Supplementary Information for: FDR control in GWAS with population structure

Matteo Sesia, Stephen Bates, Emmanuel Candès, Jonathan Marchini, and Chiara Sabatti

March 10, 2021

S1 Supplementary Methods

S1.a Problem statement and assumptions in presence of confounders

Phenotypes are likely to depend on other variables (either measured or unmeasured) in addition to the genotypes. This increases both the amount of noise in the GWAS data (possibly resulting in lower power) and the risk of confounding (inducing spurious associations of the phenotype with non-causal variants). For example, the phenotype $Y^{(i)}$ may be affected by *individual-specific* covariates $U^{(i)}$ (e.g., diet, exercise, or environment) associated with the genotypes—people with different ancestries may differ in both lifestyle and allele frequencies. Furthermore, $Y^{(i)}$ may be influenced by family factors $V^{(i)}$, which we assume to be the same for all individuals within a family, and may be dependent on the genotypes, although with some restrictions that we shall discuss below. A mild assumption at this point is that the phenotypes of different individuals are independent of each other conditional on the genotypes, the covariates, and the family factors:

$$P(\mathbf{Y} \mid \mathbf{X}, \mathbf{U}, \mathbf{V}) = \prod_{i=1}^{n} P(Y^{(i)} \mid X^{(i)}, U^{(i)}, V^{(i)}).$$
(S1)

Above, $\mathbf{X} \in \{0, 1, 2\}^{n \times p}$ and $\mathbf{Y} \in \mathcal{Y}^n$ denote the full genotype-phenotype data set, while **U** and **V** collect the covariates and the family factors, respectively.

For any given genome partition \mathcal{G} , our ideal goal would be to know whether the conditional distribution $Y \mid X, U, V$ depends on a group of variants X_G , for $G \in \mathcal{G}$. That is, we would like to test:

$$\mathcal{H}_G^* : Y \perp \!\!\!\perp X_G \mid X_{-G}, U, V. \tag{S2}$$

In words, \mathcal{H}_G^* is null if and only if knowledge of X_G provides no information about Y beyond what can be gathered from the knowledge of all other variables. Since not all possible relevant covariates and family factors may be measured in a GWAS, it is unclear how to test (S2) directly. Fortunately, the conditional hypotheses defined in (1) (main paper) are a good practical proxy for (S2) because they account for population structure, thus removing much of the confounding, as explained next. Let us define a factor A that is a function of the genetic information in X and summarizes the ancestry of each individual (i.e., ethnicity, admixture, or family relatedness). Note that we shall not make the definition of A fully explicit (e.g., in terms of some discrete categories or continuous principal components) because the real population structure in a GWAS may be quite complicated (individuals may be stratified even within the same country, ancestries may be admixed, and families may involve more or less distant relatives). Instead, we simply use A as a convenient expository tool here, to rephrase in terms of conditional independence testing the idea that our method accounts for population structure by detecting possibly complex genetic similarities between individuals in the population and then replicating them in the knockoffs (Methods).

We assume the ancestry factor A may affect U, V, and X, but U and V are independent of X given A. Furthermore, the phenotype may be affected by U, V, X, but not the other way around (which is biologically sensible); in particular, $Y \perp A \mid U, V, X$. See Figure S1 for a graphical representation of this model. Then, any valid test of

$$\bar{\mathcal{H}}_G: Y \perp \!\!\!\perp X_G \mid X_{-G}, A \tag{S3}$$

is also a valid test of the null hypothesis in (S2). This is the statement in the following proposition.

Proposition 1. In the model assumed above and represented graphically in Figure S1, if the null hypothesis \mathcal{H}_G^* in (S2) is true, then $\bar{\mathcal{H}}_G$ in (S3) must also be true.

Proof. Suppose \mathcal{H}_G^* is true, so that $Y \perp X_G \mid X_{-G}, U, V$. Since we assumed $Y \perp A \mid U, V, X$, it follows from the contraction property of conditional independence that $Y \perp (X_G, A) \mid X_{-G}, U, V$. Therefore, by the weak union property, we also have that $Y \perp X_G \mid A, X_{-G}, U, V$. Now, note that the conditional distribution of (Y, U, V, X_G) given (A, X_{-G}) can be factored as:

$$\begin{aligned} p(Y,U,V,X_G \mid A, X_{-G}) \\ &= p(U,V,X_G \mid A, X_{-G}) \cdot p(Y \mid A, X_{-G}, U, V, X_G) \\ &= p(X_G \mid A, X_{-G}) \cdot p(U,V \mid A, X_{-G}) \cdot p(Y \mid A, X_{-G}, U, V, X_G) \\ &= p(X_G \mid A, X_{-G}) \cdot p(U,V \mid A, X_{-G}) \cdot p(Y \mid A, X_{-G}, U, V) \\ &= p(X_G \mid A, X_{-G}) \cdot p(Y,U,V \mid A, X_{-G}). \end{aligned}$$

Above, the second equality follows from the assumption that $(U, V) \perp X \mid A$. We have thus proved that $(Y, U, V) \perp X_G \mid A, X_{-G}$, which implies $\overline{\mathcal{H}}_G$ in (S3).

Recall that we presented our knockoffs in Section 2.b (main paper) as negative controls designed to test the hypotheses in (1), which are similar to those in (S3) but do not condition on A explicitly. However, Ais a function of the observed genotypes, almost all of which are in included X_{-G} (we only consider relatively groups of SNPs X_G spanning a few hundred kilo-bases at most); thus, testing (1) is almost equivalent to testing (S3). Furthermore, it can be argued even more directly that our knockoffs preserving population structure are valid negative controls for testing (S3) by highlighting they (approximately) satisfy the following stronger—compared to that in (2)—exchangeability property:

$$\left[X^{(F)}, \tilde{X}^{(F)}, A^{(F)}\right]_{\operatorname{swap}(G)} \stackrel{d}{=} \left[X^{(F)}, \tilde{X}^{(F)}, A^{(F)}\right],\tag{S4}$$

 $\forall G \in \mathcal{G}, F \in \mathcal{F}$, as suggested empirically by the statistics in Figure 1. Above, $A^{(F)}$ denotes the vector of ancestry factors for the individuals in family F. (Note that $A^{(F)}$ may not necessarily be constant within the family because we model separately the phased haplotypes inherited from each parent; see Methods. This accounts for the possibility that different individuals in the same family may have different patterns of admixture—think for example of a family including two parents of different races and their child.) Despite the presence of A in (S4), this setup is still a special case of that in [1], only with a slightly modified notation. To follow the language of [1] exactly, one would also need a knockoff copy of A, but that is unnecessary here because we are only interested in testing the SNPs. Therefore, our knockoffs satisfying (S4) are valid for testing (S3).

Finally, note that the assumption that the genotypes are independent of the covariates and family factors conditional on our practical approximation of the population structure (the factor A) is relatively strong and implies our method may not be robust to all possible confounders. This issue prevents us from obtaining rigorous causal inferences, such as those that can be drawn focusing only on parent-child trio data [2]. Furthermore, there is of course an even deeper limitation hiding in the assumption that the genotypes do not directly cause the covariates. For example, if there exists a specific gene that directly influences an individual's predisposition to exercise, regardless of that individual's ancestry, then our method may select that gene as likely to have an effect on cardiovascular disease even if that gene has no a direct biological effect on the disease, only on a behaviour which in turn explains the disease. However, it could be argued this discovery would still be of some interest, and in any case such limitation seems unavoidable if not all possible covariates are measured.

S1.b Estimating model parameters by EM

We can estimate the HMM parameters $\theta = (\alpha, \lambda, \rho)$ in (4)–(5), in the main paper, with an expectationmaximization (EM) method. To write down the algorithm explicitly, we begin by noting the log-likelihood of θ given both the observable, H, and latent, Z, variables is:

$$\begin{split} \ell(\theta; H, Z) &= \log p(H, Z \mid \theta) = \sum_{i=1}^{n} \log p(H^{(i)}, Z^{(i)} \mid \theta) \\ &= \sum_{i=1}^{n} \log \left\{ \prod_{j=1}^{p} Q_j(Z_j^{(i)} \mid Z_{j-1}^{(i)}) \prod_{j=1}^{p} f_j^{(i)}(H_j^{(i)} \mid Z_j^{(i)}) \right\} \\ &= \sum_{i=1}^{n} \sum_{j=1}^{p} \log Q_j(Z_j^{(i)} \mid Z_{j-1}^{(i)}) + \sum_{i=1}^{n} \sum_{j=1}^{p} \log f_j^{(i)}(H_j^{(i)} \mid Z_j^{(i)}). \end{split}$$

This log-likelihood cannot be directly minimized because we cannot observe Z. Instead, given an initial estimate of the model parameters, $\theta^{(t-1)}$, we iteratively update $\theta^{(t)}$ by minimizing

$$\mathcal{L}(\theta, \theta^{(t-1)}) = \mathbb{E}_{Z} \left[\ell(\theta; H, Z) \mid H, \theta^{(t-1)} \right]$$

= $\sum_{i=1}^{n} \sum_{j=1}^{p} \mathbb{E}_{Z} \left[\log Q_{j}(Z_{j}^{(i)} \mid Z_{j-1}^{(i)}) \mid H^{(i)}, \theta^{(t-1)} \right]$
+ $\sum_{i=1}^{n} \sum_{j=1}^{p} \mathbb{E}_{Z} \left[\log f_{j}^{(i)}(H_{j}^{(i)} \mid Z_{j}^{(i)}) \mid H^{(i)}, \theta^{(t-1)} \right].$ (S5)

This quantity can be computed and minimized efficiently by leveraging the Markov property, as in the Baum-Welch algorithm.

Let us begin by defining, for any fixed $j \in \{1, ..., p\}$, the posterior marginals

$$\gamma_j^{(i)}(k) = \mathbb{P}\left[Z_j^{(i)} = k \mid H^{(i)}, \theta^{(t-1)}\right].$$

It is well-known that these quantities can be computed efficiently with the classical forward-backward iteration that defines the *expectation* (E) step of the EM algorithm. What remains to be developed explicitly is the *maximization* (M) step of the EM algorithm; we will do this in the following, separately for α , λ , and ρ . These are fairly standard calculations but we outline the details here for completeness.

S1.b.1 Estimating the site-specific mutation rates

For any $j \in \{1, \ldots, p\}$, the parameter λ_j appears in the second term of (S5):

$$\begin{split} \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{Z} \left[\log f_{j}^{(i)}(H_{j}^{(i)} \mid Z_{j}^{(i)}) \mid H^{(i)}, \theta^{(t-1)} \right] \\ &= \frac{1}{n} \sum_{i=1}^{n} \sum_{z} \log f_{j}^{(i)}(H_{j}^{(i)} \mid Z_{j}^{(i)}) \mathbb{P} \left[Z^{(i)} = z \mid H^{(i)}, \theta^{(t-1)} \right] \\ &= \frac{1}{n} \sum_{i=1}^{n} \sum_{k} \log f_{j}^{(i)}(H_{j}^{(i)} \mid Z_{j}^{(i)} = k) \mathbb{P} \left[Z_{j}^{(i)} = k \mid H^{(i)}, \theta^{(t-1)} \right] \\ &= \frac{1}{n} \sum_{i=1}^{n} \sum_{k} \log f_{j}^{(i)}(H_{j}^{(i)} \mid Z_{j}^{(i)} = k) \gamma_{j}^{(i)}(k) \\ &= \frac{1}{n} \sum_{i=1}^{n} \sum_{k} \log f_{j}^{(i)}(H_{j}^{(i)} \mid Z_{j}^{(i)} = k) \gamma_{j}^{(i)}(k) \\ &= \log(1 - \lambda_{j}) \frac{1}{n} \sum_{i=1}^{n} \sum_{k} \delta_{H_{j}^{(i)},R_{j}^{(i)}(k)} \gamma_{j}^{(i)}(k) + \log(\lambda_{j}) \frac{1}{n} \sum_{i=1}^{n} \sum_{k} (1 - \delta_{H_{j}^{(i)},R_{j}^{(i)}(k)}) \gamma_{j}^{(i)}(k) \\ &= \log(1 - \lambda_{j})(1 - \Gamma_{j}) + \log(\lambda_{j}) \Gamma_{j}, \end{split}$$

where we have defined:

$$\Gamma_j = \frac{1}{n} \sum_{i=1}^n \sum_k (1 - \delta_{H_j^{(i)}, R_j^{(i)}(k)}) \gamma_j^{(i)}(k).$$

The above is maximized at $\lambda_j = \Gamma_j$. Therefore, the update rule for λ_j in the M step is: $\lambda_j \leftarrow \Gamma_j$.

