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Abstract

We studied the changes that neuronal RF models undergo when the statistics of the stimulus are
changed from those of white Gaussian noise (WGN) to those of natural scenes (NS). Fitting the
model to data estimates both a cascade of linear filters on the stimulus, as wells as the static
nonlinearities that map the output of the filters to the neuronal spike rates. We found that cells
respond differently to these two classes of stimuli, with mostly higher spike rates and shorter
response latencies to NS than to WGN. The most striking finding was that NS resulted in RFs that
had additional uncovered filters than did WGN. This finding was not an artefact of the higher spike
rates but rather related to a change in coding. Our results reveal a greater extent of nonlinear
processing in V1 neurons when stimulated using NS compared to WGN. Our findings indicate the
existence of nonlinear mechanisms that endow V1 neurons with context-dependent transmission
of visual information.

1 Introduction

Our understanding of sensory coding in the visual system is largely based on the stimulus-
response characterization of neurons. Traditionally, a basic set of stimuli (e.g., bars or gratings),
were used to parameterize neuronal responses in terms of a restricted choice of stimulus param-
eters (e.g., orientation, spatial frequency etc.). This analysis allowed the measurement of tuning
functions. However, such techniques provide only partial understanding of the neuronal response
function and are particularly limited when the processing is nonlinear.

Later methodological improvements enabled the recorded responses of neurons to be charac-
terized using statistically richer stimuli (Chen, Han, Poo, & Dan, 2007; Ringach, Hawken, & Shap-
ley, 2002; Touryan, Felsen, & Dan, 2005). Recently, appropriate mathematical tools for a com-
prehensive neuronal characterization under arbitrary stimulus regimes have emerged (Fitzgerald,
Sincich, & Sharpee, 2011; Liu et al., 2016; Rapela, Felsen, Touryan, Mendel, & Grzywacz, 2010;
T. Sharpee, Rust, & Bialek, 2004). A prime example is the probabilistic framework wherein model
estimation is performed by maximizing the likelihood of the model given the recorded responses
and stimuli I. M. Park, Archer, Priebe, and Pillow (2013); M. Park and Pillow (2011). An exam-
ple of this framework, which we have adapted, is the nonlinear input model (NIM) (Almasi et al.,
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2020; McFarland, Cui, & Butts, 2013). In this case, characterization is achieved by estimating the
parameters of a receptive field model. Typically, the model first applies a cascade of linear filters
on the stimulus. In the second stage, static nonlinearities map the output of the linear filters to
neuronal spike rates (e.g., the generalized linear model).

How do these characterizations depend on the choice of the stimulus? To answer this ques-
tion, first it is essential to control for artifactual fits, because the fitting method may extract statisti-
cal regularity inherent in the stimulus, rather than the stimulus-response relationship. To overcome
this problem, maximum likelihood estimation can be used, as it provides an unbiased and consis-
tent estimation method. Second, it is possible that the system may adapt to the stimulus statistics
such that the stimulus-response relationship is altered. In the case of adaptation, it is the system
that changes due to the relative presence of different types of features. Third, stimuli with different
statistics may simply allow us to sample different operational regimes (Butts, 2019). For example,
some regimes of operation are effectively unobservable or cannot be estimated because there
are insufficient stimuli containing particular features to allow reliable estimation. In this study, our
experiments aim to explore the last two points.

Here, we studied the changes that the NIM of cortical receptive fields (RF) undergoes when
presented with different image statistics. We applied the NIM to the recordings of single cells in
cat primary visual cortex (Fig. 1a). Cortical cells were stimulated with two types of stimuli which
had distinct statistical properties: white Gaussian noise (WGN) and natural scenes (NS), with the
same global Root-Mean-Square (RMS) contrast. WGN has a Gaussian distribution of contrasts,
with a heavy over-emphasis on low contrasts. NS have more high contrasts and tend to be
sparser. The NIM framework makes minimal assumptions about the kind of underlying neuronal
processing and can fit the RF filters as well as a diverse range of nonlinearities that neurons
employ to pool the output of their spatial filters (Almasi et al., 2020; McFarland et al., 2013). We
estimated for each cell the spatial filters constituting the neuronal RF, and their corresponding
pooling mechanism. The number of spatial filters for each cell is determined by a validation
technique over a test dataset.

We found that cells in primary visual cortex respond differently to the two stimulus types, with
mostly higher spike rates and shorter response latencies to NS than to WGN. NS resulted in
around twice as many uncovered RF filters compared to WGN. This difference was not related
to the higher spike rates of cells to NS. Instead, we found that specific feature-contrasts attain
much higher values in NS compared to WGN stimuli and are believed to be responsible for the
differences in the number of RF filters. Our findings imply that cells in primary visual cortex adapt
to the statistics of the visual stimulus to improve their coding efficiency, which enhances their
capacity for information transmission.

2 Results

We studied the spatial structure of V1 receptive fields in anaesthetized cats identified using both
White Gaussian Noise (WGN) and Natural Scenes (NS) as stimuli. The recorded neurons were
visually stimulated with interleaved blocks of WGN and NS to increase the biological comparability
of the recordings made with both stimuli (6 blocks of 12,000 stimuli per block for each stimulus
type). The spatial RFs were uncovered using the NIM framework by maximizing the log-likelihood
of the model given the pairs of stimuli and responses, which was done over the set of all model
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Figure 1 – (a) Schematic diagram of the nonlinear input model (NIM) used in this study to char-
acterize the spatial structure of V1 receptive fields. (b) Diagram depicts the concept of the feature
space of a cell using its RF filters. The feature space contains any linear weighted sum of the RF
filters.

parameters simultaneously. The temporal RF of cells was left out in the modelling framework as
(1) we wanted to investigate the changes that are brought about in the visual feature selectivity of
cells, and (2) the used stimuli did not have enough temporal correlation to allow decent estimation
of the temporal RF.

2.1 Differences between the V1 response profiles to WGN and NS

Although we did not study here the temporal aspects of the neuronal RFs, we observed major
differences in the way that neurons responded to WGN and NS stimuli in terms of their response
strength and latency (see Fig. 2a). Generally, V1 cells responded more strongly to NS stimuli
(roughly 78% higher spike rates) than to WGN (Fig. 2b; mean ± standard deviation: 7.8±4.9 ips
versus 4.4±3.3 ips). Furthermore, all cells showed longer response latencies to WGN than to NS
stimuli, with an average difference of 11.4±6.2 ms (Fig. 2c; mean ± standard deviation: WGN =
29.0±6.3 ms versus NS = 17.6±4.4 ms). All analysis was performed on spikes occurring in the 33
ms window immediately after the latent period. While the latency was different for WGN and NS,
the analysis window remained the same. Figure A.1 shows all responses from the units analyzed
in this project, revealing that the peak responses occurred within the 33 ms window.

