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S1 Supplementary Methods

S1.a Problem statement and assumptions in presence of confounders

Phenotypes are likely to depend on other variables (either measured or unmeasured) in addition to the geno-
types. This increases both the amount of noise in the GWAS data (possibly resulting in lower power) and the
risk of confounding (inducing spurious associations of the phenotype with non-causal variants). For example,
the phenotype Y (i) may be affected by individual-specific covariates U (i) (e.g., diet, exercise, or environment)
associated with the genotypes—people with different ancestries may differ in both lifestyle and allele frequen-
cies. Furthermore, Y (i) may be influenced by family factors V (i), which we assume to be the same for all
individuals within a family, and may be dependent on the genotypes, although with some restrictions that
we shall discuss below. A mild assumption at this point is that the phenotypes of different individuals are
independent of each other conditional on the genotypes, the covariates, and the family factors:

P (Y | X,U,V) =

n∏
i=1

P (Y (i) | X(i), U (i), V (i)). (S1)

Above, X ∈ {0, 1, 2}n×p and Y ∈ Yn denote the full genotype-phenotype data set, while U and V collect the
covariates and the family factors, respectively.

For any given genome partition G, our ideal goal would be to know whether the conditional distribution
Y | X,U, V depends on a group of variants XG, for G ∈ G. That is, we would like to test:

H∗G : Y |= XG | X−G, U, V. (S2)

In words, H∗G is null if and only if knowledge of XG provides no information about Y beyond what can be
gathered from the knowledge of all other variables. Since not all possible relevant covariates and family factors
may be measured in a GWAS, it is unclear how to test (S2) directly. Fortunately, the conditional hypotheses
defined in (1) (main paper) are a good practical proxy for (S2) because they account for population structure,
thus removing much of the confounding, as explained next. Let us define a factor A that is a function of the
genetic information in X and summarizes the ancestry of each individual (i.e., ethnicity, admixture, or family
relatedness). Note that we shall not make the definition of A fully explicit (e.g., in terms of some discrete
categories or continuous principal components) because the real population structure in a GWAS may be
quite complicated (individuals may be stratified even within the same country, ancestries may be admixed,
and families may involve more or less distant relatives). Instead, we simply use A as a convenient expository
tool here, to rephrase in terms of conditional independence testing the idea that our method accounts for
population structure by detecting possibly complex genetic similarities between individuals in the population
and then replicating them in the knockoffs (Methods).

We assume the ancestry factor A may affect U, V , and X, but U and V are independent of X given A.
Furthermore, the phenotype may be affected by U, V,X, but not the other way around (which is biologically
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sensible); in particular, Y |= A | U, V,X. See Figure S1 for a graphical representation of this model. Then,
any valid test of

H̄G : Y |= XG | X−G, A (S3)

is also a valid test of the null hypothesis in (S2). This is the statement in the following proposition.

Proposition 1. In the model assumed above and represented graphically in Figure S1, if the null hypothesis
H∗G in (S2) is true, then H̄G in (S3) must also be true.

Proof. Suppose H∗G is true, so that Y |= XG | X−G, U, V . Since we assumed Y |= A | U, V,X, it follows from
the contraction property of conditional independence that Y |= (XG, A) | X−G, U, V . Therefore, by the weak
union property, we also have that Y |= XG | A,X−G, U, V . Now, note that the conditional distribution of
(Y,U, V,XG) given (A,X−G) can be factored as:

p(Y,U, V,XG | A,X−G)

= p(U, V,XG | A,X−G) · p(Y | A,X−G, U, V,XG)

= p(XG | A,X−G) · p(U, V | A,X−G) · p(Y | A,X−G, U, V,XG)

= p(XG | A,X−G) · p(U, V | A,X−G) · p(Y | A,X−G, U, V )

= p(XG | A,X−G) · p(Y,U, V | A,X−G).

Above, the second equality follows from the assumption that (U, V ) |= X | A. We have thus proved that
(Y,U, V ) |= XG | A,X−G, which implies H̄G in (S3).

Recall that we presented our knockoffs in Section 2.b (main paper) as negative controls designed to test
the hypotheses in (1), which are similar to those in (S3) but do not condition on A explicitly. However, A
is a function of the observed genotypes, almost all of which are in included X−G (we only consider relatively
groups of SNPs XG spanning a few hundred kilo-bases at most); thus, testing (1) is almost equivalent to
testing (S3). Furthermore, it can be argued even more directly that our knockoffs preserving population
structure are valid negative controls for testing (S3) by highlighting they (approximately) satisfy the following
stronger—compared to that in (2)—exchangeability property:[

X(F ), X̃(F ), A(F )
]

swap(G)

d
=
[
X(F ), X̃(F ), A(F )

]
, (S4)

∀G ∈ G, F ∈ F , as suggested empirically by the statistics in Figure 1. Above, A(F ) denotes the vector of
ancestry factors for the individuals in family F . (Note that A(F ) may not necessarily be constant within
the family because we model separately the phased haplotypes inherited from each parent; see Methods.
This accounts for the possibility that different individuals in the same family may have different patterns of
admixture—think for example of a family including two parents of different races and their child.) Despite
the presence of A in (S4), this setup is still a special case of that in [1], only with a slightly modified notation.
To follow the language of [1] exactly, one would also need a knockoff copy of A, but that is unnecessary here
because we are only interested in testing the SNPs. Therefore, our knockoffs satisfying (S4) are valid for
testing (S3).

Finally, note that the assumption that the genotypes are independent of the covariates and family factors
conditional on our practical approximation of the population structure (the factor A) is relatively strong and
implies our method may not be robust to all possible confounders. This issue prevents us from obtaining
rigorous causal inferences, such as those that can be drawn focusing only on parent-child trio data [2]. Fur-
thermore, there is of course an even deeper limitation hiding in the assumption that the genotypes do not
directly cause the covariates. For example, if there exists a specific gene that directly influences an individual’s
predisposition to exercise, regardless of that individual’s ancestry, then our method may select that gene as
likely to have an effect on cardiovascular disease even if that gene has no a direct biological effect on the
disease, only on a behaviour which in turn explains the disease. However, it could be argued this discovery
would still be of some interest, and in any case such limitation seems unavoidable if not all possible covariates
are measured.
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S1.b Estimating model parameters by EM

We can estimate the HMM parameters θ = (α, λ, ρ) in (4)–(5), in the main paper, with an expectation-
maximization (EM) method. To write down the algorithm explicitly, we begin by noting the log-likelihood of
θ given both the observable, H, and latent, Z, variables is:

`(θ;H,Z) = log p(H,Z | θ) =

n∑
i=1

log p(H(i), Z(i) | θ)

=

n∑
i=1

log


p∏
j=1

Qj(Z
(i)
j | Z

(i)
j−1)

p∏
j=1

f
(i)
j (H

(i)
j | Z

(i)
j )


=

n∑
i=1

p∑
j=1

logQj(Z
(i)
j | Z

(i)
j−1) +

n∑
i=1

p∑
j=1

log f
(i)
j (H

(i)
j | Z

(i)
j ).

This log-likelihood cannot be directly minimized because we cannot observe Z. Instead, given an initial
estimate of the model parameters, θ(t−1), we iteratively update θ(t) by minimizing

L(θ, θ(t−1)) = EZ
[
`(θ;H,Z) | H, θ(t−1)

]
=

n∑
i=1

p∑
j=1

EZ
[
logQj(Z

(i)
j | Z

(i)
j−1) | H(i), θ(t−1)

]
+

n∑
i=1

p∑
j=1

EZ
[
log f

(i)
j (H

(i)
j | Z

(i)
j ) | H(i), θ(t−1)

]
.

(S5)

This quantity can be computed and minimized efficiently by leveraging the Markov property, as in the Baum-
Welch algorithm.

Let us begin by defining, for any fixed j ∈ {1, . . . , p}, the posterior marginals

γ
(i)
j (k) = P

[
Z

(i)
j = k | H(i), θ(t−1)

]
.

It is well-known that these quantities can be computed efficiently with the classical forward-backward iteration
that defines the expectation (E) step of the EM algorithm. What remains to be developed explicitly is the
maximization (M) step of the EM algorithm; we will do this in the following, separately for α, λ, and ρ. These
are fairly standard calculations but we outline the details here for completeness.
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S1.b.1 Estimating the site-specific mutation rates

For any j ∈ {1, . . . , p}, the parameter λj appears in the second term of (S5):

1

n

n∑
i=1

EZ
[
log f

(i)
j (H

(i)
j | Z

(i)
j ) | H(i), θ(t−1)

]
=

1

n

n∑
i=1

∑
z

log f
(i)
j (H

(i)
j | Z

(i)
j )P

[
Z(i) = z | H(i), θ(t−1)

]
=

1

n

n∑
i=1

∑
k

log f
(i)
j (H

(i)
j | Z

(i)
j = k)P

[
Z

(i)
j = k | H(i), θ(t−1)

]
=

1

n

n∑
i=1

∑
k

log f
(i)
j (H

(i)
j | Z

(i)
j = k)γ

(i)
j (k)

=
1

n

n∑
i=1

∑
k

log
[
(1− λj)δH(i)

j ,R
(i)
j (k)

+ λj(1− δH(i)
j ,R

(i)
j (k)

)
]
γ

(i)
j (k)

= log(1− λj)
1

n

n∑
i=1

∑
k

δ
H

(i)
j ,R

(i)
j (k)

γ
(i)
j (k) + log(λj)

1

n

n∑
i=1

∑
k

(1− δ
H

(i)
j ,R

(i)
j (k)

)γ
(i)
j (k)

= log(1− λj)(1− Γj) + log(λj)Γj ,

where we have defined:

Γj =
1

n

n∑
i=1

∑
k

(1− δ
H

(i)
j ,R

(i)
j (k)

)γ
(i)
j (k).

The above is maximized at λj = Γj . Therefore, the update rule for λj in the M step is: λj ← Γj .

S1.b.2 Estimating the recombination scale

The parameter ρ appears in the first term of (S5) through:

EZ
[
logQj(Z

(i)
j | Z

(i)
j−1) | H(i), θ(t−1)

]
=
∑
z

logQj(zj | zj−1)P
[
Z(i) = z | H(i), θ(t−1)

]
=
∑
k,l

logQj(k | l)
∑

z−(j,j−1)

P
[
Z(i) = (k, l, z−(j,j−1) | H(i), θ(t−1)

]
=
∑
k,l

logQj(k | l)P
[
Z

(i)
j = k, Z

(i)
j−1 = l | H(i), θ(t−1)

]
.

By defining

ξ
(i)
j (k, l) = P

[
Z

(i)
j = k, Z

(i)
j−1 = l | H(i), θ(t−1)

]
,

we can write

n∑
i=1

p∑
j=1

EZ
[
logQj(Z

(i)
j | Z

(i)
j−1) | H(i), θ(t−1)

]
=

n∑
i=1

p∑
j=1

∑
k,l

logQj(k | l)ξ(i)
j (k, l).

