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ABSTRACT: Stable-isotope labeling experiments are widely used to investigate the topology and functioning of metabolic networks. 

Label incorporation into metabolites can be quantified using a broad range of mass spectrometry (MS) and nuclear magnetic reso-

nance (NMR) spectroscopy methods, but in general, no single approach can completely cover isotopic space, even for small metab-

olites. The number of quantifiable isotopic species could be increased, and the coverage of isotopic space improved, by integrating 

measurements obtained by different methods; however, this approach has remained largely unexplored because no framework able 

to deal with partial, heterogeneous isotopic measurements has yet been developed. Here, we present a generic computational frame-

work based on symbolic calculus that can integrate any isotopic dataset by connecting measurements to the chemical structure of the 

molecules. As a test case, we apply this framework to isotopic analyses of amino acids, which are ubiquitous to life, central to many 

biological questions, and can be analyzed by a broad range of MS and NMR methods. We demonstrate how this integrative framework 

helps to i) clarify and improve the coverage of isotopic space, ii) evaluate the complementarity and redundancy of different techniques, 

iii) consolidate isotopic datasets, iv) design experiments, and v) guide future analytical developments. This framework, which can be 

applied to any labeled element, isotopic tracer, metabolite, and analytical platform, has been implemented in IsoSolve (available at 

https://github.com/MetaSys-LISBP/IsoSolve and https://pypi.org/project/IsoSolve), an open source software that can be readily inte-

grated into data analysis pipelines.

Stable-isotope labeling experiments are widely used to investigate 

metabolic networks in the fields of systems biology1-2, biotechnol-

ogy3-4 and biomedical research5-6. The most effective approach is 

to combine 13C-labeling strategies with a detailed analysis of iso-

tope incorporation into metabolites, as measured by mass spec-

trometry (MS) and/or nuclear magnetic resonance (NMR) spectros-

copy7. MS provides global isotopic information by quantifying the 

proportions of molecules with different numbers of tracer isotopes 

(isotopologue distributions)8-9, while NMR provides positional in-

formation on tracer incorporation at specific positions in the mole-

cules (isotopomer distributions)10-13 by exploiting the 1H and 13C 

nuclei via non-decoupled experiments – such as homonuclear 1H-
1H-TOCSY and heteronuclear 1H-13C-HSQC experiments. 

Each separate NMR and MS method provides partial isotopic in-

formation by quantifying specific (sets of) isotopic species. 

MS(/MS) is used to quantify isotopologue distributions of complete 

molecules or fragments8-9, 14, where each carbon isotopologue con-

tains several isotopic species that cannot be distinguished since 

they all have the same mass9. NMR is similarly limited in that it 

only quantifies a subset of isotopic species since positional infor-

mation is in general limited to a small part of the carbon skeleton 

(typically from 1 to 3 carbon atoms depending on the experiment). 

Recently, 15N- and pure-shift-NMR experiments have successfully 

been applied to access long-range heteronuclear coupling con-

stants, thereby increasing the number of isotopic species that can 

be quantified11, 13. Nevertheless, none of the available methods pro-

vides complete coverage of isotopic space, even for small metabo-

lites. 

Integrating measurements from different approaches should ex-

pand the range of quantifiable isotopic species7, thus improving the 

coverage of isotopic space. This is exploited in 13C-fluxomics stud-

ies, where different datasets are frequently integrated using isotopic 

models of metabolic networks to improve flux quantification4, 15-16. 

However, a major drawback of model-based integrative approaches 

is their strong dependence on the assumptions and simplifications 

of the model (e.g. the topology of the metabolic network as defined 

in the model) and the fact that labeling has to be quantified in sev-

eral metabolites. As an alternative approach, intuitive reasoning has 

proven useful in improving the coverage of isotopic space by de-

fining relationships between isotopic measurements directly at the 

level of the molecule. This has been demonstrated for the combi-

nation of two NMR experiments, ZQF-TOCSY and HSQC, which 

allowed absolute quantification of 4 of the 8 isotopomers of a block 

of three carbon atoms10. A few relationships have also been estab-

lished between specific MS and NMR datasets17-18, but the hetero-

geneity of the isotopic information obtained by MS and NMR 

makes integrating measurements from these two platforms diffi-

cult. Overall, the lack of a generic integrative framework has meant 

that the potential expansion of isotopic coverage that could be 
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achieved by combining independent MS(/MS) and/or NMR da-

tasets has remained largely untapped.  