2.2 V1 RFs unveiled by NS are typically higher dimensional compared

to those with WGN

We successfully uncovered spatial RFs for 92 orientation selective V1 cells using either NS or
WGN (72 cells had RFs uncovered using both stimuli). Among these 92 cells, 87 cells had RFs
uncovered using NS, 58 had RFs uncovered using WGN, and 53 cells had their RFs uncovered
successfully using both stimulus types. In addition to the 92 cells with oriented RFs, we also
uncovered RFs for 58 other cells whose RFs were non-oriented. According to a recent study (Sun
et al., 2021), these cells might be of thalamic origin whose axons terminate in V1. Hence, since
we were not certain about the cortical origin of these additional 58 cells with non-oriented RFs,
we excluded them from our RF analysis.
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Figure 2 – (a) Post-Stimulus-Time-Histogram (PSTH) of a V1 cell in response to WGN (magenta)
and NS (green). There is a noticeable difference in the response delay between WGN and NS, with NS
having faster rise time and therefore shorter delay. Scatter plots compare response profiles of V1 cells
to WGN and NS stimuli in terms of (b) firing rate, and (c) response latency. Gray data points indicate
cells for which the difference between WGN and NS was not statistically significant (unpaired t-test;
p > 0.05). All cells that had significant difference between their WGN and NS response patterns
showed higher firing rates and shorten response latency to NS than WGN. The plots show results of
cells whose spatial RF structures were successfully characterized using both WGN and NS stimuli.

Figure 3a presents the spatial RFs of an example V1 cell uncovered using the NIM framework
under both NS and WGN. The most striking difference between these two model fits emerges in
the number of spatial filters. Using the same number of stimulus images, the RF characterization
using WGN and NS identified one versus three spatial filters, respectively. This was typical in our
population of V1 cells, with a majority of cells (78%) having more spatial filters identified using NS
than WGN (Fig. 3b-c). On the contrary, only a small fraction (8%) of cells had more uncovered
spatial RF filters using WGN than NS. The distribution of the difference between the number
of uncovered spatial filters using WGN and NS (#NS filters - #WGN filters) for the same cells
varied from -1 to 4 (inset, Fig. 3c), but is asymmetric and heavily skewed to positive values. We
investigate possible causes for having identified more spatial filters for RFs using NS than WGN
in the following sections.

2.3 Comparison of the feature spaces uncovered with WGN and NS

How does the identified spatial feature sensitivity of each cell depend on the type of stimulus
(WGN or NS) used to estimate the model? For a given model, the set of spatial features to
which the cell is sensitive is determined by its RF filters. The diagram in Figure 1a represents
the RF model of a cell with multiple spatial filters. This cell is sensitive to any feature in an
image corresponding to one of its RF filters, but also any feature that is a linear weighted sum
of the RF filters. This is because such a summed feature would drive each RF filter and hence
neural response. The set containing all possible linear weighted sums (i.e., linear combinations)
of the RF filters is referred to as the cell’s feature space (see Methods). Figure 1b shows how
we represent the feature space of the model cell. Different linear combinations of the features,
corresponding to RF filters, are represented as distinct points in the feature space.

As most cells had at least as many RF filters uncovered using NS compared to WGN, we
investigated whether the WGN feature space (Hwgn) was a subspace of the NS feature space
(Hns). In general, the WGN feature space can take any of the three illustrated forms in Figure
4a-c relative to the NS feature space. Namely, the WGN feature space (a) resides completely in
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Figure 3 – (a) Spatial RF structures of a V1 cell uncovered using the NIM and with NS (upper)
and WGN (lower). For each model characterization only the spatial filters and input functions are
shown as the spiking nonlinearity has a parametric log-exponential form. The abscissa in the Input
Functions denotes the percentage of feature-contrast in terms of Michelson contrast. Red and blue in
the filters indicate ON and OFF subregions of the filters, respectively. (b) Distribution of the number
of spatial filters per each V1 cell, for the RFs uncovered using WGN and NS stimuli. (c) Scatter plot
shows the number of RF filters uncovered using NS versus WGN stimuli, for each V1 cell. Data points
are jittered as to provide a clearer view. The inset superimposed bar graph gives the distribution of
the difference between the number of RF filters between NS and WGN.

the NS feature space, (b) is orthogonal to the NS feature space, (c) neither sits completely within
nor is it orthogonal to the NS feature space. In the first case, the WGN feature space is a proper
subspace of the NS feature space, while in the second case there is no overlap between WGN and
NS feature spaces. In practice, even if the WGN feature space of a cell is essentially a subspace
of its NS feature space, it is unlikely that the estimated feature spaces will precisely coincide due
to noise in the model estimation process. In our data, initial estimates of feature spaces for all cells
fell into the third category described above. However, it is necessary to determine whether the
part of the WGN feature space that is not in the NS feature space is statistically significant. To do
this, for each cell we first decomposed each WGN RF filter into two components. (i) A component
that was the projection of the WGN RF filter onto the NS feature space, termed the projected
component, which lies in the NS feature space Hns (black-colored vector; Fig. 4c). The space
spanned by these projected components is termed the WGN-projected feature space denoted by
Hproj

wgn . (ii) A component that is orthogonal to both the first component and Hns, i.e., it sits outside
the NS feature space Hns, termed the residual component (gray-colored vector; Fig. 4c).

Our visual inspection of the above components showed that in most cases the residual com-
ponents of WGN RF filters, while non-zero, were noisy and had no meaningful structures (see
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Figure 4 – (a-c) The relationship between the uncovered WGN and NS feature spaces. (d) The
first row shows the four RF filters of a V1 cell identified using NS. The second row from left to right
shows the single RF filter of the same cell uncovered using WGN, its projection onto the NS feature
space spanned by NS RF filters (shown in the first row), and its residual component that does not lie
into the NS feature space. (e) Bar plot shows fractions of V1 cells for which WGN feature space is
equal to, a proper subspace, or is not a subspace of the NS feature space.

Fig. 4d). This suggests that they may not contribute significantly to model predictions. If this
was so, then Hwgn may be considered to be effectively a subspace of Hns. To determine whether
this was the case, we compared the predictive ability of the original WGN model with that of a
model that was restricted to operate on only WGN-projected feature space, Hproj

wgn ; i.e., with the
residual components removed (see Methods). After refitting the RF nonlinearities of this model
on the WGN-projected feature space, we evaluated the performance of both models on a withheld
WGN dataset. For a majority (90%) of cells in our V1 population the test showed an insignificant
change in the model’s predictive ability, indicating that Hwgn may be replaced by Hproj

wgn , which is a
subspace of Hns (Fig. 4e; unpaired t-test; p > 0.05). Hence, these cells had their Hwgn equal to
(17% of units), or a proper subspace (73% of units) of, Hns. However, for the remaining minority
(10%) of cells their response was predicted significantly less well by the new model using Hproj

wgn ,
indicating that Hwgn could not be considered to be a subspace of Hns in these cases.

2.4 Different dynamic range of V1 RF filters on NS and WGN

The spatial filter’s output quantifies the contrast level of the corresponding feature as it appears
embedded in the WGN or NS stimuli, which is termed the feature-contrast (see Methods). It is
a way of quantifying the contrast of those features within an image that drive a particular cell.
While the overall RMS contrast of the WGN and NS was matched for our stimuli, the distribution
of contrast of particular features could differ between WGN and NS due to their inherent statistical

Preprint 6

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 9, 2021. ; https://doi.org/10.1101/2021.03.08.434507doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.08.434507
http://creativecommons.org/licenses/by-nc-nd/4.0/


How stimulus statistics affect V1 RFs Almasi et al. 2021

structure. For those features to which cells were sensitive, we often noticed considerable differ-
ences between the level of feature-contrast between WGN and NS. This is evident from Figure 5a,
in which graphs show the distributions of feature-contrast of a typical V1 RF filter (inset) for WGN
(magenta) and NS (green). The abscissa indicates the feature-contrast that is computed as the
output of a normalized (unit norm) filter when applied on the stimuli. The presented distributions
differ significantly in their spread. Defining a range of feature-contrast to span plus-and-minus
three standard deviations (see Methods), the range of feature-contrast of the filter in Figure 5a
on WGN and NS stimuli was measured as 1.7 and 5.9, respectively. It can be shown that these
amounts correspond to 10% and 35% of the Michelson contrast of the feature.

