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S3 Text. Technical considerations regarding the composition of the 1 

BASEL collection and the phenotyping of bacterial defense systems 2 

Considerations regarding the composition of the BASEL collection 3 

The choice of isolation host is known to be “perhaps the most critical part of the isolation process” 4 

because it pre-determines the properties and range of phages that can be sampled [1]. We therefore 5 

specifically designed a highly phage-sensitive host strain, Escherichia coli K-12 ΔRM, in order to eliminate 6 

as many biases in the isolation process as possible (see Materials and Methods as well as Composition of 7 

the BASEL collection in the main text).  8 

However, one important feature of E. coli K-12 ΔRM is that it displays the rough LPS of all K12-9 

lineage laboratory strains and lacks the O-antigen chains that are otherwise fully covering the cell surface 10 

of natural enterobacterial isolates (Figs 3A and 12A) [2]. On one hand, the absence of this formidable 11 

barrier enabled the isolation of a huge diversity of phages from all families that are, with very few 12 

exceptions, largely unable to infect E. coli K-12 with restored O16-type O-antigen expression (Figs 3A, 4, 13 

and 6-11). However, using a strain with rough LPS as isolation host intrinsically excludes any phages for 14 

which the O-antigen is not only an optional primary receptor but an essential part of the host recognition. 15 

Two common examples for such phages are iconic Salmonella phage P22 and Gamaleyavirus G7C, a 16 

relative of N4 (see Fig 10E), that both bind to very specific types of O-antigen and then target the glycan 17 

chain by enzymatic activities of their tailspikes to generate directional movement towards the cell surface 18 

[3, 4]. It is clear that this kind of phages are not highly abundant among E. coli phages because, e.g., a 19 

study that had isolated fifty phages primarily using strains with smooth LPS found 1) mostly the same 20 

taxonomic groups as those in the BASEL collection and reported that 2) many phages isolated on smooth 21 

hosts can also infect E. coli K-12 [5]. However, the targeting of O-antigen chains as an essential primary 22 
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receptor is not uncommon among podoviruses (and some myoviruses) [6, 7], and the isolation of E. coli 23 

phages with hosts expressing full smooth LPS indeed revealed a bigger diversity of (narrow-host-range) 24 

podoviruses than was reported in studies solely relying on E. coli K-12 [5]. Given seemingly low abundance 25 

of O-antigen specialists and that most realistic applications of the BASEL collection will be based on 26 

infecting E. coli K-12 strains with rough LPS, we do not feel that the absence of these O-antigen-dependent 27 

phages compromises the usefulness of our work. However, we imagine that a future study could generate 28 

a dedicated, optional expansion of the BASEL collection containing a diverse and representative selection 29 

of these phages that are specialized in the O16-type O-antigen of E. coli K-12. Similarly, we excluded all 30 

tailless phages like Microviridae and Inoviridae from the BASEL collection because their biology, evolution, 31 

and host interactions are so different from the lytic Caudovirales that we feel their investigation is beyond 32 

the scope of our current work [8, 9]. 33 

Any  bacteriophage collection of finite size is inherently unable to include all rare phage groups 34 

and cannot comprehensively cover all genera of highly diverse and abundant families such as the 35 

Drexlerviridae (Fig 4B). Despite this shortcoming, we feel that the BASEL collection provides a reasonably 36 

complete snapshot of E. coli phage diversity because, e.g., all common and almost all previously described 37 

protein receptors of all included phage groups are covered (Figs 4-8). Increasing the number of phage 38 

isolates in the BASEL collection might therefore not greatly increase its biological diversity but could 39 

jeopardize its usefulness by making the handling more complicated. It also does not appear that sampling 40 

most phages from sewage plant inflow is a major limitation, because we did not observe any difference 41 

in the phages sampled from sewage and, e.g., river water (S5 Table). Previous work had sampled overall 42 

similar sets of phage groups on matter if the phages came from sewage or from infant guts [5, 10-15], 43 

possibly because many E. coli phages in the environment might derive directly or indirectly from fecal 44 

contaminations. 45 
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 Another limitation of our isolation host strain E. coli K-12 ΔRM is that it might introduce additional 46 

biases beyond its rough LPS phenotype. As an example, laboratory adaptation might have inactivated also 47 

other possible phage receptors on the cell surface. A relevant example for the possible consequences of 48 

such a bias is the observation that phage T5 of the T phages is a highly unusual member of the 49 

Markadamsvirinae subfamily of Demerecviridae because it uses the FhuA protein as its terminal receptor 50 

(Fig 7) [16]. This peculiar feature of the T phages is easily explained with the btuB loss-of-function mutation 51 

of many early E. coli B strains that were used to sample the T phages but later reverted back to functional 52 

BtuB expression, e.g., in the lineage leading to E. coli B REL606 that is sensitive to all tested 53 

