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Abstract 26 

Bioinformatic research relies on large-scale computational infrastructures which have a non-27 
zero carbon footprint. So far, no study has quantified the environmental costs of 28 
bioinformatic tools and commonly run analyses. In this study, we estimate the bioinformatic 29 
carbon footprint (in kilograms of CO2 equivalent units, kgCO2e) using the freely available 30 
Green Algorithms calculator (www.green-algorithms.org). We assess (i) bioinformatic 31 
approaches in genome-wide association studies (GWAS), RNA sequencing, genome 32 
assembly, metagenomics, phylogenetics and molecular simulations, as well as (ii) 33 
computation strategies, such as parallelisation, CPU (central processing unit) vs GPU 34 
(graphics processing unit), cloud vs. local computing infrastructure and geography. In 35 
particular, for GWAS, we found that biobank-scale analyses emitted substantial kgCO2e and 36 
simple software upgrades could make GWAS greener, e.g. upgrading from BOLT-LMM v1 to 37 
v2.3 reduced carbon footprint by 73%. Switching from the average data centre to a more 38 
efficient data centres can reduce carbon footprint by ~34%. Memory over-allocation can be a 39 
substantial contributor to an algorithm’s carbon footprint. The use of faster processors or 40 
greater parallelisation reduces run time but can lead to, sometimes substantially, greater 41 
carbon footprint. Finally, we provide guidance on how researchers can reduce power 42 
consumption and minimise kgCO2e. Overall, this work elucidates the carbon footprint of 43 
common analyses in bioinformatics and provides solutions which empower a move toward 44 
greener research. 45 
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Introduction 46 

Biological and biomedical research now requires the analysis of large and complex datasets, 47 
which wouldn’t be possible without the use of large-scale computational resources. Whilst 48 
bioinformatic research has enabled major advances in the understanding of a myriad of 49 
diseases such as cancer [1]–[3] and COVID-19 [4], the costs of the associated computing 50 
requirements are not limited to the financial; the energy usage of computers causes 51 
greenhouse gas (GHG) emissions which themself have a detrimental impact on human 52 
health.  53 
 54 
Energy production affects both human and planetary health. The yearly electricity usage of 55 
data centres and high performance computing (HPC) facilities (200 TWh [5]) already 56 
exceeds the consumption of countries such as Ireland or Denmark [6] and is predicted to 57 
continue to rise over the next decade [5], [7]. Power generation, through the associated 58 
emissions of GHGs, is one of the main causes of both outdoor air pollution and climate 59 
change. Every year, it is estimated that 4.2 million deaths are caused by ambient air 60 
pollution alone while 91% of the world’s population suffers from air quality below the World 61 
Health Organisation standards [8]. Global warming results in further consequences on 62 
human health, economy and society: the daily population exposure to wildfires has 63 
increased in 77% of countries [9], 133.6 billion potential work hours were lost to high 64 
temperatures in 2018 and with 220 million heatwave exposures, vulnerable populations 65 
(aged 65 and older) are affected at an unprecedented level. 66 
 67 
The growth of large biological databases, such as UK Biobank [10], All of Us Initiative [11], 68 
and Our Future Health [12], has substantially increased the need for computational 69 
resources to analyse these data and will continue to do so. With climate change an urgent 70 
global emergency, it is important to assess the carbon footprint of these analyses and their 71 
requisite computational tools so that environmental impacts can be minimised.  72 
   73 
In this study, we estimate the carbon footprint of common bioinformatic tools using a model 74 
which accounts for the energy use of different hardware components and the emissions 75 
associated with electricity production. For each analysis, we contextualise the carbon 76 
footprint in multiple ways, such as distances travelled by car or with regards to carbon 77 
sequestration by trees. This study raises awareness, provides easy-to-use metrics, and 78 
makes recommendations for greener bioinformatics. 79 

Results 80 

We estimated the carbon footprint of a variety of bioinformatic tools and analyses (Table 1, 81 
Table 2) using the Green Algorithms model and online tool (Methods). For each software, 82 
we utilised benchmarks of running time and computational resources; in the rare cases 83 
where published benchmarks were unavailable, we used in-house analyses to estimate 84 
resource usage (Methods). The estimations are based on the global average data centre 85 
efficiency (PUE) of 1.67 [13], the global average carbon intensity (0.475 kgCO2e/kWh [14]) 86 
and a usage factor of 1 (Methods).   87 
 88 
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We considered a wide range of bioinformatic analyses: genome assembly, metagenomics, 89 
phylogenetics, RNA sequencing, genome-wide association analysis, molecular simulations 90 
and virtual screening. Detailed results are provided for each analysis below. Furthermore, 91 
we show that choices of hardware and software versions substantially affect the carbon 92 
footprint of a given analysis, in particular cloud vs. local computing platforms, memory 93 
usage, processor options, and parallel computing. These results provide, for each task, 94 
reference values of carbon footprints for researchers; however, we note how the estimations 95 
are likely to scale with different parameters (e.g. sample size or number of features) and 96 
ultimately would advise researchers to utilise the GA tool (www.green-algorithms.org).   97 

