 
argmin
�∆
�����

�

12 ����  ��
�� � ∆�������

���

� ! �����
�

���

� P����,�,           
5� 

where P R 0  is the regularization hyperparameter. The optimization problem (5) can be 

solved by the extended ADMM algorithm (Supplementary Information).  

3 Results 

We first conducted two phased computational experiments to assess the performance of 

swCAM method and R script for fully unsupervised sample-wise deconvolution, namely 

validation on ideal simulation and assessment on realistic simulation. The workflow of 

swCAM is implemented as an open-source R scripts together with the existing debCAM 

package (Chen, et al., 2020). The simulation datasets are generated from a benchmark real 

gene expression dataset (GSE19380) (Kuhn, et al., 2011). The ideal simulation assumes an 

independent relationship between variance and mean for genes, and the realistic simulation 

entertains a variance-mean relationship for genes close to that observed in real gene 

expression data. We then conducted biomedical case studies to demonstrate the real-life 

utility of swCAM tool in biomedical research. 

3.1 Validation on ideal simulation 

The ideal simulation involves three subtypes, twelve function modules (four unique 

functional modules in each subtype), 300 genes, and 50 samples. The baseline subtype-

specific expression profiles ��  are sampled from the real gene expression of the purified 

subtypes in GSE19380, the standardized sample-specific proportion vectors ��  are drawn 

randomly from a flat Dirichlet distribution, and the sparse between-sample variation matrix ∆��
�, S� is formed by assigning a value to jth gene from normal distribution T
0, U������ only 

if it participates in an unique function module in kth subtype (Figure 4). Each functional 

module is formed a by highly correlated gene pairs (co-expression network), U�����  are drawn 
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from the uniform distribution u�50, 300�, and the experimental noise W� is drawn from the 

zero-mean normal distribution with U�����=10. We tested swCAM on a large number of 

simulation datasets with varying hyperparameter settings.  

 The experimental results show that swCAM can blindly and successfully detected all 

twelve structured between-sample variation patterns when the regularization hyperparameter 

value ! is properly set by the proposed cross-validation guideline, see Figure 4 with given 

ground truth. Specifically, the RMSE obtained by 10-fold cross-validation is relatively small 

when ! � 1~50 and reaches the minimum at ! � 5. This event unsurprisingly coincided 

with the point where both primal and dual residuals diminish in the ADMM algorithm, see 

Figure 5 (Supplementary Information). Moreover, our experiments show that swCAM can 

extract more accurate between-sample variations from high abundant subtypes as compared 

with low abundant subtypes, see Figure 5 (green points - low abundant subtypes, red points – 

high abundant subtypes), where the Pearson’s correlation coefficients of the estimate and 

ground truth are 0.6079, 0.8329, 0.9412, and 0.9550, corresponding to the four quartiles of 

abundance level, respectively. This observation is consistent with what reported in the 

literature (Rahmani, et al., 2019; Wang, et al., 2020). 

3.2 Assessment on realistic simulation 

We modified the same design of ideal simulation by incorporating the variance-mean 

relationship widely observed in real gene expression data. First, the variance U�����  of subtype 

expressions and variance U����� of overall noise are set to be proportional to the means of 

subtype and mixed expressions, respectively. Second, the coefficient of variation (ratio of 

standard deviation to mean) is drawn from the uniform distributions u�0.15, 0.3�  and u�0.02, 0.05�, respectively.  

The experimental results show consistent trends and comparable performance of 

swCAM, clearly revealing all twelve structured between-sample variation patterns, see Figure 

6. However, due to the impact of varying noise levels, the between-sample variation patterns 

estimated by swCAM expectedly becomes blurred and noisier. Our experimental results also 

show that the additional ℓ�,�-norm based sparsity regularization can jointly produce a much 

cleaner estimate of the between-sample variation patterns. Again, Figure 6d shows that the 

between-sample variations can be estimated more accurately from high abundant subtypes as 

compared with low abundant subtypes, where the Pearson’s correlation coefficients of the 
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estimate and ground truth are 0.1979, 0.2223, 0.3683, and 0.7074, corresponding to the four 

quartiles of abundance level, respectively (Supplementary Information). 

To further test the utility of swCAM in subsequent network analysis targeting the 

twelve functional modules, we performed the Weighted Gene Correlation Network Analysis 

(WGCNA) (Langfelder and Horvath, 2008; Zhang and Horvath, 2005) using the sample-wise 

subtype-specific expression profiles estimated by swCAM. The experimental results show 

that while the estimated between-sample variation patterns were less ideal as compared to the 

ground truth, the results of swCAM (as the input to WGCNA) enabled WGCNA to 

successfully reconstruct the weighted gene correlation networks associated with the twelve 

functional modules, see Figure 7 (Supplementary Information). Specifically, swCAM-

WGCNA accurately identified the exact four true gene co-expression modules with very few 

missing genes resided within the second and third subtypes, and minor false positives in the 

first subtype. In contrast, without swCAM based deconvolution, WGCNA using the bulk 

expression data cannot detect any of the embedded functional modules, but detected three 

false modules reflecting the confounding effect of the varying subtype proportions.   