We will discuss later how to compute ξ. Now, assume ξ is available and we want to optimize the above with
respect to the parameter ρ, which is hidden inside the transition matrices Q. For simplicity, we also assume
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α
(i)
k = 1/K, ∀i, k (we omit the computations for the general case, which are more complicated). Note that

logQj(k | l) = log

(
1− bj
K

+ bjδk,l

)
= log

(
1− bj
K

)
+

[
log

(
1− bj
K

+ bj

)
− log

(
1− bj
K

)]
δk,l

= const. + log (1− bj) + [log (1 + (K − 1)bj)− log (1− bj)] δk,l,

where bj = bj(ρ) = e−ρdj . Therefore,

1

n

n∑
i=1

p∑
j=1

∑
k,l

logQj(k | l)ξ(i)
j (k, l)

=
1

n

n∑
i=1

p∑
j=1

log(1− bj)
∑
k,l

ξ
(i)
j (k, l) +

1

n

n∑
i=1

p∑
j=1

[log (1 + (K − 1)bj)− log (1− bj)]
∑
k

ξ
(i)
j (k, k)

=

p∑
j=1

log(1− bj) +

p∑
j=1

[log (1 + (K − 1)bj)− log (1− bj)]
1

n

n∑
i=1

∑
k

ξ
(i)
j (k, k)

=

p∑
j=1

log(1− bj) +

p∑
j=1

[log (1 + (K − 1)bj)− log (1− bj)] Ξj ,

where we have defined:

Ξj =
1

n

n∑
i=1

∑
k

ξ
(i)
j (k, k).

It is easy to verify that the above function is strictly quasiconcave in ρ, so it can be optimized numerically
by solving for its first derivative to be equal to zero. We will include the details of our procedure later for

completeness. Meanwhile, note that the computation of ξ
(i)
j (k, l) can be easily obtained from the M step:

ξ
(i)
j (k, l) = P

[
Z

(i)
j−1 = l, Z

(i)
j = k | H(i)

]
∝ P

[
Z

(i)
j−1 = l, Z

(i)
j = k,H(i)

]
∝ F (i)

j−1(l)Q
(i)
j (k | l)f (i)

j (k | H(i)
j )B

(i)
j (k) = ξ̄

(i)
j (k, l),

where F and B denote the forward and backward weights. The normalization constant for ξ
(i)
j (k, l) is:∑

k

∑
l

ξ̄
(i)
j (k, l) =

∑
k

∑
l

F
(i)
j−1(l)Q

(i)
j (k | l)f (i)

j (k | H(i)
j )B

(i)
j (k)

=
∑
l

F
(i)
j−1(l)

∑
k

[aj + bjδk,l]f
(i)
j (k | H(i)

j )B
(i)
j (k)

= aj

(∑
l

F
(i)
j−1(l)

)∑
k

f
(i)
j (k | H(i)

j )B
(i)
j (k) + bj

∑
k

F
(i)
j−1(k)f

(i)
j (k | H(i)

j )B
(i)
j (k)

= aj
∑
k

f
(i)
j (k | H(i)

j )B
(i)
j (k) + bj

∑
k

F
(i)
j−1(k)f

(i)
j (k | H(i)

j )B
(i)
j (k)

=
∑
k

f
(i)
j (k | H(i)

j )B
(i)
j (k)

[
aj + bjF

(i)
j−1(k)

]
.

The diagonal elements of ξ are proportional to:

ξ̄
(i)
j (k, k) = F

(i)
j−1(k)Q

(i)
j (k | k)f

(i)
j (k | H(i)

j )B
(i)
j (k)

= F
(i)
j−1(k) [aj + bj ] f

(i)
j (k | H(i)

j )B
(i)
j (k).
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Recall that we care about

Ξj =
1

n

n∑
i=1

∑
k

ξ
(i)
j (k, k) =

1

n

n∑
i=1

1∑
k

∑
l ξ̄

(i)
j (k, l)

∑
k

ξ̄
(i)
j (k, k),

which we can compute starting from∑
k

ξ̄
(i)
j (k, k) =

∑
k

F
(i)
j−1(k) (aj + bj) f

(i)
j (k | H(i)

j )B
(i)
j (k)

= (aj + bj)
∑
k

F
(i)
j−1(k)f

(i)
j (k | H(i)

j )B
(i)
j (k).

Going back to the details of optimizing

1

n

n∑
i=1

p∑
j=1

∑
k,l

logQj(k | l)ξ(i)
j (k, l),

note that differentiating with respect to ρ yields:

0 = −
p∑
j=1

b′j
1− bj

+

p∑
j=1

b′j

[
K − 1

1 + (K − 1)bj
+

1

1− bj

]
Ξj .

By definition of bj(ρ) = e−ρdj , it follows that b′j = −djbj . Therefore,

p∑
j=1

djbj
1− bj

=

p∑
j=1

djbj

[
K − 1

1 + (K − 1)bj
+

1

1− bj

]
Ξj = Ψ(ρ),

where we have defined:

Ψ(ρ) =

p∑
j=1

djbj(ρ)

[
K − 1

1 + (K − 1)bj(ρ)
+

1

1− bj(ρ)

]
Ξj .

Define also d̄ = 1
p

∑p
j=1 dj . Then, we want to solve

Ψ(ρ) =

p∑
j=1

djbj
1− bj

= e−ρd̄
p∑
j=1

dj
1− bj

e−ρ(dj−d̄) = e−ρd̄Φ(ρ),

where

Φ(ρ) =

p∑
j=1

dj
1− bj

e−ρ(dj−d̄).

Therefore, we can solve iteratively for ρ∗:

ρ∗ = −1

d̄
log

(
Ψ(ρ∗)
Φ(ρ∗)

)
.

Upon convergence (which we observe but do not prove), the solution ρ∗ gives the M update for ρ in the EM
algorithm: ρ← ρ∗.

S1.b.3 Estimating the motif prevalences

For any fixed j ∈ {1, . . . , p}, the parameter α
(i)
k appears in the first term of (S5) through:

logQj(k | l) = log
(

(1− bj)α(i)
k + bjδk,l

)
= log

(
(1− bj)α(i)

k

)
+
[
log
(

(1− bj)α(i)
k + bj

)
− log

(
(1− bj)α(i)

k

)]
δk,l

= (1− δk,l) logα
(i)
k + log

[
(1− bj)α(i)

k + bj

]
δk,l.
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Therefore,

p∑
j=1

∑
k,l

logQj(k | l)ξ(i)
j (k, l)

=
∑
k

log(α
(i)
k )

p∑
j=1

∑
l

ξ
(i)
j (k, l)−

∑
k

log(α
(i)
k )

p∑
j=1

ξ
(i)
j (k, k)

+

p∑
j=1

∑
k

log
[
(1− bj)α(i)

k + bj

]
ξ

(i)
j (k, k).

Differentiating this with respect to α
(i)
k gives:

0 =
1

α
(i)
k

p∑
j=1

∑
l

ξ
(i)
j (k, l)− 1

α
(i)
k

p∑
j=1

ξ
(i)
j (k, k) +

p∑
j=1

1− bj
(1− bj)α(i)

k + bj
ξ

(i)
j (k, k)

=
η(k)− η̄
α

(i)
k

+

p∑
j=1

1− bj
(1− bj)α(i)

k + bj
ξ

(i)
j (k, k),

where

η(k) =

p∑
j=1

∑
l

ξ
(i)
j (k, l), η̄ =

p∑
j=1

ξ
(i)
j (k, k).

In order to impose the constraint
∑
k α

(i)
k = 1, we add a Lagrange multiplier W :

0 = −W +
η(k)− η̄
α

(i)
k

+

p∑
j=1

1− bj
(1− bj)α(i)

k + bj
ξ

(i)
j (k, k)

= −Wα
(i)
k + (η(k)− η̄) + α

(i)
k

p∑
j=1

1− bj
(1− bj)α(i)

k + bj
ξ

(i)
j (k, k).

Therefore,

α
(i)
k =

1

W

η(k)− η̄ + α
(i)
k

p∑
j=1

1− bj
(1− bj)α(i)

k + bj
ξ

(i)
j (k, k)

 .
We can solve this iteratively, setting W =

∑
k α

(i)
k after each update of α(i). Upon convergence (which we

observe empirically but do not prove), the solution α(i)∗ will then give the M update in the EM algorithm:
α(i) ← α(i)∗.

S1.c Knockoffs preserving familial relatedness

S1.c.1 Choosing the haplotype references

Algorithm S1 modifies Algorithm 1 to ensure: (i) IBD-sharing haplotypes are not used as references for one
another; (ii) all haplotypes in the same IBD-sharing family have the same references.
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Algorithm S1 Choosing reference haplotypes preserving familial constraints

Input: H ∈ {0, 1}2n×p, K, and N1, N2 as in Algorithm 1;
Input: a collection of IBD-sharing families F1, . . . , FL, a distance measure ξ between haplotypes.
Divide the haplotypes into M sets Cc using ξ as in Algorithm 1, preserving the family structure.
for c = 1, . . . ,M do

Compute a distance matrix D ∈ R|Cc|×|Cc| for all haplotypes in Cc.
for i in Cc do

if ∃ l such that i ∈ Fl then
Define R(i) as the set of K nearest neighbors of Hi in Cc \ Fl.

else
Define R(i) as the set of K nearest neighbors of Hi in Cc.

end if
end for

end for
for l in 1, . . . , L do

Initialize R̄(l) = ∩i∈Fl
R(i).

for i ∈ Fl do
Update R(i) = R(i) \ R̄(l).
if |R̄(l)| < K then

Update R̄(l) = R̄(l) ∪R(i).
else

break.
end if

end for
for i ∈ Fl do

Set R(i) = R̄(l).
end for

end for
Output: a set R(i) of K references for each haplotype H(i).