In this article, we present a computational framework that can be 

used to integrate any type of isotopic data. We demonstrate how 

this framework allows isotopic coverage to be clarified and im-

proved, thereby consolidating isotopic measurements. As a test 

case, we apply this framework to isotopic analysis of amino acids, 

which are ubiquitous to life, abundant, and central to many biolog-

ical questions. They can be analyzed by a broad range of MS and 

NMR methods so the dataset considered here is representative of 

the wide range of measurements these analytical platforms can pro-

vide. 

EXPERIMENTAL SECTION 
13C-labeled standard of amino acids. The reference material we 

used to evaluate the proposed methodology was a biologically pro-

duced sample containing 13C-labeled amino acids with a controlled 

and predictable isotopic composition: the isotopic species of each 

amino acid are forced to all be present at the same concentration. 

The nature, production, and qualification of this standard sample 

have been described in detail previously9, 19. 

Isotopic analyses. We analyzed the 13C-labeled reference material 

by GC-MS20, and by HSQC15 and ZQF-TOCSY15 NMR experi-

ments, as detailed in the corresponding publications. We also gath-

ered additional (HNCA, HACO-DIPSY, LC-MS) datasets for this 

reference material from the literature11, 19. 

Implementation of the computational framework. The frame-

work developed in this work was implemented as a Python 3 mod-

ule named IsoSolve. This can be used both as a command-line tool 

and as a module imported into Python scripts. The intuitive data 

input is based on tab separated value (tsv) files. The first (manda-

tory) input file describes the relationships between the measure-

ments and isotopomers as presented in the Results section. The for-

malism is universal and can be used for all existing and future types 

of measurement. The second (optional) input file contains the nu-

merical values of the measurements and their associated standard 

deviations. If provided, these numerical data are used to consolidate 

the measurements by solving a non-linear least square problem. 

The symbolic formulas obtained can be verified by assigning ran-

domly drawn values to isotopomers (and thus to the corresponding 

measurements) and comparing the randomly drawn and calculated 

values. Explicit results and details of the calculation process can be 

consulted in a user-friendly HTML document and/or as python var-

iables for later programming use. IsoSolve also generates isotopi-

cally-enriched InChIs for all isotopic species 

(https://github.com/MSI-Metabolomics-Standards-Initiative/inchi-

isotopologue-extension), facilitating its integration into standard-

ized data analysis pipelines. IsoSolve is freely available under open 

source license (GPL v2) at https://pypi.org/project/IsoSolve. A Ju-

pyter notebook (https://jupyter.org) is also provided at 

https://github.com/MetaSys-LISBP/IsoSolve_notebook as an in-

troduction to programming applications of the software. This note-

book contains the code used to perform all the calculations in this 

study and generate all the equations and Figures 3-6. 

RESULTS AND DISCUSSION 

General principle. The essence of the proposed framework lies in 

the way fundamental relationships between measurements and the 

underlying isotopic species are exploited. As a rule, isotopic meas-

urements from any method can be expressed as the relative abun-

dance of a (set of) isotopic species in a larger set of species. These 

relationships can be expressed as a system of equations linking in-

dependent measurements through isotopic space. We formalize this 

principle and illustrate how it can be exploited to integrate any type 

of measurement using the example of alanine, which is routinely 

analyzed by 13C-NMR, 1H-NMR and MS methods. 

13C-NMR experiments provide information on positional isoto-

pomers through JCC coupling patterns, i.e. on the isotopic content 

of the carbons bonded to the (labeled and detected) carbon. The JCα-

CO and JCα-Cβ coupling constants of alanine are typically resolved, 

so the 13C-NMR signal of the Cα atom has four components (a, b, 

c, d), which correspond to 4 individual isotopic species (010, 110, 

011 and 111, where 0 and 1 refer to 12C and 13C, respectively, and 

where the first digit corresponds to the CO group, the second to Cα 

and the third to Cβ). Their abundance is measured relative to the 

total amount of isotopic species that contribute to these signals, i.e. 