3.3 Real-life biomedical case study 

To further demonstrate biomedical utility of the swCAM method, we applied the swCAM 

software tool to enable detecting subtype-specific differential expressed genes and co-

expression networks from RNA-seq data of human brains. The analytic pipeline is given in 

Figure 8a. This experimentally-acquired RNA-seq dataset was obtained from a cohort of 

“controls” (n=248) and “bipolar disorder (BD)” (n=72) human brain specimens located at 

dorsolateral prefrontal cortex (DLPFC) (Gandal, et al., 2018). The gene expression levels 

were quantified in Fragments Per Kilobase of transcript per Million mapped reads (FPKM). 

After quality control, 14,865 genes were retained, and expression profiles were normalized. 

Potential confounders, including age, sex and batch effect, were removed by linear regression. 

We investigated overall cellular compositions of major subtypes, proportional changes of 

subtypes between case and control, and differential gene expressions and gene co-expression 

networks in specific subtypes and between case and control.  

 As shown in Figure 8b, swCAM identified three cell groups (CG) as the subtypes of 

interest. Using the marker genes of CGs (Figure 8b) and reference of snRNA-seq data from 

human frontal cortex (Habib, et al., 2017), Expression Weighted Cell Type Enrichment 

(EWCE) analysis  revealed major cellular compositions in CG1 (neuron), CG2 (astrocyte, 

microglia, and endothelial cell), and CG3 (oligodendrocyte) (Skene and Grant, 2016). We 
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compared the CG-specific expression profiles estimated by swCAM with the replications by 

bMIND (Wang, et al., 2020). The heatmap of the correlation coefficients over CGs is shown 

in Figure 8c, with high concordances of 0.96 in CG1, 0.77 in CG2, and 0.85 in CG3, 

respectively (All Spearman correlation p values <0.05).  

Neuron cell group (CG1) showed BD-associated marginal significant changes of cell 

proportion with a p-value of 0.06 (Figure 9a). The subsequent differential analysis detected 

190 down-regulated genes and 21 upregulated genes in CG1 between case and control with 

FDR <0.05 (Supplementary Table 1 and Figure 9b). Genes related to calcium ion, immune, 

and mitochondrial systems are downregulated. The further WGCNA analysis identified three 

differential co-expression modules with FDR <0.05 in CG1 (Supplementary Table 1). The 

differential expression analysis and WGCNA (e.g. the ME3 and ME19) converged for the 

downregulation of mitochondria-related genes in neurons, consistent with several previously 

reported findings about bipolar disorder (Iwamoto, et al., 2005) (Figure 9c-e).  Intriguingly, 

the hub gene of ME3, ATP5H, has previously been reported to be functionally involved in 

neuron proliferation. Downregulated expression of ATP5H was observed after knockdown of 

its regulator and resulted in neurogenesis deficit (Su, et al., 2020). The gene functions 

associated with the differentially expressed or co-expressed genes offer some possible 

mechanistic insights. For example, the deficiency of mitochondria genes affects the 

neurogenesis in the early stage, which influence the neuronal functions and contribute to the 

bipolar disorder pathology.    

3.4 Open-source swCAM software tool 

We implemented the swCAM workflow in R scripts, an extension of the 

Bioconductor R package of CAM, freely available at https://github.com/Lululuella/swCAM. 

A user’s guide and a vignette are provided.  

4 Discussion  

We report a fully unsupervised sample-wise deconvolution method with the R script, 

swCAM, to estimate unique subtype-specific expressions in individual bulk samples. This 

method addresses the limitation of population-level deconvolution (averaged across 

individuals) and enables various subsequent analyses of particular subtypes where higher 

order statistics within subtypes are required (Zhang and Horvath, 2005; Zhang, et al., 2009). 

With readily available and tested R scripts, the swCAM tool will allow biologists to perform 

a deeper characterization of complex tissues in many biomedical contexts. While the 
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principal application here involves gene expression data, the swCAM tool can be readily 

applied to other molecular omics measurements. The deconvoluted sample-wise 

transcriptome data enabled many other important downstream analyses, including different 

expression, co-expression network, and quantitative trait mapping studies.   

We emphasize cell groups (multicellular molecularly distinct subtypes) over cell types 

because the collective and critical effects of cell-cell and cell-matrix interactions are lost 

when the cellular constituents are studied in isolation. As shown in our real data application, 

swCAM identified CGs that are composed of one or more canonical cell types. It turns out 

the brain cells are so diverse that canonical cell types could not reflect the complexity of 

similarity and dissimilarity among cells. CGs provide a data-driven classification based on 

transcriptomic signatures that are not obvious by a few cell-type marker genes.   