S1.c.2 Posterior sampling via belief propagation

Conditional on H(1:m), the distribution of Z(1:m) is a Markov random field with m×p variables, characterized
by Equations (6)–(8) in the main paper. In order to sample Z(1:m) | H(1:m), we implement belief propagation [3]
(BP) as follows. For any i ∈ {1, . . . ,m} and j ∈ {1, . . . , p − 1}, denote by µ̂(i,j)→(i,j+1) ∈ RK the forward

message from Z
(i)
j to Z

(i)
j+1. It is easy to verify that this must satisfy the following recursive definition:

µ̂(i,j)→(i,j+1)(k) =

K∑
l=1

[
Q

(i)
j+1(k | l)

]ηi,j+1

· f (i)
j (H

(i)
j | l) · µ̂(i,j−1)→(i,j)(l)

∏
i′∈∂(i,j)

µ̂(i′,j)→(i,j)(l),

where it is understood that µ̂(i,0)→(i,1)(k) = 1, for all i and k. Above, µ̂(i′,j)→(i,j) indicates the vertical message

from Z
(i′)
j to Z

(i)
j , for any i ∈ ∂(i, j). By the BP rules, this satisfies:

µ̂(i′,j)→(i,j)(k) =

K∑
l=1

δk,l · µ̂(i′,j−1)→(i′,j)(l) · µ̂(i′,j+1)→(i′,j)(l)
∏

i′′∈∂(i′,j)\{i}
µ̂(i′′,j)→(i′,j)(l),

where δk,l = 1 if k = l and 0 otherwise. Above, µ̂(i′,j+1)→(i′,j)(l) indicates the backward message from Z
(i′)
j+1

to Z
(i′)
j , which is defined recursively as:

µ̂(i,j)→(i,j−1)(k) =

K∑
l=1

[
Q

(i)
j (l | k)

]ηi,j
· f (i)
j (H

(i)
j | l) · µ̂(i,j+1)→(i,j)(l)

∏
i′∈∂(i,j)

µ̂(i′,j)→(i,j)(l).
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Again, it is understood that µ̂(i,p+1)→(i,p)(k) = 1, for all i and k. Combined, the above updates define a

BP algorithm that is in principle already applicable to approximately sample Z(1:m) | H(1:m). However,

these recursion relations can be simplified by observing that Z
(i)
j = Z(i′) whenever i′ ∈ ∂(i, j). Therefore,

the corresponding nodes in the Markov random field can be collapsed and treated as a single unit in the
generalized belief propagation framework [3] (GBP). Thus, after defining

φ
(i)
j (l) = f

(i)
j (H

(i)
j | l)

∏
i′∈∂(i,j)

f
(i′)
j (H

(i′)
j | l),

ψ
(i)
j (k | l) =

[
Q

(i)
j (k | l)

]ηi,j ∏
i′∈∂(i,j)

[
Q

(i′)
j (k | l)

]ηi,j
,

(S6)

it is not difficult to verify that the GBP messages are given by:

µ(i,j)→(i,j+1)(k) =

K∑
l=1

ψ
(i)
j+1(k | l) · φ(i)

j (l) · µ(i,j−1)→(i,j)(l)
∏

i′∈∂(i,j)\∂(i,j−1)

µ(i′,j−1)→(i,j)(l)

·
∏

i′∈∂(i,j)\∂(i,j+1)

µ(i′,j+1)→(i,j)(l),

µ(i,j)→(i,j−1)(k) =

K∑
l=1

ψ
(i)
j (lDOTidk) · φ(i)

j (l) · µ(i,j+1)→(i,j)(l)
∏

i′∈∂(i,j)\∂(i,j+1)

µ(i′,j+1)→(i,j)(l)

·
∏

i′∈∂(i,j)\∂(i,j−1)

µ(i′,j−1)→(i,j)(l),

µ(i,j)→(i′,j+1)(k) = µ(i,j)→(i,j+1)(k), ∀i′ ∈ ∂(i, j + 1),

µ(i,j)→(i′,j−1)(k) = µ(i,j)→(i,j+1)(k), ∀i′ ∈ ∂(i, j − 1).

(S7)

The GBP rules written above can be simplified even further analytically. Assuming for simplicity that

α
(i)
k = 1/K (as it is the case in our applications), we can write the transition matrices Q as:

Q
(i)
j (k | l) = Qj(k | l) = aj + bj1[k = l], aj =

1

K

(
1− e−ρdj

)
, bj = e−ρdj .

Therefore,

ψ
(i)
j (k | l) =

[
Q

(i)
j (k | l)

]ηi,j ∏
i′∈∂(i,j)

[
Q

(i′)
j (k | l)

]ηi,j
= [Qj(k | l)]ηi,j(1+|∂(i,j)|)

= Qj(k | l).

This simplification allows us to equivalently rewrite the forward update rule in (S7) as:

µ(i,j)→(i,j+1)(k)

=

K∑
l=1

[aj+1 + bj+11[k = l]] · φ(i)
j (l) · µ(i,j−1)→(i,j)(l)

∏
i′∈∂(i,j)\∂(i,j−1)

µ(i′,j−1)→(i,j)(l)

·
∏

i′∈∂(i,j)\∂(i,j+1)

µ(i′,j+1)→(i,j)(l)

= aj+1

K∑
l=1

φ
(i)
j (l) · µ(i,j−1)→(i,j)(l)

∏
i′∈∂(i,j)\∂(i,j−1)

µ(i′,j−1)→(i,j)(l)
∏

i′∈∂(i,j)\∂(i,j+1)

µ(i′,j+1)→(i,j)(l)

+ bj+1φ
(i)
j (k) · µ(i,j−1)→(i,j)(k)

∏
i′∈∂(i,j)\∂(i,j−1)

µ(i′,j−1)→(i,j)(k)
∏

i′∈∂(i,j)\∂(i,j+1)

µ(i′,j+1)→(i,j)(k),

(S8)

which can be evaluated with complexity O(K) instead of O(K2). Similarly, we can rewrite the backward
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update rule in such a way that it can also be evaluated at cost O(K):

µ(i,j)→(i,j−1)(k)

=

K∑
l=1

[aj + bj1[k = l]] · φ(i)
j (l) · µ(i,j+1)→(i,j)(l)

∏
i′∈∂(i,j)\∂(i,j+1)

µ(i′,j+1)→(i,j)(l)

·
∏

i′∈∂(i,j)\∂(i,j−1)

µ(i′,j−1)→(i,j)(l)

= aj

K∑
l=1

φ
(i)
j (l) · µ(i,j+1)→(i,j)(l)

∏
i′∈∂(i,j)\∂(i,j+1)

µ(i′,j+1)→(i,j)(l)
∏

i′∈∂(i,j)\∂(i,j−1)

µ(i′,j−1)→(i,j)(l)

+ bj · φ(i)
j (k) · µ(i,j+1)→(i,j)(k)

∏
i′∈∂(i,j)\∂(i,j+1)

µ(i′,j+1)→(i,j)(k)
∏

i′∈∂(i,j)\∂(i,j−1)

µ(i′,j−1)→(i,j)(k).

(S9)

The GBP formulation incorporates the IBD-sharing constraints implicitly, removing the vertical messages
and the corresponding small loops in the Markov random field. Even though some loops may remain in the
graphical model (e.g., if the same two haplotypes share two different IBD segments), these will generally be
large compared to the range of background LD, since we only consider relatively long IBD segments. Therefore,
we can expect the GBP approximation to work well in general. Furthermore, in many practical cases, the
resulting Markov random field is a tree, so the GBP solution will be very fast to compute and provide exact
posterior probabilities [3].

GBP randomly initializes the messages µ(i,j)→(i′,j+1) and µ(i,j)→(i′,j−1), for all i, j and i′ ∈ ∂(i, j), and then
recursively updates them until convergence according to the rules in (S7). Figure S18 shows a schematic of
the updates. Even though convergence to an exact solution is only theoretically guaranteed if the underlying
graph structure is a tree, the method often performs well in practice, especially if the graph is locally tree-like
(i.e., it may have long loops but no short ones) [4].

Upon convergence, the posterior distribution of Z
(i)
j | H(1:m) can be approximated with the product of its

incoming messages:

P
[
Z

(i)
j = k | H(1:m)

]
≈ µ(i,j−1)→(i,j)(k) · µ(i,j+1)→(i,j)(k)

∏
i′∈∂(i,j)\∂(i,j−1)

µ(i′,j−1)→(i,j)(k)

·
∏

i′∈∂(i,j)\∂(i,j+1)

µ(i′,j+1)→(i,j)(k).
(S10)

Crucially, the above relation is exact in the case of trees, which includes the previously well-known example of
a single haplotype sequence [5, 6], as well as many non-trivial family structures (e.g., two haplotypes sharing
one IBD segment).

Since we are ultimately interested in sampling all coordinates of Z(1:m) | H(1:m) jointly, our procedure does

not end with (S10). In general, after sampling Z
(i)
j | H(1:m) for some i and j, one should update the Markov

random field by conditioning on the observed value of Z
(i)
j and update all messages until convergence before

sampling the next variable, which is computationally unfeasible. Fortunately, this procedure can be greatly
simplified in our case because we only have relatively long IBD segments, and thus there are few loops in the

graphical model. We leverage this fact by first sampling Z
(i)
j for all (i, j) in the set J ⊆ {1, . . . ,m}×{1, . . . , p}

of junction nodes:

J = {(i, j) s.t. ∂(i, j) 6= ∂(i, j − 1) or ∂(i, j) 6= ∂(i, j + 1)}. (S11)

Although this requires running |J | instances of GBP, this quantity will typically be small. Furthermore, warm

starts decrease the number of required iterations. Once Z
(i)
j has been sampled for all (i, j) ∈ J , the remaining

random field is a collection of disjoint Markov chains, as visualized in Figure S18. Therefore, posterior sampling
can be carried out very efficiently with a simple forward-backward procedure that does not involve running
BP at each step, as outlined in Algorithm S2.
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Algorithm S2 Posterior sampling preserving familial constraints

Input: H ∈ {0, 1}m×p, K, list of IBD segments {∂(i, j)}i∈{1,...,m},j∈{1,...,p};
Input: a set R(i) of K references for each haplotype H(i).
Define the list of junction nodes J = {(i, j) s.t. ∂(i, j) 6= ∂(i, j − 1) or ∂(i, j) 6= ∂(i, j + 1)}.
Initialize the list of active nodes A = {1, . . . ,m} × {1, . . . , p} and denote its complement as Ac.
Initialize the forward messages µ(i,j)→(i,j+1)(k) = 1

K , for all i ∈ {1, . . . ,m} and j ∈ {1, . . . , p− 1}.
Initialize the backward messages µ(i,j)→(i,j−1)(k) = 1

K , for all i ∈ {1, . . . ,m} and j ∈ {2, . . . , p}.
for (i∗, j∗) ∈ J ∩ A do

while messages not converged do
for j = 1, . . . , p− 1 do

for i = 1, . . . ,m do
if (i, j) ∈ A then

Update µ(i,j)→(i,j+1)(k), for all k ∈ {1, . . . ,K}, according to (S8).
end if

end for
end for
for j = p, . . . , 2 do

for i = 1, . . . ,m do
if (i, j) ∈ A then

Update µ(i,j)→(i,j−1)(k), for all k ∈ {1, . . . ,K}, according to (S9).
end if

end for
end for

end while
Approximate the posteriors w

(i∗)
j∗ (k) of Z

(i∗)
j∗ = k | H(1:m), {Z(i)

j }(i,j)∈Ac based on (S10).

Sample Z
(i∗)
j∗ from P[Z

(i∗)
j∗ = k] = w

(i∗)
j∗ (k).

Update the list of active nodes: A ← A \ {(i∗, j∗)}.
Update the Markov random field: φ

(i∗)
j∗ (k)← 1[k = Z

(i∗)
j∗ ], for each k ∈ {1, . . . , k}.

for i′ ∈ ∂(i∗, j∗) do

Set Z
(i′)
j∗ ← Z

(i∗)
j∗ .