The distribution of the range of feature-contrasts for the population of V1 RF filters uncovered
using WGN and NS is given in Figure 5b, which demonstrates significant differences between
these two stimulus types across the V1 population. Here, feature-contrast is computed as the
output of normalized (unit norm) RF filters when applied on the stimuli. Such a pronounced
difference arises due to the nature of the stimuli in relation to the feature sensitivity of V1 cortical
neurons. As stated before, the differences between WGN and NS stimuli are in terms of second-
and higher-order statistical dependencies between pixels, which are ubiquitous in NS but do not
exist in WGN. The higher-order statistics of NS mainly account for structures like edges, curves
and contours in these images. Of course, many V1 cells are highly responsive to these features
because they have Gabor-like oriented RF filters. Accordingly, numerous occasions can occur in
natural scenes in which a Gabor-like RF filter of a V1 cell is partially or highly matched with a
feature in the scene (like the ones illustrated in Fig. 5c). This results in large values at the output
stage of V1 RF filters, namely the filter’s feature-contrast. This provides an intuitive explanation
for the higher range of feature-contrasts of V1 RF filters on NS than on WGN (Fig. 5b). Further,
this considerable difference between the distributions of feature-contrast for V1 RF filters on WGN
versus NS implies that the dynamic range of RF filter outputs that drive V1 cells is significantly
larger when operating on NS than on WGN.

2.5 Difference in the feature-contrast response functions

We examined how each cell’s nonlinear response to feature-contrast depended on stimulus type
(i.e., WGN vs NS). In the case of cells with multiple spatial filters, this feature-contrast response
function determines how the cell pools those corresponding features in the visual input to give a
response. For cells with equal numbers of RF filters between WGN and NS, we use the feature
directions that are shared between the uncovered WGN and NS feature spaces to compare the
response functions between the two stimulus regimes. The shared dimensions between the two
feature spaces correspond to the WGN RF filters projected onto the NS feature subspace (i.e.,
Hproj

wgn ). As we showed earlier, for most V1 cells (90%) the uncovered WGN feature space resides
within the NS feature space. For cells that had more NS feature dimensions than WGN, we
compare response functions on the feature directions that were shared between the two feature
spaces, and also on NS feature directions that were orthogonal to the shared dimensions.

For simplicity, we begin by presenting the comparison of the response functions of cells that
have a single RF filter using both WGN and NS. For these cells, Hproj

wgn is the same as Hns (since
there is only one filter dimension). For most cells, such as that illustrated in Figure 6, the WGN and
NS feature-contrast response functions did not coincide and were significantly different (bottom
Fig. 6b; filled symbols) (unpaired t-test; p < 0.001). Note that the comparison of feature-contrast
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Figure 5 – (a) The graphs show the empirical distribution of feature-contrasts of an example V1 RF
filter (inset) obtained on WGN (magenta) and NS (green). (b) Bar graphs plot distributions of the
range of the feature-contrast for the population of V1 RF filters on WGN (magenta) and NS (green).
(c) Strong resemblance between the Gabor-like filters and the patterns that occur ubiquitously in NS
indicate significantly larger values for the output of these filters (i.e., feature-contrast) on NS compared
to WGN. Gabor filters are depicted as bands of red (ON) and blue (OFF) that are superimposed on
parts of the scene that show a perfect match with their spatial structures.

response functions can only be made on the smaller shared domain of these functions, which
corresponds to the range of feature-contrast for WGN (Fig. 6b). Cells often exhibited a change in
their response functions between WGN and NS that were akin to the pattern shown in Figure 6b.
Qualitatively, the changes were often characterized by an increase in spike rate in response to
WGN over NS at the same low level of shared feature-contrast (bottom Fig. 6b). Note that despite
this, the overall mean spike rate to NS was often higher than to WGN, presumably because the
level of feature-contrast was higher for NS.

Figure 7a-c presents the response functions for a cell that had multiple but equal feature
dimensions on both WGN and NS. Here, the comparison is similarly performed on the WGN-
projected filter dimensions. Figure 7d-f shows the response functions for a cell that had more NS
feature dimensions than WGN. In this case, the comparison is done on the feature dimensions
that were shared between the two feature spaces (WGN-projected filter dimensions; Fig. 7e),
and the NS feature dimensions that were orthogonal to the shared dimensions (NS-orthogonal
dimensions; Fig. 7f).

We quantified these changes using an index of normalized Difference between Area Under
the Curve (nD-AUC) of the WGN and NS feature-contrast response functions (Fig. 8a). This
index was calculated for the polarity of feature-contrast to which the cell showed the strongest re-
sponse dependency. The difference between the area under the curve of WGN and NS response
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Figure 6 – The changes observed in the feature-
contrast response functions of V1 cells due to the
change in the stimulus statistics from WGN and
NS. (a) RFs filters estimated using the NIM and
with NS (left) and WGN (right) stimulation for an
example V1 cell. (b) Top panel compares Feature-
contrast response functions identified using WGN
(magenta) and NS (green) for the same V1 cell.
Bottom panel compares the same functions but
zooms into the range of WGN feature-contrast.

functions is depicted using the yellow highlighted area in Figure 8a, which indicates how different
the WGN response function is from the NS response function within the WGN feature-contrast
range (Σwgn). To obtain a normalized index (nD-AUC) that varies between -1 and 1, we divided
the yellow highlighted area by the grey-shaded area, which is determined by the WGN feature-
contrast range (Σwgn), the maximum response of the cell within this range to either WGN or NS
(Rmax), and the cell’s response at zero feature-contrast (R0). We computed this normalized index
for the cells whose feature-contrast response functions featured a significant difference between
WGN and NS (unpaired t-test; p < 0.001). Positive and negative values of nD-AUC indicate that
the WGN response function sits either significantly above or below the NS response functions,
respectively, within the WGN feature-contrast range. Across our population of V1 cells, 52/53
cells (98%) showed a positive value of nD-AUC, indicating that for them the NS feature-contrast
response functions sit below the WGN response functions across the shared (projected) feature
directions between NS and WGN (Fig. 8b; blue bars). For only one cell, the change between
the NS and WGN response functions was statistically indistinguishable (at p = 0.001 confidence
level). For cells whose dimensionality of WGN feature space was less than that of NS feature
space, we considered and compared the response nonlinearities on the shared dimensions as
well as the NS feature dimensions that were orthogonal to the shared dimensions. In contrast to
the shared feature dimension, for orthogonal feature dimensions the nD-AUC indices were nega-
tive (Fig. 8b; gray bar), which is related to the trivial (i.e., constant) dependency of WGN response
functions. The distribution of the nD-AUC values of all feature dimensions for cells in our V1 pop-
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Figure 7 – (a) RF of a V1 cell that resulted equal number of filters identified using the NIM and
with NS (left) and WGN (right). Top panels in (b-c) compare the feature-contrast response functions
of the same cell estimated using WGN and NS, upon the presented WGN-projected filters. Bottom
panels compare the same functions but zoom into the range of WGN feature-contrast. (d-e) RF of
a V1 cell that had two filters identified using NS but had one filter using WGN. Comparisons of the
feature-contrast response functions are given in (e-f) with the same convention as in (b-c).

ulation is given in Figure 8c. Most positive nD-AUC indices vary between 0.1 and 0.4, with a peak
at 0.3. Most negative nD-AUC indices vary between -0.2 and -0.4.