S1.b.2 Estimating the recombination scale

The parameter ρ appears in the first term of (S5) through:

$$\begin{split} \mathbb{E}_{Z} \left[\log Q_{j}(Z_{j}^{(i)} \mid Z_{j-1}^{(i)}) \mid H^{(i)}, \theta^{(t-1)} \right] &= \sum_{z} \log Q_{j}(z_{j} \mid z_{j-1}) \mathbb{P} \left[Z^{(i)} = z \mid H^{(i)}, \theta^{(t-1)} \right] \\ &= \sum_{k,l} \log Q_{j}(k \mid l) \sum_{z_{-(j,j-1)}} \mathbb{P} \left[Z^{(i)} = (k, l, z_{-(j,j-1)} \mid H^{(i)}, \theta^{(t-1)} \right] \\ &= \sum_{k,l} \log Q_{j}(k \mid l) \mathbb{P} \left[Z_{j}^{(i)} = k, Z_{j-1}^{(i)} = l \mid H^{(i)}, \theta^{(t-1)} \right]. \end{split}$$

By defining

$$\xi_j^{(i)}(k,l) = \mathbb{P}\left[Z_j^{(i)} = k, Z_{j-1}^{(i)} = l \mid H^{(i)}, \theta^{(t-1)}\right],$$

we can write

$$\sum_{i=1}^{n} \sum_{j=1}^{p} \mathbb{E}_{Z} \left[\log Q_{j}(Z_{j}^{(i)} \mid Z_{j-1}^{(i)}) \mid H^{(i)}, \theta^{(t-1)} \right] = \sum_{i=1}^{n} \sum_{j=1}^{p} \sum_{k,l} \log Q_{j}(k \mid l) \xi_{j}^{(i)}(k,l).$$

We will discuss later how to compute ξ . Now, assume ξ is available and we want to optimize the above with respect to the parameter ρ , which is hidden inside the transition matrices Q. For simplicity, we also assume

 $\alpha_k^{(i)} = 1/K, \forall i, k$ (we omit the computations for the general case, which are more complicated). Note that

$$\log Q_j(k \mid l) = \log \left(\frac{1-b_j}{K} + b_j \delta_{k,l}\right)$$
$$= \log \left(\frac{1-b_j}{K}\right) + \left[\log \left(\frac{1-b_j}{K} + b_j\right) - \log \left(\frac{1-b_j}{K}\right)\right] \delta_{k,l}$$
$$= \text{const.} + \log (1-b_j) + \left[\log (1+(K-1)b_j) - \log (1-b_j)\right] \delta_{k,l},$$

where $b_j = b_j(\rho) = e^{-\rho d_j}$. Therefore,

$$\frac{1}{n}\sum_{i=1}^{n}\sum_{j=1}^{p}\sum_{k,l}\log Q_{j}(k\mid l)\xi_{j}^{(i)}(k,l) \\
= \frac{1}{n}\sum_{i=1}^{n}\sum_{j=1}^{p}\log(1-b_{j})\sum_{k,l}\xi_{j}^{(i)}(k,l) + \frac{1}{n}\sum_{i=1}^{n}\sum_{j=1}^{p}\left[\log\left(1+(K-1)b_{j}\right) - \log\left(1-b_{j}\right)\right]\sum_{k}\xi_{j}^{(i)}(k,k) \\
= \sum_{j=1}^{p}\log(1-b_{j}) + \sum_{j=1}^{p}\left[\log\left(1+(K-1)b_{j}\right) - \log\left(1-b_{j}\right)\right]\frac{1}{n}\sum_{i=1}^{n}\sum_{k}\xi_{j}^{(i)}(k,k) \\
= \sum_{j=1}^{p}\log(1-b_{j}) + \sum_{j=1}^{p}\left[\log\left(1+(K-1)b_{j}\right) - \log\left(1-b_{j}\right)\right]\frac{1}{2}z_{j},$$

where we have defined:

$$\Xi_j = \frac{1}{n} \sum_{i=1}^n \sum_k \xi_j^{(i)}(k,k).$$

It is easy to verify that the above function is strictly quasiconcave in ρ , so it can be optimized numerically by solving for its first derivative to be equal to zero. We will include the details of our procedure later for completeness. Meanwhile, note that the computation of $\xi_j^{(i)}(k,l)$ can be easily obtained from the M step:

$$\begin{split} \xi_{j}^{(i)}(k,l) &= \mathbb{P}\left[Z_{j-1}^{(i)} = l, Z_{j}^{(i)} = k \mid H^{(i)}\right] \propto \mathbb{P}\left[Z_{j-1}^{(i)} = l, Z_{j}^{(i)} = k, H^{(i)}\right] \\ &\propto F_{j-1}^{(i)}(l)Q_{j}^{(i)}(k \mid l)f_{j}^{(i)}(k \mid H_{j}^{(i)})B_{j}^{(i)}(k) = \bar{\xi}_{j}^{(i)}(k,l), \end{split}$$

where F and B denote the forward and backward weights. The normalization constant for $\xi_j^{(i)}(k,l)$ is:

$$\begin{split} \sum_{k} \sum_{l} \bar{\xi}_{j}^{(i)}(k,l) &= \sum_{k} \sum_{l} F_{j-1}^{(i)}(l) Q_{j}^{(i)}(k \mid l) f_{j}^{(i)}(k \mid H_{j}^{(i)}) B_{j}^{(i)}(k) \\ &= \sum_{l} F_{j-1}^{(i)}(l) \sum_{k} [a_{j} + b_{j} \delta_{k,l}] f_{j}^{(i)}(k \mid H_{j}^{(i)}) B_{j}^{(i)}(k) \\ &= a_{j} \left(\sum_{l} F_{j-1}^{(i)}(l) \right) \sum_{k} f_{j}^{(i)}(k \mid H_{j}^{(i)}) B_{j}^{(i)}(k) + b_{j} \sum_{k} F_{j-1}^{(i)}(k) f_{j}^{(i)}(k \mid H_{j}^{(i)}) B_{j}^{(i)}(k) \\ &= a_{j} \sum_{k} f_{j}^{(i)}(k \mid H_{j}^{(i)}) B_{j}^{(i)}(k) + b_{j} \sum_{k} F_{j-1}^{(i)}(k) f_{j}^{(i)}(k \mid H_{j}^{(i)}) B_{j}^{(i)}(k) \\ &= \sum_{k} f_{j}^{(i)}(k \mid H_{j}^{(i)}) B_{j}^{(i)}(k) \left[a_{j} + b_{j} F_{j-1}^{(i)}(k) \right]. \end{split}$$

The diagonal elements of ξ are proportional to:

$$\begin{split} \bar{\xi}_{j}^{(i)}(k,k) &= F_{j-1}^{(i)}(k)Q_{j}^{(i)}(k\mid k)f_{j}^{(i)}(k\mid H_{j}^{(i)})B_{j}^{(i)}(k) \\ &= F_{j-1}^{(i)}(k)\left[a_{j}+b_{j}\right]f_{j}^{(i)}(k\mid H_{j}^{(i)})B_{j}^{(i)}(k). \end{split}$$

Recall that we care about

$$\Xi_j = \frac{1}{n} \sum_{i=1}^n \sum_k \xi_j^{(i)}(k,k) = \frac{1}{n} \sum_{i=1}^n \frac{1}{\sum_k \sum_l \bar{\xi}_j^{(i)}(k,l)} \sum_k \bar{\xi}_j^{(i)}(k,k),$$

which we can compute starting from

$$\sum_{k} \bar{\xi}_{j}^{(i)}(k,k) = \sum_{k} F_{j-1}^{(i)}(k) \left(a_{j} + b_{j}\right) f_{j}^{(i)}(k \mid H_{j}^{(i)}) B_{j}^{(i)}(k)$$
$$= \left(a_{j} + b_{j}\right) \sum_{k} F_{j-1}^{(i)}(k) f_{j}^{(i)}(k \mid H_{j}^{(i)}) B_{j}^{(i)}(k).$$

Going back to the details of optimizing

$$\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{p} \sum_{k,l} \log Q_j(k \mid l) \xi_j^{(i)}(k,l)$$

note that differentiating with respect to ρ yields:

$$0 = -\sum_{j=1}^{p} \frac{b'_j}{1 - b_j} + \sum_{j=1}^{p} b'_j \left[\frac{K - 1}{1 + (K - 1)b_j} + \frac{1}{1 - b_j} \right] \Xi_j.$$

By definition of $b_j(\rho) = e^{-\rho d_j}$, it follows that $b_j' = -d_j b_j$. Therefore,

$$\sum_{j=1}^{p} \frac{d_j b_j}{1 - b_j} = \sum_{j=1}^{p} d_j b_j \left[\frac{K - 1}{1 + (K - 1)b_j} + \frac{1}{1 - b_j} \right] \Xi_j = \Psi(\rho),$$

where we have defined:

$$\Psi(\rho) = \sum_{j=1}^{p} d_j b_j(\rho) \left[\frac{K-1}{1+(K-1)b_j(\rho)} + \frac{1}{1-b_j(\rho)} \right] \Xi_j.$$

Define also $\bar{d} = \frac{1}{p} \sum_{j=1}^{p} d_j$. Then, we want to solve

$$\Psi(\rho) = \sum_{j=1}^{p} \frac{d_j b_j}{1 - b_j} = e^{-\rho \bar{d}} \sum_{j=1}^{p} \frac{d_j}{1 - b_j} e^{-\rho(d_j - \bar{d})} = e^{-\rho \bar{d}} \Phi(\rho),$$

where

$$\Phi(\rho) = \sum_{j=1}^{p} \frac{d_j}{1 - b_j} e^{-\rho(d_j - \bar{d})}.$$

Therefore, we can solve iteratively for ρ^* :

$$\rho^* = -\frac{1}{\bar{d}} \log \left(\frac{\Psi(\rho^*)}{\Phi(\rho^*)} \right).$$

Upon convergence (which we observe but do not prove), the solution ρ^* gives the M update for ρ in the EM algorithm: $\rho \leftarrow \rho^*$.

S1.b.3 Estimating the motif prevalences

For any fixed $j \in \{1, \ldots, p\}$, the parameter $\alpha_k^{(i)}$ appears in the first term of (S5) through:

$$\log Q_j(k \mid l) = \log \left((1 - b_j) \alpha_k^{(i)} + b_j \delta_{k,l} \right)$$

= $\log \left((1 - b_j) \alpha_k^{(i)} \right) + \left[\log \left((1 - b_j) \alpha_k^{(i)} + b_j \right) - \log \left((1 - b_j) \alpha_k^{(i)} \right) \right] \delta_{k,l}$
= $(1 - \delta_{k,l}) \log \alpha_k^{(i)} + \log \left[(1 - b_j) \alpha_k^{(i)} + b_j \right] \delta_{k,l}.$

Therefore,

$$\sum_{j=1}^{p} \sum_{k,l} \log Q_j(k \mid l) \xi_j^{(i)}(k,l)$$

= $\sum_k \log(\alpha_k^{(i)}) \sum_{j=1}^{p} \sum_l \xi_j^{(i)}(k,l) - \sum_k \log(\alpha_k^{(i)}) \sum_{j=1}^{p} \xi_j^{(i)}(k,k)$
+ $\sum_{j=1}^{p} \sum_k \log\left[(1-b_j)\alpha_k^{(i)} + b_j\right] \xi_j^{(i)}(k,k).$

Differentiating this with respect to $\alpha_k^{(i)}$ gives:

$$0 = \frac{1}{\alpha_k^{(i)}} \sum_{j=1}^p \sum_l \xi_j^{(i)}(k,l) - \frac{1}{\alpha_k^{(i)}} \sum_{j=1}^p \xi_j^{(i)}(k,k) + \sum_{j=1}^p \frac{1-b_j}{(1-b_j)\alpha_k^{(i)} + b_j} \xi_j^{(i)}(k,k)$$
$$= \frac{\eta(k) - \bar{\eta}}{\alpha_k^{(i)}} + \sum_{j=1}^p \frac{1-b_j}{(1-b_j)\alpha_k^{(i)} + b_j} \xi_j^{(i)}(k,k),$$

where

$$\eta(k) = \sum_{j=1}^{p} \sum_{l} \xi_{j}^{(i)}(k, l), \qquad \qquad \bar{\eta} = \sum_{j=1}^{p} \xi_{j}^{(i)}(k, k).$$

In order to impose the constraint $\sum_k \alpha_k^{(i)} = 1$, we add a Lagrange multiplier W:

$$0 = -W + \frac{\eta(k) - \bar{\eta}}{\alpha_k^{(i)}} + \sum_{j=1}^p \frac{1 - b_j}{(1 - b_j)\alpha_k^{(i)} + b_j} \xi_j^{(i)}(k, k)$$

= $-W\alpha_k^{(i)} + (\eta(k) - \bar{\eta}) + \alpha_k^{(i)} \sum_{j=1}^p \frac{1 - b_j}{(1 - b_j)\alpha_k^{(i)} + b_j} \xi_j^{(i)}(k, k).$

Therefore,

$$\alpha_k^{(i)} = \frac{1}{W} \left[\eta(k) - \bar{\eta} + \alpha_k^{(i)} \sum_{j=1}^p \frac{1 - b_j}{(1 - b_j)\alpha_k^{(i)} + b_j} \xi_j^{(i)}(k, k) \right].$$

We can solve this iteratively, setting $W = \sum_k \alpha_k^{(i)}$ after each update of $\alpha^{(i)}$. Upon convergence (which we observe empirically but do not prove), the solution $\alpha^{(i)*}$ will then give the M update in the EM algorithm: $\alpha^{(i)} \leftarrow \alpha^{(i)*}$.

S1.c Knockoffs preserving familial relatedness

S1.c.1 Choosing the haplotype references

Algorithm S1 modifies Algorithm 1 to ensure: (i) IBD-sharing haplotypes are not used as references for one another; (ii) all haplotypes in the same IBD-sharing family have the same references.

Algorithm S1 Choosing reference haplotypes preserving familial constraints

Input: $H \in \{0,1\}^{2n \times p}$, K, and N_1, N_2 as in Algorithm 1; a collection of IBD-sharing families F_1, \ldots, F_L , a distance measure ξ between haplotypes. Divide the haplotypes into M sets C_c using ξ as in Algorithm 1, preserving the family structure. for c = 1, ..., M do Compute a distance matrix $D \in \mathbb{R}^{|C_c| \times |C_c|}$ for all haplotypes in C_c . for i in C_c do if $\exists l$ such that $i \in F_l$ then Define R(i) as the set of K nearest neighbors of H_i in $C_c \setminus F_l$. else Define R(i) as the set of K nearest neighbors of H_i in C_c . end if end for end for for l in $1, \ldots, L$ do Initialize $\bar{R}(l) = \bigcap_{i \in F_l} R(i)$. for $i \in F_l$ do Update $R(i) = R(i) \setminus \overline{R}(l)$. if $|\bar{R}(l)| < K$ then Update $\bar{R}(l) = \bar{R}(l) \cup R(i)$. else break. end if end for for $i \in F_l$ do Set $R(i) = \overline{R}(l)$. end for end for **Output:** a set R(i) of K references for each haplotype $H^{(i)}$.