Genome assembly  98 

Genome assembly is the process by which sequencing reads (short or long reads, or a 99 
combination) are combined to arrive at a single or set consensus sequences for an 100 
organism. Hunt et al. [15] compared SSPACE [16], SGA [17] and SOAPdenovo2 [18] for 101 
genome scaffolding using contigs produced with the Velvet assembler [19] and the human 102 
chromosome 14 GAGE dataset [20]; two read sets were compared, one using 22.7 million 103 
short reads (fragment length of 3 kb) and the other 2.4 million long reads (35 kb).  104 
Scaffolding the short reads resulted in 0.13, 0.0036, and 0.0027 kgCO2e when using SGA, 105 
SOAPdenovo2 and SSPACE, respectively (Table 2), which is equivalent to 0.14, 0.0039 and 106 
0.0029 tree-months. For long reads scaffolding, the corresponding carbon footprints were 107 
lower, 0.029, 0.0015 and 0.0010 kgCO2e (0.032 to 0.0011 tree-months). As the running time 108 
of a number of genome assembly tools scale linearly with the number of reads [21], these 109 
results equate to between 0.0001 to 0.006 kgCO2e (0.0001 to 0.006 tree-months) per million 110 
short reads assembled and 0.0004 to 0.0122 kgCO2e (0.0005 to 0.0133 tree-months) per 111 
million long reads assembled. On average, long read assembly had a carbon footprint 3.2x 112 
larger than short-read assembly for the tools we measured. All three methods had similar 113 
performance on these read sets with SOAPdenovo2 slightly outperforming SGA and 114 
SSPACE. 115 
 116 
For whole genome assembly of humans, the well-established softwares Abyss [22] and 117 
MEGAHIT [23] were benchmarked by Jackman et al. [22] using Illumina short read 118 
sequencing (815M reads, 379M uniquely mapped reads, 6kbp mean insert size) (Table 2). 119 
We estimated that this task emits 10.7 kgCO2e using Abyss and 15.1 kgCO2e using 120 
MEGAHIT (equivalent to 12 and 16 tree-months) and per million reads, 0.013 kgCO2e 121 
(Abyss2.0, 0.014 tree-months) and 0.019 kgCO2e (MEGAHIT, 0.020 tree-months) . 122 

Metagenomics 123 

Metagenomics is the sequencing and analysis of all genetic material in a sample. Based on 124 
a benchmark from Vollmers et al. [24], we estimated the carbon footprint of metagenome 125 
assembly with three commonly used assemblers, metaSPAdes [25], MEGAHIT [23] and 126 
MetaVelvet (k-mer length 101bp) [26] on 100 samples from forest soil (33M reads, median 127 
length 360 bp). We found carbon footprints ranged between 14 and 186 kgCO2e (16 and 128 
203 tree-months), corresponding to 0.14 to 1.9 kgCO2e (0.2 to 2 tree-months) per sample. 129 
Meta-SPAdes had the greatest carbon footprint but also the best performance followed by 130 
MetaVelvet and MEGAHIT, respectively (Table 2).   131 
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 132 
For metagenomic classifiers, Dilthey et al. [27] benchmarked MetaMaps [27], Kraken2 [28], 133 
Kraken/Bracken [29], [30], and Centrifuge [31]. They compared these tools on ~5Gb of 134 
randomly sampled reads from an Oxford Nanopore GridION sequencing run from Zymo 135 
mock communities, which comprises five Gram-positive bacteria, three Gram-negative 136 
bacteria and two types of yeast. Carbon footprints differed by several orders of magnitude, 137 
MetaMaps had the largest footprint with 18.25 kgCO2e (19.9 tree-months), followed by 138 
Kraken/Bracken 0.092 kgCO2e (0.1 tree-months), Centrifuge 0.013 kgCO2e (0.014 tree-139 
months) and Kraken2 0.0052 kgCO2e (0.0057 tree-months) (Table 2). The carbon footprints 140 
of metagenomic classification ranged from 0.001 to 0.018 kgCO2e (0.001 to 0.02 tree-141 
months) per Gb of classified reads using short read classifiers (Kraken2, Centrifuge, 142 
Kraken/Bracken). Kraken2 had the highest performance over all taxonomic ranks when all 143 
reads were assembled, followed by Kraken/Bracken, Centrifuge and MetaMaps. However, 144 
when considering reads >1000bp, MetaMaps had the highest precision and recall for all 145 
available taxonomic levels, followed by Kraken2, Kraken/Bracken, and Centrifuge.  146 

Phylogenetics  147 

Phylogenetics is the use of genetic information to analyse the evolutionary history and 148 
relationships amongst individuals or groups. Baele et al. [32] benchmarked nucleotide-based 149 
phylogenetic analyses with and without spatial location information to study the evolution of 150 
the Ebola virus during the 2013-2016 West African epidemics (1,610 genomes, 18,992 151 
nucleotides [33]). The authors also investigated more complex codon models. For all these 152 
tasks, they utilised BEAST combined with BEAGLE [34]. 153 
 154 
We estimated the carbon footprint of nucleotide-based modelling of the Ebola virus dataset 155 
was between 0.01 to 0.08 kgCO2e depending on hardware choices (0.013 to 0.083 tree-156 
months) without modelling spatial information and 0.07 to 0.3 kgCO2e (0.077 to 0.33 tree-157 
months) when including it. More complex codon modelling of extant carnivores and 158 
pangolins resulted in a greater footprint, from 0.02 to 0.1 kgCO2e (0.02 to 0.1 tree-months) 159 
(Figure 2, Supplementary table 2). These results illustrate a trade-off between running time 160 
and carbon footprints, and we discuss it in more detail below (Parallelisation, Processors). 161 
It should be noted that the running time of BEAST, and therefore its carbon footprint, scales 162 
as a power law, that is, non-linearly with the number of loci [35]. 163 

RNA sequencing  164 

RNA sequencing (RNAseq) is the sequencing and analysis of all RNA in a sample. We first 165 
assessed the read alignment step in RNAseq using an extensive benchmarking by Baruzzo 166 
et al. [36]. We estimated the carbon footprint of aligning 10 million simulated 100-base read 167 
pairs to two different genomes, Homo Sapiens (hg19) and Plasmodium falciparum [36], 168 
which have substantially differing levels of complexity (P. falciparum with higher rates of 169 
polymorphisms and errors). The three most-cited software tested, STAR [37], HISAT2 [38] 170 
and TopHat2 [39], all had low recall on the malaria dataset, so we also assessed Novoalign 171 
[40] as it performed significantly better for this task (Table 2). Despite its greater 172 
performance for P. falciparum, Novoalign had the highest carbon footprint (0.67 kgCO2e, 173 
0.73 tree-months) followed by STAR (0.37 kgCO2e, 0.40 tree-months), TopHat2 (0.24 174 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 9, 2021. ; https://doi.org/10.1101/2021.03.08.434372doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.08.434372
http://creativecommons.org/licenses/by/4.0/


 