all species with a labeled Cα atom. Cα 13C-NMR signals can thus be 

expressed as: 

 

𝑎 =
010

010 + 110 + 011 + 111
                                                           (1) 

 

𝑏 =
110

010 + 110 + 011 + 111
                                                           (2) 

 

𝑐 =
011

010 + 110 + 011 + 111
                                                           (3) 

 

𝑑 =
111

010 + 110 + 011 + 111
                                                           (4) 

 

It should be stressed that this definition ensures that the measure-

ments always add up to 1, a fact that is subsequently used to sim-

plify formulas, as detailed below. In practice, this means that after 

measuring integrated intensities in arbitrary units, the measure-

ments have to be normalized to their sum. This can always be done 

provided at least one signal is quantified. 
1H-NMR experiments provide information on specific enrichments 

via JCH coupling patterns, i.e. on the proportion of 12C (e) and 13C 

(f) isotopes in the carbon bonded to the analyzed proton. The signal 

of the Hα proton can thus be expressed as: 

 

𝑒 =
000 + 100 + 001 + 101

000 + 001 + 010 + 100 + 101 + 110 + 011 + 111
        (5) 

 

𝑓 =
010 + 110 + 011 + 111

000 + 001 + 010 + 100 + 101 + 110 + 011 + 111
        (6) 

 

Finally, the total abundance of the set of isotopic species is set by 

convention to unity, yielding an additional equation: 

 
000 + 001 + 010 + 100 + 101 + 110 + 011 + 111 = 1        (7) 

 

Measurements obtained by 1H- and 13C-NMR can be integrated by 

solving this system of equations (eqs 1-7). Expressing the abun-

dance of all isotopic species as a function of the measurements 

yields the following solution: 

 
000 + 001 + 100 + 101 = 𝑒                                                            (8) 
010 = 𝑓 ∙ 𝑎                                                                                             (9) 
011 = 𝑓 ∙ 𝑏                                                                                           (10) 
110 = 𝑓 ∙ 𝑐                                                                                           (11) 
111 = 𝑓 ∙ 𝑑                                                                                           (12) 

 

This system is undetermined, in that while the summed abundance 

of the four species (000+001+100+101) can be calculated from the 

measurements, their individual abundances cannot. Nevertheless, 

the integration of 1H- and 13C-NMR data yields the absolute abun-

dance of four isotopic species (010, 011, 110 and 111), i.e. their 

abundance is expressed relative to the total amount of molecule ra-

ther than to a subset of species (010+110+011+111). This infor-

mation is new from an analytical standpoint because it cannot be 

obtained from individual experiments but only by integrating them, 

as described previously10. 
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In contrast to NMR, MS distinguishes molecular entities in terms 

of the number of labeled atoms incorporated, i.e. by distinguishing 

between isotopologues. This information can be obtained for dif-

ferent elementary metabolite units (EMUs), which are defined as 

moieties comprising distinct subsets of the compound’s atoms17. 

The carbon isotopologue distribution (CID) is the vector of isotop-

ologue abundances of a given EMU, where the abundance of each 

isotopologue is expressed relative to the total amount of molecule. 

The CID of the EMU containing all the carbon atoms of alanine is 

represented by a vector [g, h, i, j] and is formally defined by the 

following equations: 

 
𝑔 = 000                                                   (13) 
ℎ = 001 + 010 + 100                         (14) 
𝑖 = 011 + 110 + 101                          (15) 
𝑗 = 111                                                   (16) 

 

MS thus provides four additional equations (eqs 13-16) which can 

be combined with those derived from the 1H- and 13C-NMR data 

(eqs 1-7). Solving this extended system of equations yields: 

 
000 = 𝑔                                                    (17) 
001 + 100 = ℎ − 𝑎 ∙ 𝑓                         (18) 
101 = 𝑓 ∙ 𝑎 + 𝑒 − 𝑔 − ℎ                      (19) 
010 = 𝑓 ∙ 𝑎                                              (20) 
011 = 𝑓 ∙ 𝑏                                           (21𝑎) 
011 = 𝑓 ∙ (𝑎 + 𝑑 − 𝑗)                        (21𝑏) 
110 = 𝑓 ∙ 𝑐                                              (22) 
111 = 𝑓 ∙ 𝑑                                           (23𝑎) 
111 = 𝑗                                                  (23𝑏) 

 

Integrating MS data provides new information, namely the absolute 

abundances of species 000, 101, and the summed abundance of 001 

plus 100. The two latter species cannot be resolved individually but 

the overall level of under-determination is reduced. There is also 

redundancy in the system of equations, since for two isotopic spe-

cies, the abundance can be estimated in two ways: 111 can be quan-

tified from either NMR data (eq 23a) or MS data (eq 23b), and 011 

from different combinations of MS and NMR data (eqs 21a and 

21b). 