S1.c.2 Posterior sampling via belief propagation

Conditional on $H^{(1:m)}$, the distribution of $Z^{(1:m)}$ is a Markov random field with $m \times p$ variables, characterized by Equations (6)–(8) in the main paper. In order to sample $Z^{(1:m)} \mid H^{(1:m)}$, we implement belief propagation [3] (BP) as follows. For any $i \in \{1, \ldots, m\}$ and $j \in \{1, \ldots, p-1\}$, denote by $\hat{\mu}_{(i,j)\to(i,j+1)} \in \mathbb{R}^K$ the forward message from $Z_j^{(i)}$ to $Z_{j+1}^{(i)}$. It is easy to verify that this must satisfy the following recursive definition:

$$\hat{\mu}_{(i,j)\to(i,j+1)}(k) = \sum_{l=1}^{K} \left[Q_{j+1}^{(i)}(k\mid l) \right]^{\eta_{i,j+1}} \cdot f_j^{(i)}(H_j^{(i)}\mid l) \cdot \hat{\mu}_{(i,j-1)\to(i,j)}(l) \prod_{i'\in\partial(i,j)} \hat{\mu}_{(i',j)\to(i,j)}(l),$$

where it is understood that $\hat{\mu}_{(i,0)\to(i,1)}(k) = 1$, for all *i* and *k*. Above, $\hat{\mu}_{(i',j)\to(i,j)}$ indicates the vertical message from $Z_i^{(i')}$ to $Z_i^{(i)}$, for any $i \in \partial(i,j)$. By the BP rules, this satisfies:

$$\hat{\mu}_{(i',j)\to(i,j)}(k) = \sum_{l=1}^{K} \delta_{k,l} \cdot \hat{\mu}_{(i',j-1)\to(i',j)}(l) \cdot \hat{\mu}_{(i',j+1)\to(i',j)}(l) \prod_{i''\in\partial(i',j)\setminus\{i\}} \hat{\mu}_{(i'',j)\to(i',j)}(l),$$

where $\delta_{k,l} = 1$ if k = l and 0 otherwise. Above, $\hat{\mu}_{(i',j+1)\to(i',j)}(l)$ indicates the backward message from $Z_{j+1}^{(i')}$ to $Z_{i}^{(i')}$, which is defined recursively as:

$$\hat{\mu}_{(i,j)\to(i,j-1)}(k) = \sum_{l=1}^{K} \left[Q_j^{(i)}(l\mid k) \right]^{\eta_{i,j}} \cdot f_j^{(i)}(H_j^{(i)}\mid l) \cdot \hat{\mu}_{(i,j+1)\to(i,j)}(l) \prod_{i'\in\partial(i,j)} \hat{\mu}_{(i',j)\to(i,j)}(l) \cdot f_j^{(i)}(h) + \frac{1}{2} \int_{0}^{\infty} \frac{1}{2} \int_{0}^$$

Again, it is understood that $\hat{\mu}_{(i,p+1)\to(i,p)}(k) = 1$, for all *i* and *k*. Combined, the above updates define a BP algorithm that is in principle already applicable to approximately sample $Z^{(1:m)} \mid H^{(1:m)}$. However, these recursion relations can be simplified by observing that $Z_j^{(i)} = Z^{(i')}$ whenever $i' \in \partial(i, j)$. Therefore, the corresponding nodes in the Markov random field can be collapsed and treated as a single unit in the generalized belief propagation framework [3] (GBP). Thus, after defining

$$\phi_{j}^{(i)}(l) = f_{j}^{(i)}(H_{j}^{(i)} \mid l) \prod_{i' \in \partial(i,j)} f_{j}^{(i')}(H_{j}^{(i')} \mid l),$$

$$\psi_{j}^{(i)}(k \mid l) = \left[Q_{j}^{(i)}(k \mid l)\right]^{\eta_{i,j}} \prod_{i' \in \partial(i,j)} \left[Q_{j}^{(i')}(k \mid l)\right]^{\eta_{i,j}},$$
(S6)

it is not difficult to verify that the GBP messages are given by:

$$\mu_{(i,j)\to(i,j+1)}(k) = \sum_{l=1}^{K} \psi_{j+1}^{(i)}(k \mid l) \cdot \phi_{j}^{(i)}(l) \cdot \mu_{(i,j-1)\to(i,j)}(l) \prod_{i' \in \partial(i,j) \setminus \partial(i,j-1)} \mu_{(i',j-1)\to(i,j)}(l) \\ \cdot \prod_{i' \in \partial(i,j) \setminus \partial(i,j+1)} \mu_{(i',j+1)\to(i,j)}(l), \\ \mu_{(i,j)\to(i,j-1)}(k) = \sum_{l=1}^{K} \psi_{j}^{(i)}(lDOTidk) \cdot \phi_{j}^{(i)}(l) \cdot \mu_{(i,j+1)\to(i,j)}(l) \prod_{i' \in \partial(i,j) \setminus \partial(i,j+1)} \mu_{(i',j+1)\to(i,j)}(l) \\ \cdot \prod_{i' \in \partial(i,j) \setminus \partial(i,j-1)} \mu_{(i',j-1)\to(i,j)}(l), \\ \mu_{(i,j)\to(i',j+1)}(k) = \mu_{(i,j)\to(i,j+1)}(k), \quad \forall i' \in \partial(i,j+1), \\ \mu_{(i,j)\to(i',j-1)}(k) = \mu_{(i,j)\to(i,j+1)}(k), \quad \forall i' \in \partial(i,j-1). \end{cases}$$
(S7)

The GBP rules written above can be simplified even further analytically. Assuming for simplicity that $\alpha_k^{(i)} = 1/K$ (as it is the case in our applications), we can write the transition matrices Q as:

$$Q_j^{(i)}(k \mid l) = Q_j(k \mid l) = a_j + b_j \mathbb{1}[k = l], \qquad a_j = \frac{1}{K} \left(1 - e^{-\rho d_j} \right), \qquad b_j = e^{-\rho d_j}.$$

Therefore,

$$\psi_j^{(i)}(k \mid l) = \left[Q_j^{(i)}(k \mid l)\right]^{\eta_{i,j}} \prod_{i' \in \partial(i,j)} \left[Q_j^{(i')}(k \mid l)\right]^{\eta_{i,j}} = \left[Q_j(k \mid l)\right]^{\eta_{i,j}(1+|\partial(i,j)|)} = Q_j(k \mid l).$$

This simplification allows us to equivalently rewrite the forward update rule in (S7) as:

$$\mu_{(i,j)\to(i,j+1)}(k) = \sum_{l=1}^{K} [a_{j+1} + b_{j+1}\mathbb{1}[k=l]] \cdot \phi_{j}^{(i)}(l) \cdot \mu_{(i,j-1)\to(i,j)}(l) \prod_{i'\in\partial(i,j)\setminus\partial(i,j-1)} \mu_{(i',j-1)\to(i,j)}(l) \\
\cdot \prod_{i'\in\partial(i,j)\setminus\partial(i,j+1)} \mu_{(i',j+1)\to(i,j)}(l) = a_{j+1} \sum_{l=1}^{K} \phi_{j}^{(i)}(l) \cdot \mu_{(i,j-1)\to(i,j)}(l) \prod_{i'\in\partial(i,j)\setminus\partial(i,j-1)} \mu_{(i',j-1)\to(i,j)}(l) \prod_{i'\in\partial(i,j)\setminus\partial(i,j+1)} \mu_{(i',j+1)\to(i,j)}(l) \\
+ b_{j+1}\phi_{j}^{(i)}(k) \cdot \mu_{(i,j-1)\to(i,j)}(k) \prod_{i'\in\partial(i,j)\setminus\partial(i,j-1)} \mu_{(i',j-1)\to(i,j)}(k) \prod_{i'\in\partial(i,j)\setminus\partial(i,j+1)} \mu_{(i',j+1)\to(i,j)}(k),$$
(S8)

which can be evaluated with complexity $\mathcal{O}(K)$ instead of $\mathcal{O}(K^2)$. Similarly, we can rewrite the backward

update rule in such a way that it can also be evaluated at cost $\mathcal{O}(K)$:

11

$$\mu_{(i,j)\to(i,j-1)}(k) = \sum_{l=1}^{K} [a_{j} + b_{j} \mathbb{1}[k = l]] \cdot \phi_{j}^{(i)}(l) \cdot \mu_{(i,j+1)\to(i,j)}(l) \prod_{i'\in\partial(i,j)\setminus\partial(i,j+1)} \mu_{(i',j+1)\to(i,j)}(l) \\
\cdot \prod_{i'\in\partial(i,j)\setminus\partial(i,j-1)} \mu_{(i',j-1)\to(i,j)}(l) \prod_{i'\in\partial(i,j)\setminus\partial(i,j+1)} \mu_{(i',j+1)\to(i,j)}(l) \prod_{i'\in\partial(i,j)\setminus\partial(i,j-1)} \mu_{(i',j-1)\to(i,j)}(l) \\
= a_{j} \sum_{l=1}^{K} \phi_{j}^{(i)}(l) \cdot \mu_{(i,j+1)\to(i,j)}(l) \prod_{i'\in\partial(i,j)\setminus\partial(i,j+1)} \mu_{(i',j+1)\to(i,j)}(l) \prod_{i'\in\partial(i,j)\setminus\partial(i,j-1)} \mu_{(i',j-1)\to(i,j)}(l) \\
+ b_{j} \cdot \phi_{j}^{(i)}(k) \cdot \mu_{(i,j+1)\to(i,j)}(k) \prod_{i'\in\partial(i,j)\setminus\partial(i,j+1)} \mu_{(i',j+1)\to(i,j)}(k) \prod_{i'\in\partial(i,j)\setminus\partial(i,j-1)} \mu_{(i',j-1)\to(i,j)}(k).$$
(S9)

The GBP formulation incorporates the IBD-sharing constraints implicitly, removing the vertical messages and the corresponding small loops in the Markov random field. Even though some loops may remain in the graphical model (e.g., if the same two haplotypes share two different IBD segments), these will generally be large compared to the range of background LD, since we only consider relatively long IBD segments. Therefore, we can expect the GBP approximation to work well in general. Furthermore, in many practical cases, the resulting Markov random field is a tree, so the GBP solution will be very fast to compute and provide exact posterior probabilities [3].

GBP randomly initializes the messages $\mu_{(i,j)\to(i',j+1)}$ and $\mu_{(i,j)\to(i',j-1)}$, for all i, j and $i' \in \partial(i, j)$, and then recursively updates them until convergence according to the rules in (S7). Figure S18 shows a schematic of the updates. Even though convergence to an exact solution is only theoretically guaranteed if the underlying graph structure is a tree, the method often performs well in practice, especially if the graph is *locally tree-like* (i.e., it may have long loops but no short ones) [4].

Upon convergence, the posterior distribution of $Z_j^{(i)} \mid H^{(1:m)}$ can be approximated with the product of its incoming messages:

$$\mathbb{P}\left[Z_{j}^{(i)}=k\mid H^{(1:m)}\right]\approx\mu_{(i,j-1)\to(i,j)}(k)\cdot\mu_{(i,j+1)\to(i,j)}(k)\prod_{i'\in\partial(i,j)\setminus\partial(i,j-1)}\mu_{(i',j-1)\to(i,j)}(k)$$

$$\cdot\prod_{i'\in\partial(i,j)\setminus\partial(i,j+1)}\mu_{(i',j+1)\to(i,j)}(k).$$
(S10)

Crucially, the above relation is exact in the case of trees, which includes the previously well-known example of a single haplotype sequence [5, 6], as well as many non-trivial family structures (e.g., two haplotypes sharing one IBD segment).

Since we are ultimately interested in sampling all coordinates of $Z^{(1:m)} | H^{(1:m)}$ jointly, our procedure does not end with (S10). In general, after sampling $Z_j^{(i)} | H^{(1:m)}$ for some *i* and *j*, one should update the Markov random field by conditioning on the observed value of $Z_j^{(i)}$ and update all messages until convergence before sampling the next variable, which is computationally unfeasible. Fortunately, this procedure can be greatly simplified in our case because we only have relatively long IBD segments, and thus there are few loops in the graphical model. We leverage this fact by first sampling $Z_j^{(i)}$ for all (i, j) in the set $\mathcal{J} \subseteq \{1, \ldots, m\} \times \{1, \ldots, p\}$ of junction nodes:

$$\mathcal{J} = \{(i,j) \text{ s.t. } \partial(i,j) \neq \partial(i,j-1) \text{ or } \partial(i,j) \neq \partial(i,j+1)\}.$$
(S11)

Although this requires running $|\mathcal{J}|$ instances of GBP, this quantity will typically be small. Furthermore, warm starts decrease the number of required iterations. Once $Z_j^{(i)}$ has been sampled for all $(i, j) \in \mathcal{J}$, the remaining random field is a collection of disjoint Markov chains, as visualized in Figure S18. Therefore, posterior sampling can be carried out very efficiently with a simple forward-backward procedure that does not involve running BP at each step, as outlined in Algorithm S2.