5 

kgCO2e, 0.26 tree-months) and HISAT2 with the lowest (0.0052 kgCO2e, 0.0057 tree-175 
months). For human read alignment, all four methods had high recall. HISAT2 had, again, 176 
the lowest carbon footprint with 0.0054 kgCO2e (0.0059 tree-months) followed by STAR with 177 
0.0097 kgCO2e (0.011 tree-months), TopHat2 with 0.32 kgCO2e (0.35 tree-months) and 178 
Novoalign with 0.98 kgCO2e (1.1 tree-months). As alignment tools are often reported with 179 
alignment speed (reads aligned in a given time) [37], [38], the carbon footprints of the 180 
analyses above scale accordingly and ranged from 0.001 to 0.1 kgCO2e (0.001 to 0.1 tree-181 
months) per million human or P. falciparum reads. 182 
 183 
To quantify the carbon footprint of a full quality control pipeline with FastQC, we utilised 392 184 
RNAseq read sets obtained from PBMC samples [41], [42], with a median depth of 45 million 185 
paired-end reads and average length 146bp. Adapters were trimmed with TrimGalore [43], 186 
followed by the removal of optical duplicates using bbmap/clumpify [44]. Reads were then 187 
aligned to the human genome reference (Ensemble GRCh 38.98) using STAR [37]. We 188 
estimated the carbon footprint of this pipeline to be 55 kgCO2e (60 tree-months) for the full 189 
dataset, or 1.2 kgCO2e (1.3 tree-months) per million reads (Table 2), which scales linearly 190 
(Additional  file 2). 191 
 192 
For transcript isoform abundance estimation, we could assess Sailfish [45], RSEM [46], and 193 
Cufflinks [47] using the benchmark from Kanitz et al. [48] on simulated human RNA-seq data 194 
(hg19). The Flux Simulator software [49] and GENCODE [50] were used to generate 100 195 
million single-end 50bp reads. The carbon footprints of this task were between 0.0081 and 196 
1.4 kgCO2e (0.009 to 1.5 tree-months). Sailfish had the lowest footprint, followed by 197 
Cufflinks and RSEM. (Table 2). Kanitz et al. showed that the time complexity for most of the 198 
tools tested was approximately linear, i.e. the carbon footprint is proportional to the number 199 
of reads. Additionally, these tools offer the option of parallelisation. However, for example, 200 
the decrease in running time when using 16 cores instead of one was not sufficient to offset 201 
the increase in power consumption, which resulted in a 2- to 6-fold increase in carbon 202 
footprint when utilising 16 cores (Table 2). RSEM and Sailfish had similar performance in 203 
this benchmark, but Sailfish’s carbon footprint was 71-fold less than RSEM’s when using 1 204 
core and 39-fold less with 16 cores. This difference in carbon footprint was partly due to 205 
Sailfish not performing a read alignment step. Lastly, whilst Cufflinks is largely used for 206 
abundance estimation, its main purpose is transcript isoform assembly, resulting in a 207 
significantly lower accuracy here (at a higher carbon cost). 208 

Genome-wide association analysis 209 

Genome-wide association analysis aims to identify genetic variants across the genome 210 
associated with a phenotype(s). Here, we assessed both genome-wide association studies 211 
(GWAS) and expression qualitative trait locus (eQTL) mapping in cis. We estimated the 212 
carbon footprint of GWAS with two different versions of Bolt-LMM [51] on the UK Biobank 213 
[10] (500k individuals, 93M imputed SNPs). We found that a single trait GWAS would emit 214 
17.3 kgCO2e (18.9 tree-months) with Bolt-LMM v1 and 4.7 kgCO2e (5.1 tree-months) with 215 
Bolt-LMM v2.3 (Table 2), a reduction of 73%. GWAS typically assess multiple phenotypes, 216 
e.g. metabolomics GWAS consider several hundred to thousands of metabolites; since the 217 
association models in GWAS are typically fit on a per-trait basis, the carbon footprint is 218 
proportional to the number of traits analysed. Bolt-LMM’s carbon footprint also scales linearly 219 
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with the number of genetic variants [52], meaning that biobank-scale GWAS using UK 220 
Biobank (500k individuals) has a carbon footprint of 0.05 kgCO2e per million variants (0.06 221 
tree-months) with Bolt-LMM v2.3 and 0.2 kgCO2e per million variants (0.2 tree-months) with 222 
Bolt-LMM v1. However, Bolt-LMM doesn’t scale linearly with the number of samples (time ~ 223 
O(N1.5) [52]), which must be taken into account when scaling the values to a different sample 224 
size. 225 
 226 
For cis-eQTL mapping, we compared the carbon footprint using either CPUs or GPUs on 227 
two example datasets, first on a small scale using skeletal muscle data from GTEx [53] (1 228 
gene, 700 individuals) with a benchmark of FastQTL (CPU) [54] and TensorQTL (GPU) [55], 229 
[56]  from Taylor-Weiner et al. [56]. Secondly, we used an in-house assessment (Methods), 230 
to estimate the carbon footprint of a CPU-based analysis with LIMIX [57] to GPU-based 231 
TensorQTL using a larger cohort of 2,745 individuals with 18k genetic features and 10.7m 232 
SNPs (Table 2). In both cases, footprints were lower using GPUs instead of CPUs. The 233 
carbon footprint for the smaller scale GTEx benchmark was 28 times smaller when utilising 234 
the GPU instead of the CPU method: 0.0002 kgCO2e (0.0002 tree-months) with FastQTL, 235 
0.00001 kgCO2e (0.00001 tree-months) with TensorQTL. Similarly, for the cohort scale cis-236 
eQTL mapping, the carbon footprints were 94 times smaller when utilising the GPU 237 
approach: 191 kgCO2e (208 tree-months) with LIMIX and 2 kgCO2e (2 tree-months) with 238 
TensorQTL. The scaling of eQTLs is complex, and the carbon footprint doesn’t scale linearly 239 
with the number of traits or sample size [56], [57]. 240 