This intuitive example with 1H-NMR, 13C-NMR and MS data high-

lights how symbolic calculations can be used to develop a generic 

framework for integrating isotopic measurements. The calculations 

are purely based on the fundamental relationships between meas-

urements and the underlying isotopic species. The proposed frame-

work can integrate measurements from any analytical platforms to 

identify individual species that can be quantified, as well as the 

combination of species that cannot be resolved individually. This 

approach thus clarifies the coverage of isotopic space by transform-

ing platform-dependent measurements into (a set of) isotopic spe-

cies that can be actually quantified. The proposed framework can 

also consolidate isotopic datasets by integrating quantitative meas-

urements into a single non-linear least squares (NLS) problem. 

These different aspects are explained in the following sections. 

Mathematical formulation and implementation. Eqs 1-4 can be 

reorganized into linear isotopomer equations with measurements as 

parameters. For measurement a, this gives: 

𝑎 · (010 + 110 + 011 + 111) − 010 = 0               (24) 

And linear equations can be obtained similarly for all the other 

measurements. Let A be the resulting m by p matrix, x a p-length 

vector of isotopomers, and b the right hand side vector of length m: 

𝐴 · 𝑥 = 𝑏                                                                           (25) 
 

Note that A and b depend on measurements only. The rows of A are 

linearly dependent as the measurements are normalized to add up 

to 1. 

Eq 25 can be solved by first reducing A to its echelon form by 

Gauss-Jordan elimination: 

 

𝐴 =

(

 
 
 
 

 

𝑎11 ⋯ ⋯ ⋯ 𝑎1𝑝

0 ⋱   ⋮

⋮ ⋱ 𝑎𝑟𝑟 ⋯ 𝑎𝑟𝑝

⋮  0 ⋯ 0

⋮    ⋮

0 ⋯ ⋯ ⋯ 0

 

)

 
 
 
 

                                  (26) 

 

The elements in blue can be non-zero while those in black are all 0. 

The elements on the main diagonal from a11 to arr are strictly non-

zero. The number of linearly independent rows defines the rank of 

the matrix, r. Two situations can arise depending on the datasets 

considered: 

 If r < p, the system is under-determined, with p-r free 

isotopomers. Some of the isotopomers depend only on 

measurements (we call these defined isotopomers), while 

others also depend on free isotopomers. It can also hap-

pen that some isotopomers are defined by multiple sets 

of measurements. This is referred to as measurement re-

dundancy, of which eqs 21a,b and eqs 23a,b are exam-

ples; 

 If r = p, the system is just- or over-determined. All isoto-

pomers can be defined uniquely, or in multiple ways in 

the case of measurement redundancy. 

The next step in solving eq 25 is to back-solve the echelon form 

from xr to x1. During echelon reduction and back-solving, the ex-

pressions obtained are simplified at each stage using the fact that 

the measurements from a given method add up to 1. This property 

was not included in the standard SymPy21 module we used to ma-

nipulate symbolic expressions so we developed dedicated proce-

dures to solve and simplify these expressions. These can be found 

in the IsoSolve source code. 

Once the vector x is obtained as a function of measurements and 

possibly free isotopomers, measurement redundancy is assessed by 

substituting isotopomers into the equations defining the measure-

ments, e.g. substituting the solution of eq 25 into eqs 1-4. If in this 

process, a definition only contains measurements from methods 

different from the one considered, it is declared redundant. 

Formulas for cumomers22 (i.e. cumulative isotopomers, which de-

scribe sets of isotopomers) and EMUs17 involving measurements 

only are obtained in a similar way. Solutions for isotopomers are 

substituted into the equations defining cumomers and EMUs and 

simplified. Defined cumomers and EMUs are then those without 

free isotopomers in their final formulas. 