Algorithm S2 Posterior sampling preserving familial constraints

Input: $H \in \{0, 1\}^{m \times p}$, K, list of IBD segments $\{\partial(i, j)\}_{i \in \{1, ..., m\}, j \in \{1, ..., p\}}$; a set R(i) of K references for each haplotype $H^{(i)}$. Define the list of junction nodes $\mathcal{J} = \{(i, j) \text{ s.t. } \partial(i, j) \neq \partial(i, j-1) \text{ or } \partial(i, j) \neq \partial(i, j+1) \}.$ Initialize the list of active nodes $\mathcal{A} = \{1, \dots, m\} \times \{1, \dots, p\}$ and denote its complement as \mathcal{A}^c . Initialize the forward messages $\mu_{(i,j)\to(i,j+1)}(k) = \frac{1}{K}$, for all $i \in \{1,\ldots,m\}$ and $j \in \{1,\ldots,p-1\}$. Initialize the backward messages $\mu_{(i,j)\to(i,j-1)}(k) = \frac{1}{K}$, for all $i \in \{1,\ldots,m\}$ and $j \in \{2,\ldots,p\}$. for $(i^*, j^*) \in \mathcal{J} \cap \mathcal{A}$ do while messages not converged do for j = 1, ..., p - 1 do for i = 1, ..., m do if $(i, j) \in \mathcal{A}$ then Update $\mu_{(i,i)\to(i,i+1)}(k)$, for all $k \in \{1,\ldots,K\}$, according to (S8). end if end for end for for j = p, ..., 2 do for $i = 1, \ldots, m$ do if $(i, j) \in \mathcal{A}$ then Update $\mu_{(i,j)\to(i,j-1)}(k)$, for all $k \in \{1,\ldots,K\}$, according to (S9). end if end for end for end while Approximate the posteriors $w_{j^*}^{(i^*)}(k)$ of $Z_{j^*}^{(i^*)} = k \mid H^{(1:m)}, \{Z_j^{(i)}\}_{(i,j) \in \mathcal{A}^c}$ based on (S10). Sample $Z_{j^*}^{(i^*)}$ from $\mathbb{P}[Z_{j^*}^{(i^*)} = k] = w_{j^*}^{(i^*)}(k)$. Update the list of active nodes: $\mathcal{A} \leftarrow \mathcal{A} \setminus \{(i^*, j^*)\}$. Update the Markov random field: $\phi_{i^*}^{(i^*)}(k) \leftarrow \mathbb{1}[k = Z_{i^*}^{(i^*)}]$, for each $k \in \{1, \ldots, k\}$. for $i' \in \partial(i^*, j^*)$ do Set $Z_{j^*}^{(i')} \leftarrow Z_{j^*}^{(i^*)}$. Update the list of active nodes: $\mathcal{A} \leftarrow \mathcal{A} \setminus \{(i', j^*)\}$. Update the Markov random field: $\phi_{j^*}^{(i')}(k) \leftarrow \mathbb{1}[k = Z_{j^*}^{(i')}]$, for each $k \in \{1, \dots, k\}$. end for end for Sample each disjoint segment of $\{Z_j^{(i)}\}_{(i,j)\in\mathcal{J}^c} \mid H^{(1:m)}, \{Z_j^{(i)}\}_{(i,j)\in\mathcal{J}}$, with standard forward-backward [6]. **Output:** a latent Markov random field $Z \in \{1, \ldots, K\}^{m \times p}$ that preserves the IBD structure.

S1.c.3 Knockoff generation via conditioning

Having sampled $Z^{(1:m)} \mid H^{(1:m)}$ with the procedure described above, we proceed to develop a method for generating knockoff copies $\tilde{Z}^{(1:m)}$. Even though constructing exact knockoffs for a general Markov random field may be computationally unfeasible, we can simplify the problem by conditioning on some variables [7]. In particular, we condition on all variables at the junction of any IBD segment, i.e., those in the set \mathcal{J} defined in (S11). This transforms the model for the remaining variables into a collection of disjoint one-dimensional chains, for which knockoffs can be generated independently with existing methods [5, 6]; see Figure S18. This solution is summarised in Algorithm S3.

Algorithm S3 Related knockoff haplotypes via conditioning

Input: $H \in \{0,1\}^{m \times p}$, $d \in \mathbb{R}^{p-1}$, \mathcal{G} , and K as in Algorithm 2; IBD segments $\{\partial(i, j)\}_{i \in \{1, ..., m\}, j \in \{1, ..., p\}};$ a set R(i) of K references for each haplotype $H^{(i)}$; Markov random field states $Z \in \{1, \ldots, K\}^{m \times p}$. Define the list of junction nodes $\mathcal{J} = \{(i, j) \text{ s.t. } \partial(i, j) \neq \partial(i, j-1) \text{ or } \partial(i, j) \neq \partial(i, j+1)\}.$ for $(i, j) \in \mathcal{J}$ do Define G as the group in partition \mathcal{G} to which variant j belongs. for $j' \in G$ do Expand the list of junction nodes: $\mathcal{J} \leftarrow \mathcal{J} \cup \{(i, j')\}$. end for end for for $(i, j) \in \mathcal{J}$ do Make a trivial knockoff: $\tilde{Z}_{j}^{(i)} \leftarrow Z_{j}^{(i)}$. end for for each connected component C in $\{1, \ldots, m\} \times \{1, \ldots, p\} \setminus \mathcal{J}$ do Generate group knockoffs $\{\tilde{Z}_{j}^{(i)}\}_{(i,j)\in C}$ of $\{Z_{j}^{(i)}\}_{(i,j)\in C} \mid \{Z_{j}^{(i)}\}_{(i,j)\in \mathcal{J}}$ as in previous work [6]. end for **Output:** knockoff matrix $\tilde{Z} \in \{1, \ldots, K\}^{m \times p}$.

S2 Supplementary Notes

S2.a Additional numerical experiments

S2.b Setup

We consider here additional simulations to test our method on real genotypes and synthetic phenotypes, focusing on smaller subsets individuals from the UK Biobank data set. There are two reasons why these experiments are informative. Firstly, they allow us to test the robustness of our method to very strong population structure, by eliminating most of the unrelated British individuals, which make the entire data set relatively homogeneous overall. Secondly, they are computationally cheaper, which allows us to conveniently repeat the experiments for several random realizations of the phenotypes.

In these experiments, the feature importance measures for each SNP are computed in three alternative ways: by fitting the Lasso with cross-validation and taking the absolute value of the estimated regression coefficients (as in the main paper); by running BOLT-LMM [8] and taking the negative logarithm of the marginal p-values; and by performing univariate logistic regression (in the case of binary phenotypes) and taking the negative logarithm of the marginal p-values. These models are designed to predict Y given $[X, \tilde{X}]$; in the first two cases we also include the top 10 principal components of the genotype matrix (computed on the entire UK Biobank data set) as additional covariates. Then, the feature importance measures T_j and \tilde{T}_j , for the *j*th SNP and its corresponding knockoff, are combined in the usual way to define the knockoff test statistics for each group $G \subseteq \{1, \ldots, p\}$ of variables: $W_G = \sum_{i \in G} T_j - \sum_{i \in G} \tilde{T}_j$.

S2.b.1 Knockoffs preserving population structure

We focus here on 10,000 unrelated individuals from the UK Biobank with one of 6 different self-reported ancestries (Table S1). We simulate continuous phenotypes, conditional on the true genotypes, from a homoscedastic linear model with 500 causal variants distributed uniformly across the genome; the total heritability is varied as a control parameter. We apply KnockoffGWAS on these data using knockoffs generated based on either the SHAPEIT or the fastPHASE model. Figure S14 shows the histogram of test statistics computed either with the usual Lasso-based approach, or with BOLT-LMM [9]; the LMM is less powerful, but it makes the increased robustness of the SHAPEIT knockoffs even more apparent. The distribution of test statistics should be symmetric around zero for null groups (i.e., those without causal variants) if the knockoffs are valid. The statistics obtained with the SHAPEIT model satisfy this property, while the fastPHASE HMM leads to a rightward bias, which may result in an excess of false positives. The power and FDR (using the Lasso-based statistics) are compared in Figure S13: the SHAPEIT model leads to slightly lower power, but always controls the FDR. Figure S13 also summarizes findings at different resolutions by counting only the most specific ones [6].

S2.b.2 Knockoffs preserving familial relatedness

Here, we test our method on 10,000 British individuals in 4,900 self-reported families; see Table S3 for details. According to the results of RaPID [10], these individuals share a total of 723,454 IBD segments. Their mean width is 19.6 Mb, or 26.1 cM, and each contains 4238 SNPs on average. We generate knockoffs preserving these IBD segments, and compare the results with those obtained disregarding relatedness.

Figure S9 shows that knockoffs would not preserve IBD segments if we did not explicitly enforce such constraint, especially at low resolution. Furthermore, the diagnostics in Figure S9 confirm that our method correctly preserves LD, and that accounting for relatedness does not decrease power; to the contrary, it can increase it by ensuring that closely related haplotypes are not used as references for one another, which would reduce the desired contrast between genotypes and knockoffs.

We simulate binary phenotypes from a liability threshold (probit) model with 100 uniformly distributed causal variants; the numbers of cases and controls are balanced. (We consider binary phenotypes, as opposed to continuous phenotypes as in the previous section, simply to highlight the flexibility of our method, which is equally valid regardless of the distribution of the trait). We include in this model an additive random term for each family, mimicking shared family factors, whose strength is smoothly controlled by a parameter $\gamma \in [0, 1]$. More precisely, the latent Gaussian variable for the *i*th individual in the probit model is given by:

$$L^{(i)} = \sum_{j=1}^{p} \beta_j X_j^{(i)} + \gamma V^{(f)} + \sqrt{1 - \gamma^2} \epsilon^{(i)},$$

where $E^{(f)}$ and $\epsilon^{(i)}$ are independent standard normal random variables, f denotes the family to which individual i belongs, and $\gamma \in [0, 1]$. The magnitude of the nonzero genetic coefficients β is varied as a parameter, to control the total heritability of the trait.

Therefore, the phenotypes of different individuals in the same family are conditionally independent given the genotypes if $\gamma = 0$, while identical twins will always have the same phenotype if $\gamma = 1$. In theory, family factors may introduce spurious associations, unless the knockoffs account for familial relatedness.

Figure S15 reports FDR and power at low-resolution, with and without preserving relatedness. This shows that preserving IBD segments enables FDR control even with extremely strong family factors ($\gamma = 1$), with virtually no power loss. However, the SHAPEIT model is reasonably robust even if relatedness is ignored, especially at higher resolution. This partly depends on the multivariate importance statistics used here (i.e., sparse logistic regression); in fact, the knockoff filter applied with marginal importance statistics is more vulnerable to confounding, as also illustrated in Figure S15.

S2.c Enrichment analysis with external summary statistics

We perform an enrichment analysis using external summary statistics from the Japan Biobank project [11] for the continuous traits, and from the FinnGen resource [12] for all binary traits except respiratory disease. These summary statistics were computed on data independent of those in the UK Biobank, but some care must be exercised in the interpretation of these results because: (a) the external statistics measure marginal association, not conditional importance; (b) the external sample sizes are smaller than ours, which limits power.

For each group of SNPs G in the genome partition at the 20 kb resolution, we compute a chi-square statistics with Fisher's method: $\chi_G^2 = -\sum_{j \in G} \log(p_j)$, where $\{p_j\}_{j \in G}$ denotes the set of external marginal

p-values within the region spanned by G. Since the UK Biobank and the FinnGen project are based on different genome builds, our discoveries are matched to the external p-values after appropriately lifting the physical positions. We then define: $\{\chi_G^2\}_{S^{novel}}$ as the collection of external Fisher statistics corresponding to our novel discoveries in S^{novel} ; $\{\chi_G^2\}_{S^{confirmed}}$ as the collection of external Fisher statistics corresponding to our previously confirmed discoveries (either confirmed by BOLT-LMM, or by the other studies based on the GWAS catalog, and the Japan Biobank or the FinnGen resource at the genome-wide significance level); and $\{\chi_G^2\}_{background}$ as the set of Fisher statistics for groups that are neither in $S^{confirmed}$ nor in S^{novel} .

We take the empirical distribution of $\{\chi_G^2\}_{\text{background}}$ as the null distribution, and invert it to compute an approximate enrichment p-value for each group in S^{novel} ; we refer to these as p_G^{enrich} . The null hypothesis, under which the p_G^{enrich} would be approximately uniform, is that the Fisher statistics for the novel discoveries have the same distribution as those in $\{\chi_G^2\}_{\text{background}}$; for instance, we expect this would be the case if all selected SNPs were independent of the phenotype. In theory, we could use these p-values with any multiple testing procedure; however, this turns out to have little power, due to the small sample size (compared to the UK Biobank) of the external data. However, it is clear that the distribution of $\{p_G^{\text{enrich}}\}_{S^{\text{novel}}}$ is not uniform, which suggest many discoveries are non-null. Therefore, we take an empirical Bayes approach to estimate the proportion of non-null discoveries [13], as implemented by the "quantile" method in the fdrtool R package [14]. This estimates the proportion of null enrichment p-values, which we bootstrap 10,000 times to assess its uncertainty. Tables 3 and S11 are based on the mean bootstrap values, while Table S12 report 90% confidence intervals.

S3 Figures

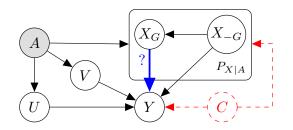


Figure S1: Graphical representation of the assumed relation between genotypes (X), phenotype (Y), ancestry (A), family factors (V), and other relevant covariates (U). Our method is designed to test the direct effect of any subset of genotypes X_G on the phenotype. The node C represents possible unaccounted confounders.

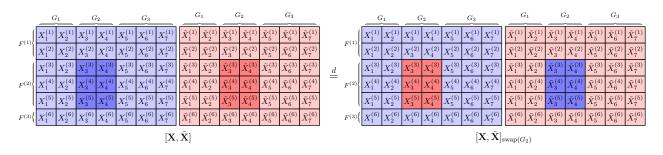
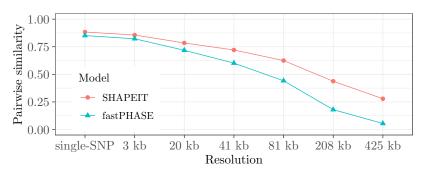



Figure S2: Visualization of the knockoff exchangeability property defined in (2), within a toy example with 6 individuals (divided into 3 families) and 7 variants (partitioned into 3 groups). In this example, the swapping operator for group G_2 is applied to the second family, $F^{(2)}$, and the ancestry variable A is omitted.

(a) Distribution of pairwise correlations for different variants on chromosome 22.