Molecular simulations and virtual screening 241 

Molecular simulations and virtual screening are the use of computational simulation to model 242 
and understand molecular behaviour and the in silico scanning of small molecules for the 243 
purposes of drug discovery. We estimated the carbon footprint of simulating molecular 244 
dynamics with the Satellite Tobacco Mosaic Virus (1,066,628 atoms) for 100ns [58], [59] to 245 
be 17.8 kgCO2e (19 tree-months) using AMBER [60] and 95 kgCO2e (104 tree-months) 246 
using NAMD [61] (Table 2). This corresponds to 1 kgCO2e per ns (1 tree-month) when 247 
utilising NAMD and 0.2 kgCO2e per ns (0.2 tree-months) with AMBER. There are small 248 
discrepancies between the simulation parameters used by the tools (Table 1) so they can’t 249 
be compared directly. Furthermore, due to a lack of information, neither of these estimations 250 
include the power usage from memory. 251 
 252 
Using a benchmark from Ruiz-Carmona et al. [62], we estimated the carbon footprint of three 253 
molecular docking methods, AutoDock Vina, Glide and rDock [62]–[64]. The data are based 254 
on the directory of useful decoys (DUD) benchmark set [65]. This study tested the three 255 
docking methods on four DUD systems ADA, COMT, PARP, and Trypsin. Where we used 256 
the average computational running time on these four DUD systems to estimate the carbon 257 
footprint of a 1 million ligand campaign. Glide, the fastest but not freely available tool had the 258 
smallest carbon footprint with 13 kgCO2e (14 tree-months), whilst rDock, which is freely 259 
available, had a footprint of 154 kgCO2e (168 tree-months), and AutoDock Vina (also freely 260 
available) had the largest impact with 514 kgCO2e (561 tree-months) (Table 2). rDock was 261 
the lowest carbon emitting method that was freely available and had comparable 262 
performance to Glide [62].  263 
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Efficiency of local data centres, geography and cloud 264 

computing 265 

Cloud computing facilities and large data centres are optimised to significantly reduce 266 
overhead power consumption such as cooling and lighting. A report from 2016 estimated 267 
that energy usage by data centres in the US could be reduced by 25% if 80% of the smaller 268 
data centres were aggregated into larger and more efficient data centres (hyperscale 269 
facilities) [66]. This was consistent with the distribution of PUEs (Methods): compared to the 270 
global average PUE of 1.67, Google Cloud’s PUE of 1.11 [67] reduces the carbon footprint 271 
of a task by 34%. Other cloud providers also achieve low PUEs, Microsoft Azure reduces the 272 
carbon footprint by 33% (PUE=1.125 [68]) and Amazon Web Service by 28% (PUE=1.2 273 
[69]).  274 
 275 
The use of cloud facilities may also enable further reductions of carbon footprint by allowing 276 
for choice of a geographic location with relatively low carbon intensity. While the kgCO2e for 277 
specific analyses utilising cloud or local data centre platforms are best estimated with the 278 
Green Algorithm calculator (www.green-algorithms.org), we found that a typical GWAS of 279 
UK Biobank considering 100 traits using the aforementioned GWAS framework (see 280 
Genome-wide association analysis) together with BoltLMM v2.3 on a Google Cloud server 281 
in the UK would lower the carbon footprint by 81% when compared to the average local data 282 
centre in Australia (Figure 1), potentially saving 705 kgCO2e (769 tree-months). 283 

Parallelisation 284 

Numerous algorithms use parallelisation to share the workload between several computing 285 
cores and reduce the total running time. However, this can increase carbon footprint [70] and 286 
we found that parallelisation frequently results in tradeoffs between running time and carbon 287 
footprint. In some cases, the reduction in running time is substantial. For example, executing 288 
the phylogenetic codon model (Phylogenetics) on a single core would take 7.8 hours and 289 
emit 0.066 kgCO2e, but with two cores, the carbon footprint increased by 4% while running 290 
time was decreased by 46% (1.9x speedup). With 12 cores, run time decreased 86% (7.2x 291 
speedup) but the carbon footprint increased by 57%. In other cases, speedup was marginal, 292 
e.g. the phylogeographic model had a running time of 3.86 hours with a carbon footprint of 293 
0.070 kgCO2e when using two cores (Figure 2). Increasing the parallelisation to 10 cores 294 
reduced run time by only 5% but increased carbon footprint by 4-fold.  295 

Memory 296 

Memory’s power consumption depends mainly on the memory available, not on the memory 297 
used [70], [71]; thus, having too much memory available for a task results in unnecessary 298 
energy usage and GHG emissions. Although memory is usually a fixed parameter when 299 
working with a desktop computer or a laptop, most computational servers and cloud 300 
platforms give the option or require the user to choose the memory allocated. Given it is 301 
common practice to over-allocate memory out of caution, we investigated the impact of 302 
memory allocation on carbon footprint in bioinformatics (Figure 3, Supplementary table 1).  303 
 304 
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We showed that, while increasing the allocated memory always increases the carbon 305 
footprint, the effect is particularly significant for tasks with large memory requirements 306 
(Figure 3, Supplementary table 1). For example, in de novo human genome assembly, 307 
MEGAHIT had higher memory requirements than ABySS (6% vs 1% of total energy 308 
consumption); as a result, a five-fold over-allocation of memory increases carbon footprint by 309 
30% for MEGAHIT and 6% for ABySS. Similarly, in human RNA read alignment (Figure 3), 310 
Novoalign had the highest memory requirements (37% of its total energy vs less than 7% for 311 
STAR, HISAT2, and TopHat2) and a 5x over-allocation in memory would increase its 312 
footprint by 186% compared to 32% for STAR, 2% for HISAT2, and 10% for TopHat2. 313 

