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One Sentence Summary: 
We created a distributed brain co-processor for continuous neurophysiologic tracking and controlling 
adaptive brain stimulation to treat epilepsy. 
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Abstract: Electrical brain stimulation is a proven therapy for epilepsy, but long-term seizure free 
outcomes are rare. Early implantable devices were developed for open-loop stimulation without 
sensing, embedded computing or adaptive therapy. Recent device advances include sensing and 
closed-loop responsive stimulation, but these clinically available devices lack adequate computing, 
data storage and patient interface to concisely catalog behavior, seizures, and brain electrophysiol-
ogy, despite the critical importance of these details for epilepsy management. Here we describe the 
first application of a distributed brain co-processor providing an intuitive, bi-directional interface be-
tween device implant, patient & physician, and implement it in human and canine patients with epi-
lepsy living in their natural environments. Automated behavioral state tracking (awake and sleep) 
and electrophysiologic classifiers for interictal epileptiform discharges and electrographic seizures 
are run on local hand-held and distributed cloud computing resources to guide adaptive electrical 
stimulation. These algorithms were first developed and parameterized using long-term retrospective 
data from 10 humans and 11 canines with epilepsy and then implemented prospectively in two pet 
canines and one human with drug resistant epilepsy as they naturally navigate their lives in society.  
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INTRODUCTION 
FDA approved electrical brain stimulation (EBS) devices for neurological and psychiatric diseases 
include responsive neural stimulation (RNS) for epilepsy (1–3) and deep brain stimulation (DBS) for 
epilepsy (4, 5), dystonia (6), Parkinson's disease (7), essential tremor (8), and obsessive-compulsive 
disorder (humanitarian device exemption) (9). Emerging EBS applications include depression (10–
12), cognitive enhancement (13, 14) and Alzheimer’s disease (15–17). While open-loop (5, 11, 12, 
18) and responsive closed-loop (2, 3) stimulation with pre-programmed parameters of high or low 
frequency stimulation have been successful in reducing seizures, there remains intense interest in 
refinement of neural stimulation by development of adaptive closed-loop EBS, where the vast range 
of possible stimulation parameters can be adaptively optimized for individualized therapy (19–21). 
There remain, however, basic technology gaps to adaptive therapy with inadequate device compu-
ting, data storage and patient interface capabilities required to accurately catalog and track behavior, 
seizures, and brain electrophysiology in ambulatory subjects in naturalistic settings.  

Here we describe a distributed brain co-processor  for integration of implantable brain sensing 
and stimulation devices with off-the-body commercial electronics for clinical and neuroscience re-
search applications (21–23). The integration of implantable devices with commercial electronics al-
lows computational power and algorithm complexity to increase with advances in consumer com-
puter hardware, without requiring surgical replacement of implanted components. Brain implants 
providing bi-directional wireless connectivity with a smartphone and distributed cloud computing 
overcome the computational and data storage limitations of current implantable devices. Until re-
cently, there have been obstacles to consolidating the multiple-technology layers required for con-
tinuous brain tracking, behavior reporting, and adaptive closed-loop therapy. Here we demonstrate 
these capabilities, utilizing the investigational Medtronic Summit RC+STM (RC+STM) a rechargeable, 
sensing and stimulation implantable device with a bi-directional application programming interface 
(21–24). The system enables continuous brain electrophysiology data streaming to a local tablet 
computer for real-time analysis and tracking of interictal epileptiform spike (IES), seizures, and brain 
behavioral state coupled with patient reports to inform adaptive EBS therapy for dynamic modulation 
of the neural circuits underlying focal epilepsy (Fig. 1). The multimodal electrophysiology classifiers 
(seizure, behavioral state and IES) were validated, tested, and prospectively deployed with adaptive 
EBS in canine and human subjects with epilepsy.  

 
RESULTS 
Tracking behavior, brain state, and epilepsy biomarkers in humans & canines 
We used intracranially recorded electroencephalography (iEEG) to classify and track brain states 
(wake, sleep), seizures and IES rates in ambulatory humans and canines with drug resistant epilepsy 
living in their natural environments. Continuous streaming iEEG was analyzed on a local handheld 
computer and cloud using automated classifiers for IES, seizures, and behavioral state that were 
then reviewed on a custom web-based Epilepsy Dashboard. The system provided an integrated 
machine learning platform for data viewing, analytics and expert labeling of candidate events, ena-
bling confirmation that a detected electrophysiological event or patient reported event was a true 
positive seizure (Fig. 1). Physicians remain in the therapy optimization loop using the Epilepsy Dash-
board to review trends in biomarker analytics (IES rates), confirmed seizures, sleep/wake hypno-
grams, patient annotations (reported seizures, medication logs, and mood scores) and implanted 
device data (battery status, telemetry, and EBS parameters).  
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Fig. 1.  Distributed Brain Co-processor. Integrating implanted sensing and stimulation devices 
with off-the-body co-processor and cloud computing resources. The system enables continuous 
brain behavioral state (wake, sleep), seizures, biomarker (interictal epileptiform spikes (IES)) and 
behavior (patient inputs, actigraphy, mood, memory) tracking, coupled with adaptive electrical stim-
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ulation. The system was developed and prospectively tested in canines and humans with drug re-
sistant epilepsy living in their natural environments. Top) Schematic for bi-directional data transmis-
sion (using Clinician Telemetry Module – CTM) between implanted brain sensing and stimulation 
device integrated with local handheld computer (Epilepsy Patient Assist Device - EPAD) and cloud 
environment.  The integrated system provides a platform for real-time, chronic, remote ambulatory 
monitoring of patient reported behavior information, device data (battery, telemetry, etc.), brain 
states, seizures, and biomarkers. Bottom left) The cloud based physician Epilepsy Dashboard pro-
vides a platform for review of electrophysiology data that are wirelessly telemetered off the implant 
and automatically processed with a battery of algorithms running on the patient’s local handheld for 
detecting seizures, IES, and classifying sleep/wake behavioral state. Results are stored into a data-
base and accessible via a web-based dashboard. Bottom right) Epilepsy Dashboard enables swift 
review of immediate and long-term data trends from the device (e.g., battery, electrode impedances), 
electrophysiology data, and patient inputs. The physician can quickly review and either confirm or 
reject automatically detected and patient reported events. The panel shows representative results 
from 7-days of continuous human hippocampal (Hc) recording with automated classification labels 
for behavioral state (wake/sleep) IES rates, and seizure detection probability. Blue triangles show 
patient reported seizure events. Circles in the seizure detection probability graph show automated 
seizure detections either confirmed as seizures (blue dots) or false positive (red) by expert visual 
review. The results show that IES rates are increased in NREM sleep phases. Zoomed in plot circular 
inset shows example of raw data from left Hc with automatically marked IES (red circles). The patient 
was aware and reported (blue triangle) of only one seizure out of the six seizures automatically 
detected in the continuous iEEG and confirmed by the physician. 
 
The development of brain behavioral state, IES, and seizure detection algorithms used training, val-
idation, and pseudo-prospective testing data from a large database of ambulatory iEEG from 11 dogs 
and 10 human subjects. The final training, validation, and prospective testing of automated algo-
rithms was performed in a human and two pet canines with drug resistant epilepsy over multiple 
months living in their natural environments.  
 