2.6 Explaining the observed changes between the two stimulus regimes

For most V1 cells, the uncovered RF using NS stimuli reveals a larger repertoire of feature sensi-
tivity compared to RF structure revealed with WGN (see Fig. 3a and Fig. 4d). The larger repertoire
can be an indication of more complex feature selectivity and also the capacity for invariance (see
Almasi et al. (2020)).

Here, we postulate different hypotheses that might explain the observed differences between
the identified RFs of V1 cells using NS and WGN stimulus regimes.

2.6.1 The observed changes are not artifactual nor methodological

One may suspect that the observed changes are methodologically related to our RF identification
technique, because the fitting procedure may extract statistical regularities inherent in the stim-
ulus, rather than the stimulus-response relationship. This has been long considered as a strong
possibility for some RF identification techniques such as spike-triggered average and covariance
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Figure 8 – (a) Quantitative characterization of the difference between the feature-contrast response
functions of an example cell uncovered with WGN (magenta) and NS (green) using the introduced
index of normalized difference between the area under the two curves (yellow colored area). (b) Bar
graphs present fraction of V1 cells whose feature-contrast response functions during WGN stimula-
tion was significantly above (nD-AUC>0) or below (nD-AUC<0) their response functions during NS
stimulation, upon feature dimensions that were shared (projected, blue bars) between the two feature
spaces, or were orthogonal to the shared feature space (orthogonal, gray bars). No-change corresponds
to those that did not show any significant changes in their feature-contrast response functions between
WGN and NS. (c) Distribution of nD-AUC values of all feature dimensions. (d) The bar graph gives
proportions of cells that showed no change, adaptation, or small signal effects.

when used in conjunction with statistically rich stimuli such as NS (Paninski, 2003; Schwartz, Pil-
low, Rust, & Simoncelli, 2006; T. Sharpee et al., 2004). However, this is not an issue here since we
employed maximum likelihood estimation that is an unbiased and consistent estimation method,
thereby, minimizing the possibility of artifactual RF filters obtained using NS (Paninski, 2004).

2.6.2 Greater number of RF filters using NS are not due to higher spike rates

We found that neurons in V1 were usually more responsive to NS than to WGN. One theory
is that the larger number of uncovered RF filters with NS is related to the higher spike rates,
because more spike data is available for the NIM fitting. The logic behind this suggestion is that
having more spikes for fitting might lead to better fits, which might identify more significant filters.
We assessed this hypothesis by performing a control analysis to understand the effect that spike
count (number of spikes per stimulus image) might have on the number of uncovered spatial filters.
In this analysis, for each cell we matched the cell’s spike count on NS and WGN (see Methods).
It should be noted that this analysis was done for cells whose RFs were uncovered using both
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WGN and NS, but had more filters using NS (n = 32). After matching the cells’ spike counts
between WGN and NS, we performed our statistical significance test (Z-Score > 2; see Methods)
to determine the number of spatial filters within the RF with the matched (controlled) spike-count
for NS. Most cells (83%) still had more filters within the RF identified using matched-spike-count-
NS than using WGN (Fig. A.2), indicating that for most cells identifying a larger numbers of RF
filters using NS is not attributed to there being more spikes for these stimuli compared to WGN.

As an additional check that our model fitting procedure correctly estimated the number of
filters for WGN compared to NS, we refitted the model nonlinear functions to WGN, but provided
the larger set of RF filters estimated for NS as fixed parameters in the model fitting. This test
considered the possibility that our model fitting procedure might fail to estimate the full set of filters
obtained for NS due to some flaws. If this was true, the refitted model with all the NS RF filters
should have better predictive ability on a withheld WGN dataset, compared with the original WGN
model with fewer RF filters. Nonetheless, our analysis proved that the models with the full set of
NS RF filters never provide a better predictive ability than the simpler WGN models when tested
on a withheld WGN test set (see Supplemental Information A). This supports the conclusion
that a model fitted to NS data typically had a higher dimensional feature space compared to those
fitted to WGN.

2.6.3 The observed changes are not due to a small signal effect

Another possible explanation for the smaller number of RF filters typically found for WGN com-
pared to NS could be a small signal effect. The argument in support of this effect is that stim-
uli with different statistics allow us to sample different operational regimes of the visual system,
which might be effectively unobservable or cannot be estimated using some other stimulus types
because there are insufficient stimuli containing particular features to allow reliable estimation.
Recall from Section 2.4 that the range of feature-contrast with WGN was significantly smaller
than that for NS. It could be that within the more restricted range of feature-contrast present in
WGN that two models are not significantly different from each other; in this case for the extra
dimensions of a model fitted to NS, the feature-contrast response functions should be statistically
indistinguishable from the feature-contrast response functions of the model fitted to WGN, which
is equal to zero in these dimensions. In this hypothesis, the additional filter dimensions present in
the model fitted to NS are only able to be identified because the feature-contrast in NS becomes
sufficiently large to identify a response that departs significantly from zero.

In our population of V1 data, we found no cell that showed any such small signal effect based
on the above definition. For every cell where we found a reduction in the number of RF filters
when the stimulus was changed from NS to WGN, we also found a significant change in their
feature-contrast response functions within the restricted range of feature-contrast of WGN (Fig.
8d).

2.6.4 Adaptation amongst other nonlinear phenomena to explain the changes

Based on our analyses, it appears that the changes in the RFs of V1 cells as a result of changes
in the stimulus from NS to WGN are brought about using nonlinear phenomena. A possible ex-
planation for these results may be the adaptation of cells to stimulus statistics. This is a potential
explanation for the changes that we have observed in the RFs of V1 cells under WGN and NS
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(a) (b)

Figure 9 – Scatter plots compare (a) spatial frequency preferences, (b) spatial frequency bandwidths
of the RF filters uncovered using WGN and NS for each cell in our population of V1 cells. The mean
of the distributions was found to be significantly biased towards the directions indicated by the red
arrows.

stimulation. That said, our analyses cannot entirely rule out the possibility of other effects influ-
encing the RFs, such as surround suppression, or end-stopping, which have been found for V1
cells when probing with basic visual stimuli such as bars and gratings.

In our V1 data, all cells underwent nonlinear effects in their response functions manifested
as a significant amplification in their feature-contrast response functions across the restricted,
shared feature dimensions when the stimulus changed from NS to WGN. However, across the
feature dimensions that were orthogonal to the shared space (i.e., NS-orthogonal), WGN feature-
contrast response functions exhibited trivial dependencies, resulting in a significant reduction in
the response function when the stimulus was switched from NS to WGN (see Fig. 8c).