When the system is under-determined, one point of interest is: 

which combinations of isotopomers are still measurable, i.e. not de-

pendent on free isotopomers. This question is addressed by ex-

haustively testing isotopomers that depend on free isotopomers to 

identify combinations that can be expressed without free isoto-

pomers. During this procedure, combinations involving shorter, al-

ready identified combinations are ignored, such that only elemen-

tary measurable combinations are identified. 

Figure 1 illustrates how this algorithm is implemented in IsoSolve 

(Figure 1). 
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Figure 1. Algorithm implemented in IsoSolve to integrate partial, het-

erogeneous isotopic measurements. IsoSolve takes as input the rela-

tionships between measurements and isotopomers, as defined in Figure 

2, to identify the (sets of) isotopomers, cumomers and EMUs that can 

be quantified individually and produce the corresponding equations 

(steps framed in blue). When numerical values of measurements are 

also provided, IsoSolve determines the abundance of all identifiable 

species (optional steps in green). 

A useful feature of IsoSolve that is not directly related to symbolic 

equation resolution is that experimental data can be consolidated 

by solving the appropriate NLS problem (Figure 1). The equations 

in this problem are identical to those defining measurements, such 

as eqs 1-4. The numerical solution minimizes the cost function T(x) 

defined as the sum of squared residuals. Each residual 𝑢𝑖(𝑥) is cal-

culated as the difference between experimental measurement i 

(𝑦𝑒𝑥𝑝
𝑖 ) and its value calculated from estimated isotopomers 

(𝑦𝑠𝑖𝑚
𝑖 (𝑥)), normalized by their respective SDs (𝜎𝑒𝑥𝑝

𝑖 , provided by 

the user): 

𝑚𝑖𝑛𝑥 𝑇(𝑥) = ∑ (𝑢𝑖(𝑥))
2

𝑖 , with 𝑢𝑖(𝑥) =
𝑦𝑒𝑥𝑝
𝑖 −𝑦𝑠𝑖𝑚

𝑖 (𝑥)

𝜎𝑒𝑥𝑝
𝑖     (27) 

Obvious constraints of necessarily non-negative values that add up 

to 1 are applied to the solution. This NLS problem with inequality 

and equality constraint is solved using the NLSIC algorithm23. A 

chi-square test is performed to determine if the fit is satisfactory 

(based on a 95 % confidence threshold). Discrepancies indicate in-

consistencies between the different datasets. Finally, IsoSolve esti-

mates the precision of the abundance of each isotopomer, cumomer 

and EMU by propagating measurement uncertainties. Considering 

a linearized relationship between small variations in the residual 

vector ∆u and induced variations in the solution vector ∆x: 

𝐽∆𝑥 = ∆𝑢                                      (28) 

Where J is the Jacobian matrix of partial derivatives 𝜕𝑢/ ∂𝑥, the 

covariance matrix cov(x) is related to a given covariance matrix 

cov(u) as: 

cov(𝑥) = 𝐽−1cov(𝑢)(𝐽−1)t           (29) 

Given that J is not necessarily invertible, we use a singular value 

decomposition (SVD) of 𝐽 = 𝑈𝐷(𝑠)𝑉𝑡 where U and V are orthog-

onal matrixes and D(s) is a diagonal matrix with a vector s of 

strictly positive elements defining the main diagonal. The length of 

this vector is equal to the rank of J, rJ. Since the residuals are scaled 

by SDs, their covariance matrix is expected to be an identity matrix 

and the final expression simplifies to: 

cov(𝑥) =
𝑟𝐽

𝑟𝐽−1
𝑉𝐷(𝑠−2)𝑉𝑡               (30) 

Similar to Bessel's correction, the factor 𝑟𝐽/(𝑟𝐽 − 1) ensures that 

the estimator is not biased. The SDs of x are simply the square roots 

of the elements on the main diagonal of cov(x). For sake of brevity, 

the fact that x is constrained to sum to 1 has been omitted from the 

above description; this constraint is however taken into account in 

IsoSolve. 