Automated brain behavioral state classification 
Although the clinical standard for sleep staging involves scalp EEG, we recently demonstrated auto-
mated sleep staging using iEEG recordings from humans with epilepsy (25, 26). Sleep staging based 
on iEEG was necessary here for behavioral state classification in ambulatory subjects with implanted 
sensing devices. Here we extended a previously validated algorithm to human (MH1) and canine 
(MD1-3) subjects (Table 1.) using simultaneous iEEG and scalp EEG, accelerometry, and video 
recordings to train, validate and test the behavioral state classifier for wake, rapid eye movement 
(REM) and non-rapid eye movement (NREM - N2 and N3, i.e., slow wave) sleep. Canines are known 
to have similar sleep architecture to humans, but with more rapid cycling between sleep states (27, 
28). 
 
The prospective testing was performed using data from a human subject and three canines and 
using an algorithm trained, validated, and tested using simultaneous polysomnography and iEEG 
recordings under different stimulation parameters over multiple days and nights. We used the first 
night as the training dataset, second night for validation, and third night as testing dataset to confirm 
the reliability and accuracy of the iEEG based classifier compared to gold standard sleep scoring by 
visual review of polysomnography (29). Then we prospectively deployed the classifier for continuous 
ambulatory iEEG based brain state classification in a human (MH1) and two pet canines (UCD1, 
UCD2) in their natural environments (see below in the Prospective Deployment section).  
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Fig. 2. A visual comparison of sleep scoring. The sleep scoring (hypnograms) from the automated 
intracranial EEG sleep classifier (bottom) and manual expert review scored sleep classification using 
scalp polysomnography data in a human (MH1) and three dogs (MD1, 2, 3). (A) The upper panel of 
hypnograms show brain state (Awake, non-rapid movement (NREM 2, 3) and rapid eye movement 
(REM) sleep) over three consecutive days/nights using manual review of the polysomnogram (30) 
for the human subject. (B) Human hypnogram created by the automated sleep classification algo-
rithm. (C) shows the manual scalp sleep scoring of polysomnogram and (D) the automated sleep 
scoring for three dogs. The number of sleep phases, length of the sleep, and REM latency from the 
automated classifier is highly concordant with the gold standard expert manual review. The misclas-
sifications generated by the automated classifier primarily occur during transitions between sleep 
states and fast state changes (like arousals). Table 1. Provides the summary classification perfor-
mance.  
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The automated behavioral state classification method (25, 26) uses multiple iEEG power-in-band 
features and a Naive Bayesian classifier. The algorithm obtained a mean classification accuracy of 
81% and 82% and weighted average F1-score 79% and 82% for human and canine subjects, re-
spectively. Figure 2 and Table 1 show detailed classification results. In general, the classifier works 
best for assessing NREM sleep and wake states but achieved acceptable performance for classifying 
REM sleep. The automated classifier mainly differed from expert-annotated polysomnograms in the 
transition phases between sleep states. The boundary data create the largest classification errors, 
as might be expected for this kind of classification task. This automated approach to behavioral state 
classification, grounded in training data that included clinical standard polysomnography and iEEG, 
enables long term iEEG-based sleep staging in ambulatory canine and human subjects. 
 
 
Automated seizure detection 
Accurate seizure catalogues are critical for epilepsy management and assessment of therapeutic 
outcomes, but remain a basic technology gap for the field (30, 31). We created an accurate seizure 
diary with a generic seizure detector using a Long-Short-Term-Memory (LSTM) (32) artificial recur-
rent neural network (RNN) coupled with a convolutional neural network (CNN) (33)  applied to con-
tinuous iEEG to reliably detect spontaneous seizures in ambulatory canine and human subjects with 
epilepsy. 
 
The large testing, validation, and training dataset from multiple brain structures in humans and ca-
nines was collected over multiple years with the two different (NeuroVista Inc. or Medtronic PLC) 
implantable recording devices (see methods). The LSTM model was trained on a large dataset from 
dogs with naturally occurring epilepsy (n=5, average 600 days of recording, 340 seizures) implanted 
with NeuroVista devices (34, 35) and one half of the data from two, randomly selected human sub-
jects with epilepsy implanted with the NeuroVista device (total 524 seizures). The model was then 
validated on the other half of the data from the two NeuroVista patients (524 seizures) and three 
canines (600 days of recording and 133 spontaneous seizures in dogs: UCD1, UCD2, MD4) im-
planted with RC+STM devices (23) (Table 2.). 
 
Two of the dogs implanted with the RC+STM devices in the validation dataset were pet dogs with 
epilepsy (UCD1, UCD2) living at home with their owners. The training, validation, and testing schema 
(Table 2) was used to train the generalizable model for dog and human seizure detection, and sub-
sequently deployed pseudo-prospectively to the rest of the NeuroVista human dataset (7 patients, 
over 10 years of recording and 2046 seizures) (36). The model was then prospectively deployed and 
tested in 2 pet canines (UCD1, UCD2) and 1 human subject (MH1) with epilepsy implanted with the 
RC+STM. 
 
Spontaneous seizures recorded with iEEG show characteristic spectral patterns that are readily iden-
tified visually and may be reliably detected by machine learning approaches (37). Figure 3 shows an 
example of a typical seizure with its time-frequency (spectrogram) characteristics, raw data, and 
LSTM model seizure probability for MH1 from the out-of-sample data. Figure 3 also shows how the 
model probability for seizure classification changes in context of raw iEEG and spectral content and 
physician gold standard seizure annotation. The figure also illustrates the robustness of the model, 
showing high probabilities close-to seizure region and low probability outside the seizure (before and 
after the seizure). The example highlights the importance of LSTM function in the model, since fea-
ture-based machine learning models would detect the bursts of IES at the beginning and during the 
seizure, while the LSTM model raises the seizure probability prior and during the seizure time. 
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Fig. 3. A representative hippocampal seizure from human subject MH1. Top) Time-frequency 
characteristics (z-score spectrogram), Middle) Raw intracranial EEG data with the physician anno-
tated (grey highlight) seizure duration, and Bottom) Model seizure probability for patient MH1 in 
the out-of-sample dataset demonstrating how the probability of the LSTM model changes over a 
peri-seizure period of time (pre-ictal, ictal, and post-ictal period). The high probability (near 1) in the 
peri-seizure region highlights the impact of the long-short-term memory function for raising the 
probability during and around the seizure time. 
 