2.6.5 Changes in the characteristics of RF filters

A thorough comparison between the WGN and NS feature spaces can be achieved by sampling
features from these spaces and calculating the range of characteristics (e.g., orientation, spatial
frequency, and spatial phase) of those sampled features (see Almasi et al. (2020)). However,
this is a very significant project and is beyond the scope of the present paper. One issue that
hinders direct comparison of the characteristics of RF filters between WGN and NS is the change
in the number of RF filters. This can be particularly problematic when comparing the orienta-
tion characteristics between filters as we occasionally observed cells whose extra NS RF filters
showed misalignment in their orientation preferences. To allow comparison with previous work
(T. O. Sharpee et al., 2006), here, we will consider spatial frequency. We found that changes in
spatial frequency were less problematic. We computed and compared the peak spatial frequency
and spatial frequency bandwidth of filters within the same cell between the WGN and NS RFs.
Preferred spatial frequency was preserved (Fig. 9a; r=0.58). The spatial frequency bandwidth
showed a lesser degree of correlation (Fig. 9b; r=0.24). While the overwhelming finding for most
cells was a similarity in spatial frequency tuning, at the population level there was a statistically
significant bias towards filters with higher spatial frequency and narrower spatial frequency band-
width during NS stimulation (unpaired t-test; p < 0.01).
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3 Discussion

We studied the differences in the RF characteristics of cells in cat V1 when stimulated with white
Gaussian noise (WGN) and natural scenes (NS). The RFs were estimated using a general class
of neural model, the nonlinear Input Model (NIM), which allows characterization of RFs in terms
of a cascaded linear-nonlinear architecture, with filters and nonlinear functions applied on the
filters’ outputs. These outputs are referred to as feature-contrasts. For a majority of V1 cells, we
found that the RF structure uncovered using NS resulted in more filters than did WGN. We also
noted that the use of NS led to an increase in spike rate but the increase in filter numbers was
not linked to the increase in spike rate. Rather, we believe it is attributed to the wider range of
feature-contrasts generated by RF filters when using NS stimuli.

3.1 Contrast

The WGN and NS stimuli used in our experiments, though matched in global RMS contrast, are
different in their local contrast. Small image patches (size 5◦-7◦) randomly sampled from NS
show substantial variations in their RMS contrast, whereas the RMS contrast of patches sampled
randomly from WGN are concentrated around the global contrast. The significant differences in
the local contrasts of WGN and NS is related to different statistical regularities within these images
(see Frazor and Geisler (2006)). WGN images lack any second- and higher-order statistics and
are spatially stationary. That is, local statistics of random patches are independent of where in the
scene the patches are sampled. Unlike WGN, NS have strong second- and higher-order statistics
and are highly spatially non-stationary.

Our findings indicate that the larger range of feature-contrasts of V1 RF filters using NS, when
compared to WGN, is due to the differences between the statistics of these stimuli, which is
consequently related to the differences in their local contrasts. In this context, feature-contrast
can serve as an indication of local contrasts in a scene.

3.2 Adaptation

We found significant changes between the way that V1 cells operate during WGN and NS stimu-
lation. The differences in RF structures suggest the existence of nonlinear phenomena affecting
V1 RFs, e.g., adaptation in the visual system, which may occur due to the changes in the statistics
of the stimulus. Additional nonlinear phenomena such as surround suppression (Jones, Grieve,
Wang, & Sillito, 2001; Webb, Dhruv, Solomon, Tailby, & Lennie, 2005; Wissig & Kohn, 2012) or
end-stopping (Bolz & Gilbert, 1986; DeAngelis, Freeman, & Ohzawa, 1994) outside the classical
RF may also contribute to the observed changes in our V1 data. Our RF characterization tech-
nique is capable of revealing such effects, given that the nature of the suppressive contribution
is additive. However, it is possible that these effects are so subtle, or not localized enough to be
identified using our RF characterization during NS and WGN stimulation.

Adaptation is often defined and characterized as a model-dependent phenomenon (Baccus &
Meister, 2002). In general, any change in the parameters of the model describing the neuronal
RFs, or any change in the description of the model is considered as an adaptation effect. In the
latter case, the model is no longer capable of describing the neuronal responses to the original
scene after adaptation to a new scene. As merely adjusting the parameters of our model when
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transitioning from WGN to NS, or vice versa, is inadequate for describing the neural data, our
results reveal that a change in stimulus necessitates employing a different model.

A number of studies have investigated the adaptation caused by image statistics in the visual
system (Felsen, Touryan, Han, & Dan, 2005; Lesica et al., 2007; Tkačik, Ghosh, Schneidman,
& Segev, 2014). R. Shapley (1997) argued that contrast and scene statistics for a given spa-
tiotemporal pattern are tightly related, suggesting that adaptation to scene statistics is equivalent
to contrast adaptation. This is pertinent to the present study in which differences between the
statistics of WGN and NS led to differences in the contrasts of the corresponding features in each
cell’s RF filters, which accordingly altered the cell’s feature-contrast response function (see also
Lesica et al. (2007)).

The effect of contrast adaptation has been widely studied at different stages in the visual sys-
tem, from retina to primary visual cortex and higher cortical areas (Albrecht, Farrar, & Hamilton,
1984; Baccus & Meister, 2002; Bonin, Mante, & Carandini, 2006; Felsen et al., 2005; Kastner &
Baccus, 2011; Lesica et al., 2007; Ohzawa, Sclar, & Freeman, 1985; Sceniak, Ringach, Hawken,
& Shapley, 1999; R. Shapley, 1997; R. M. Shapley & Victor, 1978; Smirnakis, Berry, Warland,
Bialek, & Meister, 1997; Solomon, Peirce, Dhruv, & Lennie, 2004; Zaghloul, Boahen, & Demb,
2005). The findings suggest intrinsic contrast adaptation effects at each stage of visual process-
ing, which are inherited by later stages. Here, we will discuss possible mechanisms that can lead
to our observed findings based on contrast adaptation effects in the visual system.

Numerous retinal studies in various species found that a change in contrast brings about a
significant change in the temporal properties of retinal ganglion cell (RGC) responses (Sceniak
et al., 1999; R. Shapley, 1997; R. M. Shapley & Victor, 1978; Smirnakis et al., 1997; Zaghloul et
al., 2005). For a given image, the retina is forced to compromise between sensitivity and localiza-
tion of light stimuli. Sensitivity is achieved using longer integration times for low contrast stimuli
(R. Shapley, 1997), whereas localization is achieved using less surround integration for high con-
trast stimuli (Sceniak et al., 1999). At low contrasts, RGCs increase their synaptic integration time
to improve sensitivity to the stimulus feature, leading to increases in response latency. This in-
creased response delay then propagates throughout the visual hierarchy, thereby causing longer
latencies for visual cortical cells, as noted in our data for WGN.

3.2.1 Explaining changes in filter numbers

The dimensionality of the feature space of a cell directly relates to the complexity of its RF. RFs of
simple cells often comprise a single filter (Almasi et al., 2020). A shift from multiple to single filters
has been inferred from experiments with grating stimuli (Cloherty & Ibbotson, 2015; Crowder,
Van Kleef, Dreher, & Ibbotson, 2007; Meffin, Hietanen, Cloherty, & Ibbotson, 2015). In those
experiments, when contrast was reduced, cell responses shifted from those expected from RFs
with multiple filters (complex-like) to those expected from a single filter (simple-like). A possible
explanation for this switch might be adaptation to image contrast (or scene statistics). When
presented with WGN, RGCs adapt to the low feature-contrasts of their RF filters. This adaptation
introduces a change in the feature-contrast response functions of RGCs, known as contrast gain
control (Smirnakis et al., 1997). This leads to a reduction in the contrast gain and consequently
the threshold of the feature-contrast response function (Fig. 10). The effect is to increase the
cells’ sensitivity to the low feature-contrast of the stimulus by adapting the dynamic range of the
feature-contrast response function to the stimulus contrast regime. However, this effect might not
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Figure 10 – Contrast gain control and response
gain control adaptation phenomena, which are of-
ten reported for visual neurons. The gray curve il-
lustrates contrast response function that is typical
of a V1 cell. In the event of contrast gain control
effect, the contrast response function shifts right-
ward (orange curve), resulting in an increase in the
contrast gain (red arrow). In the event of response
gain control effect, the contrast response function
depresses downward (blue curve), resulting in a
decrease in the response gain (cyan arrow).

be significant in some RGCs and, as a result the change in the feature-contrast threshold may not
be adequate to improve the sensitivity of these cells to the low-feature contrast of WGN. Hence,
some RGCs (or possibly the subsequent cells in the lateral geniculate nucleus) might not be
activated during WGN stimulation. These cells would, accordingly, drop out from the feedforward
visual stream. The aggregate effect on visual cortical cells could be a reduction in the number of
RF filters, as they indicate the effective dimensionality of the cell’s feature space.