Update the list of active nodes: A ← A \ {(i′, j∗)}.
Update the Markov random field: φ

(i′)
j∗ (k)← 1[k = Z

(i′)
j∗ ], for each k ∈ {1, . . . , k}.

end for
end for
Sample each disjoint segment of {Z(i)

j }(i,j)∈J c | H(1:m), {Z(i)
j }(i,j)∈J , with standard forward-backward [6].

Output: a latent Markov random field Z ∈ {1, . . . ,K}m×p that preserves the IBD structure.

S1.c.3 Knockoff generation via conditioning

Having sampled Z(1:m) | H(1:m) with the procedure described above, we proceed to develop a method for
generating knockoff copies Z̃(1:m). Even though constructing exact knockoffs for a general Markov random
field may be computationally unfeasible, we can simplify the problem by conditioning on some variables [7].
In particular, we condition on all variables at the junction of any IBD segment, i.e., those in the set J defined
in (S11). This transforms the model for the remaining variables into a collection of disjoint one-dimensional
chains, for which knockoffs can be generated independently with existing methods [5, 6]; see Figure S18. This
solution is summarised in Algorithm S3.
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Algorithm S3 Related knockoff haplotypes via conditioning

Input: H ∈ {0, 1}m×p, d ∈ Rp−1, G, and K as in Algorithm 2;
Input: IBD segments {∂(i, j)}i∈{1,...,m},j∈{1,...,p};
Input: a set R(i) of K references for each haplotype H(i);
Input: Markov random field states Z ∈ {1, . . . ,K}m×p.
Define the list of junction nodes J = {(i, j) s.t. ∂(i, j) 6= ∂(i, j − 1) or ∂(i, j) 6= ∂(i, j + 1)}.
for (i, j) ∈ J do

Define G as the group in partition G to which variant j belongs.
for j′ ∈ G do

Expand the list of junction nodes: J ← J ∪ {(i, j′)}.
end for

end for
for (i, j) ∈ J do

Make a trivial knockoff: Z̃
(i)
j ← Z

(i)
j .

end for
for each connected component C in {1, . . . ,m} × {1, . . . , p} \ J do

Generate group knockoffs {Z̃(i)
j }(i,j)∈C of {Z(i)

j }(i,j)∈C | {Z
(i)
j }(i,j)∈J as in previous work [6].

end for
Output: knockoff matrix Z̃ ∈ {1, . . . ,K}m×p.

S2 Supplementary Notes

S2.a Additional numerical experiments

S2.b Setup

We consider here additional simulations to test our method on real genotypes and synthetic phenotypes,
focusing on smaller subsets individuals from the UK Biobank data set. There are two reasons why these
experiments are informative. Firstly, they allow us to test the robustness of our method to very strong
population structure, by eliminating most of the unrelated British individuals, which make the entire data set
relatively homogeneous overall. Secondly, they are computationally cheaper, which allows us to conveniently
repeat the experiments for several random realizations of the phenotypes.

In these experiments, the feature importance measures for each SNP are computed in three alternative
ways: by fitting the Lasso with cross-validation and taking the absolute value of the estimated regression
coefficients (as in the main paper); by running BOLT-LMM [8] and taking the negative logarithm of the
marginal p-values; and by performing univariate logistic regression (in the case of binary phenotypes) and
taking the negative logarithm of the marginal p-values. These models are designed to predict Y given [X, X̃];
in the first two cases we also include the top 10 principal components of the genotype matrix (computed on
the entire UK Biobank data set) as additional covariates. Then, the feature importance measures Tj and T̃j ,
for the jth SNP and its corresponding knockoff, are combined in the usual way to define the knockoff test
statistics for each group G ⊆ {1, . . . , p} of variables: WG =

∑
j∈G Tj −

∑
j∈G T̃j .

S2.b.1 Knockoffs preserving population structure

We focus here on 10,000 unrelated individuals from the UK Biobank with one of 6 different self-reported ances-
tries (Table S1). We simulate continuous phenotypes, conditional on the true genotypes, from a homoscedastic
linear model with 500 causal variants distributed uniformly across the genome; the total heritability is varied
as a control parameter. We apply KnockoffGWAS on these data using knockoffs generated based on either
the SHAPEIT or the fastPHASE model. Figure S14 shows the histogram of test statistics computed either
with the usual Lasso-based approach, or with BOLT-LMM [9]; the LMM is less powerful, but it makes the
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increased robustness of the SHAPEIT knockoffs even more apparent. The distribution of test statistics should
be symmetric around zero for null groups (i.e., those without causal variants) if the knockoffs are valid. The
statistics obtained with the SHAPEIT model satisfy this property, while the fastPHASE HMM leads to a
rightward bias, which may result in an excess of false positives. The power and FDR (using the Lasso-based
statistics) are compared in Figure S13: the SHAPEIT model leads to slightly lower power, but always con-
trols the FDR. Figure S13 also summarizes findings at different resolutions by counting only the most specific
ones [6].

S2.b.2 Knockoffs preserving familial relatedness

Here, we test our method on 10,000 British individuals in 4,900 self-reported families; see Table S3 for details.
According to the results of RaPID [10], these individuals share a total of 723,454 IBD segments. Their mean
width is 19.6 Mb, or 26.1 cM, and each contains 4238 SNPs on average. We generate knockoffs preserving
these IBD segments, and compare the results with those obtained disregarding relatedness.

Figure S9 shows that knockoffs would not preserve IBD segments if we did not explicitly enforce such
constraint, especially at low resolution. Furthermore, the diagnostics in Figure S9 confirm that our method
correctly preserves LD, and that accounting for relatedness does not decrease power; to the contrary, it can
increase it by ensuring that closely related haplotypes are not used as references for one another, which would
reduce the desired contrast between genotypes and knockoffs.

We simulate binary phenotypes from a liability threshold (probit) model with 100 uniformly distributed
causal variants; the numbers of cases and controls are balanced. (We consider binary phenotypes, as opposed
to continuous phenotypes as in the previous section, simply to highlight the flexibility of our method, which is
equally valid regardless of the distribution of the trait). We include in this model an additive random term for
each family, mimicking shared family factors, whose strength is smoothly controlled by a parameter γ ∈ [0, 1].
More precisely, the latent Gaussian variable for the ith individual in the probit model is given by:

L(i) =

p∑
j=1

βjX
(i)
j + γV (f) +

√
1− γ2ε(i),

where E(f) and ε(i) are independent standard normal random variables, f denotes the family to which indi-
vidual i belongs, and γ ∈ [0, 1]. The magnitude of the nonzero genetic coefficients β is varied as a parameter,
to control the total heritability of the trait.

Therefore, the phenotypes of different individuals in the same family are conditionally independent given
the genotypes if γ = 0, while identical twins will always have the same phenotype if γ = 1. In theory, family
factors may introduce spurious associations, unless the knockoffs account for familial relatedness.

Figure S15 reports FDR and power at low-resolution, with and without preserving relatedness. This shows
that preserving IBD segments enables FDR control even with extremely strong family factors (γ = 1), with
virtually no power loss. However, the SHAPEIT model is reasonably robust even if relatedness is ignored,
especially at higher resolution. This partly depends on the multivariate importance statistics used here (i.e.,
sparse logistic regression); in fact, the knockoff filter applied with marginal importance statistics is more
vulnerable to confounding, as also illustrated in Figure S15.

S2.c Enrichment analysis with external summary statistics

We perform an enrichment analysis using external summary statistics from the Japan Biobank project [11]
for the continuous traits, and from the FinnGen resource [12] for all binary traits except respiratory disease.
These summary statistics were computed on data independent of those in the UK Biobank, but some care
must be exercised in the interpretation of these results because: (a) the external statistics measure marginal
association, not conditional importance; (b) the external sample sizes are smaller than ours, which limits
power.

For each group of SNPs G in the genome partition at the 20 kb resolution, we compute a chi-square
statistics with Fisher’s method: χ2

G = −∑j∈G log(pj), where {pj}j∈G denotes the set of external marginal

13



p-values within the region spanned by G. Since the UK Biobank and the FinnGen project are based on
different genome builds, our discoveries are matched to the external p-values after appropriately lifting the
physical positions. We then define: {χ2

G}Snovel as the collection of external Fisher statistics corresponding to
our novel discoveries in Snovel; {χ2

G}Sconfirmed as the collection of external Fisher statistics corresponding to
our previously confirmed discoveries (either confirmed by BOLT-LMM, or by the other studies based on the
GWAS catalog, and the Japan Biobank or the FinnGen resource at the genome-wide significance level); and
{χ2

G}background as the set of Fisher statistics for groups that are neither in Sconfirmed nor in Snovel.

We take the empirical distribution of {χ2
G}background as the null distribution, and invert it to compute an

approximate enrichment p-value for each group in Snovel; we refer to these as penrich
G . The null hypothesis,

under which the penrich
G would be approximately uniform, is that the Fisher statistics for the novel discoveries

have the same distribution as those in {χ2
G}background; for instance, we expect this would be the case if all

selected SNPs were independent of the phenotype. In theory, we could use these p-values with any multiple
testing procedure; however, this turns out to have little power, due to the small sample size (compared to
the UK Biobank) of the external data. However, it is clear that the distribution of {penrich

G }Snovel is not
uniform, which suggest many discoveries are non-null. Therefore, we take an empirical Bayes approach to
estimate the proportion of non-null discoveries [13], as implemented by the “quantile” method in the fdrtool

R package [14]. This estimates the proportion of null enrichment p-values, which we bootstrap 10,000 times
to assess its uncertainty. Tables 3 and S11 are based on the mean bootstrap values, while Table S12 report
90% confidence intervals.
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S3 Figures

Y

XG X−G

U

V

A

C

PX|A
?

Figure S1: Graphical representation of the assumed relation between genotypes (X), phenotype (Y ), ancestry
(A), family factors (V ), and other relevant covariates (U). Our method is designed to test the direct effect of
any subset of genotypes XG on the phenotype. The node C represents possible unaccounted confounders.
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Figure S2: Visualization of the knockoff exchangeability property defined in (2), within a toy example with 6
individuals (divided into 3 families) and 7 variants (partitioned into 3 groups). In this example, the swapping
operator for group G2 is applied to the second family, F (2), and the ancestry variable A is omitted.
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(b) Average pairwise correlations over chromosome 22.