The precision recall curves (PRC) and receiver operator curves (ROC) curves are calculated by 
sequentially changing the model probability threshold and evaluating the results for all seizures from 
each subject in the testing datasets (Fig. 4). Using the LSTM model, we successfully detected sei-
zures and consequently determined seizure rates over more than 1 year of canine and human re-
cordings, constituting an objective seizure diary. 
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Fig. 4. The long short term memory (LSTM) model performance. Out-of-sample testing in human 
(solid lines, N3-9 and MH1) and canine (dashed lines) subjects is shown. (A) Precision Recall Curves 
(PRC) and (B) Receiver Operating Curves (ROC). The detailed view of the left-top square of the 
ROC shows the results for each subject in the optimal setting of the detector minimizing false positive 
rate and maximizing sensitivity. The PRC and ROC curves are calculated by sequential changing of 
the threshold on the model probability and evaluating the results of Precision, Recall, and False 
Positive Rate for all seizures of each subject in the testing datasets. 
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Detection of interictal epileptiform spikes (IES) 
Interictal epileptiform spikes (IES) are an established biomarker of epileptogenic brain (38), and as-
sociated with risk for spontaneous, unprovoked seizures (39–41). For long iEEG datasets it is labor 
intensive and impractical to use visual analysis to calculate IES rates. Here we trained, validated, 
and tested an automated IES detector on long-term continuous ambulatory iEEG recordings. We 
implemented a previously published automated IES detection algorithm (42), where the data are 
continuously accumulated by streaming iEEG from the RC+STM device to a cloud database. We 
compared the automated IES detections to expert visual scoring from two epileptologists (NG & GW) 
in distinct behavioral states, wake & N3 sleep. These data included periods of low or high seizure 
counts during day and night. There was good concordance for the IES labeling by expert visual 
review (Cohen’s kappa score 0.87) and between the algorithm and experts (F1-score 0.82 + 0.08 
with sensitivity 91 + 0.6% and positive predictive value 77 + 1.6%). 
 

 
Fig. 5. Long-term analysis of IES rates of MH1. Visual example of comparing spike detections 
between the automated approach and human operators in (A) day/awake and (B) night/sleep period 
of time. (C) Daily averaged spike rate per hour in left (top) and right (bottom) hippocampus during 
night and day periods of time. (D)  There are significant differences between night/day and left/right 
hippocampal IES characteristics (peak-to-peak amplitude) during the two-month period. 
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Table 4 summarizes the performance of the IES algorithm in different behavioral states. The algo-
rithm performs well in both seizure cluster periods that have higher IES rates and periods without 
seizure clusters and lower IES rates (F1-score was 0.84 in seizure cluster and 0.80 in non-cluster 
periods)  (41). Despite the difference in IES rates between day (approximately 25% lower IES rates) 
and night the algorithm performed similarly (day F1-score was 0.81 and 0.82 at night). Visual exam-
ples of IEDs and comparison of automated detections with expert review are shown in Fig. 5 for day 
(A) and the night (B) and illustrate the concordance between expert visual review and the automated 
classifier. The hippocampus IES rate variations during day and night over a two-month period show 
circadian and multi-day fluctuations (Fig. 5C). We analyzed IES characteristics to explore how the 
hippocampal IES properties differ in various behavioral states (Fig. 5D) and find higher peak to trough 
IES amplitudes during night compared to wake (p<0.001).  
 
 
Prospective long-term ambulatory monitoring and algorithm testing 
We deployed the automated IES and seizure classifiers prospectively in a human and two pet dogs 
with epilepsy living in their home environments. In the human subject automated brain behavioral 
state (wake/sleep) classifications were also tracked. Data were prospectively collected over 365 days 
with 237 seizures recorded in the human subject (MH1). In total, the system was able to record 72 
percent of the data (assuming 365*24 hours as 100%). The patient reported only 56 out of 237 
detected, and visually verified seizures. In two pet dogs, prospective data collection spanned over 
690 days with continuous data streaming transmitting 49% of the data on average. The pet owners 
marked only 43 out of 144 detected and visually verified seizures (Table 6). Because the iEEG is 
continuously streamed off the implant and stored, we can definitively assess by expert visual review 
the seizure and IES detection algorithm performance (Table 3 & 4). The absence of at home poly-
somnograms during the ambulatory prospective phase preclude further validation of the behavioral 
state classifier with the clinical gold-standard polysomnogram, although the diurnal patterns of wake 
and sleep states were qualitatively similar to the hypnograms recorded with polysomnography in the 
hospital environment.  
 
The prospective testing of the seizure detector in ambulatory subjects in real-world environments 
showed excellent performance, with an area under the ROC (AUROC) compared to the expert visual 
review of 0.99, 0.96, and 0.99 for the human (MH1) and the two pet canines (UCD1,2), respectively. 
The area under the PRC (AUPRC) that more accurately describes the results of this highly imbal-
anced data was 0.93, 0.47, and 0.88 for the human and two pet canines (UCD1,2), respectively 
(Table 3.). The performance of the IES detection in the ambulatory prospective data compared to 
gold standard expert visual reviewed events was 0.9 sensitivity and F1-score of 0.81. 
 
Electrical brain stimulation (EBS) effect on IES, seizures, and brain behavioral state 
A protocol comparing baseline (no stimulation), low frequency (LF) (2 & 7 Hz), and high frequency 
(HF) (100 & 145 Hz) stimulation applied to the anterior nucleus of the thalamus (ANT) was used to 
investigate the effect of ANT EBS on behavioral state, IES, and seizures. In this preliminary, feasi-
bility investigation EBS was applied only to the ANT with continuous iEEG streaming from ANT and 
hippocampal electrodes. The ANT EBS was shown to modulate behavioral state, IES rates, and 
seizure rates in human and canine epilepsy.  
 
 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 9, 2021. ; https://doi.org/10.1101/2021.03.08.434476doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.08.434476


In the human subject low, high, and adaptive EBS increased N2 sleep, but reduced REM and total 
sleep time (Table 5). The patient reported markedly disrupted sleep during continuous HF stimulation 
with the subjective sense of confusion between reality and dreams that became very distressing with 
increasing anxiety and declining mood (43, 44). Because of the possible role of continuous HF EBS 
on sleep and mood, we subsequently deployed an adaptive circadian EBS paradigm with a continu-
ous LF stimulation coupled with diurnal responsive HF stimulation targeting seizures and increased 
IES rates that disabled responsive HF stimulation during sleep. The transition to this adaptive para-
digm of continuous LF with responsive HF during wake behavioral state was well tolerated. 
 
Low frequency EBS decreased hippocampal IES rates in both human (MH1) and canine (UCD1 & 
UCD2) subjects, and in MH1 and UCD1 modestly reduced seizure counts.  High frequency EBS had 
a more variable effect, reducing IES in the human (MH1) but increasing IES in one dog (UCD1) while 
modestly decreasing seizure counts.  
 
DISCUSSION 
There has been significant progress in EBS devices for drug resistant epilepsy, but the time to 
achieve optimal individualized stimulation parameters is long and seizure free outcomes remain rare.  
The optimal EBS parameters and stimulation paradigm (continuous, duty cycle, responsive, or adap-
tive) for preventing or stopping focal seizures propagation remains unclear (45). The inability to con-
tinuously track electrophysiology, seizure counts, sleep and behavior have impeded systematic in-
vestigations of individualized EBS therapy. There is evidence that both low frequency (< 7 Hz) and 
high frequency (>100 Hz) EBS can reduce interictal epileptiform spikes and seizures, with class-1 
evidence from humans supporting HF duty cycle (4) and responsive (1) stimulation. The evidence 
that LF stimulation can reduce interictal epileptiform spikes and seizures comes from uncontrolled 
human investigations (18, 46, 47), non-human primates (48), and rodent models (49–54).  
 