Processors 314 

We estimated the carbon footprint of a number of algorithms executed on both GPUs and 315 
CPUs. For cis-eQTL mapping (Genome-wide association analysis), we estimated that, 316 
compared to CPU-based FastQTL and LIMIX, using a GPU-based software like TensorQTL 317 
can reduce the carbon footprint by 96% and 99% and the running time by 99.63% and 318 
99.99%, respectively (Table 2). For the codon modelling benchmark (Phylogenetics), 319 
utilising GPUs had a speedup factor of 93x and 13x when compared to 1 and 12 CPU cores, 320 
resulting in a decrease in carbon footprint of 75% and 84% respectively. These estimations 321 
demonstrate that GPUs can be well suited to both reducing running time and carbon 322 
footprint for algorithms. 323 
 324 
However, there are situations where the use of GPUs can increase carbon footprint. Using a 325 
GPU for phylogenetic nucleotide modelling (Phylogenetics), instead of 8 CPU cores, 326 
decreased running time by 31% but also doubled the carbon footprint. We estimated that a 327 
single GPU would need to run the model in under four minutes in order to have the lowest 328 
carbon footprint for this analysis, as opposed to the 16 minutes it currently takes. Similarly, 329 
using a GPU for the phylogeographic modelling of the Ebola virus dataset (Phylogenetics) 330 
reduced the running time by 83% (6x speedup) when compared to the method with the 331 
lowest footprint (2 CPU cores) however, this increased carbon footprint by 84%. There are 332 
equations used for this estimation (Supplementary Note 1); however, a fast approximation 333 
can be used by scaling the running time of the GPU by the ratio of the power draw of the 334 
CPU cores to the GPU. For example, we compared the popular Xeon E5-2683 CPU (using 335 
all 16 cores) to the Tesla V100 GPU and found that, to have the same carbon footprint with 336 
both configurations, an algorithm needs to run 2.5 times faster on GPU than CPU.  337 

Discussion 338 

We estimated the carbon footprint of various bioinformatic algorithms. Additionally, we 339 
investigated how memory over-allocation, processor choice and parallelisation affect carbon 340 
footprints, and showed the impact of transferring computations to hyperscale data centres. 341 
 342 
This study made a series of important findings:  343 

1. Limiting parallelisation can reduce carbon footprints. Especially when the running 344 
time reduction is marginal, the carbon cost of parallelisation should be closely 345 
examined.  346 
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2. Despite being often faster, GPUs don’t necessarily have a smaller carbon footprint 347 
than CPUs, and it is useful to assess whether the running time reduction is large 348 
enough to offset the additional power consumption.  349 

3. Using currently optimised data centres, either local or cloud-based, can reduce 350 
carbon footprints by ~34% on average.  351 

4. Substantial reductions in carbon footprint can be made by performing computations 352 
in energy-efficient countries with low carbon intensity.  353 

5. Carbon offsetting, which consists of supporting GHG-reducing projects can be a way 354 
to balance the greenhouse gas emissions of computations. Although a number of 355 
cloud providers take part in this, [69], [72], [73], the real impact of carbon offsetting is 356 
debated and reducing the amount of GHG emitted in the first place should be 357 
prioritised.  358 

6. Over-allocating memory resources can unnecessarily, and significantly, increase the 359 
carbon footprint of a task, particularly if this task has high memory usage already. To 360 
decrease energy waste, one should only allocate as closely as possible the required 361 
memory for a given job. Additionally, softwares could be optimised to minimise 362 
memory requirements, potentially moving some aspects to disk where energy usage 363 
is far lower.  364 

7. A simple way to reduce the carbon footprint of a given algorithm is to use the most up 365 
to date software. We showed that updating common GWAS software reduced carbon 366 
footprint by 73%, indicating that this may be the quickest, easiest, and potentially 367 
most impactful way to reduce one’s carbon footprint. 368 

 369 
There are a number of assumptions made when estimating the energy and carbon footprint 370 
of a given computational algorithm. These assumptions, and the associated limitations, have 371 
been discussed in detail within Lannelongue et al. [70]. A particularly important limitation of 372 
our study is that many of the carbon footprints estimated are from a single run of any given 373 
tool; however, many analyses have parameters that must be fine-tuned through trial and 374 
error, frequently extensively so. For example, in machine learning, thousands of optimisation 375 
runs may be required. We would stress that the total carbon footprint of a given project will 376 
likely scale linearly with the number of times each analysis is tuned or repeated, so a caveat 377 
to our estimations and the underlying published benchmarks is that the real carbon footprints 378 
could be orders of magnitude greater than that reported here.   379 
 380 
Finally, the parameters needed to estimate the carbon footprint are often missing from 381 
published articles, such as running time, hardware information, and often software versions. 382 
If we are to fully understand the carbon footprint of the field of bioinformatics or 383 
computational research as a whole, there is a need for reporting this information as well as, 384 
ideally, for authors to estimate their carbon footprint using freely available tools. 385 

Conclusion 386 

This study is, to the best of our knowledge, the first to estimate the carbon footprint for 387 
common bioinformatics tools. We further investigated how parallelisation, memory over-388 
allocation, and hardware choices affect carbon footprints. We also show that carbon 389 
footprints could be reduced by utilising efficient computing facilities. Finally, we outline a 390 
number of ways bioinformaticians may reduce their carbon footprint. 391 
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Methods 392 

Selection of bioinformatic tools 393 

We estimated the carbon footprint of a range of tasks across the field of bioinformatics: 394 
genome and metagenome assembly, long and short reads metagenomic classification, 395 
RNA-seq and phylogenetic analyses, GWAS, eQTL mapping algorithms, molecular 396 
simulations and molecular docking algorithms (Table 1). For each task, we curated the 397 
published literature to identify peer-reviewed studies which computationally benchmarked 398 
popular tools. For our analysis, we used 10 published scientific papers. To be selected, 399 
publications had to report at least the running time and preferably the following:  memory 400 
usage, and hardware used for the experiments, in particular the model and number of 401 
processing cores. We selected 10 publications for this study (Table 1). Besides, as we could 402 
not find suitable benchmarks to estimate the carbon footprint of cohort-scale eQTL mapping 403 
and RNA-seq quality control pipelines, we estimated the carbon footprint of these tasks 404 
using in-house computations. These computations were run on the Baker Heart and 405 
Diabetes Institute computing cluster (Intel Xeon E5-2683 v4 CPUs and a Tesla T4 GPU) and 406 
the University of Cambridge’s CSD3 computing cluster (Tesla P100 PCIe GPUs and Xeon 407 
Gold 6142 CPUs).  408 