Figure S3: Absolute pairwise correlation between genotypes and knockoffs on chromosome 22, as a function of
the knockoff resolution. These statistics are computed on 10,000 UK Biobank samples with diverse ancestries,
as in Figure 1. (a) Histograms. (b) Absolute correlation averaged over all variants, as a function of the
resolution. Lower absolute pairwise correlations with the genotypes indicate more powerful knockoffs.
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Figure S4: Exchangeability of knockoffs and genotypes in the UK Biobank. (a) Principal component analysis
for 10k individuals with diverse ancestries, separately for genotypes and knockoffs. (b) Kinship coefficients
between 2000 pairs of related individuals, computed separately on genotypes and knockoffs. (c) Pairwise
absolute correlations between nearby variants on chromosome 22 (minor allele frequency ≥ 0.01) for the same
individuals as in (a), with (left) or without (right) swapping genotypes (X) and knockoffs (X̃). Resolution:
425 kb. In the case of (b), we only show pairs of variants in different groups. Other details are as in Figure 1.
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(c) Comparison of PCA on genotypes and knockoffs.

Figure S5: PCA of individuals with diverse ancestries, and of knockoffs constructed based on different HMMs.
(a) The first two genetic principal components of 10,000 individuals in the UK Biobank (as in Figures 1
and S4) are compared to (b) the corresponding quantities computed on knockoffs at different resolutions. The
knockoffs based on the SHAPEIT HMM preserve population structure quite accurately, even at low resolution.
By contrast, the fastPHASE HMM tends to produce knockoffs that shrink together individuals with diverse
ancestries, thus breaking population structure. (c) Proportion of genetic variance explained by the first ten
principal components of knockoffs at different resolutions, for samples with diverse ancestries. The dashed
horizontal line indicates the corresponding quantity computed on the original data.
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(a) High-resolution knockoffs.
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(b) Low-resolution knockoffs.

Figure S6: Knockoff exchangeability measured in terms of pairwise correlations between different SNPs, among
10,000 individuals with diverse ancestries, as in Figure 1. We compare |cor(Xj , Xk)| with |cor(X̃j , X̃k)|, for
j, k ∈ {1, . . . , p}, as a function of the distance between variants j and k on chromosome 22. Only 1000
randomly chosen points are shown, for clarity. Variants with minor allele frequency smaller than 0.01 are not
shown here, due to the limited sample size. These diagnostics should approximately lie on the 45-degree line
if the knockoffs are valid [6]. (a) Genome partition into single-SNP groups. (b) Genome partition into 425
kb-wide groups.
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(b) Low-resolution knockoffs.

Figure S7: Additional exchangeability diagnostics comparing |cor(Xj , Xk)| with |cor(Xj , X̃k)|, for j, k in
different groups, as a function of the distance between variants j and k. (a) Genome partition into single-SNP
groups. (b) Genome partition into 425 kb-wide groups. Other details are as in Figure S6.
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Figure S8: Knockoff exchangeability measured in terms of pairwise correlations between different SNPs, as
in Figures S6–S7. The quantity on the vertical axis measures the average distances from the 45-degree line
in the scatter plots of Figures S6–S7, including also intermediate levels of resolutions. This is defined as
[cor(Xj , Xk) − cor(X̃j , X̃k)]2 (top), or [cor(Xj , Xk) − cor(Xj , X̃k)]2 (bottom), each averaged over pairs of
variables j, k whose physical distances are within the specified range. Valid knockoffs should have values close
to zero.
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(b) Linkage disequilibrium (smaller values are preferable).
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(c) Individual similarity of knockoffs and genotypes (smaller is preferable)

Figure S9: Exchangeability diagnostics for knockoffs on chromosome 22 in 10,000 related British samples from
the UK Biobank. The knockoffs are generated with our new method, either preserving or ignoring familial
relatedness. The diagnostics are presented as a function of the knockoff resolution. (a) Average width of
IBD segments between self-reportedly related individuals, computed on either the real data or the knockoffs.
(b) Exchangeability measured in terms of pairwise correlations between different SNPs, as in Figure S8. (c)
Absolute pairwise correlation between genotypes and knockoffs, as in Figure S3.
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Figure S10: KnockoffGWAS workflow. The novelty introduced in this paper consists of an HMM for the
distribution of haplotypes, H, that can account for population structure and familial relatedness as well as
LD, and of the associated algorithm for generating knockoffs. For computational reasons, the genotypes are
phased prior to generating knockoffs, and the knockoff haplotypes are then de-phased to obtain knockoff
genotypes [6].
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Figure S11: Chicago plots showing KnockoffGWAS discoveries for simulated traits with different levels of
heritability, as in Figure 3. Each Chicago plot shows all discoveries on chromosome 1 at the top, and zooms in
on a smaller genetic segment at the bottom. The asterisks indicate the position of the causal variants. Note
that some “floating discoveries” are visible in the top panel; these can be explicitly avoided with a variation of
the knockoff filter that simultaneously processes the results from different resolutions [6]. (a) High heritability
(strong signals). (b) Low heritability (weak signals).
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Figure S12: KnockoffGWAS and BOLT-LMM discoveries for simulated traits with different levels of heritabil-
ity, as in Figure 3.
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(a) Simulated phenotype with 500 causal variants. Results at three fixed levels of resolution.
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(b) Simulated phenotypes with different numbers of causal variants. Summary of results at different
levels of resolution.

Figure S13: KnockoffGWAS performance in numerical experiment with real genotypes of 10,000 individuals
with diverse ancestries, as in Figure 1, and simulated phenotypes. The knockoffs are generated either using
the SHAPEIT or the fastPHASE [6] HMM. (a) Simulated phenotype with 500 causal variants equally spaced
across the genome. (b) Simulated phenotypes with different numbers (100,200, or 500) causal variants equally
spaced across the genome. Here, the discoveries at different resolutions are combined, counting only the most
specific findings in each locus (this facilitates the visualization, but it is not guaranteed to control the FDR
in theory [6]). Other details are as in Figure 4.
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Figure S14: Distribution of knockoff statistics in the numerical experiment of Figure S13. The knockoffs are
constructed by different algorithms at resolution equal to 425 kb. (a) Lasso-based knockoff test statistics for
null (left) and causal (right) groups of variants. (b) LMM-based knockoff test statistics for null (left) and
causal (right) groups of variants.
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(a) KnockoffGWAS with Lasso-based statistics.
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(b) KnockoffGWAS with LMM-based statistics.

Figure S15: Power and FDR in numerical experiments with real genotypes of 10,000 related British samples,
and simulated phenotypes. Our method is applied with and without preserving IBD segments. Results for
phenotypes with different strengths of family factors γ are in separate columns (γ = 0: no family factors,
γ = 1: strongest family factors; see Methods for more information about γ). Knockoff resolution equal to 425
kb. (a) Lasso-based test statistics. (b) Marginal test statistics. Note that marginal statistics have almost no
power, although an excess of false discoveries occurs if the relatedness is not preserved.
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Figure S16: Manhattan plots for cardiovascular disease using the UK Biobank data. (a-b) KnockoffGWAS
q-values for high-resolution conditional hypotheses (20 kb). The width of each rectangle denotes the genetic
segment tested by the corresponding conditional hypothesis, while the height is the negative logarithm of the
q-value. (c-d) KnockoffGWAS q-values for low-resolution conditional hypotheses (208 kb). (e-f) BOLT-LMM
p-values for SNP-by-SNP marginal hypotheses. The plots in (c,d,f) are the same as those in (a,c,e), respectively,
but zoom in on a portion of chromosome 1. The dashed horizontal red lines indicate the significance thresholds;
10% FDR for KnockoffGWAS, and 5× 10−8 for BOLT-LMM.
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Figure S17: Visualization of some findings for cardiovascular disease on chromosome 5. The top panels
visualize a wider portion of chromosome 5, as in Figure S11. Other details are as in Figure 5.
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Figure S18: Graphical representation of the distribution of latent states in the generalized HMM for two
haplotype sequences of length 8 sharing 2 IBD segments. (a) Representation as a Markov chain with K2

possible states in each position, with the constraint that nodes connected by a vertical edge must be identical
to each other. The nodes belonging to the IBD segments are shaded in blue. (b) Equivalent representation of
this model as a Markov random field with 11 variables, each taking one ofK possible values. (c) Visualization of
belief propagation for haplotype families. Belief propagation update of a message in the example of Figure S18.
The new message evaluated here at time t is that from the third node of the first shared IBD segment to the
successive node in the first haplotype sequence (bold arrow). This is computed as a function of the messages
labeled as t − 1, which had previously been computed as a function of those labeled as t − 2. Red: forward
messages; blue: backward messages. (d) The nodes at the extremities of the IBD segments are shaded in grey.
These represent the variables upon which we condition before generating knockoffs. (e) Conditional on the
extremities of the IBD segments, the remaining latent nodes are distributed as independent Markov chains.
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S4 Supplementary Tables

Ethnicity Count

African 1710
British 1710

Caribbean 1710
Chinese 1450
Indian 1710
Irish 1710

Table S1: Summary of the self-reported ethnicities for the 10,000 UK Biobank individuals in Figure 1 (a).

Median width
(kb)

Mean width
(kb)

Number of
groups

Median size
(SNPs)

Mean size
(SNPs)

single-SNP single-SNP 591513 1 1
3 11 151532 3 4
20 41 56562 8 10
41 74 33929 14 17
81 134 19500 26 30
208 303 8863 58 67
425 575 4738 113 125

Table S2: Summary of 7 partitions of the genome into disjoint groups of contiguous SNPs. The first column
(median width in kb) is used to reference particular resolutions throughout this paper.

Family size Number of families Average kinship

1 1 N.A.
2 4702 0.273
3 193 0.270
4 4 0.265

Table S3: Self-reported family structure for the 10,000 British individuals used in the experiments of Figures S9
and S13. These families are chosen as those with the largest average kinship. One extra individual is included
to bring the total number to a round value.
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Name Description Number of cases UK Biobank Fields UK Biobank Codes

bmi body mass index continuous 21001-0.0
cvd cardiovascular disease 148715 20002-0.0–20002-0.32 1065, 1066, 1067, 1068,

1081, 1082, 1083, 1425,
1473, 1493

diabetes diabetes 19897 20002-0.0–20002-0.32 1220
height standing height continuous 50-0.0

hypothyroidism hypothyroidism 22493 20002-0.0–20002-0.32 1226
platelet platelet count continuous 30080-0.0

respiratory respiratory disease 64945 20002-0.0–20002-0.32 1111, 1112, 1113, 1114,
1115, 1117, 1413, 1414,

1415, 1594
sbp systolic blood pressure continuous 4080-0.0, 4080-0.1

Table S4: Definition of the UK Biobank phenotypes used in our analysis [6]. In the case of case-control
phenotypes, the number of cases refers to the subset of individuals that passed our quality control.
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KnockoffGWAS BOLT-LMM