To address the technology gaps in currently available EBS systems we developed and deployed a 
distributed brain co-processor to investigate patient reported symptoms, automated behavioral state 
classification, IES biomarkers, and seizures during low and high frequency continuous and adaptive 
responsive EBS paradigms. Similar to previous studies, we found that patients (36, 55), and pet 
owners do not create reliable seizure diaries when compared to gold-standard seizure catalogs cre-
ated from automated seizure detection applied to continuous iEEG. This is not surprising given that 
seizures can be subtle, can go unnoticed by caregivers, and patients are often amnestic for their 
seizures. This result highlights the challenge of optimizing therapy if the most critical measure of 
outcome, seizure rates, are inaccurate and this may play a role in the long time required for therapy 
optimization with current FDA approved devices.  
 
We show that hippocampal IES rates and characteristics are dynamically changing, with an increase 
in IES during slow-wave sleep in human. Interestingly, seizures exclusively occurred during wake-
fulness in the human subject despite increased IES rates in slow-wave sleep. Similar to previous 
reports we did not identify seizures arising from REM sleep (56, 57).  The EBS paradigms investi-
gated had a modest impact on seizure rates, but the therapeutic benefit may be obscured by the well 
known implant lesion effect (1, 4). It is challenging to recruit for studies during which there is a long 
post-implant baseline period without EBS given the established benefit of EBS and currently FDA 
approved devices. Patients and their physicians may appropriately be reluctant to enroll in trials with 
a 3 to 4 month phase without EBS needed to washout the implant effect (3, 4). 
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We demonstrated the ability to track behavioral state and show that EBS modifies total sleep time, 
REM and N2 sleep. Sleep disruption is a common comorbidity of drug resistant epilepsy (58) and 
EBS therapy can further negatively impact sleep (44). We used behavioral state tracking to investi-
gate a circadian adaptive EBS protocol designed to minimize sleep disruption and deliver increased 
EBS during periods of increased IES activity and seizures that was better tolerated by patient report 
than continuous HF stimulation (Table 6). In addition to sleep modulation with EBS therapy, there is 
emerging evidence that slow-wave sleep may play a role in consolidating seizure engrams and re-
lated to epilepsy progression (59, 60). Thus, the ability to track wake and sleep behavioral states 
and adaptively adjust EBS therapy may prove useful for disrupting sleep related seizure consolida-
tion, as well as other future applications. 
 
The current study has a number of limitations. Given the fact that seizures are relatively rare events 
the accumulation of adequate statistics remains a fundamental challenge for epilepsy research. This 
was partially mitigated here by quantifying the effect of EBS on IES, a biomarker of pathological brain 
excitability. Perhaps the biggest limitation is the use of data immediately after implant for baseline 
seizure and IES rates. There is a well-established lesion effect of ANT and Hc implant on seizure 
counts that appears to normalize after 3 – 4 months based on the Neuropace RNS and Medtronic 
SANTE trials (1, 4). In fact, using only the patient reported diaries the seizure frequency prior to 
implant was higher (2.6 per week) than post implant (1.4 per week) and during 1 month baseline 
without the EBS. To investigate efficacy of EBS we used a sequential approach of therapy titration 
spanning weeks of observation to capture and compare natural circadian and multi-day cycles of IES 
and seizures (39, 41).  We started with the lowest RC+STM stimulation frequency (2Hz) possible and 
sequentially moved to 7Hz and 145Hz. We did not, however, have a period without stimulation for 
washout between any EBS parameter changes.  
 
In summary, we present results from a powerful system integrating a new investigational neural 
sensing and stimulation device with local and distributed computing that should prove useful for in-
vestigation of EBS in drug resistant epilepsy. The current system places a burden on the patient 
requiring management and charging of three devices (Fig. 1.; implantable device, CTM, and tablet 
computer). This research identifies areas for future improvement, including the need for improving 
bi-directional interfaces to reduce complexity, data loss, and battery life. Future implantable systems 
with greater device computational power and data storage capacity will enable smart sampling par-
adigms to buffer data, run embedded algorithms, and trigger alarms for therapy change, behavioral 
queries, and data transfer that should enhance understanding of behavior and brain activity, and 
reduce patient burden. 
 
MATERIALS AND METHODS 

Study design and data sources 
To develop classification algorithms, we used a large database of iEEG from two different implanted 
devices, the NeuroVista and Medtronic devices that wirelessly stream iEEG data. The dataset in-
cluded 10 humans (NV1-9; MH1) and 11 canines. The dogs MD1-3 were control dogs without epi-
lepsy implanted at Mayo for developing the behavioral state classifiers. The MD4 dog (implanted at 
Mayo), UCD1 and UCD2 (implanted at UC-Davis), and 5 NeuroVista - dogs with epilepsy implanted 
across multiple institutions in US (35, 37) had naturally occurring epilepsy. We used 10 humans and 
8 dogs (MD4, UCD1, UCD2, and 5 NV dogs) for training, validation, and pseudo-prospective testing 
seizure and IES detection algorithms. An automated algorithm for brain state classification was de-
veloped using simultaneous polysomnograms and iEEG collected from 3 canines (MD1-3) and a 
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human subject (MH1) implanted with the investigational Medtronic Summit RC+STM device 
(RC+STM). Then classification algorithms were prospectively tested within a distributed brain co-pro-
cessor for neurophysiologic tracking and adaptive stimulation in 2 pet dogs (UCD1, UCD2) and the 
human subject (MH1) in their natural environments. 
 
Devices, training, validation, and testing data 
Datasets collected from two implantable devices were utilized for system training, validation, and 
testing (Table 1). The investigational NeuroVista system is a 16-channel brain sensing (0.1–100 Hz 
bandwidth; 400 Hz sampling) implantable device providing continuous iEEG wireless streaming to 
an off-the-body data storage and analytics device carried by the patients and dogs. The RC+STM is 
a 16 channel electrical stimulation and sensing implantable device capable of selective sensing from 
any 4 of the 16 channels (1–70, 125, 250 Hz bandwidth; programmable sampling 250, 500, or 1000 
Hz) and wireless streaming to a handheld tablet computer with cellular and internet connectivity to a 
central cloud based data and analytics platform (22, 23). The investigational NeuroVista and RC+STM 
devices have yielded massive datasets of ambulatory iEEG in naturalistic settings and are idea for 
development of robust automated algorithms for brain behavioral state classification, IES and seizure 
detection. We have previously used the NeuroVista Inc. device data from humans (36) and canines 
(34) for developing seizure detection and forecasting algorithms (35, 61–63). 
 
Canine Device Implants: The animal research and clinical care took place at Mayo Clinic, Roches-
ter MN and University of California Davis, Davis, CA under IACUC Protocol A00002655 Chronic 
Wireless Electrophysiology and Modulation in Epileptic Dogs. Epilepsy occurs naturally in dogs with 
prevalence, age of onset, and clinical presentation similar to human epilepsy (64). Naturally occurring 
canine epilepsy is often drug resistant and new therapies are needed. In addition, the canines pro-
vide a platform for preclinical testing, since dogs are large enough to accommodate devices designed 
for humans. All canines were implanted at either Mayo Clinic (MD 1-4) or at University of California, 
Davis (UCD1-2).  