Estimating the carbon footprint 409 

The carbon footprint of a given tool was calculated using the framework described in 410 
Lannelongue et al. [70] and the corresponding online calculator www.green-algorithms.org. 411 
We present here an overview of the methodology.   412 
 413 
Electricity production emits a variety of greenhouse gases, each with a different impact on 414 
climate change. To summarise this, the carbon footprint is measured in kilograms of CO2-415 
equivalent (CO2e), which is the amount of carbon dioxide with an equivalent global warming 416 
impact as a mix of GHGs. This indicator depends on two factors: the energy needed to run 417 
the algorithm, and the global warming impact of producing such energy, called carbon 418 
intensity. This can be summarised by: 419 
 420 

� �  � � �� �1	 
 421 
Where C is the carbon footprint (in kilograms of CO2e - kgCO2e ), E is the energy needed (in 422 
W) and CI is the carbon intensity (in kgCO2e/W). 423 
 424 
The energy needs of an algorithm are measured based on running time, processing cores 425 
used, memory deployed and efficiency of the data centre: 426 
 427 

� �  
 � ��
�

� �
� 

� 
�

� �
�

� �
�

	 � ��� � 0.001 �2	 
 428 
Where t is the run time (h), nc is the number of computing cores, used at uC%, the core 429 
usage factor (between 0 and 1), and  each drawing a power Pc (W). nm is the size of memory 430 
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available (GB), drawing a power Pm (W/GB). PUE is the Power Usage Effectiveness of the 431 
data centre. 432 
 433 
The power drawn by a processor (CPU or GPU) is estimated by its Thermal Design Power 434 
(TDP) per core, which is provided by the manufacturer, and then scaled by the core usage 435 
factor uC. The power draw from memory was estimated to be 0.3725 W/GB [70]. The PUE 436 
represents how much extra energy is needed to run the computing facilities, mainly for 437 
cooling and lighting.  438 
 439 
The carbon intensity (CI) varies between countries because of the heterogeneity in energy 440 
production methods, from 0.012 kgCO2e/kWh in Switzerland to 0.88 kgCO2e/kWh in 441 
Australia [74]. In order to be location-agnostic in this study, we used the global average 442 
value (0.475 kgCO2e/kWh [14]), unless otherwise specified. 443 

Reference values for carbon footprints 444 

A quantity of carbon dioxide is not a metric most scientists are familiar with. To put the 445 
results presented here into perspective, we compare them to the impact of familiar activities. 446 
The first metric is the “tree-month”, defined as the number of months an average mature tree 447 
would take to fully sequester (absorb) an amount of carbon dioxide. A tree-month is defined 448 
as 0.917 kgCO2e [70]. Another way to contextualise a carbon footprint is to compare it with 449 
driving an average European car, which emits 0.175 kgCO2e/km [75], [76]. 450 

  451 
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Tables 691 

Table 1: A description of the tasks, tools and experiments used in this study. 692 
 693 

Task Tool Version 
Details about the 

experiments 
Benchmarking 

publication 

Genome 
scaffolding 

SSPACE 2.0 

Scaffolding with long (2.4 M) and 
short (23 M) reads from human 

chromosome 14. 

Hunt et al., Genome 
Biology, 2014 

SGA 0.9.43 

SOAPdenovo r223 

Genome 
assembly 

Abyss 2.0 
De novo assembly of a human 

genome from Illumina sequencing 
reads. 

Jackman et al.,Genome 
Res., 2017 

MEGAHIT 1.0.6 

Metagenome 
assembly 

metaSPAdes 3.8.0 

Metagenome assembly from 100 
soil samples. 

Vollmers et al, PLOS One, 
2017 

MEGAHIT 1.0.3 

MetaVelvet k101 1.2.01 

Metagenome 
classification 

Metamaps - 

Metagenomic classification of 
5Gb of randomly sampled reads 

from Zymo mock community 
(batch ZRC190633), containing 

yeast, gram-negative and positive 
bacteria 

Dilthey et al., Nature 
Communications, 2019 

Kraken2 2.0.7 

kraken/Bracken 0.10.5/1.0.0 

Centrifuge 1.0.4 

Phylogenetics BEAST/BEAGLE 1.8.4/2.1.2 

Codon substitution modelling of 
extant carnivores and a pangolin 

group. Nucleotide substitution 
and phylogeographic modelling of 

Ebola virus genomes. 

Baele et al. Evolutionary 
Genomics, 2019 

RNA reads 
alignment 

STAR 
HIAST2 
TopHat2 

Novoalign 

2.5.0a 
2.0.0beta 

2.1.0 
3.02.13 

Reads alignment to two 
genomes: Homo Sapiens hg19 

and Plasmodium falciparum. 

Baruzzo et al., Nature 
Methods, 2017 

RNA-seq QC 
FastQC, TrimGalore, 
bbmap/clumpify and 

STAR 

-/v0.6.0/-
/v2.7.0e 

Quality control analysis of raw 
reads quality of 392 samples from 

the Childhood Asthma Study. 
In-house 

Transcript 
isoform 

abundance 
estimation 

Sailfish 0.6.3 
Transcript isoform quantification 

of 100 million in silico reads 
generated from Flux Simulator 

with hg19 genome and 
GENCODE v19 annotation set 

Kanitz et al, Genome 
Biology, 2015 RSEM 1.2.18 

Cufflinks 2.1.1 

 
GWAS 

Bolt-LMM  2.3 
Analyses of a single trait in UK 

Biobank (N=500,000) 
Loh et al., Nature 
Genetics, 2018 
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Bolt-LMM  1.0 

Cohort scale 
eQTL analysis 

LIMIX 2.0.3 Cis-eQTL mapping of 10.7M 
SNPs against 18,373 genetic 
features in a cohort of 2,745 

individuals.  

In-house 

TensorQTL 1.0.2 

Single cis-eQTL 
gene mapping 

FastQTL 
TensorQTL 

- 
- 

Cis-eQTL mapping one gene 
from skeletal muscle in GTEx 

(v6p). 