Phenotype Resolution Discoveries Overlap with LMM Discoveries Overlap with KZ

cvd 3 kb 22 22 (100.0%) 257 25 (9.7%)
20 kb 239 180 (75.3%) 257 189 (73.5%)
41 kb 339 212 (62.5%) 257 213 (82.9%)
81 kb 566 261 (46.1%) 257 241 (93.8%)
208 kb 940 274 (29.1%) 257 249 (96.9%)
425 kb 1089 255 (23.4%) 257 254 (98.8%)

diabetes 3 kb 21 20 (95.2%) 62 21 (33.9%)
20 kb 61 45 (73.8%) 62 47 (75.8%)
41 kb 109 54 (49.5%) 62 52 (83.9%)
81 kb 109 50 (45.9%) 62 54 (87.1%)
208 kb 113 52 (46.0%) 62 55 (88.7%)
425 kb 194 57 (29.4%) 62 59 (95.2%)

hypothyroidism single-SNP 19 19 (100.0%) 143 30 (21.0%)
3 kb 40 40 (100.0%) 143 53 (37.1%)
20 kb 105 89 (84.8%) 143 101 (70.6%)
41 kb 222 128 (57.7%) 143 123 (86.0%)
81 kb 277 133 (48.0%) 143 130 (90.9%)
208 kb 295 129 (43.7%) 143 142 (99.3%)
425 kb 335 122 (36.4%) 143 142 (99.3%)

respiratory 20 kb 83 60 (72.3%) 94 62 (66.0%)
41 kb 123 74 (60.2%) 94 75 (79.8%)
81 kb 193 83 (43.0%) 94 85 (90.4%)
208 kb 262 82 (31.3%) 94 92 (97.9%)
425 kb 383 82 (21.4%) 94 93 (98.9%)

bmi 3 kb 10 10 (100.0%) 697 15 (2.2%)
20 kb 343 309 (90.1%) 697 317 (45.5%)
41 kb 918 618 (67.3%) 697 548 (78.6%)
81 kb 1480 792 (53.5%) 697 641 (92.0%)
208 kb 2395 898 (37.5%) 697 689 (98.9%)
425 kb 2460 794 (32.3%) 697 695 (99.7%)

height single-SNP 95 95 (100.0%) 2464 225 (9.1%)
3 kb 570 570 (100.0%) 2464 891 (36.2%)
20 kb 1503 1469 (97.7%) 2464 1761 (71.5%)
41 kb 2384 2167 (90.9%) 2464 2167 (87.9%)
81 kb 3006 2417 (80.4%) 2464 2360 (95.8%)
208 kb 3339 2228 (66.7%) 2464 2430 (98.6%)
425 kb 3073 1804 (58.7%) 2464 2454 (99.6%)

platelet single-SNP 53 53 (100.0%) 1204 131 (10.9%)
3 kb 246 245 (99.6%) 1204 391 (32.5%)
20 kb 1002 900 (89.8%) 1204 963 (80.0%)
41 kb 1261 1041 (82.6%) 1204 1075 (89.3%)
81 kb 1570 1120 (71.3%) 1204 1138 (94.5%)
208 kb 1743 1057 (60.6%) 1204 1183 (98.3%)
425 kb 1653 911 (55.1%) 1204 1195 (99.3%)

sbp 3 kb 83 83 (100.0%) 568 101 (17.8%)
20 kb 191 177 (92.7%) 568 204 (35.9%)
41 kb 511 366 (71.6%) 568 380 (66.9%)
81 kb 830 496 (59.8%) 568 480 (84.5%)
208 kb 1183 561 (47.4%) 568 530 (93.3%)
425 kb 1543 538 (34.9%) 568 548 (96.5%)

Table S5: KnockoffGWAS discoveries for different phenotypes using all UK Biobank samples vs. BOLT-LMM
genome-wide significant discoveries (5× 10−8). BOLT-LMM is applied on 350k unrelated British samples for
diabetes and respiratory disease [6], and on 459k European samples for all other phenotypes [8].
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Resolution Discoveries with SHAPEIT model Discoveries with fastPHASE model

Phenotype SHAPEIT fastPHASE Number Overlap with fastPHASE Number Overlap with SHAPEIT

cvd 41 kb 42 kb 339 49 (14.5%) 51 46 (90.2%)
81 kb 88 kb 566 175 (30.9%) 182 165 (90.7%)
208 kb 226 kb 940 449 (47.8%) 514 446 (86.8%)
425 kb 226 kb 1089 453 (41.6%) 514 466 (90.7%)

diabetes 3 kb 4 kb 21 8 (38.1%) 11 8 (72.7%)
20 kb 18 kb 61 9 (14.8%) 10 9 (90.0%)
41 kb 42 kb 109 19 (17.4%) 21 19 (90.5%)
81 kb 88 kb 109 28 (25.7%) 33 28 (84.8%)
208 kb 226 kb 113 45 (39.8%) 50 46 (92.0%)
425 kb 226 kb 194 48 (24.7%) 50 48 (96.0%)

hypothyroidism single-SNP single-SNP 19 8 (42.1%) 21 8 (38.1%)
81 kb 88 kb 277 103 (37.2%) 108 100 (92.6%)
208 kb 226 kb 295 183 (62.0%) 212 186 (87.7%)
425 kb 226 kb 335 188 (56.1%) 212 194 (91.5%)

respiratory
20 kb 18 kb 83 12 (14.5%) 13 13 (100.0%)
41 kb 42 kb 123 35 (28.5%) 41 35 (85.4%)
81 kb 88 kb 193 61 (31.6%) 65 59 (90.8%)
208 kb 226 kb 262 132 (50.4%) 176 140 (79.5%)
425 kb 226 kb 383 154 (40.2%) 176 159 (90.3%)

bmi 3 kb 4 kb 10 7 (70.0%) 24 7 (29.2%)
20 kb 18 kb 343 29 (8.5%) 33 30 (90.9%)
41 kb 42 kb 918 61 (6.6%) 60 58 (96.7%)
81 kb 88 kb 1480 515 (34.8%) 555 485 (87.4%)
208 kb 226 kb 2395 1653 (69.0%) 1804 1615 (89.5%)
425 kb 226 kb 2460 1592 (64.7%) 1804 1733 (96.1%)

height single-SNP single-SNP 95 68 (71.6%) 173 68 (39.3%)
3 kb 4 kb 570 252 (44.2%) 336 251 (74.7%)
20 kb 18 kb 1503 360 (24.0%) 388 350 (90.2%)
41 kb 42 kb 2384 832 (34.9%) 823 780 (94.8%)
81 kb 88 kb 3006 1864 (62.0%) 1976 1836 (92.9%)
208 kb 226 kb 3339 2775 (83.1%) 3284 3021 (92.0%)
425 kb 226 kb 3073 2398 (78.0%) 3284 3198 (97.4%)

platelet single-SNP single-SNP 53 40 (75.5%) 143 40 (28.0%)
3 kb 4 kb 246 136 (55.3%) 161 138 (85.7%)
20 kb 18 kb 1002 264 (26.3%) 276 265 (96.0%)
41 kb 42 kb 1261 398 (31.6%) 408 385 (94.4%)
81 kb 88 kb 1570 856 (54.5%) 890 834 (93.7%)
208 kb 226 kb 1743 1288 (73.9%) 1460 1325 (90.8%)
425 kb 226 kb 1653 1162 (70.3%) 1460 1393 (95.4%)

sbp 41 kb 42 kb 511 86 (16.8%) 95 84 (88.4%)
81 kb 88 kb 830 265 (31.9%) 297 262 (88.2%)
208 kb 226 kb 1183 619 (52.3%) 722 612 (84.8%)
425 kb 226 kb 1543 663 (43.0%) 722 678 (93.9%)

Table S6: KnockoffGWAS discoveries obtained from all UK Biobank British samples (SHAPEIT model)
vs. discoveries obtained from 350k unrelated British samples (fastPHASE model); the latter are based on the
slightly different genome partitions adopted by [6].
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Everyone British White (non-British)

Phenotype Resolution all unrel. all unrel. all unrel.

cvd single-SNP 0 0 0 0 0 0
3 kb 22 20 0 0 0 0
20 kb 239 152 169 140 0 0
41 kb 339 235 270 181 0 0
81 kb 566 428 611 462 0 0
208 kb 940 594 815 611 0 0
425 kb 1089 861 1004 711 0 0

diabetes single-SNP 0 0 0 0 0 0
3 kb 0 17 0 12 0 0
20 kb 83 44 63 53 0 0
41 kb 123 86 82 57 0 0
81 kb 193 152 165 129 0 0
208 kb 262 242 217 171 0 0
425 kb 383 346 289 291 0 0

hypothyroidism single-SNP 19 22 11 11 0 0
3 kb 40 42 60 32 0 0
20 kb 105 79 109 86 0 0
41 kb 222 156 164 130 0 0
81 kb 277 173 269 153 0 0
208 kb 295 257 288 256 0 0
425 kb 335 309 312 266 0 0

respiratory single-SNP 0 0 0 11 0 0
3 kb 21 0 37 0 0 0
20 kb 61 33 54 33 0 0
41 kb 109 62 73 66 0 0
81 kb 109 84 63 94 0 0
208 kb 113 79 119 84 0 0
425 kb 194 102 186 139 0 0

bmi single-SNP 95 64 80 69 0 10
3 kb 570 483 609 377 0 0
20 kb 1503 1294 1610 1412 25 20
41 kb 2384 1966 2353 2141 74 80
81 kb 3006 2768 3002 2681 91 80
208 kb 3339 3111 3370 3117 112 101
425 kb 3073 2922 2938 2735 170 104

height single-SNP 0 0 0 12 0 0
3 kb 10 10 0 0 0 0
20 kb 343 230 207 180 0 0
41 kb 918 566 820 492 0 0
81 kb 1480 1194 1433 1280 0 0
208 kb 2395 1938 2381 1975 0 0
425 kb 2460 2109 2426 2092 0 10

platelet single-SNP 53 52 34 52 0 0
3 kb 246 259 223 202 0 0
20 kb 1002 820 977 777 26 31
41 kb 1261 995 1171 944 52 44
81 kb 1570 1350 1502 1292 69 55
208 kb 1743 1583 1809 1510 53 51
425 kb 1653 1550 1741 1521 76 60

sbp single-SNP 0 0 0 0 0 0
3 kb 83 90 42 32 0 0
20 kb 191 162 166 127 0 0
41 kb 511 353 421 342 0 0
81 kb 830 635 736 585 0 0
208 kb 1183 972 1050 911 0 0
425 kb 1543 1202 1401 1273 0 0

Table S7: Numbers of KnockoffGWAS discoveries at different resolutions, using different subsets of the UK
Biobank samples.
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Confirmed