Electrode and RC+STM implantation in dogs: Medtronic deep brain stimulation electrodes were im-
planted intracranially in canines under anesthesia using a custom made stereotactic frame. Canines 
underwent a 3.0T MRI using a stereotactic T1-weighted sequence (Fig. 6). Targets and trajectories 
were planned using stereotactic software (CompassTM Stereotactic Systems) adapted for a large 
animal head frame. Burr holes were drilled into the skull for each of the four electrodes (Medtronic 
models 3391 and 3387) that were inserted to the target depth and secured with metal anchors and 
bone screws. The electrode tails were tunneled to the RC+STM in a pocket behind the canines right 
scapula. The canine underwent a post-op x-ray CT scan, which was then co-registered to the stere-
otactic MRI (Analyze 12.0, BIR, Mayo Foundation) in order to verify targeting accuracy. We have 
previously described the similar procedure for the previous NeuroVista Inc. device implants carried 
out at Mayo Clinic, University of Minnesota, University of Pennsylvania, and University of California 
Davis in canines (34, 35). 
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Fig. 6. Canine stereotactic implant. (A) 6 yr. old pet dog with drug resistant epilepsy. High  reso-
lution (B) Sagittal. (C) Axial. (D) Coronal T1 MRI. The electrode implants are by direct visual targeting 
of anterior nucleus of thalamus and hippocampus. 

Human implant: The human subject research was carried out under an FDA IDE: G180224 and 
Mayo Clinic IRB: 18-005483 “Human Safety and Feasibility Study of Neurophysiologically Based 
Brain State Tracking and Modulation in Focal Epilepsy”. The study is registered at https://clinicaltri-
als.gov/ct2/show/NCT03946618. The patients provided written consent in accordance with the IRB 
and FDA requirements.  
 

Subject MH1 is a 57-year-old ambidextrous woman with drug resistant temporal lobe epilepsy fol-
lowing head trauma in childhood. She suffered her first generalized tonic-clonic seizure after a head 
injury at age 9. Her seizures were well-controlled by an anti-seizure medication regimen until college 
(at ~21 yrs.), when her seizures became drug resistant. At time of device implant, she had suffered 
from more than 30 years of drug resistant epilepsy, depression and anxiety. Electrode and RC+STM 
implantation in human: The details of the approach for implantation have been previously described 
(65). Magnetic resonance imaging (MRI) was performed after Leksell (Elekta Inc.) frame fixation for 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 9, 2021. ; https://doi.org/10.1101/2021.03.08.434476doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.08.434476


stereotactic targeting. Medtronic 3387s electrodes were then implanted in the ANT by direct targeting 
of the mammillothalamic tract on MRI (FGATIR sequence (66)). Medtronic 3391 electrodes were 
implanted into the hippocampus through direct targeting of the amygdala and hippocampal head. 
After confirmation of the electrode location with intraoperative computed tomography (CT), the leads 
were connected to bifurcated extensions and tunneled to the RC+STM in an infraclavicular pocket 
(Fig. 7). The 10 human dataset collected with the NeuroVista device were from the NeuroVista Inc. 
device trial in humans carried out in Melbourne, Australia, between March 24, 2010, and June 21, 
2011 (36). 

 

  
 

Fig. 7. Human subject MH1. Bilateral Anterior Nucleus Thalamus (ANT) and Hippocampus 
(HC) implant. (A) Papez circuit  and implanted electrodes. (B) MRI - the ANT and HC electrodes 
from co-registration of MRI and post-implant CT are highlighted in red. 

 

Automated Sleep Classification 

We trained and deployed the automated sleep classification on datasets recorded with RC+STM 
system (23).  In order to get reliable sleep classification for longterm iEEG data, we trained a sub-
ject specific sleep classifier for each subject (human subject, MH1 and three dogs MD1, 2, 3) us-
ing a single channel of iEEG data with gold standard sleep annotations obtained from simultane-
ously recorded polysomnograms. In the human study we recorded three nights under different EBS 
conditions (ANT stimulation: off, frequency 2 Hz, 7Hz, 100 Hz, current 3 mA, pulse width 90 µsec) 
with simultaneous scalp polysomnography (PSG) recording and continuous iEEG data stream-
ing (both ANT and Hc electrodes) from the implanted RC+STM as shown in Fig. 8. The PSG signals 
were scored by an expert into standard sleep categories (Wake, Rapid-Eye-Movement (REM), and 
three non-REM stages (N1, N2, N3) using AASM 2012 scoring rules (29). In three 
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dogs, the iEEG data were recorded from various brain locations to determine the classifier perfor-
mance in different brain targets (pre-frontal cortex, ANT, Hc), while simultaneously recording scalp 
EEG, accelerometry data and video recordings. The scalp EEG, accelerometry and video recording 
were used to assess the sleep stage by expert manual review. In all three dogs, different continu-
ous EBS stimulation conditions (off, frequency 2Hz, 7Hz, amplitude 3mA, 200us pulse width) 
were studied in subsequent nights to compare classifier performance under different stimulation set-
tings with ongoing ANT stimulation. The classifier performance was measured as a harmonic mean 
of the precision and recall (F1-score). 
 
 

 
 
Fig. 8.  Block-diagram of automated sleep classification trials for human study. First, the EEG 
and iEEG data are acquired using standard polysomnogram (PSG) clinical beside system and ex-
perimental Medtronic Summit RC+S implantable system. The data are synchronized using annota-
tions and electrical stimulation artifacts. An expert then scores the PSG data to create a gold-stand-
ard sleep scoring dataset. Human operator also has the option to review the iEEG  for data drops 
and artifacts. Training and deploying of automated sleep classifier are performed in subsequent 
steps. 
 
We trained a subject specific sleep classifier (Naïve Bayes) for following subjects: one human pa-
tient and three dogs. The classifier was trained using the first night of data, which were always with-
out stimulation. The second night was used for validation and the third night for pseudo-prospective 
testing. The Naïve Bayes classifier uses features extracted from the iEEG data that were previously 
determined to be useful for behavioral state classification (25, 67). The following frequency domain 
features for each of the 30-second iEEG epoch were used: mean dominant frequency, absolute and 
relative mean band power for frequency bands: Delta (1-4Hz), Theta (4- 8Hz), Alpha (8-12Hz) and 
four high frequency bands, Beta bands (12-16Hz; 16-20Hz; 20-30Hz) and gamma band (30-40Hz). 
We also recombined absolute band power feature values to obtain ratios such as Theta-to-Beta ra-
tio, etc., for all ascending frequency bands. Subsequently, we performed preprocessing feature se-
lection and dimensionality reduction using Principal Component Analysis (PCA) followed by an ad-
ditional feature selection (Fig. 9.). To prepare the training data, we filtered the outliers by category-
wise outlier filtering. As a post-processing step, after the class-probability prediction, the class-prob-
abilities were corrected using Bayes Theorem and state-to-state transition probabilities inferred from 
publicly available PSG dataset (68). The framework we implemented and used for this classifier is 
publicly available: https://github.com/mselair/AISC   
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Fig. 9. Sleep Classification pipeline. Feature pre-processing is used to clean the features for train-
ing the classifier. Postprocessing using a statistical inference (Bayesian inference) on predicted clas-
sification score correction to correct possible classification errors. 
 