Taylor-Weiner et al. 
Genome Biology, 2019 

Molecular 
dynamics 
simulation 

AMBER 18 

Simulation of a Satellite Tobacco 
Mosaic Virus with 1,066,628 

atoms for 100ns. Note different 
simulation parameters AMBER18 
(4fs timestep, 9A cutoff) NAMD 
(2fs timestep with rigid bonds, 
12A cutoff with PME every 2 

steps). 

https://ambermd.org/GPU
Performance.php 

https://www.ks.uiuc.edu/R
esearch/namd/benchmark

s/  NAMD 2.13 

Molecular 
Docking 

AutDock Vina - 

Molecular docking of four DUD 
systems, scaled to 1m ligands 

Ruiz-Carmona et al. PLOS 
Computational Biology, 

2014 

Glide 57111 

rDock - 

 694 
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Table 2: The estimated carbon footprint of bioinformatic tasks. This table details and 696 
contextualises the carbon footprint of the tasks detailed in Table 1. In addition to the carbon 697 
footprints are the number of tree-months it would take an adult tree to sequester the CO2, 698 
and the number of kilometres one could travel in an average European car to output the 699 
same amount of CO2. *These methods were estimated in-house and not from a published 700 
benchmark. 701 

Task Tool 
Carbon footprint 

(kgCO2e) 
tree-months 

km in a car 
(EU) 

Genome scaffolding 
(long read) 

SGA 
SSPACE 

SOAPdenovo2 

0.0293 
0.0010 
0.0015 

0.0319 
0.0011 
0.0016 

0.2 
0.01 
0.01 

Genome scaffolding 
(short read) 

SGA 
SSPACE 

SOAPdenovo2 

0.1302 
0.0027 
0.0036 

0.1420 
0.0029 
0.0039 

0.7 
0.02 
0.02 

De novo assembly of 
one human genome 

Abyss2.0 10.66 11.63 60.9 

MEGAHIT 15.11 16.48 86.3 

Metagenome 
assembly 

metaSPAdes 186.46 203.41 1,065.5 

MEGAHIT 76.81 83.79 438.9 

Meta Velvet k101 14.28 15.58 81.6 

Metagenome 
classification (short 

read) 

Centrifuge 
Kraken2 

Kraken/Bracken 

0.013 
0.0052 
0.092 

0.0138 
0.0057 
0.1000 

0.1 
0.03 
0.5 

Metagenome 
classification (long 

read) 
MetaMaps 18.25 19.91 104.3 

RNA read alignment 
Homo Sapiens hg19 

STAR v2.5.0a 
HISAT2 
TopHat2 

Novoalign 

0.0097 
0.0054 
0.3173 
0.9766 

0.0105 
0.0059 
0.3461 
1.0653 

0.1 
0.03 
1.8 
5.6 

RNA read alignment 
Plasmodium 
falciparum 

STAR v2.5.0a 
HISAT2 
TopHat2 

Novoalign 

0.3693 
0.0052 
0.2394 
0.6710 

0.4029 
0.0057 
0.2612 
0.7320 

2.1 
0.03 
1.4 
3.8 

*RNA sequencing 
quality control 

pipeline 

FastQC + 
TrimGalore + 

clumpify + 
STARv2.7.0e 

54.97 59.97 314.1 

Transcript isoform 
abundance 
estimation 

Cufflinks - 1 core 
RSEM - 1 core 
Sailfish - 1 core 

Cufflinks - 16 cores 
RSEM - 16 cores  

0.045 
0.57 

0.0081 
0.27 
1.40 

0.049 
0.63 

0.0088 
0.30 
1.53 

0.3 
3.3 

0.05 
1.6 
8.0 
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Sailfish - 16 core 0.036 0.039 0.2 

GWAS on a biobank 
with 1 trait 

Bolt-LMM v1 17.29 18.86 98.8 

Bolt-LMM v2.3 4.70 5.13 26.9 

*eQTL mapping for a 
cohort 

TensorQTL 
LIMIX  

2.04 
190.73 

2.22 
208.07 

11.6 
1,089.9 

cis-eQTL mapping for 
1 gene 

FastQTL 
TensorQTL  

0.0002 
0.00001 

0.0002 
0.00001 

0.001 
0.00004 

Virus molecular 
dynamics 

simulations 

AMBER18 17.85 19.47 102.0 

NAMD 2.13 95.19 103.84 543.9 

Molecular docking 

AutoDock Vina 514.12 560.86 2,937.9 

Glide 12.90 14.07 73.7 

rDock 153.71 167.69 878.4 
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Figures 703 

 704 

705 
Figure 1, Location and computational platforms affect carbon footprint. This plot 706 

details the carbon footprint (in kgCO2e, tree-months, and European car km) of a biobank 707 
scale 100 trait GWAS in various locations and platforms. Average data centres have a PUE 708 
of 1.67 [13], Google cloud has PUE of 1.11[67], Australia has a carbon intensity of 0.88 709 

kgCO2e/kWh, USA 0.453 kgCO2e/kWh, and UK 0.253 kgCO2e/kWh [74]. 710 
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 711 
Figure 2: The effect of hardware choices and parallelisation on carbon footprint. The 712 
carbon footprint of BEAST/Beagle implemented on multi-core CPU or GPUs for three 713 
different tasks. The plots on the left detail both the running time and carbon footprint against 714 
the number of cores utilised. The plots on the right detail the running time solely against 715 
carbon footprint (contextualised with tree-months) for both CPUs and GPUs. The numerical 716 
data is available in Supplementary Table 2. 717 
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 718 
Figure 3: Over-allocating memory increases a given algorithm’s carbon footprint. 719 
Each plot details the percentage increase in carbon footprint as a function of memory 720 
overestimation for a variety of bioinformatic tools and tasks. The numerical data is available 721 
in Supplementary Table 1. 722 

723 
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Supplementary materials 724 

Supplementary table 1: The percentage increase of carbon footprint as a function of 725 
memory over-allocation for a given algorithm. 726 

 
Analysis type 

 
Tool 

Percentage increase in carbon 
footprint as a function of memory 

over-allocation (%) 