(b) Average pairwise correlations over chromosome 22.

Figure S3: Absolute pairwise correlation between genotypes and knockoffs on chromosome 22, as a function of the knockoff resolution. These statistics are computed on 10,000 UK Biobank samples with diverse ancestries, as in Figure 1. (a) Histograms. (b) Absolute correlation averaged over all variants, as a function of the resolution. Lower absolute pairwise correlations with the genotypes indicate more powerful knockoffs.

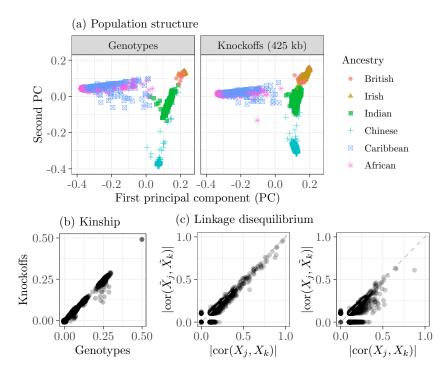
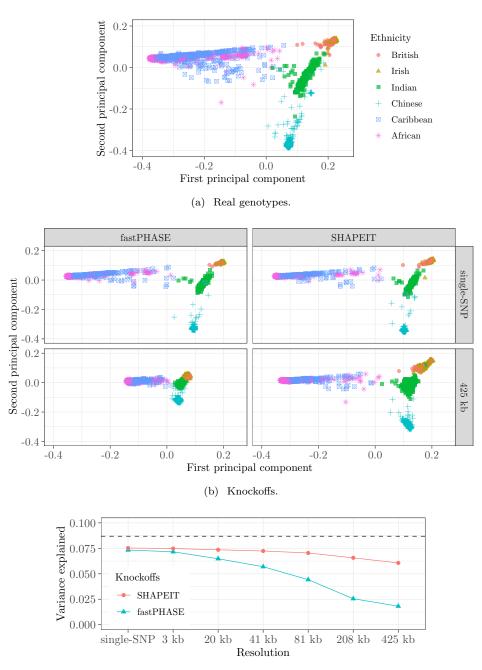



Figure S4: Exchangeability of knockoffs and genotypes in the UK Biobank. (a) Principal component analysis for 10k individuals with diverse ancestries, separately for genotypes and knockoffs. (b) Kinship coefficients between 2000 pairs of related individuals, computed separately on genotypes and knockoffs. (c) Pairwise absolute correlations between nearby variants on chromosome 22 (minor allele frequency ≥ 0.01) for the same individuals as in (a), with (left) or without (right) swapping genotypes (X) and knockoffs (\tilde{X}). Resolution: 425 kb. In the case of (b), we only show pairs of variants in different groups. Other details are as in Figure 1.

(c) Comparison of PCA on genotypes and knockoffs.

Figure S5: PCA of individuals with diverse ancestries, and of knockoffs constructed based on different HMMs. (a) The first two genetic principal components of 10,000 individuals in the UK Biobank (as in Figures 1 and S4) are compared to (b) the corresponding quantities computed on knockoffs at different resolutions. The knockoffs based on the SHAPEIT HMM preserve population structure quite accurately, even at low resolution. By contrast, the fastPHASE HMM tends to produce knockoffs that shrink together individuals with diverse ancestries, thus breaking population structure. (c) Proportion of genetic variance explained by the first ten principal components of knockoffs at different resolutions, for samples with diverse ancestries. The dashed horizontal line indicates the corresponding quantity computed on the original data.

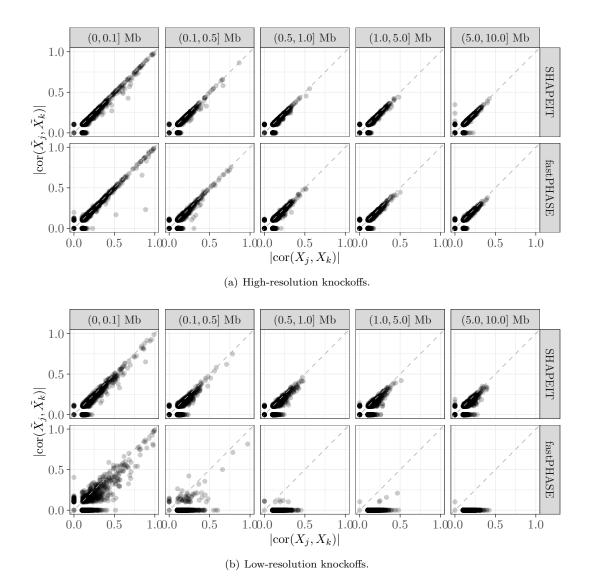
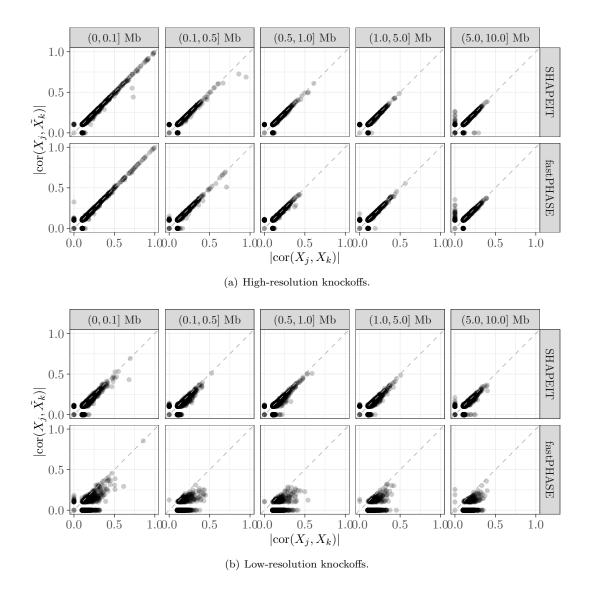
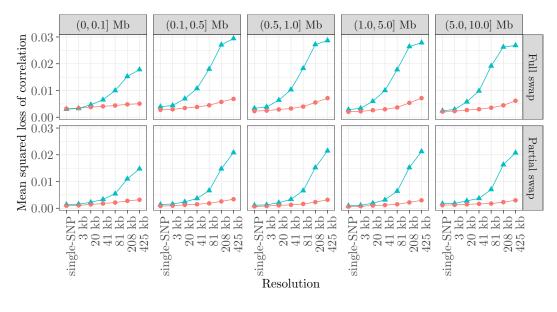
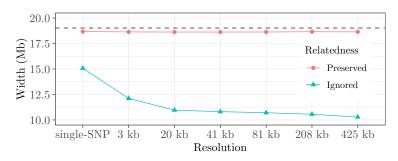
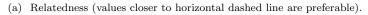
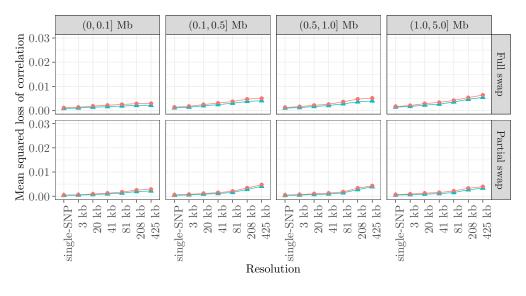


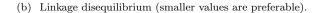
Figure S6: Knockoff exchangeability measured in terms of pairwise correlations between different SNPs, among 10,000 individuals with diverse ancestries, as in Figure 1. We compare $|cor(X_j, X_k)|$ with $|cor(\tilde{X}_j, \tilde{X}_k)|$, for $j, k \in \{1, \ldots, p\}$, as a function of the distance between variants j and k on chromosome 22. Only 1000 randomly chosen points are shown, for clarity. Variants with minor allele frequency smaller than 0.01 are not shown here, due to the limited sample size. These diagnostics should approximately lie on the 45-degree line if the knockoffs are valid [6]. (a) Genome partition into single-SNP groups. (b) Genome partition into 425 kb-wide groups.

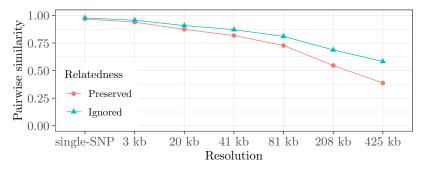





Figure S7: Additional exchangeability diagnostics comparing $|cor(X_j, X_k)|$ with $|cor(X_j, \tilde{X}_k)|$, for j, k in different groups, as a function of the distance between variants j and k. (a) Genome partition into single-SNP groups. (b) Genome partition into 425 kb-wide groups. Other details are as in Figure S6.



Model -- SHAPEIT -- fastPHASE


Figure S8: Knockoff exchangeability measured in terms of pairwise correlations between different SNPs, as in Figures S6–S7. The quantity on the vertical axis measures the average distances from the 45-degree line in the scatter plots of Figures S6–S7, including also intermediate levels of resolutions. This is defined as $[cor(X_j, X_k) - cor(\tilde{X}_j, \tilde{X}_k)]^2$ (top), or $[cor(X_j, X_k) - cor(X_j, \tilde{X}_k)]^2$ (bottom), each averaged over pairs of variables j, k whose physical distances are within the specified range. Valid knockoffs should have values close to zero.



Relatedness - Preserved - Ignored

(c) Individual similarity of knockoffs and genotypes (smaller is preferable)

Figure S9: Exchangeability diagnostics for knockoffs on chromosome 22 in 10,000 related British samples from the UK Biobank. The knockoffs are generated with our new method, either preserving or ignoring familial relatedness. The diagnostics are presented as a function of the knockoff resolution. (a) Average width of IBD segments between self-reportedly related individuals, computed on either the real data or the knockoffs. (b) Exchangeability measured in terms of pairwise correlations between different SNPs, as in Figure S8. (c) Absolute pairwise correlation between genotypes and knockoffs, as in Figure S3.

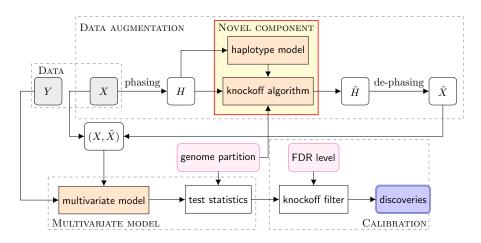


Figure S10: KnockoffGWAS workflow. The novelty introduced in this paper consists of an HMM for the distribution of haplotypes, H, that can account for population structure and familial relatedness as well as LD, and of the associated algorithm for generating knockoffs. For computational reasons, the genotypes are phased prior to generating knockoffs, and the knockoff haplotypes are then de-phased to obtain knockoff genotypes [6].

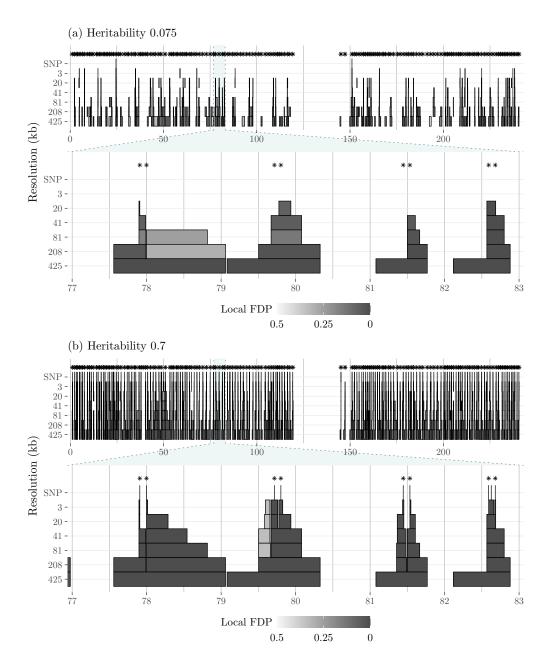


Figure S11: Chicago plots showing KnockoffGWAS discoveries for simulated traits with different levels of heritability, as in Figure 3. Each Chicago plot shows all discoveries on chromosome 1 at the top, and zooms in on a smaller genetic segment at the bottom. The asterisks indicate the position of the causal variants. Note that some "floating discoveries" are visible in the top panel; these can be explicitly avoided with a variation of the knockoff filter that simultaneously processes the results from different resolutions [6]. (a) High heritability (strong signals). (b) Low heritability (weak signals).

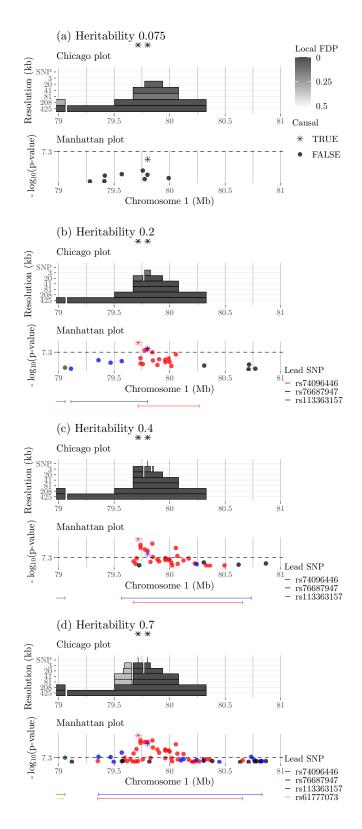
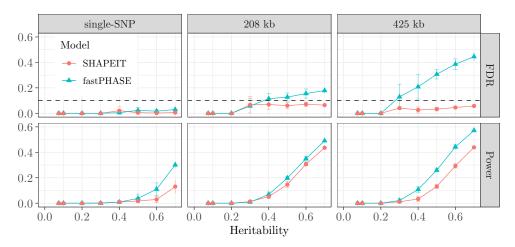
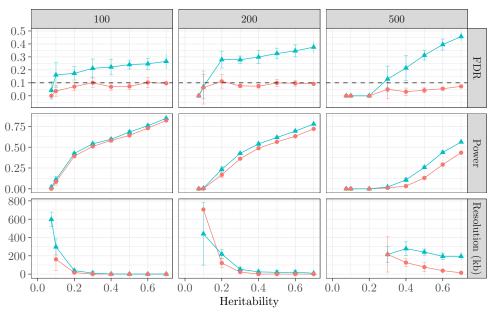
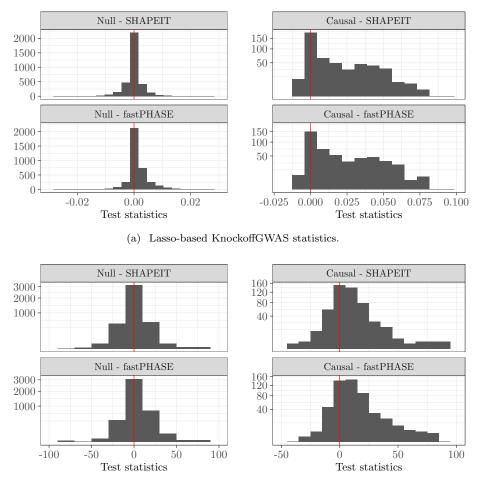




Figure S12: KnockoffGWAS and BOLT-LMM discoveries for simulated traits with different levels of heritability, as in Figure 3.