 
Detection of interictal epileptiform spikes 
Interictal epileptiform spikes are an electrographic marker of pathologic brain tissue capable of gen-
erating unprovoked seizures. In recent years there has been rapid development of new and reliable 
techniques for automated IES detection. To train and evaluate the IES detector we used continuous 
hippocampal recordings from the RC+STM (23). We used a previously validated algorithm (42) that 
models and adapts based on statistical distributions of signal envelopes from background (normal) 
iEEG activity. This enables differentiating signals containing IESs from signals with background ac-
tivity even in long term data recordings with changing background electrophysiological activity. The 
IES detector also identified low-amplitude IES in cases where the background activity power is low 
and IES are often missed by expert visual review.  
 
We benchmarked the IES detector using data acquired with a chronically implanted brain stimulator 
(RC+STM). We deployed the detector in a cloud system that received the continuously streaming 
hippocampal data over one year. We compared the detector performance with the manual visual 
review (GW & NG electroencephalographers) scoring in selected epochs (see Data for IES Detec-
tor). The IES detector ran during different stimulation paradigms, no stimulation, 2, 7, and 145 Hz 
stimulation) with changing stimulation current amplitudes (2, 3, 5 mA) and pulse widths of 90 and 
200 usec.  
 
To investigate how IESs characteristics change in periods of different seizure frequency we selected 
epochs of the data in periods of frequent (cluster) and less frequent seizure activity (non-cluster). 
The seizure cluster period was defined as more than two seizures in a day. For each of the two 
(cluster, non-cluster) we selected 5-minute-long epochs for left and right hippocampal channels. 
Each selected epoch was taken at distinct times to assess differences between sleep and wake 
cycles. In total we selected twenty-four 5-minutes long epochs reviewed independently by two elec-
troencephalographers. All IESs were marked in both hippocampal channels and used subsequently 
to calculate congruence score between experts and to validate the automated IES detector. Subse-
quently, we used the two-months period of the data continuously streamed from the human with 
implanted RC+STM to analyze IES rates and IES characteristics. 
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Generic seizure detector 

The training dataset consists of long term NeuroVista recordings from 5 canines and 2 human pa-
tients (Table 2). In canines, all seizures were included in training (340 in total). Another 628 interictal 
segments with various electrophysiological activity patterns were manually selected. The human da-
taset consists of 1049 seizures and 846 interictal segments. Half of the seizures (524) and half of 
the interictal segments (423) were bootstrapped and used as training data and the other half of data 
used in the validation dataset. The validation dataset included two sets of data. The first dataset has 
data from RC+STM recordings from three canines. Each recording spans at least 210 days. In total, 
133 electrographic seizures and 833 interictal segments were selected from the continuous record-
ings upon visual review by an expert reviewer. The second dataset contains the other half of the data 
(2 NeuroVista patient recordings) generated by bootstrapping in the training dataset.  
The testing datasets include previously collected NV dataset that were used for pseudo-prospective 
testing and RC+STM datasets for prospective testing. The pseudo-prospective NeuroVista human 
data was from 7 patients and true prospective deployment of the model in one human patient and 
two pet canines implanted with the RC+STM system. The pseudo-prospective NV human dataset 
period is ~10.5 years and includes 2046 seizures in total. The prospective deployment ran over 374 
days and contains data of 134 seizures that were recorded in the human RC+STM system and 23 
seizures recorded in the two pet canines (UCD1 and UCD2). 
 
Detector Design - utilizing LSTM neural network 
To design a generalizable seizure detection algorithm for a generic implantable system, we required 
the algorithm operate independently of the recording system, spatial electrode position, and species 
tested. We used two of the few implantable neuro-devices capable of continuous streaming local 
field potential data through a wireless connection. This allows long-term, real-time monitoring since 
the collected data are continually transferred from the implantable device to the brain co-processer 
system (tablet or smartphone, and cloud computational resource) (23). For this reason, the algorithm 
must be capable of processing data streams with artifacts and data drops caused by interference or 
disconnections.  
 
Seizures recorded with intracranially implanted electrodes exhibit temporal evolution of spectral 
power across a wide range of frequencies. Different electrographic signatures are observed in the 
data based on their initial power distribution. It is important to note that seizures in one patient might 
have multiple ictal patterns, therefore training on different ictal patterns is necessary for high sensi-
tivity seizure detection. The detector has to distinguish ictal patterns from sharp transient artifacts 
coming from a recording device or short interictal discharges which might temporarily increase spec-
tral power similar to an electrographic seizure.  
 
Previously reported seizure detectors (62, 69–71) usually utilize combination of features extracted 
from multiple channels, or features extracted from shorter segments without adaptation to a long-
term baseline. This is a crucial design input requirement in designing the seizure detector for a long-
term monitoring in chronically implanted devices.  Another drawback of previously reported detectors 
is that the testing is usually done on isolated ictal and interictal segments, and not on a long-term 
continuous recording spanning weeks and months of time. The deployment of trained and validated 
seizure detectors on previously unseen out of sample unbalanced data is critical for evaluation and 
real-time performance of a generalizable seizure detector. Our method focuses on spectral changes 
in iEEG recordings from only one channel and marks a probability of seizure over time thus providing 
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independence from the neighboring channels and the short interictal discharges that could confuse 
current state of the art detectors. 
 
In order to address these requirements, we developed a convolutional long short-term memory 
(LSTM) (32, 33) neural network utilizing Short Time Fourier Transform (STFT) calculated from single 
lead iEEG as an input. We previously used CNN with LSTM for automated classification of iEEG 
(72). The STFT converts the single lead time series data into time-frequency representation (spec-
trogram). Invariance to sampling frequency is achieved by using a constant time window of 1 second 
with 0.5 seconds overlap, and subsequently selecting only frequencies lower than 100 Hz. A raw 
data segment is always transformed into a spectrogram image with dimensions 100xT, where T is 
the number FFT calculations, not depending on sampling frequency (frequency domain resolution is 
always 1Hz per sample). Time series data of 5 min length were empirically chosen to provide long 
enough EEG baseline temporal context for the LSTM, so the relative power of seizure stands out of 
the background activity. The final classification is made for every 0.5 sec of the 5-minute input raw 
data signal using a many-to-many LSTM architecture. Raw data are z-score normalized prior to 
STFT calculation and each frequency band of the resulting spectrogram is z-score normalized prior 
to the neural network inference. Dropout layers in neural networks are used for regularization during 
training to prevent overfitting. Similarly, we drop random segments prior to the spectrogram compu-
tation. This enables the network to handle the data from the wireless system with possible short data 
gaps.  
 