Clarifying the isotopic coverage of alanine for individual and 

combined methods. Combining different analytical methods 

should improve the coverage of isotopic space. As a first step, we 

used this workflow to clarify the isotopic information provided by 

combining a broad range of (NMR and/or MS) methods. Based on 

the literature10-11, 13, 19-20, 24-25, we defined a list of eight datasets 

(D1-D8) that can be obtained for alanine (Figure 2). Even though 

it only contains three carbon atoms, no single method can com-

pletely cover alanine’s isotopic space by itself. 

 
Figure 2. Isotopic measurements on alanine by eight NMR and MS 

methods. The eight isotopic species of alanine are shown on the left, 

with white and blue circles representing 12C and 13C atoms, respec-

tively. Methods providing the same information are grouped together 

(e.g. ZQF-TOCSY and J-RES NMR experiments). For each dataset 

(D1-D8), each group of measurements is shown by a specific color, and 

the letters refer to the (sets of) species that are quantified relative to the 

amount of all species present in the corresponding group. 

We evaluated all 255 possible combinations of datasets. The com-

binations were evaluated based on the following metrics: number 

of individually quantifiable isotopomers and cumomers, number of 

EMUs for which all isotopologues can be quantified, number of 

redundant measurements, and information gainedfrom the pro-

posed integrative framework (i.e. number of additional quantifiable 

isotopomers). 

The results are summarized in Figure 3. In most situations, inte-

grating different datasets improves the coverage of isotopic space, 

though some combinations do not provide any new information 

(e.g. D2+D3+D4+D5, combination #127). Importantly, 34 % of the 

combinations (87/255) provide complete coverage of the isotopic 

space of alanine (i.e. quantify all its isotopomers, cumomers and 

EMUs), with different degrees of redundancy (from 0 to 10 redun-

dant measurements). This is only possible if the combined dataset 

includes both NMR and MS data, highlighting the complementarity 

of the two techniques. This analysis shows that all the isotopomers 

of alanine can be quantified with as few as three datasets. 
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Figure 3. Isotopic information for alanine obtained by integrating dif-

ferent datasets. For each of the 255 possible combinations of datasets 

(left panel, where each line represents a combination, with included da-

tasets shown in green), the following metrics were calculated (right 

panel): number of individually quantifiable isotopomers, cumomers 

and EMUs, number of redundant measurements, and number of addi-

tional isotopomers quantifiable only thanks to data integration. 

Indeed, combining LC-MS and NMR HSQC data (with Cα and Cβ 

signals, D1+D2+D8, combination #41) leads to the following solu-

tion (where the letters refer to the measurements shown in Figure 

2): 

 

000 = 𝑔                                                                                                       (31) 
001 = −𝑖 − 𝑗 · (1 − (𝑏 + 𝑑 + 𝑐 · 𝑙)/(𝑑 · 𝑙))                                      (32)  

100 = ℎ + 𝑖 + 𝑗 · (1 − (𝑏 + 𝑑 + 𝑙 · (𝑎 + 𝑐))/(𝑑 · 𝑙))                    (33)  

101 = 𝑖 − 𝑗 · (𝑏 + 𝑐)/𝑑                                                                           (34) 
010 = 𝑎 · 𝑗/𝑑                                                                                             (35) 
011 = 𝑏 · 𝑗/𝑑                                                                                             (36) 
110 = 𝑐 · 𝑗/𝑑                                                                                              (37) 
111 = 𝑗                                                                                                        (38) 
 

As well as improving isotopic coverage, this analysis may thus be 

used to guide experimental design by identifying the best combina-

tion of analytical methods and datasets to quantify a given set of 

isotopic species. As demonstrated here, the complementarity of any 

technique is readily evaluated, hence providing guidance for future 

analytical developments. 

Isotopic coverage of proteinogenic amino acids. Following the 

same approach, we used IsoSolve to clarify the current isotopic 

coverage of proteinogenic amino acids by determining the number 

of individually quantifiable isotopomers, cumomers and EMUs. 

Four amino acids are lost during protein hydrolysis (cysteine, tryp-

tophan, glutamine, and asparagine) and cannot be detected. Data 

integration was thus carried out for the remaining 16 proteinogenic 

amino acids. 