(a) Simulated phenotype with 500 causal variants. Results at three fixed levels of resolution.

Model ---- SHAPEIT ---- fastPHASE

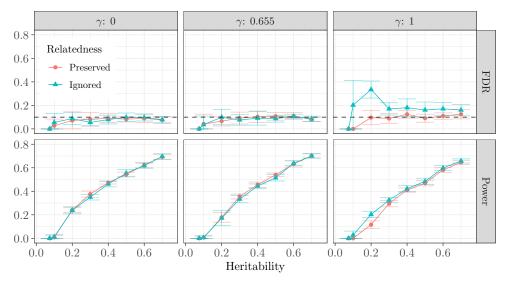
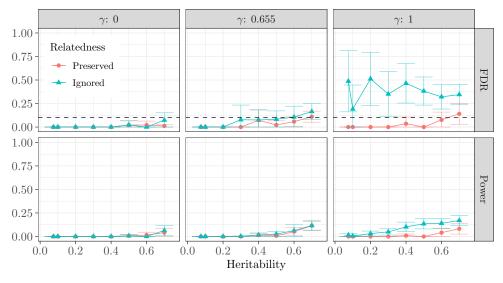

(b) Simulated phenotypes with different numbers of causal variants. Summary of results at different levels of resolution.

Figure S13: KnockoffGWAS performance in numerical experiment with real genotypes of 10,000 individuals with diverse ancestries, as in Figure 1, and simulated phenotypes. The knockoffs are generated either using the SHAPEIT or the fastPHASE [6] HMM. (a) Simulated phenotype with 500 causal variants equally spaced across the genome. (b) Simulated phenotypes with different numbers (100,200, or 500) causal variants equally spaced across the genome. Here, the discoveries at different resolutions are combined, counting only the most specific findings in each locus (this facilitates the visualization, but it is not guaranteed to control the FDR in theory [6]). Other details are as in Figure 4.



(b) LMM-based KnockoffGWAS statistics.

Figure S14: Distribution of knockoff statistics in the numerical experiment of Figure S13. The knockoffs are constructed by different algorithms at resolution equal to 425 kb. (a) Lasso-based knockoff test statistics for null (left) and causal (right) groups of variants. (b) LMM-based knockoff test statistics for null (left) and causal (right) groups of variants.

(a) KnockoffGWAS with Lasso-based statistics.

(b) KnockoffGWAS with LMM-based statistics.

Figure S15: Power and FDR in numerical experiments with real genotypes of 10,000 related British samples, and simulated phenotypes. Our method is applied with and without preserving IBD segments. Results for phenotypes with different strengths of family factors γ are in separate columns ($\gamma = 0$: no family factors, $\gamma = 1$: strongest family factors; see Methods for more information about γ). Knockoff resolution equal to 425 kb. (a) Lasso-based test statistics. (b) Marginal test statistics. Note that marginal statistics have almost no power, although an excess of false discoveries occurs if the relatedness is not preserved.

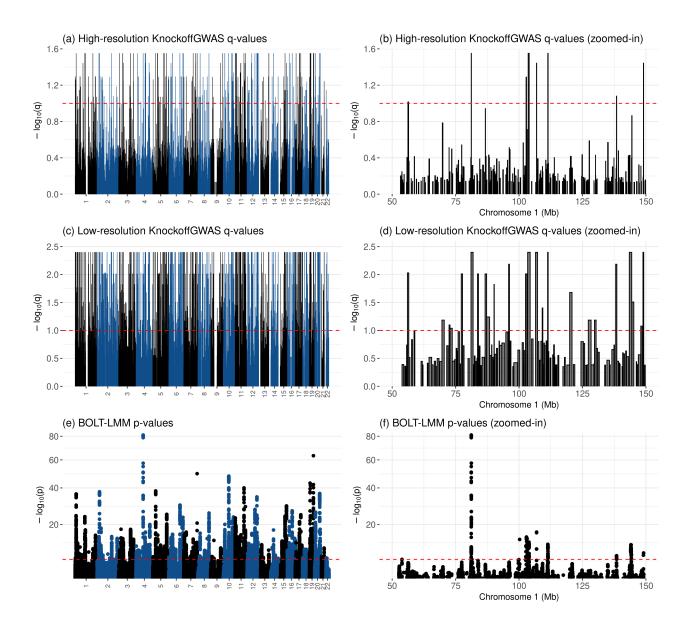


Figure S16: Manhattan plots for cardiovascular disease using the UK Biobank data. (a-b) KnockoffGWAS q-values for high-resolution conditional hypotheses (20 kb). The width of each rectangle denotes the genetic segment tested by the corresponding conditional hypothesis, while the height is the negative logarithm of the q-value. (c-d) KnockoffGWAS q-values for low-resolution conditional hypotheses (208 kb). (e-f) BOLT-LMM p-values for SNP-by-SNP marginal hypotheses. The plots in (c,d,f) are the same as those in (a,c,e), respectively, but zoom in on a portion of chromosome 1. The dashed horizontal red lines indicate the significance thresholds; 10% FDR for KnockoffGWAS, and 5×10^{-8} for BOLT-LMM.

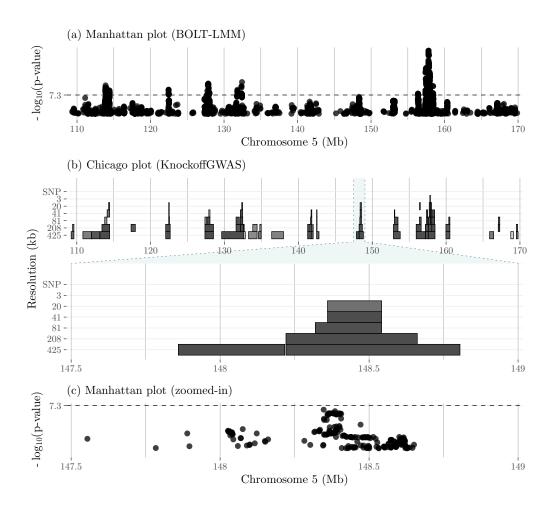


Figure S17: Visualization of some findings for cardiovascular disease on chromosome 5. The top panels visualize a wider portion of chromosome 5, as in Figure S11. Other details are as in Figure 5.

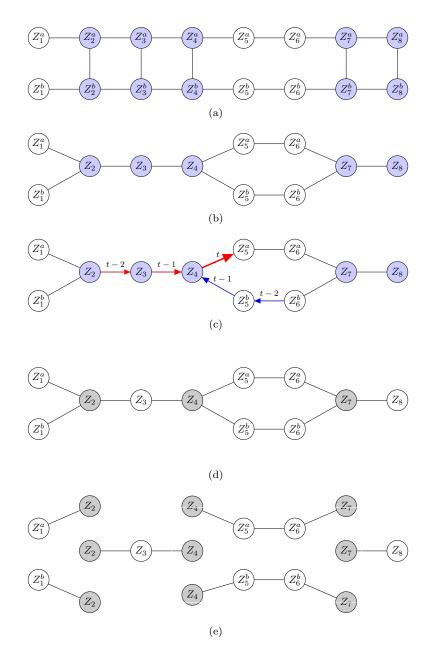


Figure S18: Graphical representation of the distribution of latent states in the generalized HMM for two haplotype sequences of length 8 sharing 2 IBD segments. (a) Representation as a Markov chain with K^2 possible states in each position, with the constraint that nodes connected by a vertical edge must be identical to each other. The nodes belonging to the IBD segments are shaded in blue. (b) Equivalent representation of this model as a Markov random field with 11 variables, each taking one of K possible values. (c) Visualization of belief propagation for haplotype families. Belief propagation update of a message in the example of Figure S18. The new message evaluated here at time t is that from the third node of the first shared IBD segment to the successive node in the first haplotype sequence (bold arrow). This is computed as a function of the messages labeled as t - 1, which had previously been computed as a function of those labeled as t - 2. Red: forward messages; blue: backward messages. (d) The nodes at the extremities of the IBD segments are shaded in grey. These represent the variables upon which we condition before generating knockoffs. (e) Conditional on the extremities of the IBD segments, the remaining latent nodes are distributed as independent Markov chains.

S4 Supplementary Tables

Ethnicity	Count
African	1710
British	1710
Caribbean	1710
Chinese	1450
Indian	1710
Irish	1710

Table S1: Summary of the self-reported ethnicities for the 10,000 UK Biobank individuals in Figure 1 (a).

Median width (kb)	$\begin{array}{c} \text{Mean width} \\ \text{(kb)} \end{array}$	Number of groups	$\begin{array}{c} \text{Median size} \\ \text{(SNPs)} \end{array}$	Mean size (SNPs)
single-SNP	single-SNP	591513	1	1
3	11	151532	3	4
20	41	56562	8	10
41	74	33929	14	17
81	134	19500	26	30
208	303	8863	58	67
425	575	4738	113	125

Table S2: Summary of 7 partitions of the genome into disjoint groups of contiguous SNPs. The first column (median width in kb) is used to reference particular resolutions throughout this paper.

Family size	Number of families	Average kinship
1	1	N.A.
2	4702	0.273
3	193	0.270
4	4	0.265

Table S3: Self-reported family structure for the 10,000 British individuals used in the experiments of Figures S9 and S13. These families are chosen as those with the largest average kinship. One extra individual is included to bring the total number to a round value.

Name	Description	Number of cases	UK Biobank Fields	UK Biobank Codes
bmi	body mass index	continuous	21001-0.0	
cvd	cardiovascular disease	148715	20002-0.0-20002-0.32	1065, 1066, 1067, 1068,
				1081, 1082, 1083, 1425,
				1473, 1493
diabetes	diabetes	19897	20002-0.0-20002-0.32	1220
height	standing height	continuous	50-0.0	
hypothyroidism	hypothyroidism	22493	20002-0.0-20002-0.32	1226
platelet	platelet count	continuous	30080-0.0	
respiratory	respiratory disease	64945	20002-0.0-20002-0.32	1111, 1112, 1113, 1114,
				1115, 1117, 1413, 1414,
				1415, 1594
$^{\mathrm{sbp}}$	systolic blood pressure	continuous	4080-0.0, 4080-0.1	

Table S4: Definition of the UK Biobank phenotypes used in our analysis [6]. In the case of case-control phenotypes, the number of cases refers to the subset of individuals that passed our quality control.

		KnockoffG	WAS	BC	DLT-LMM
Phenotype	Resolution	Discoveries	Overlap with LMM	Discoveries	Overlap with KZ
cvd	$3 \mathrm{~kb}$	22	22 (100.0%)	257	25 (9.7%)
	20 kb	239	$180\ (75.3\%)$	257	189(73.5%)
	41 kb	339	212~(62.5%)	257	213~(82.9%)
	$81 \mathrm{~kb}$	566	261~(46.1%)	257	241 (93.8%)
	208 kb	940	274~(29.1%)	257	249~(96.9%)
	425 kb	1089	255~(23.4%)	257	254~(98.8%)
diabetes	3 kb	21	20~(95.2%)	62	21~(33.9%)
	20 kb	61	45~(73.8%)	62	47~(75.8%)
	41 kb	109	54~(49.5%)	62	52~(83.9%)
	81 kb	109	50~(45.9%)	62	$54 \ (87.1\%)$
	208 kb	113	52~(46.0%)	62	55~(88.7%)
	425 kb	194	57~(29.4%)	62	59~(95.2%)
hypothyroidism	$\operatorname{single-SNP}$	19	19~(100.0%)	143	30~(21.0%)
	3 kb	40	40 (100.0%)	143	53~(37.1%)
	20 kb	105	89 (84.8%)	143	101~(70.6%)
	41 kb	222	128~(57.7%)	143	123~(86.0%)
	$81 \mathrm{~kb}$	277	133~(48.0%)	143	130~(90.9%)
	208 kb	295	129~(43.7%)	143	142~(99.3%)
	425 kb	335	122 (36.4%)	143	142 (99.3%)
respiratory	20 kb	83	60~(72.3%)	94	62~(66.0%)
	41 kb	123	74(60.2%)	94	75 (79.8%)
	81 kb	193	83 (43.0%)	94	85 (90.4%)
	208 kb	262	82 (31.3%)	94	92 (97.9%)
	425 kb	383	82 (21.4%)	94	$93\ (98.9\%)$
bmi	3 kb	10	10 (100.0%)	697	15(2.2%)
	20 kb	343	309~(90.1%)	697	317~(45.5%)
	41 kb	918	618~(67.3%)	697	548~(78.6%)
	81 kb	1480	792~(53.5%)	697	641 (92.0%)
	208 kb	2395	898~(37.5%)	697	689~(98.9%)
	425 kb	2460	794~(32.3%)	697	695~(99.7%)
height	$\operatorname{single-SNP}$	95	95~(100.0%)	2464	225~(9.1%)
	3 kb	570	570 (100.0%)	2464	891 (36.2%)
	20 kb	1503	1469 (97.7%)	2464	1761 (71.5%)
	41 kb	2384	2167~(90.9%)	2464	2167~(87.9%)
	$81 \mathrm{~kb}$	3006	2417~(80.4%)	2464	2360~(95.8%)
	208 kb	3339	2228~(66.7%)	2464	2430~(98.6%)
	425 kb	3073	1804~(58.7%)	2464	2454~(99.6%)
platelet	single-SNP	53	53~(100.0%)	1204	131~(10.9%)
	3 kb	246	245~(99.6%)	1204	391~(32.5%)
	20 kb	1002	900~(89.8%)	1204	963~(80.0%)
	41 kb	1261	1041~(82.6%)	1204	1075~(89.3%)
	$81 \mathrm{~kb}$	1570	1120(71.3%)	1204	1138 (94.5%)
	208 kb	1743	1057~(60.6%)	1204	1183 (98.3%)
	425 kb	1653	911 (55.1%)	1204	1195~(99.3%)
$_{\rm sbp}$	3 kb	83	83~(100.0%)	568	101 (17.8%)
-	20 kb	191	177(92.7%)	568	204 (35.9%)
	41 kb	511	366(71.6%)	568	380(66.9%)
	$81 \mathrm{~kb}$	830	496 (59.8%)	568	480 (84.5%)
	208 kb	1183	561(47.4%)	568	530(93.3%)
	425 kb	1543	538 (34.9%)	568	548 (96.5%)

Table S5: KnockoffGWAS discoveries for different phenotypes using all UK Biobank samples vs. BOLT-LMM genome-wide significant discoveries (5×10^{-8}) . BOLT-LMM is applied on 350k unrelated British samples for diabetes and respiratory disease [6], and on 459k European samples for all other phenotypes [8].