The convolutional LSTM model consists of 2 convolutional blocks (convolution and ReLU) with ker-
nels {5, 5} and {96, 3}, respectively. Subsequently, time distributed feature representation is pro-
cessed with 2 layers of bidirectional LSTM recurrent neural network. Lastly, a fully connected layer 
with a softmax activation function transforms the LSTM output into probability output. The proposed 
architecture is trained with Adam optimizer (learning rate = 10-3, weight regularization = 10-4) in a 
many-to-many training scheme, where every input FFT window has a multiclass label. We imple-
mented 4 types of labels – normal activity, IES together with artifacts, dropout segments, and sei-
zures. Adding additional labels might improve learning because the model is forced to not only dis-
tinguish interictal activity from continuous seizure activity but also interictal discharges which are not 
considered as electrographic seizures in different behavioral states, and thus lower the number of 
false positives. The temporal resolution of the detector is defined by the FFT window step (0.5 sec-
onds). In order to train the network, we use a special purpose deep learning computer Lambda Labs 
Inc. (8x GTX 2080TI GPU, 64 CPU cores and 512 GB RAM). The data-parallel training method runs 
on all GPUs and average model gradients and is used to reduce training time. The model is built in 
the PyTorch deep-learning library for Python. 

Training and validation of seizure detection model 
The model was trained on NeuroVista data (5 canines, 2 human patients, Table 2). All training seg-
ments were 10 minutes long. Random 5 minutes intervals were sampled from the full segments 
during the training every time the segment was used in training. Because the human training dataset 
had a higher number of examples than the canine training dataset during the training epoch training 
examples were randomly sampled in a way that the number of examples from both classes was 
balanced. 
 
Performance of the model during the training was evaluated by area under the precision-recall curve 
(AUPRC), where all seizure targets were set to 1 and all the other classes were set to 0. Validation 
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of CNNs is typically measured by validation loss, but we used AUPRC for scoring because it is 
independent of the probability threshold of the classifier and it is not dependent on the true negative 
samples in the dataset. Validation examples were fixed 5 minute intervals and were not randomly 
sampled. Validation scores (AUPRC) were calculated on two different datasets (3 canines with 
RC+STM, 2 human patients with NeuroVista device) independently. The two validation scores were 
averaged after each training epoch and the model with the best score achieved during training was 
deployed on the test dataset in order to obtain results (Table 2).  

Model deployment 
We arbitrarily chose 10 continuous seconds of ictal activity as an electrographic event that we want 
to detect (73). The model iterates over the data with 5-minute windows with 100 seconds of overlap. 
The model gives a probability of seizure for every 0.5 seconds (higher probability is used in the 
overlap region) in every channel. Seizures in the test dataset are marked across all channels without 
specification therefore we combine probabilities from all channels in the following way. The three 
highest probabilities from all channels are averaged and from this averaged probability the final per-
formance measures are calculated. For a given probability threshold the system identified continuous 
detection whenever the probability was above a threshold (see example of a detection in Fig. 3 and 
10). Next, every detection interval above a threshold was automatically extended if in the next 10 
seconds from the current detection was another detection. Subsequently, the two detections were 
merged into one interval. Thus, for every probability threshold, we detected intervals of various 
lengths which the model marks as seizures. Intervals shorter than 10 seconds were dropped from 
detected events. For detected events longer than 10 seconds AUPRC and AUROC scores were 
calculated based on the region overlap with gold standard seizures marked by an expert reviewer. 
 
The model was deployed in local cloud storage to continuously process incoming data from RC+STM 
animal and human study. Due to a different electrode configuration in the RC+STM system in com-
parison with the NeuroVista system, we could not use an average of the three highest probabilities. 
Instead, a maximal probability given by two hippocampal channels was taken as an output of the 
model. Subsequently, the detected intervals were calculated from the probabilities in the same man-
ner as for the data from the NeuroVista dataset. The model has been running online and continuously 
detecting seizure events as the new data were coming in. A revision of the raw data by an expert 
reviewer created gold standard seizure marks for comparison of classifier performance. Thus, with 
all detected events and true seizure marks AUPRC and AUROC scores were calculated. 
 
The performance of the model on out-of-sample data is numerically shown in Table 3. The perfor-
mance of the generalized classifier is visualized using standard machine learning graphs of Precision 
Recall (PRC) and Receiver Operating Characteristic (ROC) curves for each individual human (Fig. 
4). The results of model detections outperform state of the art detectors published recently Baldas-
sano, Brinkmann et. al (62) and directly compare two hundred teams of data scientists across the 
globe comprising 241 individuals. An advantage over a Kaggle competition we were able to take and 
use a larger portion of the full dataset in a more realistic setting, where the classifier is trained and 
then pseudo-prospectively run on the new out-of-sample data of different subjects in a sequential 
way fully simulating a real prospective situation of recording where new data are arriving each sec-
ond and detector runs in near real-time manner. Yet, the classifier doesn’t need to be retrained for 
patient specific applications and is fully generalized. On the other hand, Fig. 10 shows an example 
of a short period (a minute) of iEEG data with seizure for all sixteen neocortical electrodes of patient 
N7 from NV human dataset. The seizure is visually apparent in only a few channels with adequate 
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signal to background ratio suitable for automated detections. This is likely a common situation with 
electrodes spanning the space from seizure onset zone to surrounding regions of the brain. Fig. 10 
reveals the time-frequency analysis of these iEEG signals showing the different signatures of seizure 
electrophysiology in different channels and below is the visualization of the classifier output proba-
bilities for each electrode. This also shows in the time-frequency domain that for some electrodes 
the seizure is very prominent while for others not differentiable from the background signal. There-
fore, here the model decides based on the seizure probabilities of the electrodes taken as a mean 
of top three probabilities.  
 
  

 
Fig. 10. Spectral features of spontaneous seizures. (A) One minute of iEEG data recorded with 
NV device, sixteen neocortical electrodes, containing a spontaneous human seizure. The seizure is 
present on a few channels with a good signal to background ratio suitable for automated detection. 
(B) Time-frequency analysis of signals show the different signatures of seizure electrophysiology 
(shaded area) in different channels: channel 1, where seizure is notable and channel number 4 
where it is hard to identify the seizure. (C) Plots of classifier probabilities for each electrode below 
actual raw data showing that for some electrodes the seizure is very prominent and for some not 
differentiable from the background signal. (D) The classifier output probabilities for top three proba-
bilities together with the mean (red) and threshold (blue) showing when the detection is raised (time 
0).   
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MH1 MD1 