Phenotype Resolution Discoveries Catalog Japan FinnGen Any

cvd 3 kb 22 21 (95.5%) NA 11 (50.0%) 22 (100.0%)
20 kb 239 173 (72.4%) NA 81 (33.9%) 188 (78.7%)
41 kb 339 241 (71.1%) NA 126 (37.2%) 266 (78.5%)
81 kb 566 353 (62.4%) NA 251 (44.3%) 422 (74.6%)
208 kb 940 524 (55.7%) NA 581 (61.8%) 738 (78.5%)
425 kb 1089 671 (61.6%) NA 837 (76.9%) 967 (88.8%)

diabetes 3 kb 21 20 (95.2%) 13 (61.9%) 8 (38.1%) 20 (95.2%)
20 kb 61 54 (88.5%) 26 (42.6%) 18 (29.5%) 54 (88.5%)
41 kb 109 88 (80.7%) 36 (33.0%) 30 (27.5%) 88 (80.7%)
81 kb 109 88 (80.7%) 39 (35.8%) 36 (33.0%) 89 (81.7%)
208 kb 113 95 (84.1%) 49 (43.4%) 43 (38.1%) 97 (85.8%)
425 kb 194 140 (72.2%) 58 (29.9%) 59 (30.4%) 142 (73.2%)

hypothyroidism single-SNP 19 7 (36.8%) NA 3 (15.8%) 7 (36.8%)
3 kb 40 23 (57.5%) NA 14 (35.0%) 24 (60.0%)
20 kb 105 71 (67.6%) NA 20 (19.0%) 71 (67.6%)
41 kb 222 101 (45.5%) NA 27 (12.2%) 105 (47.3%)
81 kb 277 126 (45.5%) NA 38 (13.7%) 135 (48.7%)
208 kb 295 141 (47.8%) NA 50 (16.9%) 156 (52.9%)
425 kb 335 139 (41.5%) NA 74 (22.1%) 174 (51.9%)

respiratory 20 kb 83 74 (89.2%) NA 35 (42.2%) 76 (91.6%)
41 kb 123 110 (89.4%) NA 58 (47.2%) 114 (92.7%)
81 kb 193 155 (80.3%) NA 115 (59.6%) 174 (90.2%)
208 kb 262 195 (74.4%) NA 202 (77.1%) 241 (92.0%)
425 kb 383 263 (68.7%) NA 330 (86.2%) 357 (93.2%)

bmi 3 kb 10 10 (100.0%) 4 (40.0%) NA 10 (100.0%)
20 kb 343 307 (89.5%) 32 (9.3%) NA 308 (89.8%)
41 kb 918 655 (71.4%) 53 (5.8%) NA 656 (71.5%)
81 kb 1480 865 (58.4%) 55 (3.7%) NA 865 (58.4%)
208 kb 2395 1076 (44.9%) 64 (2.7%) NA 1076 (44.9%)
425 kb 2460 1090 (44.3%) 68 (2.8%) NA 1091 (44.3%)

height single-SNP 95 63 (66.3%) 57 (60.0%) NA 81 (85.3%)
3 kb 570 357 (62.6%) 258 (45.3%) NA 417 (73.2%)
20 kb 1503 1032 (68.7%) 483 (32.1%) NA 1102 (73.3%)
41 kb 2384 1534 (64.3%) 572 (24.0%) NA 1607 (67.4%)
81 kb 3006 1822 (60.6%) 590 (19.6%) NA 1879 (62.5%)
208 kb 3339 1856 (55.6%) 561 (16.8%) NA 1886 (56.5%)
425 kb 3073 1653 (53.8%) 494 (16.1%) NA 1669 (54.3%)

platelet single-SNP 53 37 (69.8%) 22 (41.5%) NA 41 (77.4%)
3 kb 246 153 (62.2%) 72 (29.3%) NA 168 (68.3%)
20 kb 1002 352 (35.1%) 97 (9.7%) NA 374 (37.3%)
41 kb 1261 391 (31.0%) 97 (7.7%) NA 409 (32.4%)
81 kb 1570 426 (27.1%) 91 (5.8%) NA 436 (27.8%)
208 kb 1743 445 (25.5%) 94 (5.4%) NA 453 (26.0%)
425 kb 1653 425 (25.7%) 86 (5.2%) NA 429 (26.0%)

sbp 3 kb 83 69 (83.1%) 10 (12.0%) NA 69 (83.1%)
20 kb 191 166 (86.9%) 17 (8.9%) NA 166 (86.9%)
41 kb 511 358 (70.1%) 22 (4.3%) NA 359 (70.3%)
81 kb 830 517 (62.3%) 22 (2.7%) NA 517 (62.3%)
208 kb 1183 643 (54.4%) 23 (1.9%) NA 643 (54.4%)
425 kb 1543 709 (45.9%) 23 (1.5%) NA 709 (45.9%)

Table S8: Numbers of KnockoffGWAS discoveries at different resolutions (all UK Biobank samples) containing
associations previously reported in the GWAS Catalog, Japan Biobank resource, FinnGen resource, or any of
the above.
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Found by BOLT-LMM Not found by BOLT-LMM

Phenotype Resolution Total Catalog Japan FinnGen Any Total Catalog Japan FinnGen Any

cvd 3 kb 22 95.5% NA 50.0% 100.0% 0 NA NA NA NA
20 kb 180 83.9% NA 38.3% 88.9% 59 37.3% NA 20.3% 47.5%
41 kb 212 86.8% NA 42.9% 91.5% 127 44.9% NA 27.6% 56.7%
81 kb 261 87.4% NA 53.3% 92.7% 305 41.0% NA 36.7% 59.0%
208 kb 274 90.5% NA 71.9% 97.1% 666 41.4% NA 57.7% 70.9%
425 kb 255 94.9% NA 84.7% 99.2% 834 51.4% NA 74.5% 85.6%

diabetes 3 kb 20 95.0% 65.0% 40.0% 95.0% 1 100.0% 0.0% 0.0% 100.0%
20 kb 45 95.6% 53.3% 40.0% 95.6% 16 68.8% 12.5% 0.0% 68.8%
41 kb 54 96.3% 50.0% 46.3% 96.3% 55 65.5% 16.4% 9.1% 65.5%
81 kb 50 100.0% 54.0% 56.0% 100.0% 59 64.4% 20.3% 13.6% 66.1%
208 kb 52 98.1% 61.5% 61.5% 98.1% 61 72.1% 27.9% 18.0% 75.4%
425 kb 57 98.2% 61.4% 63.2% 98.2% 137 61.3% 16.8% 16.8% 62.8%

hypothyroidism single-SNP 19 36.8% NA 15.8% 36.8% 0 NA NA NA NA
3 kb 40 57.5% NA 35.0% 60.0% 0 NA NA NA NA
20 kb 89 76.4% NA 22.5% 76.4% 16 18.8% NA 0.0% 18.8%
41 kb 128 64.1% NA 18.0% 65.6% 94 20.2% NA 4.3% 22.3%
81 kb 133 75.2% NA 22.6% 78.9% 144 18.1% NA 5.6% 20.8%
208 kb 129 85.3% NA 25.6% 87.6% 166 18.7% NA 10.2% 25.9%
425 kb 122 88.5% NA 32.8% 93.4% 213 14.6% NA 16.0% 28.2%

respiratory 20 kb 60 98.3% NA 48.3% 98.3% 23 65.2% NA 26.1% 73.9%
41 kb 74 100.0% NA 51.4% 100.0% 49 73.5% NA 40.8% 81.6%
81 kb 83 98.8% NA 65.1% 100.0% 110 66.4% NA 55.5% 82.7%
208 kb 82 98.8% NA 79.3% 100.0% 180 63.3% NA 76.1% 88.3%
425 kb 82 96.3% NA 92.7% 100.0% 301 61.1% NA 84.4% 91.4%

bmi 3 kb 10 100.0% 40.0% NA 100.0% 0 NA NA NA NA
20 kb 309 94.2% 10.4% NA 94.5% 34 47.1% 0.0% NA 47.1%
41 kb 618 89.3% 8.3% NA 89.5% 300 34.3% 0.7% NA 34.3%
81 kb 792 85.2% 6.4% NA 85.2% 688 27.6% 0.6% NA 27.6%
208 kb 898 82.5% 6.2% NA 82.5% 1497 22.4% 0.5% NA 22.4%
425 kb 794 85.8% 7.6% NA 85.9% 1666 24.5% 0.5% NA 24.5%

height single-SNP 95 66.3% 60.0% NA 85.3% 0 NA NA NA NA
3 kb 570 62.6% 45.3% NA 73.2% 0 NA NA NA NA
20 kb 1469 69.8% 32.8% NA 74.5% 34 20.6% 2.9% NA 20.6%
41 kb 2167 68.7% 26.2% NA 72.0% 217 20.7% 2.3% NA 21.2%
81 kb 2417 71.0% 24.0% NA 73.1% 589 18.2% 1.5% NA 18.8%
208 kb 2228 76.1% 24.7% NA 77.3% 1111 14.5% 1.0% NA 14.8%
425 kb 1804 81.3% 26.6% NA 82.0% 1269 14.7% 1.1% NA 14.9%

platelet single-SNP 53 69.8% 41.5% NA 77.4% 0 NA NA NA NA
3 kb 245 62.4% 29.4% NA 68.6% 1 0.0% 0.0% NA 0.0%
20 kb 900 38.3% 10.8% NA 40.8% 102 6.9% 0.0% NA 6.9%
41 kb 1041 36.8% 9.3% NA 38.5% 220 3.6% 0.0% NA 3.6%
81 kb 1120 36.6% 8.0% NA 37.5% 450 3.6% 0.2% NA 3.6%
208 kb 1057 39.4% 8.5% NA 40.1% 686 4.2% 0.6% NA 4.2%
425 kb 911 42.9% 9.0% NA 43.4% 742 4.6% 0.5% NA 4.6%

sbp 3 kb 83 83.1% 12.0% NA 83.1% 0 NA NA NA NA
20 kb 177 89.3% 9.6% NA 89.3% 14 57.1% 0.0% NA 57.1%
41 kb 366 86.1% 6.0% NA 86.3% 145 29.7% 0.0% NA 29.7%
81 kb 496 86.5% 4.4% NA 86.5% 334 26.3% 0.0% NA 26.3%
208 kb 561 87.2% 4.1% NA 87.2% 622 24.8% 0.0% NA 24.8%
425 kb 538 90.0% 4.3% NA 90.0% 1005 22.4% 0.0% NA 22.4%

Table S9: Numbers of KnockoffGWAS discoveries containing previously reported associations. The results are
stratified based on whether they are also detected by BOLT-LMM (as in Table 1). Other details are as in
Table S8.
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Phenotype Catalog Japan FinnGen

bmi 4261 / 4514 (94.4%) 5016 / 5094 (98.5%) NA
cvd 2223 / 4229 (52.6%) NA 2491 / 6713 (37.1%)

diabetes 709 / 1906 (37.2%) 5904 / 8550 (69.1%) 93 / 577 (16.1%)
height 4324 / 4461 (96.9%) 61730 / 63254 (97.6%) NA

hypothyroidism 176 / 197 (89.3%) NA 89 / 462 (19.3%)
platelet 1121 / 1159 (96.7%) 7797 / 8012 (97.3%) NA

respiratory 1751 / 4112 (42.6%) NA 1129 / 9450 (11.9%)
sbp 1781 / 2048 (87.0%) 1757 / 1817 (96.7%) NA