	Reso	lution	Discover	ries with SHAPEIT model	Discoveri	es with fastPHASE mode
Phenotype	SHAPEIT	fastPHASE	Number	Overlap with fastPHASE	Number	Overlap with SHAPEIT
cvd	41 kb	42 kb	339	49 (14.5%)	51	46 (90.2%)
	81 kb	88 kb	566	175 (30.9%)	182	165(90.7%)
	208 kb	226 kb	940	449 (47.8%)	514	446 (86.8%)
	425 kb	226 kb	1089	453 (41.6%)	514	466 (90.7%)
diabetes	3 kb	4 kb	21	8 (38.1%)	11	8 (72.7%)
	20 kb	18 kb	61	9(14.8%)	10	9(90.0%)
	41 kb	42 kb	109	19(17.4%)	21	19(90.5%)
	$81 \mathrm{~kb}$	88 kb	109	28(25.7%)	33	28 (84.8%)
	208 kb	226 kb	113	45 (39.8%)	50	46 (92.0%)
	425 kb	226 kb	194	48 (24.7%)	50	48 (96.0%)
hypothyroidism	single-SNP	single-SNP	19	8 (42.1%)	21	8 (38.1%)
51 5 5 5 5 5	81 kb	88 kb	277	103 (37.2%)	108	100 (92.6%)
	208 kb	226 kb	295	183 (62.0%)	212	186 (87.7%)
	425 kb	226 kb	335	188(56.1%)	212	194 (91.5%)
respiratory						
	20 kb	18 kb	83	12(14.5%)	13	13(100.0%)
	41 kb	42 kb	123	35 (28.5%)	41	35 (85.4%)
	81 kb	88 kb	193	61(31.6%)	65	59(90.8%)
	208 kb	226 kb	262	132(50.4%)	176	140 (79.5%)
	425 kb	226 kb	383	154 (40.2%)	176	159(90.3%)
bmi	3 kb	4 kb	10	7 (70.0%)	24	7(29.2%)
	20 kb	18 kb	343	29 (8.5%)	33	30 (90.9%)
	41 kb	42 kb	918	61(6.6%)	60	58(96.7%)
	81 kb	88 kb	1480	515 (34.8%)	555	485 (87.4%)
	208 kb	226 kb	2395	1653~(69.0%)	1804	1615 (89.5%)
	425 kb	226 kb	2460	1592 (64.7%)	1804	1733 (96.1%)
height	single-SNP	$\operatorname{single-SNP}$	95	68~(71.6%)	173	68~(39.3%)
	3 kb	4 kb	570	252 (44.2%)	336	251 (74.7%)
	20 kb	18 kb	1503	360~(24.0%)	388	350~(90.2%)
	41 kb	42 kb	2384	832 (34.9%)	823	$780 \ (94.8\%)$
	81 kb	88 kb	3006	1864~(62.0%)	1976	1836~(92.9%)
	208 kb	226 kb	3339	2775 (83.1%)	3284	3021~(92.0%)
	425 kb	226 kb	3073	2398~(78.0%)	3284	3198~(97.4%)
platelet	$\operatorname{single-SNP}$	$\operatorname{single-SNP}$	53	40 (75.5%)	143	40 (28.0%)
	3 kb	4 kb	246	136~(55.3%)	161	138~(85.7%)
	20 kb	18 kb	1002	264~(26.3%)	276	265~(96.0%)
	41 kb	42 kb	1261	398~(31.6%)	408	385 (94.4%)
	$81 \mathrm{~kb}$	88 kb	1570	856~(54.5%)	890	834~(93.7%)
	208 kb	226 kb	1743	1288~(73.9%)	1460	1325~(90.8%)
	425 kb	226 kb	1653	$1162\ (70.3\%)$	1460	1393~(95.4%)
$^{\mathrm{sbp}}$	$41 \mathrm{~kb}$	42 kb	511	86~(16.8%)	95	84 (88.4%)
	$81 \mathrm{~kb}$	88 kb	830	265~(31.9%)	297	262~(88.2%)
	208 kb	226 kb	1183	619~(52.3%)	722	612~(84.8%)
	425 kb	226 kb	1543	663 (43.0%)	722	678 (93.9%)

Table S6: KnockoffGWAS discoveries obtained from all UK Biobank British samples (SHAPEIT model) vs. discoveries obtained from 350k unrelated British samples (fastPHASE model); the latter are based on the slightly different genome partitions adopted by [6].

		Ever	ryone	Bri	tish	White (r	non-British)
Phenotype	Resolution	all	unrel.	all	unrel.	all	unrel.
cvd	single-SNP	0	0	0	0	0	0
	3 kb	22	20	0	0	0	0
	20 kb	239	152	169	140	0	0
	41 kb	339	235	270	181	0	0
	81 kb	566	428	611	462	0	0
	208 kb	940	594	815	611	0	0
	425 kb	1089	861	1004	711	0	0
diabetes	single-SNP	0	0	0	0	0	0
	3 kb	0	17	0	12	0	0
	20 kb	83	44	63	53	0	0
	41 kb	123	86	82	57	0	0
	81 kb	193	152	165	129	0	0
	208 kb	262	242	217	171	0	0
	425 kb	383	346	289	291	0	0
hypothyroidism	single-SNP	19	22	11	11	0	0
	3 kb	40	42	60	32	0	0
	20 kb	105	79	109	86	ů 0	Ő
	41 kb	222	156	164	130	0	Ő
	81 kb	277	173	269	153	ů 0	Ő
	208 kb	295	257	288	256	0	0
	425 kb	335	309	312	266	0	0
respiratory	single-SNP	0	0	0	11	0	0
respiratory	3 kb	21	0	0 37	0	0	0
	20 kb	61	33	54	33	0	0
	41 kb	109	62	73	55 66	0	0
	81 kb	109	84	63	94	0	0
	208 kb	113	79	119	84	0	0
	425 kb	194	102	186	139	0	0
bmi	single-SNP	95	64	80	69	0	10
DIIII	3 kb	$\frac{95}{570}$	483	609	377	0	10
	эко 20 kb	$\frac{570}{1503}$	$485 \\ 1294$	1610	$\frac{377}{1412}$	$\frac{0}{25}$	$\frac{0}{20}$
	20 kb 41 kb	$1303 \\ 2384$	$1294 \\ 1966$	2353	1412 2141	$\frac{23}{74}$	20 80
	41 kb 81 kb	3006	2768	$\frac{2353}{3002}$	2681	91	80 80
	208 kb	3339	3111	3370	$\frac{2081}{3117}$	91 112	101
	208 kb 425 kb	3073	2922	2938	2735	$112 \\ 170$	101 104
1 • 1							
height	single-SNP	0	0	0	12	0	0
	3 kb	$ 10 \\ 343 $	10	0	$\begin{array}{c} 0\\ 180 \end{array}$	0	0
	20 kb		230 566	207		0	0
	41 kb	918 1480	566	820 1422	492	0	0
	81 kb 208 kb	$1480 \\ 2395$	$\frac{1194}{1938}$	$1433 \\ 2381$	$1280 \\ 1975$	0 0	0 0
	425 kb	2393 2460	2109	2381 2426	2092	0	10
1.1.1.							
platelet	single-SNP	53	52 250	34	52	0	0
	3 kb	246	259	223	202	0	0
	20 kb	1002	820	977	777	26	31
	41 kb	1261	995	1171	944	52	44
	81 kb	1570	1350	1502	1292	69 52	55 51
	208 kb	1743	1583	1809	1510	53 76	51 60
	425 kb	1653	1550	1741	1521	76	60
$^{\mathrm{sbp}}$	single-SNP	0	0	0	0	0	0
	3 kb	83	90	42	32	0	0
	20 kb	191	162	166	127	0	0
	41 kb	511	353	421	342	0	0
	81 kb	830	635	736	585	0	0
	208 kb	1183	972	1050	911	0	0
	425 kb	1543	1202	1401	1273	0	0

Table S7: Numbers of KnockoffGWAS discoveries at different resolutions, using different subsets of the UK Biobank samples.

				Confi	irmed	
Phenotype	Resolution	Discoveries	Catalog	Japan	FinnGen	Any
cvd	3 kb	22	21 (95.5%)	NA	11 (50.0%)	22 (100.0%)
	20 kb	239	173 (72.4%)	NA	81 (33.9%)	188 (78.7%)
	41 kb	339	241 (71.1%)	NA	126 (37.2%)	266(78.5%)
	81 kb	566	353(62.4%)	NA	251 (44.3%)	422 (74.6%)
	208 kb	940	524 (55.7%)	NA	581(61.8%)	738 (78.5%)
	425 kb	1089	671~(61.6%)	NA	837~(76.9%)	967 (88.8%)
diabetes	3 kb	21	20~(95.2%)	13~(61.9%)	8 (38.1%)	20~(95.2%)
	20 kb	61	54~(88.5%)	26~(42.6%)	18~(29.5%)	54 (88.5%)
	41 kb	109	88~(80.7%)	36~(33.0%)	30~(27.5%)	$88 \ (80.7\%)$
	81 kb	109	88~(80.7%)	39~(35.8%)	36~(33.0%)	89 (81.7%)
	208 kb	113	95~(84.1%)	49~(43.4%)	43~(38.1%)	97~(85.8%)
	425 kb	194	140~(72.2%)	58~(29.9%)	59 (30.4%)	142 (73.2%)
hypothyroidism	$\operatorname{single-SNP}$	19	7~(36.8%)	NA	3~(15.8%)	7~(36.8%)
	3 kb	40	23~(57.5%)	NA	14 (35.0%)	24~(60.0%)
	20 kb	105	71~(67.6%)	NA	20~(19.0%)	71~(67.6%)
	41 kb	222	101~(45.5%)	NA	27~(12.2%)	105 (47.3%)
	81 kb	277	126~(45.5%)	NA	38~(13.7%)	135 (48.7%)
	208 kb	295	141~(47.8%)	NA	50~(16.9%)	156 (52.9%)
	425 kb	335	139~(41.5%)	NA	74~(22.1%)	174(51.9%)
respiratory	20 kb	83	74 (89.2%)	NA	35~(42.2%)	76~(91.6%)
	41 kb	123	110 (89.4%)	NA	58(47.2%)	114 (92.7%)
	81 kb	193	155 (80.3%)	NA	115~(59.6%)	174 (90.2%)
	208 kb	262	195(74.4%)	NA	202 (77.1%)	241 (92.0%)
	425 kb	383	263~(68.7%)	NA	330~(86.2%)	357 (93.2%)
bmi	3 kb	10	10~(100.0%)	4 (40.0%)	NA	10 (100.0%)
	20 kb	343	307~(89.5%)	32~(9.3%)	NA	308(89.8%)
	41 kb	918	655~(71.4%)	53~(5.8%)	NA	656 (71.5%)
	81 kb	1480	865~(58.4%)	55~(3.7%)	NA	865(58.4%)
	208 kb	2395	1076~(44.9%)	64~(2.7%)	NA	1076 (44.9%)
	425 kb	2460	1090~(44.3%)	68~(2.8%)	NA	1091 (44.3%)
height	$\operatorname{single-SNP}$	95	63~(66.3%)	57~(60.0%)	NA	81~(85.3%)
	3 kb	570	357~(62.6%)	258~(45.3%)	NA	417 (73.2%)
	20 kb	1503	1032~(68.7%)	483~(32.1%)	NA	1102 (73.3%)
	41 kb	2384	1534~(64.3%)	572~(24.0%)	NA	1607 (67.4%)
	81 kb	3006	1822~(60.6%)	590~(19.6%)	NA	1879 (62.5%)
	208 kb	3339	1856~(55.6%)	561~(16.8%)	NA	1886 (56.5%)
	425 kb	3073	1653~(53.8%)	494~(16.1%)	NA	1669 (54.3%)
platelet	$\operatorname{single-SNP}$	53	37~(69.8%)	22~(41.5%)	NA	41 (77.4%)
	3 kb	246	153~(62.2%)	72~(29.3%)	NA	168 (68.3%)
	20 kb	1002	352~(35.1%)	97~(9.7%)	NA	374 (37.3%)
	41 kb	1261	391~(31.0%)	97~(7.7%)	NA	409 (32.4%)
	81 kb	1570	426~(27.1%)	91~(5.8%)	NA	436 (27.8%)
	208 kb	1743	445~(25.5%)	94~(5.4%)	NA	453 (26.0%)
	425 kb	1653	425~(25.7%)	86~(5.2%)	NA	429 (26.0%)
sbp	3 kb	83	69~(83.1%)	10(12.0%)	NA	69 (83.1%)
	20 kb	191	166~(86.9%)	$17 \ (8.9\%)$	NA	166 (86.9%)
	41 kb	511	358~(70.1%)	22 (4.3%)	NA	359 (70.3%)
	81 kb	830	517~(62.3%)	22 (2.7%)	NA	517 (62.3%)
	208 kb	1183	643 (54.4%)	23 (1.9%)	NA	643 (54.4%)
	425 kb	1543	709~(45.9%)	23~(1.5%)	NA	709 (45.9%)

Table S8: Numbers of KnockoffGWAS discoveries at different resolutions (all UK Biobank samples) containing associations previously reported in the GWAS Catalog, Japan Biobank resource, FinnGen resource, or any of the above.