2x 
fold 

5x 
fold 

10x 
fold 

20x 
fold 

50x 
fold 

 
RNA sequencing quality 

control pipeline 
 

FastQC + TrimGalore 
+ clumpify + 
STARv2.7.0e 

2.50 6.25 12.49 24.99 62.47 

 
De novo assembly of one 

human genome 

ABySS2.0 2.26 5.64 11.29 22.58 56.44 

MEGAHIT 12.00 29.99 59.98 119.96 299.91 

 
Metagenome assembly 
from 100 soil samples 

MetaSPAdes 0.33 0.84 1.67 3.35 8.37 

MEGAHIT 0.09 0.22 0.43 0.86 2.16 

MetaVelvet k101 0.35 0.89 1.77 3.54 8.86 

 
GWAS on a biobank with 

1 trait 

BOLT-LMM v1 45.87 114.68 229.36 458.72 1146.81 

BOLT-LMM v2.3 45.87 114.68 229.36 458.72 1146.80 

Read 
alignment 

Human 
(Homo 
sapiens 
hg19) 

STAR v 2.5.0 12.77 31.92 63.84 127.69 319.22 

HISAT2 v2.0.0beta 0.98 2.46 4.91 9.83 24.57 

Tophat v2.1.0 4.00 9.99 19.99 39.97 99.93 

Novoalign 74.65 186.63 373.25 746.51 1866.27 

Malaria 
(Plasmodium  
falciparum) 

STAR v 2.5.0 1.89 4.71 9.43 18.86 47.15 

HISAT2 v2.0.0beta 0.20 0.51 1.02 2.04 5.10 

Tophat v2.1.0 2.73 6.82 13.64 27.29 68.22 

Novoalign 42.16 105.41 210.81 421.63 1054.07 

Phylogenetics 

Codon 
modelling 

BEAST/ 
BEAGLE 

8.30 20.75 41.49 82.98 207.45 

Nucleotide 
modelling 

15.55 38.87 77.74 155.47 388.68 

Phylogeograp
hic modelling 

15.54 38.86 77.72 155.44 388.61 
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Long read 
genome 

Scaffolding 

SGA 57.61 144.03 288.05 576.10 1440.26 

SSPACE 63.70 159.24 318.49 636.97 1592.44 

SOAPdenovo2 56.62 141.55 283.10 566.20 1415.50 

Short read 
genome 

scaffolding 

SGA 57.73 144.32 288.64 577.29 1443.22 

SSPACE 55.05 137.62 275.24 550.47 1376.18 

SOAPdenovo2 56.03 140.08 280.15 560.30 1400.76 

Transcript 
isoform 

abundance 
estimation 

RSEM 26.15 65.39 130.77 261.54 653.86 

Sailfish 21.41 53.52 107.04 214.07 535.18 

Cufflinks 30.48 76.20 152.40 304.79 761.98 

Metagenomic 
classification 

Centrifuge - short read 32.69 81.73 163.46 326.91 817.28 

Kraken2 - short read 47.16 117.90 235.80 471.61 1179.02 

Kraken/Bracken - short read 99.25 248.12 496.24 992.47 2481.18 

MetaMaps - long read 106.65 266.62 533.24 1066.48 2666.19 
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Supplementary table 2: The carbon footprint of hardware changes and parallelisation, 728 
using benchmarks from Beale et al [32]. 729 

Task Algorith
m 

Number of CPU 
cores or GPU 

devices  

Running time 
(hours) 

Carbon 
footprint  
(kgCO2e)  

Codon 
substitution 
modelling 

BEAST/ 
BEAGLE 

1 
2 
4 
6 
8 

10 
12 

7.75 
4.17 
2.42 
1.72 
1.42 
1.25 
1.08 

0.066 
0.069 
0.078 
0.083 
0.091 
0.10 
0.10 

1 GPU 
2 GPU 

0.08 
0.06 

0.017 
0.023 

Nucleotide 
substitution 
modelling 

BEAST/ 
BEAGLE 

2 
4 
6 
8 

10 
12 

0.67 
0.43 
0.40 
0.39 
0.43 
0.43 

0.012 
0.015 
0.020 
0.026 
0.035 
0.042 

1 GPU 
2 GPU 

0.27 
0.19 

0.054 
0.076 

Phylogeographic 
modelling 

BEAST/ 
BEAGLE 

2 
4 
6 
8 

10 

3.86 
3.73 
3.69 
3.71 
3.68 

0.070 
0.13 
0.18 
0.24 
0.30 

1 GPU 
2 GPU 

0.64 
0.54 

0.13 
0.22 
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Supplementary Note 1: 731 
 732 
Estimating the running time at which a GPU has a lower carbon footprint: 733 
 734 
From rearranging the Green Algorithms carbon footprint formula it can be shown that the 735 
running time at which GPU has a lower carbon footprint is: 736 

����,�� � ����� �	������������� � 	���,��������

	������������� � 	���,��������

� (1)  737 

 738 
Where, ����is the number of CPU cores, ����is the number of GPUs, ���� is the power 739 
drawn by the CPU cores. ���� is the power drawn by the GPU. ���� is the core usage factor 740 
for the CPU. ���� is the usage factor of the GPU.  ����,���is the amount of memory (GB) 741 
utilised when running the CPU,  ����,��� is the amount of memory (GB) utilised when 742 
running the GPU. ����is the power draw for memory. ����,�� is the running time when the 743 

GPU would have the same carbon footprint as the CPU, and ���� is the running time of the 744 
CPU. If the GPU implementation is to have a lower carbon footprint, it must finish within the 745 
time ����,��. 746 

  747 
When ignoring memory and utilising 1 CPU and 1 GPU with identical core usage factors, this 748 
simplifies to:  749 

���� � ����� �����

����

� �2	 

Where, ���� is scaled by the ratio of the power required to utilise the CPU to the GPU.    750 
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Descriptions of additional files: 751 
 752 
Additional file 1: Hardware details for each analysis presented in this manuscript.  753 
Additional file 2: The ratio of RNA reads per million and ratio of CPU time of 10 random in-754 
house PBMC samples, from the RNA sequencing quality control pipeline task. 755 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 9, 2021. ; https://doi.org/10.1101/2021.03.08.434372doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.08.434372
http://creativecommons.org/licenses/by/4.0/