Table S10: Total numbers of reported associations in the GWAS Catalog, Japan Biobank resource, or FinnGen
resource, along with the corresponding fraction confirmed in our low-resolution analysis (425 kb). Other details
are as in Table S8.
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Total Not found by BOLT-LMM

Confirmed Confirmed

Phenotype Resolution Discover. Other Other or Enrich. Discover. Other Other or Enrich.

cvd 3 kb 22 22 (100.0%) 22 (100.0%) 0 NA NA
20 kb 239 188 (78.7%) 219 (91.6%) 59 28 (47.5%) 50 (84.7%)
41 kb 339 266 (78.5%) 309 (91.2%) 127 72 (56.7%) 107 (84.3%)
81 kb 566 422 (74.6%) 495 (87.5%) 305 180 (59.0%) 240 (78.7%)
208 kb 940 738 (78.5%) 764 (81.3%) 666 472 (70.9%) 493 (74.0%)
425 kb 1089 967 (88.8%) 968 (88.9%) 834 714 (85.6%) 715 (85.7%)

diabetes 3 kb 21 20 (95.2%) 20 (95.2%) 1 1 (100.0%) NA
20 kb 61 54 (88.5%) 57 (93.4%) 16 11 (68.8%) 13 (81.2%)
41 kb 109 88 (80.7%) 97 (89.0%) 55 36 (65.5%) 42 (76.4%)
81 kb 109 89 (81.7%) 99 (90.8%) 59 39 (66.1%) 48 (81.4%)
208 kb 113 97 (85.8%) 106 (93.8%) 61 46 (75.4%) 54 (88.5%)
425 kb 194 142 (73.2%) 157 (80.9%) 137 86 (62.8%) 100 (73.0%)

hypothyroidism single-SNP 19 7 (36.8%) 7 (36.8%) 0 NA NA
3 kb 40 24 (60.0%) 24 (60.0%) 0 NA NA
20 kb 105 71 (67.6%) 91 (86.7%) 16 3 (18.8%) 8 (50.0%)
41 kb 222 105 (47.3%) 172 (77.5%) 94 21 (22.3%) 61 (64.9%)
81 kb 277 135 (48.7%) 219 (79.1%) 144 30 (20.8%) 93 (64.6%)
208 kb 295 156 (52.9%) 226 (76.6%) 166 43 (25.9%) 101 (60.8%)
425 kb 335 174 (51.9%) 231 (69.0%) 213 60 (28.2%) 116 (54.5%)

bmi 3 kb 10 10 (100.0%) 10 (100.0%) 0 NA NA
20 kb 343 308 (89.8%) 328 (95.6%) 34 16 (47.1%) 29 (85.3%)
41 kb 918 656 (71.5%) 821 (89.4%) 300 103 (34.3%) 234 (78.0%)
81 kb 1480 865 (58.4%) 1182 (79.9%) 688 190 (27.6%) 450 (65.4%)
208 kb 2395 1076 (44.9%) 1620 (67.6%) 1497 335 (22.4%) 806 (53.8%)
425 kb 2460 1091 (44.3%) 1567 (63.7%) 1666 409 (24.5%) 820 (49.2%)

height single-SNP 95 81 (85.3%) 81 (85.3%) 0 NA NA
3 kb 570 417 (73.2%) 417 (73.2%) 0 NA NA
20 kb 1503 1102 (73.3%) 1351 (89.9%) 34 7 (20.6%) 20 (58.8%)
41 kb 2384 1607 (67.4%) 1997 (83.8%) 217 46 (21.2%) 111 (51.2%)
81 kb 3006 1879 (62.5%) 2386 (79.4%) 589 111 (18.8%) 314 (53.3%)
208 kb 3339 1886 (56.5%) 2493 (74.7%) 1111 164 (14.8%) 556 (50.0%)
425 kb 3073 1669 (54.3%) 2231 (72.6%) 1269 189 (14.9%) 622 (49.0%)

platelet single-SNP 53 41 (77.4%) 41 (77.4%) 0 NA NA
3 kb 246 168 (68.3%) 230 (93.5%) 1 0 (0.0%) 0 (0.0%)
20 kb 1002 374 (37.3%) 778 (77.6%) 102 7 (6.9%) 49 (48.0%)
41 kb 1261 409 (32.4%) 934 (74.1%) 220 8 (3.6%) 127 (57.7%)
81 kb 1570 436 (27.8%) 1058 (67.4%) 450 16 (3.6%) 226 (50.2%)
208 kb 1743 453 (26.0%) 1017 (58.3%) 686 29 (4.2%) 256 (37.3%)
425 kb 1653 429 (26.0%) 922 (55.8%) 742 34 (4.6%) 297 (40.0%)

sbp 3 kb 83 69 (83.1%) 69 (83.1%) 0 NA NA
20 kb 191 166 (86.9%) 178 (93.2%) 14 8 (57.1%) 12 (85.7%)
41 kb 511 359 (70.3%) 441 (86.3%) 145 43 (29.7%) 97 (66.9%)
81 kb 830 517 (62.3%) 663 (79.9%) 334 88 (26.3%) 200 (59.9%)
208 kb 1183 643 (54.4%) 885 (74.8%) 622 154 (24.8%) 358 (57.6%)
425 kb 1543 709 (45.9%) 983 (63.7%) 1005 225 (22.4%) 474 (47.2%)

Table S11: Numbers of KnockoffGWAS discoveries confirmed by other studies or enrichment analysis using
independent GWAS summary statistics. Enrichment results are estimates. The results are stratified based on
whether they are also detected by BOLT-LMM (as in Table S9).
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Total Not found by BOLT-LMM

Phenotype Resolution Input Confirmed Input Confirmed

cvd 20 kb 51 23–40 (45%–78%) 31 15–27 (48%–87%)
41 kb 73 33–53 (45%–73%) 55 27–43 (49%–78%)
81 kb 144 57–88 (40%–61%) 125 45–74 (36%–59%)
208 kb 202 8–47 (4%–23%) 194 5–40 (3%–21%)
425 kb 122 0–7 (0%–6%) 120 0–5 (0%–4%)

diabetes 3 kb 1 1–1 (100%–100%) 0 NA
20 kb 7 0–5 (0%–71%) 5 0–5 (0%–100%)
41 kb 21 3–14 (14%–67%) 18 1–11 (6%–61%)
81 kb 20 6–15 (30%–75%) 19 5–14 (26%–74%)
208 kb 16 4–14 (25%–88%) 15 3–12 (20%–80%)
425 kb 52 6–27 (12%–52%) 51 4–25 (8%–49%)

hypothyroidism single-SNP 12 12–12 (100%–100%) 0 NA
3 kb 16 11–16 (69%–100%) 0 NA
20 kb 34 13–26 (38%–76%) 13 2–9 (15%–69%)
41 kb 117 53–81 (45%–69%) 73 30–51 (41%–70%)
81 kb 142 69–98 (49%–69%) 114 49–76 (43%–67%)
208 kb 139 55–86 (40%–62%) 123 43–73 (35%–59%)
425 kb 161 41–74 (25%–46%) 153 40–73 (26%–48%)

bmi 20 kb 35 13–27 (37%–77%) 18 8–18 (44%–100%)
41 kb 262 146–184 (56%–70%) 197 115–147 (58%–75%)
81 kb 615 284–350 (46%–57%) 498 231–289 (46%–58%)
208 kb 1319 494–595 (37%–45%) 1162 422–518 (36%–45%)
425 kb 1369 424–529 (31%–39%) 1257 361–461 (29%–37%)

height single-SNP 14 0–9 (0%–64%) 0 NA
3 kb 153 90–123 (59%–80%) 0 NA
20 kb 401 225–272 (56%–68%) 27 7–19 (26%–70%)
41 kb 777 353–426 (45%–55%) 171 47–84 (27%–49%)
81 kb 1127 460–552 (41%–49%) 478 174–234 (36%–49%)
208 kb 1453 555–660 (38%–45%) 947 349–434 (37%–46%)
425 kb 1404 509–615 (36%–44%) 1080 387–478 (36%–44%)

platelet single-SNP 12 3–12 (25%–100%) 0 NA
3 kb 78 53–70 (68%–90%) 1 0–0 (0%–0%)
20 kb 628 373–433 (59%–69%) 95 29–55 (31%–58%)
41 kb 852 488–561 (57%–66%) 212 100–138 (47%–65%)
81 kb 1134 578–665 (51%–59%) 434 181–238 (42%–55%)
208 kb 1290 514–614 (40%–48%) 657 190–264 (29%–40%)
425 kb 1224 442–542 (36%–44%) 708 224–301 (32%–43%)

sbp 3 kb 14 3–12 (21%–86%) 0 NA
20 kb 25 5–18 (20%–72%) 6 2–6 (33%–100%)
41 kb 152 67–97 (44%–64%) 102 40–67 (39%–66%)
81 kb 313 122–169 (39%–54%) 246 90–133 (37%–54%)
208 kb 540 209–273 (39%–51%) 468 173–233 (37%–50%)
425 kb 834 232–316 (28%–38%) 780 209–289 (27%–37%)

Table S12: Bootstrap confidence intervals (90%) for the proportion of novel discoveries confirmed by the
enrichment analysis in Table S11.
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Phenotype Discoveries Contains gene
Known lead SNP

consequence
Known lead SNP

association

cvd 31 26 (84%) 28 (90%) 21 (68%)
diabetes 5 5 (100%) 3 (60%) 5 (100%)

hypothyroidism 13 12 (92%) 8 (62%) 9 (69%)
respiratory 6 5 (83%) 4 (67%) 3 (50%)

Table S13: Numbers of novel discoveries (not found by BOLT-LMM and not confirmed by the other studies
in Table S9) that either contain a gene or whose lead SNP has a known functional annotation or a known
association with phenotypes closely related to that of interest.

Phenotype Associations

cvd NA (10), blood pressure (9), BMI (8), obesity (3), cardiovascular disease (1),
CCL2 (1), cholesterol (1), triglycerides (1), heart rate (1)

diabetes diabetes (3), Factor VII (1), glyburide metabolism (1)
hypothyroidism NA (4), autoimmune thyroid disease (2), psoriasis (2), diabetic nephropathy (1),

Graves disease (1), hypothyroidism (1), rheumatoid arthritis (1), thyroid function (1)
respiratory NA (3), hypersomnia (1), interaction with air pollution (1), serum IgE (1)

Table S14: Associations of our novel discoveries (20 kb resolution) in Table S13 to related traits. The same
discovery may have more than one relevant association in this table.

Consequence cvd diabetes hypothyroidism respiratory

2KB Upstream 1
3 Prime UTR 2

500B Downstream 1
Intron 19 2 6 3

Missense 3 1
Non coding transcript exon 1

Regulatory region 2
Stop gained 1

Tf binding site 1
Unknown 3 2 5 2

Total 31 5 13 6

Table S15: Numbers of lead variants with known consequences for our novel discoveries (20 kb resolution) in
Table S13.
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