 

 
Figure 4. Isotopic coverage of proteinogenic amino acids. Number of 

isotopomers, cumomers and EMUs that can be quantified individually 

for each amino acid by integrating available datasets. The respective 

proportions of isotopic forms that can be quantified are shown above 

the bars. 

Figure 4 highlights the heterogeneity of isotopic coverage for the 

different amino acids. While complete isotopic coverage is achiev-

able for amino acids containing up to three carbon atoms (glycine, 

serine and alanine), the coverage progressively decreases as the 
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number of carbon atoms increases. Isotopomer coverage was 12-

31% for C4-amino acids (aspartate, threonine), 6-12% for C5-amino 

acids (glutamate, methionine, proline, valine), 3-6% for C6-amino 

acids (arginine, histidine, leucine, isoleucine, lysine), and about 1% 

for C9-amino acids (phenylalanine and tyrosine). As expected, the 

coverages are higher for cumomers (100% for C2 and C3, 40-53% 

for C4, 23-42% for C5, 6-24% for C6, 2-3% for C9) and for EMUs 

(100% for C2 and C3, 27-40% for C4, 16-32% for C5, 5-21% for C6, 

1-2% for C9) than for isotopomers. Overall, this framework pro-

vides a clear audit of the isotopic information that can actually be 

measured on proteinogenic amino acids. 

Data integration and consolidation. To quantitatively evaluate 

the proposed integrative framework, we produced a reference sam-

ple of 13C-labeled proteinogenic amino acids with controlled and 

predictable labeling patterns in which all isotopic species are pre-

sent in equal amounts9.  

 

 
Figure 5. Summary of data integration results for all dataset combina-

tions that completely cover the isotopic space of alanine. The accuracy 

and precision of isotopomer, cumomer and EMU quantifications (right 

panel) were determined for each combination of datasets (left panel). 

Combinations discussed in the text and detailed in Figure 6 are indi-

cated by an arrow. 

This sample was analyzed by NMR (ZQF-TOCSY, HSQC, HNCA 

and HACO-DIPSY experiments) and MS (GC-MS and LC-MS), 

yielding eight independent datasets (D1-D8 in Figure 2) containing 

a total of 21 isotopic measurements for alanine (Supporting infor-

mation S1). For all combinations of datasets identified as providing 

complete isotopic coverage of alanine (Figure 3), we used IsoSolve 

to determine the abundance of each isotopomer, cumomer and 

EMU. The results obtained for each combination were evaluated 

using two quantitative metrics19: accuracy (defined as the mean er-

ror and calculated from the differences between theoretical and 

measured abundances) and precision (defined as the mean standard 

deviation of the measured abundances). 

All the isotopomers, cumomers and EMUs of alanine were indeed 

quantified for all the combinations considered. The accuracy and 

precision of the results depended on the datasets included (Figure 

5). 

 

 
Figure 6. Detailed quantification results for three different combina-

tions of datasets. The abundance of each isotopomer (upper panel), 

cumomer (middle panel) and EMU (lower panel) was estimated by in-

tegrating different datasets (HSQC+LC-MS, orange bars; 

HSQC+TOCSY+LC-MS, green bars; all datasets, blue bars), and ex-

perimental values were compared to the theoretical abundances in the 

reference sample (red bars). 12C- and 13C-atoms are represented by 0s 

and 1s, respectively; x stands for “0 or 1”, and Es denote the atoms 

contained in the corresponding EMU. Error bars correspond to ± one 

standard deviation. 

Regarding isotopomers for example, integrating HSQC and LC-

MS datasets (D1+D2+D8, combination #41) led to an accuracy and 

precision of 0.033. Adding the TOCSY NMR dataset (with Hα and 

Hβ signals, D1+D2+D4+D5+D8, combination #174) improved 

both metrics (accuracy = 0.006, precision = 0.014) and results were 

further improved when all datasets were combined (D1-8, combi-

nation #254, accuracy = 0.006, precision = 0.009). Similar trends 

were observed for cumomers and EMUs (Figure 5). 
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A detailed analysis of the integration results reveals that precision 

and accuracy also depend on the isotopic species considered (Fig-

ure 6). Combining HSQC and LC-MS data is sufficient to reliably 

quantify 6 of the 8 isotopomers of alanine. Isotopomers 000 (accu-

racy = 0.002, precision = 0.009) and 011 (accuracy = 0.020, preci-

sion = 0.020) are for instance well resolved, but isotopomers 001 

(accuracy = -0.060, precision = 0.070) and 100 (accuracy = 0.102, 

precision = 0.082) remain poorly resolved. Adding the TOCSY da-

taset significantly improves quantification for the two latter species 

(001: accuracy = 0.018, precision = 0.022; 100: accuracy = -0.008, 

precision = 0.025). The most reliable results were obtained by in-

tegrating all the datasets (001: accuracy = 0.018, precision = 0.013; 