3.3 Closely related studies

Felsen et al. (2005) measured the sensitivity of cat V1 cells to features in natural and random
noise stimuli. While there are similarities between their study and ours, there are also significant
differences. (1) They uncovered RFs in cat V1 using NS and spike-triggered average (STA) and
spike-triggered covariance (STC) analysis, whereas we used a far more general RF characteri-
zation technique (i.e., the NIM), which uses maximum likelihood estimation, thereby, reducing the
risk of any bias or artifact in the RF filters. (2) They only used NS stimulation to uncover RF filters,
which were then presumed to stay unchanged during any other arbitrary visual stimulation. (3) We
used a large stimulus that covered a wide visual field of V1, whereas they used localized stimuli
presented only to the RF of each neuron. This means that the neuron’s surrounding cortical areas
are most likely in a state that is not very far from the spontaneous state, hence, the effect of lateral
connections might not be much affected by the change in the contrast of the stimulus. (4) They
compared contrast response functions of V1 cells using NS and random noise images that had
equal feature-contrasts. This was done for each cell by creating a random noise sequence that
was matched in feature-contrast to the preferred features of the NS for each image frame. In other
words, Felsen et al. (2005) studied and compared V1 feature-contrast response functions within
the domain of the NS feature-contrast range, whereas we compared the response functions within
the space of the WGN feature-contrasts. We did this because we directly stimulated the cells with
both WGN and NS. Our findings suggest the emergence of interesting adaptation phenomena,
which mean that the RFs behave differently in different feature-contrast regimes. This contradicts
the assumption of a fixed set of filters, as used in Felsen et al. (2005) analysis.

Strictly for simple cells in V1, T. O. Sharpee et al. (2006) reported an amplification in the
higher spatial frequency (SF) components of the uncovered RF filters when exposed to a change
in the statistics of the stimulus from WGN to NS. They interpreted their results to mean that
the visual system was compensating for the under-represented higher SF components in NS,
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to improve the efficiency of neuronal information transmission. However, the mere adjustment
of amplitude spectra of RF filters in the visual system cannot fully account for all the statistical
changes in the visual input to the system, because only second-order statistics of the stimulus
ensemble are reflected by the amplitude spectrum (see also Felsen et al. (2005)). Rather, the
spatial (Fourier) phase spectrum of image ensembles mainly captures information corresponding
to higher-order statistics in the image that describe features such as edges, contours, curves etc.
Our results corroborate T. O. Sharpee et al. ’s findings; that is with NS stimulation, V1 cells tend
to have RF filters with higher SF preferences and narrower SF bandwidths (Fig. 9). However,
our findings extend beyond simple cells as we recorded from cells with multiple filters. Our data
unveil increased numbers of filters and changed feature-contrast response functions as well as
increased SF tuning. These modifications optimize the dynamic ranges of most recorded V1 cells
for the given image statistics. The more narrowly SF tuned RF filters in response to NS stimuli
imply a redundancy reduction in the input representation using less-active units, consistent with
the efficient coding hypothesis.

The bias towards RF filters with lower SF preferences and broader SF bandwidths identified
using WGN might be explained also by the effects that contrast adaptation imposes on the visual
system. The effects of contrast gain control for ON cells are more pronounced than the effects for
OFF cells in the early visual pathway (Chander & Chichilnisky, 2001; Felsen et al., 2005; Ratliff,
Borghuis, Kao, Sterling, & Balasubramanian, 2010; Zaghloul et al., 2005). When switching from
high to low contrast regimes, the contrast response functions of OFF cells show little adaptation
to changes in contrast, thereby the reduction in their contrast gain function (i.e., the shift to low
contrast) is less pronounced compared to ON cells (Bonin et al., 2006). Furthermore, OFF cells
are more selective to high SF features (perhaps due to their small dendritic fields) in the visual
scene than ON cells (Ratliff et al., 2010; also see Chichilnisky & Kalmar, 2002). The less pro-
nounced contrast adaptation effect in OFF cells indicates that, when switching from high to low
contrast stimulation (e.g., from NS to WGN), some OFF cells likely exhibit little contrast gain con-
trol. Therefore, the reduction in their contrast gain is not sufficient to improve their sensitivity to the
low contrast stimulus. As these cells all feed into visual cortical cells, the reduction in the activity
of such OFF cells would propagate in the feedforward stream of the visual system. Therefore, the
reduced OFF-cell input might explain the significant reduction in the SF preferences and broad-
ening of SF bandwidths of cortical RF filters during WGN stimulation, because OFF cells tend to
be selective for high SFs.

3.4 Function

In most V1 cells in our study, the changes in the RFs between the WGN and NS regimes can
be interpreted as a mechanism to increase the amount of information encoded by the cell. Cells
adapt their feature-contrast response functions to the stimulus’ dynamic range, and this change
seems to be related to the range of feature-contrasts in the stimulus. There are changes that
appear in the shape of the response functions. Higher response gains are allocated to the stimuli
that are rare in the image, which belong to both the positive and negative tails of the feature-
contrast distributions. Such an encoding mechanism carries more information about the stimulus
(Felsen et al., 2005).

The changes in feature-contrast response functions observed in our V1 data are consistent
with the contrast adaptation phenomena reported in the primary visual cortex, described by con-
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trast gain control or response gain control effects (Albrecht et al., 1984; Ohzawa et al., 1985).
When the stimulus contrast changes from low to high, in the event of a contrast gain control ef-
fect, the response function to high contrast stimuli is shifted rightward to higher contrasts (Fig. 10;
gray vs. orange curves), while with response gain control effect the response function is shifted
downward to lower spike rates (Fig. 10; gray vs. blue curves). Both effects result in a decrease in
the response function to higher contrast stimuli compared to the low contrast response function.

The findings in the present study can have implications for the mechanisms employed by the
visual system to deal with the uncertainty of visual information. In retina, OFF cells have smaller
dendritic field sizes than ON cells, but they outnumber the ON cells two-fold. In the low feature-
contrast regime (e.g., WGN), the uncertainty in the visual stimulus is higher than in the high
feature-contrast regime, due to the signal being inherently noisy. In this case, the visual system
can improve its performance by increasing its sensitivity to coarser features in the visual input.
This can be done by shutting down some of the high spatial frequency filtering channels in the
early visual processing stages. The visual system could implement this via adaptive contrast gain
control mechanisms in OFF cells in early processing stages, or through cortical processing by
a change in the balance between feedforward and lateral connections due to the change in the
stimulus contrast as conjectured by (Nauhaus, Busse, Carandini, & Ringach, 2009).