Unsupervised sample-wise deconvolution is mathematically underdetermined (Hastie, 

et al., 2015). Fundamental to the success of swCAM solution is the nuclear-norm and ℓ�,�-

norm regularized low-rank latent variable modeling. The underlying assumptions in swCAM 

are biologically plausible because between-sample variations are expectedly governed by a 

finite number of unique functional modules and each of such modules involves a finite 

number of genes (Hart, et al., 2015; Zhang and Horvath, 2005). The corresponding subtype 

expressions estimated by swCAM and bMIND are highly consistent, and the three CGs 

identified by swCAM are more distinct (lower cross-CG correlation) than that replicated by 

bMIND (higher cross-CG correlation). It is worth mentioning that experimental results have 

shown that bMIND provided more accurate sample-level subtype expression estimates as 

compared to CIBERSORTx (Wang, et al., 2020), where the heuristic algorithm of 

CIBERSORTx relies on the two assumptions that each gene can be analyzed independently 

and between-group subtype differential expression is detectable in bulk tissue samples 

(Newman, et al., 2019). 

 The cross-validation strategy using random entry exclusion, to determine the proper 

value of the hyperparameter !, is adapted from the similar idea in missing value imputation 

(Hastie, et al., 2015).  Our experimental results consistently show a U-curve of the 

performance index across different values of !. Note that swCAM is not sensitive to the 

choice of ! within a proper range (plateau of the U-curve). The set-aside masking is a simple 

yet effective technique for many applications. Here we only demonstrate its application to 

determine the proper values of ! with an experiment on a simulation dataset only to showcase 

its capability. 
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 There are other ways to provide subtype expressions for individual bulk samples. For 

example, with population-level subtype expressions obtained using CAM, one-versus-

everyone test can be performed to identify a subset of so-called subtype-specific differentially 

expressed genes (Chen, et al., 2021), and then subsequent analyses of particular subtypes are 

conducted using the bulk expressions within such a subspace. Alternatively, subtype-

abundant bulk samples for each subtype are firstly identified using sample-specific 

proportions readily provided by CAM, the subtype expression profile for sample 
  and 

subtype � can be approximated by ��,� � ��  ��, � Y �� � ,
subject to a scaling, where ‘ �’ refers to a matrix or vector composed of all other entries 

except the one associated with subtype �. This strategy is consistent with the observation that 

most methods can extract subtype-specific signals from high abundant subtypes better 

compared with low abundant subtypes (Rahmani, et al., 2019; Wang, et al., 2020). 
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Figures 

 

Figure 1. Illustrative diagram of swCAM framework (� matrix is the transposed version of 

its text notation for simplicity sake). 

 

 

Figure 2. The objective function of swCAM for sample-specific deconvolution problem and 

its reformulation by ADMM. (For convenient illustration, Z matrix in all figures are the 

transposed version of those in the text and equations.)  
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Figure 3. 10-fold cross-validation strategy for model parameter tuning. A part of entries is 

randomly removed before applying swCAM. The removed entries are reconstructed by 

estimated  matrix and compared to observed expressions for computing RMSE to decide the 

optimal hyperparameter . 

. 
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Figure 4. Heatmap of  matrix estimate compared to ground truth in ideal simulation with 

varying . 
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Figure 5. 10-fold cross-validation results with different  values in the ideal simulation. 

(a) RMSE curve; (b) Residuals for primal feasibility condition; (c) Residuals for dual 

feasibility condition; (d) Color-coded correlation scatter plot on the  matrix entries between 

swCAM estimate and ground truth influenced by the abundant level of subtypes in the 

samples. 
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Figure 6. Experimental results obtained from the realistic simulation. (a-b) Heatmaps of 

 matrix estimate with proper values of  and . (c) 10-fold cross-validation RMSE curve. 

(d) Color-coded correlation scatter plot on the  matrix entries between swCAM estimate and 

ground truth influenced by the abundant level of subtypes in the samples. 
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Figure 7. swCAM-WGCNA analysis (the network interconnectedness is measured by 

topological overlap; cutHeight = 0.7; minSize = 8). (a-c) Gene co-expression modules 

detected by WGCNA using swCAM estimated sample-specific expression profiles in 

individual subtypes, with λ=5 and δ=1.  (d) Gene co-expressed function modules detected 

falsely by WGCNA using bulk gene expression data.  
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Figure 8. The application of swCAM for biomedical case study (RNA-seq data of 248 

controls and 72 bipolar disorder samples). (a) The analytic pipeline of biological application. 

(b) The identities of cell groups (CGs) were annotated by EWCE test with snRNA-seq 

reference from human frontal cortex. The asterisk denotes adjusted p value <0.05. (c) 

Spearman correlations between CG-specific expressions estimated by swCAM and bMIND. 
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Figure 9. Bipolar disorder associated changes were enriched in the neuron group. (a) The cell 

proportion changes in each of CGs. P value was from Wilcoxon rank-sum test. (b) CG-

specific differential expression results. The threshold for differential expressed genes (DEGs) 

was FDR corrected p value<0.05. The Red dashed line is the corrected p value of pathway 

enrichment <0.05. (c) Differential expression of eigengene of two BD-related co-expression 

modules. The fold change and p value were determined by linear regression. Log2FC= log2 

(BD/control). The asterisk denotes corrected p value <0.05. (d-e) Top 20 hub genes in BD-

related modules, ranked by module membership (kME). Red nodes are mitochondria-related 

genes.  
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