100: accuracy = -0.007, precision = 0.010). Here again, similar 

trends were observed for cumomers and EMUs (Figure 6). 

In combinations with measurement redundancy, the consistency of 

the different datasets can be evaluated using a chi-square test. For 

instance, when all datasets were combined (D1-8, combination 

#254, 10 redundant measurements), the chi-square test confirmed 

that all the measurements were consistent (p-value = 0.994). When 

some of these measurements were artificially altered, e.g. b 

changed from 0.2533 to 0.0533 and c from 0.2475 to 0.4475, the p-

value decreased to 2×10-16, highlighting the inconsistencies be-

tween the redundant measurements. This illustrates how the pro-

posed approach can be used to identify biased measurements to be 

checked before interpretation. 

These results confirm that integrating additional datasets improves 

both the accuracy and the precision of isotopomer quantification, 

very likely because of the high degree of redundancy (up to 10 re-

dundant measurements) which reduces the impact of experimental 

noise and the potential biases of individual measurements. Overall, 

all isotopomers could be reliably quantified using a wide variety of 

data combinations, with a high accuracy and precision in most sit-

uations. 

CONCLUSION 

The complementarity of different (MS and/or NMR) approaches 

dedicated to isotopic analyses is often highlighted, but the lack of a 

generic integrative framework able to deal with heterogeneous, par-

tial isotopic measurements has meant that this has never been eval-

uated in detail. The proposed framework fills this conceptual gap 

by allowing any type of isotopic measurements (MS, MS/MS, 1H-

NMR, 13C-NMR, 15N-NMR, etc) to be included. The framework is 

agnostic to the analytical platform, the labeled element, the tracer 

isotope, and the molecule. It can also be applied to double-labeling 

approaches (e.g. 13C and 15N). This framework has been imple-

mented as an open source Python program, IsoSolve, which is 

available as a command-line interface and as a Python library to 

streamline its integration into existing data analysis pipelines. 

Using amino acids as an example application, we have demon-

strated that this framework can i) clarify the actual coverage of iso-

topic space by identifying the (sets of) species that can actually be 

quantified, ii) improve this coverage by increasing the number of 

isotopic species that can be quantified individually, iii) evaluate the 

complementarity and redundancy of different techniques, iv) con-

solidate isotopic datasets by evaluating their consistency, identify-

ing biased measurements, and reducing the impact of measurement 

noise, v) support experimental design by identifying the most rele-

vant methods to quantify a given set of isotopic species, and vi) 

guide future analytical developments. 

Our framework connects measurements to the chemical structure 

of compounds and to their formal representation in isotopic models 

of metabolism, hence assisting both model-free and model-based 

data interpretation. This framework may thus support structural in-

vestigations (e.g. metabolite identification, spectra annotation, val-

idation of MS/MS fragmentation patterns, development of stand-

ardized databases for deposition of isotopic datasets based on iso-

topically-resolved InChIs) as well as functional investigations of 

metabolic systems (e.g. experimental design, data consolidation, 

conversion between isotopic representations in 13C-fluxomics 

workflows). It should also make isotope labeling experiments more 

accessible to the wider biological community. 

Beyond isotopic studies, this framework may prove equally valua-

ble in other fields dealing with the analysis of combinatorial states 

of biological entities. This is the case in proteomics for instance, 

for the analysis of post-translational modifications (e.g. phosphor-

ylation or acetylation), with the ultimate objective of determining 

the complete distribution of each of the 2n forms of a protein with 

n-modification sites. Partial information on these distributions can 

be obtained by MS and NMR26, and these datasets can be integrated 

using IsoSolve following the principles described in this article. 
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