Markadamsvirinae (Fig 12B) [16, 17]. Similarly, the T phages do not contain any Vequintavirinae phage 54 

despite the abundance of this group, and we indeed find that none of our twelve Vequintavirinae sensu 55 

stricto can lyse E. coli B REL606 (Fig 12B). Since this defect is probably due to impaired adsorption, we 56 

speculate that the truncated E. coli B LPS core and / or changes of the ECA or any other primary receptor 57 

might be responsible for this surprising phenotype.  58 

 Another possible factor biasing the diversity of isolated bacteriophages could be remaining 59 

immunity systems in the sampling strain E. coli K-12 ΔRM. While we strain lacks all known restriction 60 

systems of E. coli K-12 as well as the RexAB and PifA Abi systems (S1 Text), several systems remain that 61 

either have been poorly studied or are supposed to have only a narrow target range [18]. As an example, 62 

the cryptic prophage e14 of E. coli K-12 encodes the Lit Abi system that cleaves the elongation factor Tu 63 

(EF-Tu) when sensing the major capsid protein of Tevenvirinae [18, 19]. It is intuitive that the presence of 64 

lit in E. coli K-12 ΔRM might somehow bias the range of Tevenvirinae phages that we are sampling. 65 

However, although we confirmed by whole-genome sequencing that both the host as well as the T4 phage 66 

should carry alleles of lit and the major capsid protein gene triggering abortive infection [19], we observe 67 

robust plaque formation of T4 on our E. coli K-12 strains (see, e.g., in S4B Fig). Similarly, recent work 68 
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growing phage T4 on E. coli K-12 hosts never reported any problems with abortive infection [5, 20, 21]. 69 

We are therefore skeptical if abortive infection by lit can significantly affect the isolation of bacteriophages 70 

with E. coli K-12 ΔRM. Besides Lit, the RnlAB type II toxin-antitoxin system aborts the growth of T4 by 71 

activation of the RnlA RNase toxin when the phage lacks the dmd antitoxin gene [18, 22]. However, given 72 

the broad conservation of dmd among Tevenvirinae and the absence of any reports that RnlAB could 73 

target different phages, we do not think that this system has a significant impact on our bacteriophage 74 

isolation experiments. Like for Lit and RnlAB, we see no evidence that the other proposed immunity 75 

systems of E. coli K-12 will have relevant impact on the diversity of sampled phages. These are mostly ill-76 

characterized or, in case of DicB, were only shown to work when ectopically expressed [23]. 77 

Considerations regarding the phenotyping of bacterial immunity systems 78 

 Our phage phenotyping experiments with diverse immunity systems were performed as 79 

quantitative top agar assays to determine the efficiency of plating (EOP) of each phage on a host carrying 80 

a given immunity system to generate robust, quantitative data (see Materials and Methods). However, 81 

there are a few technical caveats associated with our approach that need to be considered for a 82 

comprehensive interpretation of our results. Most importantly, for the phenotyping in the E. coli K-12 83 

ΔRM host we cloned the different immunity systems onto plasmids which, though most were cloned with 84 

their native promoter, might affect their functionality by change of copy number (see Materials and 85 

Methods as well as S3 and S4 Tables). As an example, it was shown that phage T4 wildtype is resistant to 86 

RexAB but becomes sensitive when this immunity system is overexpressed from a multicopy plasmid [24]. 87 

However, the ColE1 and SC101 origins of replications used in this study have rather low copy numbers (of 88 

around 40 and 3-4, respectively [25]) and, e.g., our rexAB construct with ColE1 origin of replication has no 89 

detectable effect on the growth of phage T4 or any relative (Fig 8C), while an rIIAB mutant of this phage 90 

was sensitive as described previously (S4B and S4C Figs) [18]. The use of two different origins of replication 91 
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is a consequence of our initial choice to clone immunity systems onto plasmids isogenic to the EcoRI and 92 

EcoRV plasmids of Pleška, Qian et al. [26] which later resulted in problems with toxicity for some 93 

constructs. These were then cloned into the lower-copy plasmid with SC101 origin of replication instead 94 

(S4 Table). Though it is clear that expression levels could be different between these backbones as already 95 

evidenced form the difference in toxicity, we do no feel that this compromises our approach considerably. 96 

As an example, the two type III RM systems EcoP1_I and EcoCFT_II have a similar recognition sequence 97 

(Fig 3B) that is similarly abundant in the diverse phage genomes (S5 Table), but EcoP_1 was cloned with 98 

an SC101 origin of replication while EcoCFT_II was cloned with a ColE1 origin of  replication. However, the 99 

phenotyping data do not show EcoCFT_II would be more potent compared to EcoP1_I (Figs 4 and 6-11) – 100 

sometimes one or the other has the stronger effect on EOP, sometimes they are similar.  101 

 Another more transparent caveat is that the graphs displaying the EOP of different phages on 102 

hosts with restriction-modification (RM) systems are not directly comparable quantitatively. The reason 103 

is that, due to differences in genome size, GC content, and evolution towards restriction site avoidance, 104 

the different genomes have vastly different numbers of recognition sites for a given RM system [27] (S5 105 

Table). In extreme cases such as for type II RM systems and many tested podoviruses, recognition sites 106 

can be completely absent (S5 Table). One might argue that displaying an EOP (of ca. 1) for phage / RM 107 

interactions in the absence of recognition sites is not useful because – just biochemically – a cleavage of 108 

the phage chromosome was barely possible. However, given that the number of these sites is strongly 109 

under selection and part of the phages’ strategy to counter their host’s defenses, we find it more 110 

appropriate to show all data and highlight for the reader when no recognition sites were present. 111 

 112 

 113 
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