Overall, our findings conclude that the primary visual cortex extracts image features from the
input in a plastic way, which is formed based on the nature of the stimulus.

4 Methods

4.1 Preparation and surgery

Extracellular recordings were made primarily from Area 17 in cat cortex, but some recording
locations were on the border with Area 18, making unequivocal identification difficult. As both
areas are retinorecipient, we refer to our recordings as being from primary visual cortex (V1).
Recordings were made from V1 in six anesthetized cats using methods described previously
(Meffin et al. 2015; Almasi et al. 2020; Sun et al. 2021). Experiments were conducted according
to the National Health and Medical Research Council’s Australian Code of Practice for the Care
and Use of Animals for Scientific Purposes. All experimental procedures were approved by the
Animal Care Ethics Committee at the University of Melbourne (ethics ID 1413312).

Anesthesia was induced in adult cats (2-6 kg) with an intramuscular injection of ketamine
hydrochloride (20 mg/kg i.m.) and xylazine (1 mg/kg). The cats were intubated, cannulated,
and placed in a stereotaxic frame. Once intubated, oxygen and isoflurane (1-2%) were used to
maintain deep anesthesia during all surgical procedures. A craniotomy was performed to expose
cortical areas 17 and 18. Isoflurane was used during the surgery because it is safe for humans.
Anesthesia was switched to gaseous halothane in a fully closed system during data recording (0.5-
0.7%) and the depth of anesthesia was determined by monitoring a variety of standard indicators
(see Sun et al. 2021). Halothane was used during recordings because it has been shown to
maintain anaesthesia but have a less suppressive impact on cortical responses (Villeneuve and
Casanova 2003). To avoid eye movements during recordings, muscular blockade was induced
and maintained with an intravenous infusion of vecuronium bromide at a rate of 0.1 mg·kg−1·h−1.
Mechanical ventilation was utilized to maintain end-tidal CO2 between 3.5% and 4.5%. After an
experiment the animal was humanely killed without regaining consciousness with an intravenous
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injection of an overdose of barbiturate (pentobarbital sodium, 150 mg/kg). Animals were then
perfused immediately through the left ventricle of the heart with 0.9% saline followed by 10%
formol saline, and the brain extracted.

4.2 Visual stimuli and data recording

Visual stimuli were generated using a ViSaGe visual stimulus generator (Cambridge Research
System, Cambridge, UK) on a calibrated, Gamma corrected LCD monitor (ASUS VG248QE,
1920×1080 pixels, refresh rate 60 Hz, 1 ms response time) at a viewing distance of 57 cm. White
Gaussian noise (WGN) and Natural Scene (NS) stimuli comprising 90×90 pixels over 30◦ of the
visual field were employed to estimate the neuronal receptive fields of V1 cells using the NIM
framework (see Methods below). The WGN and NS images used in the stimuli had a mean value
equal to the mid-luminance of the display monitor. The WGN images had a standard deviation
chosen to result in a 10% saturation rate for individual pixels, i.e. the mean had a normalized
intensity of 0.5, and 10% of pixels had a value of either 0 or 1 corresponding to the lowest and
highest luminance of the monitor. The NS stimuli comprised 90×90 pixels and were randomly
extracted image patches from a database of natural images (Van Hateren and Van der Schaaf
1998). Each NS stimulus block contained patches that were drawn from 100 randomly chosen
images in the database, with each image 1536×1024 pixels. Both WGN and NS stimuli had their
global RMS contrast matched, which was set to ∼0.3. WGN and NS stimuli were presented in
separate blocks of 12,000 images and with blocks interleaved to ensure the physiological compa-
rability of the recordings. Each image frame was presented for 1/30 s, followed by a blank screen
of the mean luminance (intensity = 0.5), displayed for the same duration in blocks of 12,000. The
blank period aimed to increase the overall response of the cell to the stimuli by increasing the
temporal contrast. The total duration of a block was ∼14 min.

Extracellular recordings were made with single shank probes with Iridium electrodes (linear 32-
electrode arrays, 6 mm length, 100 µm electrode site spacing; NeuroNexus), which were inserted
vertically using a piezoelectric drive (Burleigh inchworm and 6000 controller, Burleigh instruments,
Rochester, NY). Extracellular signals were acquired from 32 channels simultaneously using a
CerePlex acquisition system and Central software (Blackrock Microsystems, Salt Lake City, Utah)
sampled at 30 kHz and 16-Bit resolution on each channel. Filtering was performed by post-
processing.

4.3 Post-processing and spike sorting

Spike sorting of recordings was performed using KiloSort (Pachitariu, Steinmetz, Kadir, Carandini,
& Harris, 2016) and the graphical user interface phy (Rossant et al., 2016). Single units were
identified as previously described in Almasi et al. (2020).

4.4 Model estimation

4.4.1 Model definition and parameters estimation

We have employed an adapted version (Almasi et al., 2020) of the nonlinear input model (NIM),
originally introduced by McFarland et al. (2013). The model is depicted in Figure 1a and describes
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the firing rate of the cell as a nonlinear function of the input stimulus,

r = F

( K∑
k=1

gk(ck)

)
(1)

where ck = hk · s is termed the feature-contrast of the stimulus s with respect to the spatial filter
hk, which is defined as their inner product. The model cell conceptually sums inputs from K

parallel synaptic input streams, which are determined as a hyperparameter of the model, to give
a generator potential v =

∑K
k=1 gk(ck). Each input is determined by an arbitrary function gk(·) of

the feature-contrast ck of filter hk, which is called the input function and captures the processing
performed by one or more presynaptic neurons. The number of input streams K (i.e., RF filters)
for each cell is determined using a statistical significance test described below. The function F (·)
gives the overall spiking nonlinearity of the cell that converts the generator potential into firing
rates and is described using a parametric representation as

F (v) = α log
(

1 + exp
(v − γ

α

))
. (2)

The model assumes that the responses Robs = {R(1), . . . , R(T )} (integer spike counts) to the
presented set of mutually independent stimuli S = {s(1), . . . , s(T )} follow a homogenous Poisson
distribution function

p(Robs | S) =
rRobs exp(−r)

Robs!
, (3)

where r is the firing rate function described in Eq. 1. The spike counts for each stimulus were
obtained by pooling all the spikes that occurred after the stimulus presentation within a window
that had a duration equal to the presentation period (1/30 s) shifted by a certain latency. The
latency was estimated for each cell based on post-stimulus time histograms (PSTH), which clearly
revealed the time of response onset, to maximize the mean response to the NS and WGN. The
estimation of the response latency was achieved by fitting a von Mises function to the PSTH of the
cell’s response to each stimulus block, and later by averaging across different recordings to give
the estimate. The estimation of the model parameters (spatial filters, input functions and spiking
nonlinearity) was obtained simultaneously by maximizing the (log)-likelihood of the model given
the stimuli and their evoked responses. The reader is advised to refer to Almasi et al. (2020) for
comprehensive details about the model and the simultaneous estimation procedure.

4.4.2 Significance test to determine the number of RF filters

We determined the number of spatial filters within the receptive field of each cell using cross-
validation. In doing so, the number of filters for each cell was systematically varied while the
statistical significance of each filter was evaluated by bootstrapping. For this, we divided the data
into a training set, which comprised four-fifths of the data, and a test set, which comprised the
other one-fifth of the data. For each specified number of filters, we used the training set to estimate
the filters, and then assessed the performance of the model by computing its log-likelihood using
resampling from the test set (this was repeated 500 times). Thus, for each number of filters, we
found a distribution for the log-likelihood computed on the test set. The inclusion of a new filter
was counted as significant if it significantly improved the log-likelihood of the model on the test set
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(Z-score > 2). Technical details of implementing this test is given in Almasi et al. (2020).