 F1 Score Kappa Accuracy 
Wake 0.98 0.97 0.99 

N2 0.42 0.32 0.82 
N3 0.76 0.65 0.85 

N2+N3 0.96 0.92 0.95 
REM 0.87 0.85 0.96 

Overall 0.79 0.73 0.81  

 F1 Score Kappa Accuracy 
Wake 0.89 0.65 0.84 

N2 0.39 0.31 0.85 
N3 0.72 0.68 0.93 

N2+N3 0.89 0.65 0.83 
REM 0.48 0.45 0.93 

Overall 0.75 0.55 0.77  

MD2 MD3 

 F1 Score Kappa Accuracy 
Wake 0.84 0.82 0.96 

N2 0.77 0.69 0.88 
N3 0.94 0.89 0.95 

N2+N3 0.93 0.85 0.92 
REM 0.89 0.86 0.95 

Overall 0.87 0.82 0.87  

 F1 Score Kappa Accuracy 
Wake 0.93 0.88 0.94 

N2 0.47 0.39 0.86 
N3 0.87 0.81 0.92 

N2+N3 0.90 0.80 0.88 
REM 0.66 0.62 0.93 

Overall 0.83 0.74 0.83  

Table 1. The performance of automated behavioral state classification. Results for wake, non-
rapid eye movement (NREM  2, 3), and rapid eye movement (REM) from a human (MH1) and three 
dogs (MD1, MD2, and MD3). Simultaneous polysomnograms and intracranial EEG data were col-
lected in the hospital over multiple nights. Expert visual review of video and polysomnograms were 
used to create gold standard sleep classification catalogues for training, validation and testing of 
algorithms (see methods). 
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Table 2. Seizure detection datasets. Training, validation, and testing data used in development of 
a generic, automated seizure detection algorithm for canines and humans. Retrospective data in-
cluded human and canine datasets acquired with two different investigational devices, Neurovista 
(NV) and RC+STM device. Algorithm training was performed using retrospective data from humans 
and canines collected with NV devices. The validation data used NV data from two humans (N1,2) 
and RC+STM data from three canines (UCD 1, 2; MD4). Pseudo-prospective (NV data from 7 hu-
mans; N3-9) and prospective (RC+STM data from MH1 and 2 pet dogs UCD1, 2) ambulatory testing 
in human and canines in accustomed settings (human living at home and two pet dogs living with 
their owners) was performed over multiple months. 
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Patients 
 

Number of 
seizures 

 

 
Tested Interval 

(Days) 

 
AUPRC 

 
AUROC 

 
Pseudo-prospective NV 
System Human Dataset 

 

    

N3 39 728 0.21 0.90 
N4 43 726 0.99 0.96 
N5 731 558 0.88 1.00 
N6 684 183 0.70 0.99 
N7 173 766 0.86 0.99 
N8 277 394 0.83 0.98 
N9 99 465 0.93 0.99 

 
Total 

 
2046 ± 274 

 
3820 ± 199 

 
0.77 ± 0.24 

 
0.97 ± 0.03 

 
Prospective RC+S  

Summit System Dataset 
  

    

MH1 134 147 0.93 0.99 
UCD1 17 107 0.47 0.96 
UCD2 6 120 0.88 0.99 

 
Total 

 

 
52.33 ± 70.93 

 
124 ± 20.40 

 
0.76 ± 0.25 

 
0.98 ± 0.02 

 
 
Table 3. Seizure detection results. Performance of the generalizable seizure detection model for 
canine and human seizures deployed on multiple out-of-sample datasets both for pseudo-prospec-
tive NeuroVista (NV) and fully ambulatory prospective RC+STM testing (chronically monitored: MH1 
– human subject, UCD1,2 - dog subjects). Standard machine learning performance metrics are 
shown together with the number of seizures and number of recording days in the datasets (AUPRC 
- area under precision recall curve; AUROC - area under receiver operating characteristic curve).  
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Characteristics 

 
Cluster 

 
Non-Cluster 

 
Awake/Day 

 
Night 

 
 

IES rate per minute 
 

37.4 ± 29.1 
 

17.9 ± 7.2 
 

13.8 ± 8.7 
 

41.6 ± 23.7 
 

 
F1 - score 

 
0.84 ± 0.09 

 

 
0.8 ± 0.05 

 
0.81 ± 0.08 

 
0.82 ± 0.08 

 
PPV 

 
0.81 ± 0.2 

 

 
0.74 ± 0.14 

 
0.71 ± 0.12 

 
0.8 ± 0.18 

 
Sensitivity 

 
0.9 ± 0.08 

 
0.9 ± 0.08 

 
0.94 ± 0.001 

 
0.89 ± 0.09 

 
 

Table 4. Interictal epileptiform spike (IES) rates. Results from automated classifier for human 
patient under different conditions and compared to expert review. The F1-score comparing the au-
tomated and expert visual review was similar for each condition studied. 
 
 

Biomarkers  
&  

Brain States 

N2 
Hours 

N3 
Hours 

N2+N3 
Hours 

REM 
Hours 

Sleep Time 
Hours 

M
H

1 

No EBS 
(22 nights) 0.59±0.12 3.87±0.51 4.46±0.55 2.91±0.63 7.37±0.85 

LF EBS 
(84 nights) 0.70±0.19** 3.77±0.48 4.47±0.50 1.74±0.72** 6.21±0.99** 

HF EBS 
(63 nights) 0.72±0.18** 3.98±0.62 4.71±0.5* 2.28±0.63** 6.98±0.95* 

Continuous LF 
& Responsive 

HF EBS 
(22 nights) 

1.01±0.29** 3.16±0.50** 4.17±0.4* 2.02±1.06** 6.20±1.17** 

 
Table 5. Influence of electrical brain stimulation (EBS) on sleep length. The sleep length of MH1 
subject during long-term monitoring. Both, continuous low frequency (LF), high frequency (HF) and 
adaptive stimulation with continuous LF and responsive HF stimulation during wake significantly re-
duced total sleep time and length of rapid eye-movement (REM) sleep and prolonged the N2 phase 
of sleep compared to baseline with no stimulation (**p<0.01; *p< 0.05). All nights analyzed had data 
transmission rates >85% to ensure results were not biased by iEEG data telemetry drops.  
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Biomarkers  
& Brain States 

Days of 
monitoring 

Data 
Rate[%] 

Reported 
Seizures 

Confirmed 
Seizures 

Seizures 
(per daily) 

IES rates  
(per min) 

M
H

1 

No EBS 30 72 10 27 0.90±0.94 
 

37.65±6.29 
 

LF EBS 186 72 77 171 0.92±1.05 29.46±7.59** 

HF EBS 94 73 46 113 1.20±1.48 33.19±8.44** 
Continuous LF 
& Responsive 

HF  EBS 
28 72 2 20 0.71±0.75 35.42±4.85* 

U
C

D
1 

No EBS 79 58 12 23 0.29±0.64 73.30±32.57 

LF EBS 59 41 14 13 0.22±0.94** 56.66±23.31** 

HF EBS 274 36 2 73 0.27±1.50** 106.18±57.25** 

U
C

D
2  No EBS 186 59 8 19 0.10±0.40 228.95±75.25 

LF EBS 98 49 7 19 0.20±0.97 217.22±75.43* 
 
Table 6. Influence of electrical brain stimulation (EBS) on seizure rates and interictal epilepti-
form spike (IES) rates. Results in human (MH1) and two pet dogs (UCD1, UCD2) chronically mon-
itored in their natural environments. Continuous low frequency (LF) EBS reduced IES in all subjects 
(MH1, UCD1, UCD2) compared to no EBS, but only reduced seizures in UCD1. Continuous high 
frequency (HF) EBS had a variable effect on IES rates, decreasing IES rates in MH1 but increasing 
IES rates in UCD1, and decreasing seizures in UCD1 to a smaller degree than LF EBS. Because of 
the pet dogs brittle epilepsy HF EBS was not explored in UCD2. Lastly, adaptive circadian continuous 
LF stimulation combined with responsive HF EBS during waking hours was trialed in the human 
subject because the majority of her seizures occurred with a circadian pattern in late afternoon, and 
HF EBS was poorly tolerated during sleep. The circadian EBS trial reduced IES and had a trend 
towards lower seizure counts.  
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