4.5 Estimation of response latency and strength

The latency in the response to the stimulus was obtained by fitting a von Mises distribution defined
as

R(t) = R0 +A exp

(
k cos

(
2π(t− t0)

T

))
(4)

to the response PSTH, for each stimulus recording. In above, T = 67 ms and R(t) represents
the response PSTH, t ∈ [0, T ] which indicates the presentation time of a stimulus image followed
by a blank image each for 1/30 s. A least-square-error fit of the above curve to the response
PSTH was found to identify the parameters R0, A, k and t0. The curve fitting was performed by
the lsqnonlin function in Matlab©. The latency, defined as the onset in the response, is calculated
to be t0 − T/4. The parameters of the fitted curve are obtained by minimizing the mean squared
error between the fitted and actual response PSTH of each stimulus recording. The quality of the
fitted curves was assessed using a r2 goodness-of-fit measure. Fits with r2 < 0.8 were excluded
from the latency and spike rate analysis. Overall, the r2 of the fits formed a distribution with a
mean of 0.96 and a median of 0.97. The response latency was averaged across different stimulus
presentations to account for change in the response latency due to any change in the neuronal
physiological states. Figure A.1 shows the (normalized) fitted PSTH response curves for NS and
WGN stimuli, for which the latency in the response was accounted. In this case, the onset of the
response is aligned with the stimulus onset. The response strength is defined as the maximum
firing rate as impulse per second (ips) in the response PSTH to each stimulus, averaged across
different stimulus blocks.

4.6 Feature-contrast

The output of the linear filtering stage in the model indicates the similarity between the visual
input and the spatial structure of the filter. The authors have previously demonstrated that the
filter’s output can be described in terms of RMS or Michelson contrast of the spatial structure
(the feature) of that filter embedded in the visual stimulus, hence defined as the feature-contrast
(Almasi et al., 2020). Furthermore, the feature-contrast corresponding to a cell’s RF filter can be
interpreted as the local contrast of the stimulus when projected onto that filter.

4.7 Feature-contrast range

Feature contrast is defined as the output of the spatial RF filters. If the cell has only one RF filter
uncovered by WGN, the RF filters’ feature-contrast on WGN follows a univariate Normal distribu-
tion with standard deviation of σwn. In this case, the range of feature-contrast on WGN stimuli
is measured as Σwgn = [−3σwn, 3σwn]. If the cell has two RF filters uncovered by WGN, their
feature-contrast on WGN follows a bivariate Normal distribution. Since there is no orthogonality
constraint on RF filters in the NIM, this distribution can in general have an elliptical (correlational)
form. We decorrelated this distribution by performing singular value decomposition analysis and
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obtained a canonical distribution. We then found standard deviations of this distribution along its
two canonical axes σwn

1 , σwn
2 . These two values are not necessarily the same, but in our expe-

rience, they were found to be very close. We define the range of feature-contrast on WGN as
Σwgn = [−3σwn, 3σwn] where σwn is max(σwn

1 , σwn
2 ). This measure can be easily generalized to

WGN RF dimensions greater than two, wherein the WGN feature-contrast follows a multivariate
Normal distribution.

To find the distribution of the feature-contrast for NS RF filters when using NS stimuli, we
performed the same procedure explained above. After obtaining the canonical (decorrelated)
distribution of NS feature-contrast, we found NS stimuli that lie inside a ball (or hyper-ball) with
a radius equal to Σwgn. This subset of NS stimuli is referred to as matched-feature-contrast-NS
stimuli, and results in a distribution of feature-contrast for NS RF filters that are within the range
of feature-contrasts of the WGN RF filters on WGN stimuli.

4.8 Neuron’s feature space

The RF filters of a neuron identified using the NIM framework will span a space that is termed the
neuron’s feature space. Mathematically, this feature space is equal to the column space (H) of the
matrix collecting all the RF filters as its columns H = [h1 . . .hm], where m denotes the number of
RF filters. The feature space by definition contains all possible linear combinations of the neuron’s
RF filters:

H =

{
m∑

k=1

akhk

}
, ∀ak ∈ R. (5)

4.9 Control analysis to match spike count

This analysis was performed for the cells that met three criteria: (1) they responded with a higher
spike-rate to NS than to WGN stimuli, (2) they had their RF uncovered using both WGN and
NS, and (3) they had more RF filters uncovered using NS than using WGN stimuli. This control
analysis corrects for the higher spike-rates on NS, by matching the NS spike rate to the spike-rate
recorded on WGN stimuli. This was done by randomly sampling spikes from the cell’s spike train
in response to NS stimuli until the specified spike count for WGN was reached.
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A Comparison of predictive ability of models with WGN

and NS feature spaces on WGN data

We asked whether the greater number of RF filters uncovered by NS for most cells are the funda-
mental set of features for cells in order to operate well under any stimulation regime. To evaluate
the above hypothesis, we first formed and trained the following models on a WGN training set:

1. The model whose RF filters are held fixed to the WGN RF filters projected onto the NS
feature space, denoted byMproj

wgn .

2. The model whose RF filters are held fixed to the NS RF filters. We refer to this model as the
feature-extended-WGN-NIM, denoted byMext

wgn.

In above, the latter modelMext
wgn incorporates all the feature dimensions that amount to Hns, hy-

pothesized necessary for the model to perform well under any stimulus regime. We fitted both
models using a WGN training set, by estimating the RF nonlinearities, while the RF filters were
held fixed. If, as hypothesized, Hns is the true feature space of the cell, thenMext

wgn must outper-
formMproj

wgn when they are compared against a held-out WGN test set (note that Hproj
wgn ⊆ Hns).

Our analysis showed that for a majority (80%) of cells in our population of V1 data, Mproj
wgn

significantly outperformed Mext
wgn (unpaired t-test; p < 0.001). For a few minority (20%) of cells,

we found no significant difference between the performance of the two models, namely both per-
formed equally on the hold-out WGN test data. It may seem odd thatMext

wgn can actually perform
worse than Mproj

wgn that has less features. Given that Mext
wgn contains additional features with

meaningful spatial structures, it may seem logical that it has to perform at least as good as a
model with a subset of its RF filters. However, it should be noted that due to the greater number
of filters in the model, it is possible that the model overfits to the training data, and when assessed
against the hold-out test data, it does not generalize to the test set as good as a simpler model
with less RF filters likeMproj

wgn .
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Figure A.1 – Post-Stimulus Time Histogram (PSTH) of the responses of all the units analyzed in
this study, overlaid in a single plot for (a) NS and (b) WGN stimulation. Each graph is obtained by
correcting for the latency in the response. Graphs are aligned with the time onset of the stimulus
(Stim-ON). These plots confirm that the peak responses occurred within the 33ms window, which
was used to count spikes for RF estimation using the NIM.

NS
Matched-Spike-Count-NS

Figure A.2 – Bar graphs show the difference between the number of RF filters uncovered using NS
and WGN for the cells that had more filters using NS and higher spike counts to NS (dark-blue), and
for the same cells when their spike count to NS was matched to that to WGN stimuli (orange).
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