			Found	d by BOI	LT-LMM			Not fou	nd by B	OLT-LMM	
Phenotype	Resolution	Total	Catalog	Japan	FinnGen	Any	Total	Catalog	Japan	FinnGen	Any
cvd	3 kb	22	95.5%	NA	50.0%	100.0%	0	NA	NA	NA	NA
	20 kb	180	83.9%	NA	38.3%	88.9%	59	37.3%	NA	20.3%	47.5°
	41 kb	212	86.8%	NA	42.9%	91.5%	127	44.9%	NA	27.6%	56.7°
	81 kb	261	87.4%	NA	53.3%	92.7%	305	41.0%	NA	36.7%	59.0°
	208 kb	274	90.5%	NA	71.9%	97.1%	666	41.4%	NA	57.7%	70.9%
	425 kb	255	94.9%	NA	84.7%	99.2%	834	51.4%	NA	74.5%	85.6%
diabetes	3 kb	20	95.0%	65.0%	40.0%	95.0%	1	100.0%	0.0%	0.0%	100.0
	20 kb	45	95.6%	53.3%	40.0%	95.6%	16	68.8%	12.5%	0.0%	68.8%
	41 kb	54	96.3%	50.0%	46.3%	96.3%	55	65.5%	16.4%	9.1%	65.5°_{2}
	81 kb	50	100.0%	54.0%	56.0%	100.0%	59	64.4%	20.3%	13.6%	66.1
	208 kb	52	98.1%	61.5%	61.5%	98.1%	61	72.1%	27.9%	18.0%	75.40
	425 kb	57	98.2%	61.4%	63.2%	98.2%	137	61.3%	16.8%	16.8%	62.8%
hypothyroidism	single-SNP	19	36.8%	NA	15.8%	36.8%	0	NA	NA	NA	NA
0 X 0	3 kb	40	57.5%	NA	35.0%	60.0%	0	NA	NA	NA	NA
	20 kb	89	76.4%	NA	22.5%	76.4%	16	18.8%	NA	0.0%	18.8%
	41 kb	128	64.1%	NA	18.0%	65.6%	94	20.2%	NA	4.3%	22.3%
	81 kb	133	75.2%	NA	22.6%	78.9%	144	18.1%	NA	5.6%	20.8%
	208 kb	129	85.3%	NA	25.6%	87.6%	166	18.7%	NA	10.2%	25.9%
	425 kb	$129 \\ 122$	85.5%	NA	32.8%	93.4%	213	14.6%	NA	16.2% 16.0%	28.2%
respiratory	20 kb	60	98.3%	NA	48.3%	98.3%	23	65.2%	NA	26.1%	73.9%
respiratory	41 kb	74	100.0%	NA	51.4%	100.0%	49	73.5%	NA	40.8%	81.69
	41 kb 81 kb	83	98.8%	NA	65.1%	100.0% 100.0%	110	66.4%	NA	55.5%	82.7%
	208 kb		98.8% 98.8%	NA	79.3%	100.0% 100.0%	180	63.3%	NA	$\frac{55.5\%}{76.1\%}$	
	425 kb	$\frac{82}{82}$	98.8% 96.3%	NA	92.7%	100.0% 100.0%	301	61.1%	NA	70.1% 84.4%	88.3 91.4
bmi	3 kb	10	100.0%	40.0%	NA	100.0%	0	NA	NA	NA	NA
om	20 kb	309	94.2%	10.4%	NA	94.5%	34	47.1%	0.0%	NA	47.1%
	41 kb	618	89.3%	8.3%	NA	89.5%	300	34.3%	0.0%	NA	34.3%
	41 kb 81 kb	792	85.2%	6.4%	NA	85.2%	688	27.6%	0.6%	NA	27.6%
	208 kb	898	82.5%	6.2%	NA	82.5%	1497	21.0% 22.4%	0.0% 0.5%	NA	22.40
	425 kb	794	82.3% 85.8%	0.2% 7.6%		82.5% 85.9%	1666	24.5%			
					NA				0.5%	NA	24.5%
height	single-SNP	95	66.3%	60.0%	NA	85.3%	0	NA	NA	NA	NA
	3 kb	570	62.6%	45.3%	NA	73.2%	0	NA	NA	NA	NA
	20 kb	1469	69.8%	32.8%	NA	74.5%	34	20.6%	2.9%	NA	20.6%
	41 kb	2167	68.7%	26.2%	NA	72.0%	217	20.7%	2.3%	NA	21.2°
	81 kb	2417	71.0%	24.0%	NA	73.1%	589	18.2%	1.5%	NA	18.8°_{2}
	208 kb	2228	76.1%	24.7%	NA	77.3%	1111	14.5%	1.0%	NA	14.8°_{2}
	425 kb	1804	81.3%	26.6%	NA	82.0%	1269	14.7%	1.1%	NA	14.9°_{2}
platelet	$\operatorname{single-SNP}$	53	69.8%	41.5%	NA	77.4%	0	NA	NA	NA	NA
	3 kb	245	62.4%	29.4%	NA	68.6%	1	0.0%	0.0%	NA	0.0%
	20 kb	900	38.3%	10.8%	NA	40.8%	102	6.9%	0.0%	NA	6.9%
	41 kb	1041	36.8%	9.3%	NA	38.5%	220	3.6%	0.0%	NA	3.6%
	81 kb	1120	36.6%	8.0%	NA	37.5%	450	3.6%	0.2%	NA	3.6°
	208 kb	1057	39.4%	8.5%	NA	40.1%	686	4.2%	0.6%	NA	4.2%
	425 kb	911	42.9%	9.0%	NA	43.4%	742	4.6%	0.5%	NA	4.6%
$^{\mathrm{sbp}}$	3 kb	83	83.1%	12.0%	NA	83.1%	0	NA	NA	NA	NA
1	20 kb	177	89.3%	9.6%	NA	89.3%	14	57.1%	0.0%	NA	57.1
	41 kb	366	86.1%	6.0%	NA	86.3%	145	29.7%	0.0%	NA	29.79
	81 kb	496	86.5%	4.4%	NA	86.5%	334	26.3%	0.0%	NA	26.3
	208 kb	561	87.2%	4.1%	NA	87.2%	622	24.8%	0.0%	NA	24.8
	200 KD	0.01	01.470	-I.I/U	T 1 T T	01.470	044	21.070	0.070	T # T T	<i>⊒</i> =1.0,

Table S9: Numbers of KnockoffGWAS discoveries containing previously reported associations. The results are stratified based on whether they are also detected by BOLT-LMM (as in Table 1). Other details are as in Table S8.

Phenotype	Catalog	Japan	FinnGen
bmi	4261 / 4514 (94.4%)	5016 / 5094 (98.5%)	NA
cvd	2223 / 4229 (52.6%)	NA	$2491 \ / \ 6713 \ (37.1\%)$
diabetes	$709 \ / \ 1906 \ (37.2\%)$	5904~/~8550~(69.1%)	$93 \ / \ 577 \ (16.1\%)$
height	$4324 \ / \ 4461 \ (96.9\%)$	$61730 \ / \ 63254 \ (97.6\%)$	NA
hypothyroidism	$176 \ / \ 197 \ (89.3\%)$	NA	$89 \ / \ 462 \ (19.3\%)$
platelet	$1121 \ / \ 1159 \ (96.7\%)$	7797 / 8012 (97.3%)	NA
respiratory	1751 / 4112 (42.6%)	NA	1129 / 9450 (11.9%)
$_{\mathrm{sbp}}$	1781 / 2048 (87.0%)	1757~/~1817~(96.7%)	NA

Table S10: Total numbers of reported associations in the GWAS Catalog, Japan Biobank resource, or FinnGen resource, along with the corresponding fraction confirmed in our low-resolution analysis (425 kb). Other details are as in Table S8.

			Total		N	ot found by BC	DLT-LMM	
			Cor	nfirmed		Confirmed		
Phenotype	Resolution	Discover.	Other	Other or Enrich.	Discover.	Other	Other or Enrich	
cvd	3 kb	22	22 (100.0%)	22 (100.0%)	0	NA	NA	
	20 kb	239	188~(78.7%)	219~(91.6%)	59	28~(47.5%)	50 (84.7%)	
	41 kb	339	266~(78.5%)	309~(91.2%)	127	72~(56.7%)	107~(84.3%)	
	81 kb	566	422~(74.6%)	495~(87.5%)	305	180~(59.0%)	240 (78.7%)	
	208 kb	940	738~(78.5%)	764~(81.3%)	666	472~(70.9%)	493~(74.0%)	
	425 kb	1089	967~(88.8%)	968~(88.9%)	834	714~(85.6%)	715 (85.7%)	
diabetes	3 kb	21	20~(95.2%)	20~(95.2%)	1	1 (100.0%)	NA	
	20 kb	61	54 (88.5%)	57 (93.4%)	16	11~(68.8%)	13~(81.2%)	
	41 kb	109	88~(80.7%)	97~(89.0%)	55	36~(65.5%)	42~(76.4%)	
	81 kb	109	89~(81.7%)	99~(90.8%)	59	39~(66.1%)	48 (81.4%)	
	208 kb	113	97~(85.8%)	106~(93.8%)	61	46~(75.4%)	54 (88.5%)	
	425 kb	194	142 (73.2%)	157~(80.9%)	137	86~(62.8%)	$100 \ (73.0\%)$	
hypothyroidism	$\operatorname{single-SNP}$	19	7 (36.8%)	7 (36.8%)	0	NA	NA	
	3 kb	40	24~(60.0%)	24~(60.0%)	0	NA	NA	
	20 kb	105	71~(67.6%)	$91 \ (86.7\%)$	16	3(18.8%)	8(50.0%)	
	41 kb	222	105~(47.3%)	$172 \ (77.5\%)$	94	21 (22.3%)	61 (64.9%)	
	81 kb	277	135~(48.7%)	219~(79.1%)	144	30~(20.8%)	93~(64.6%)	
	208 kb	295	156(52.9%)	226(76.6%)	166	43 (25.9%)	101 (60.8%)	
	425 kb	335	174 (51.9%)	231~(69.0%)	213	60~(28.2%)	116~(54.5%)	
bmi	3 kb	10	10 (100.0%)	10 (100.0%)	0	NA	NA	
	20 kb	343	308 (89.8%)	328 (95.6%)	34	16 (47.1%)	29 (85.3%)	
	41 kb	918	656(71.5%)	821 (89.4%)	300	103 (34.3%)	234(78.0%)	
	81 kb	1480	865 (58.4%)	1182(79.9%)	688 1.407	190(27.6%)	450 (65.4%)	
	208 kb	2395	1076 (44.9%)	1620 (67.6%)	1497 1666	335 (22.4%)	806 (53.8%)	
1 • 1 /	425 kb	2460	1091 (44.3%)	1567 (63.7%)	1666	409 (24.5%)	820 (49.2%)	
height	single-SNP 3 kb	95 570	81 (85.3%)	81 (85.3%)	0 0	NA NA	NA NA	
	эко 20 kb	570 1502	417(73.2%)	417(73.2%)	$\frac{0}{34}$			
	20 kb 41 kb	$1503 \\ 2384$	$ \begin{array}{c} 1102 \ (73.3\%) \\ 1607 \ (67.4\%) \end{array} $	1351 (89.9%) 1997 (83.8%)	$\frac{54}{217}$	7 (20.6%) 46 (21.2%)	$\begin{array}{c} 20 \ (58.8\%) \\ 111 \ (51.2\%) \end{array}$	
	41 kb 81 kb	3006	1879 (62.5%)	2386 (79.4%)	$\frac{217}{589}$	40(21.2%) 111(18.8\%)	314 (53.3%)	
	208 kb	3339	1879(02.5%) 1886(56.5%)	2493(74.7%)	1111	164 (14.8%)	514(55.5%) 556(50.0%)	
	425 kb	3073	1669 (54.3%)	2433(74.770) 2231(72.6%)	1269	104(14.3%) 189(14.9%)	622 (49.0%)	
platelet	single-SNP	53	41 (77.4%)	41 (77.4%)	0	NA	NA	
platelet	3 kb	246	168(68.3%)	230 (93.5%)	1	0 (0.0%)	0 (0.0%)	
	20 kb	1002	374(37.3%)	778 (77.6%)	102	7 (6.9%)	49 (48.0%)	
	41 kb	1261	409 (32.4%)	934(74.1%)	220	8(3.6%)	127 (57.7%)	
	81 kb	1570	436(27.8%)	1058 (67.4%)	450	16(3.6%)	226 (50.2%)	
	208 kb	1743	453 (26.0%)	1017 (58.3%)	686	29 (4.2%)	256 (37.3%)	
	425 kb	1653	429 (26.0%)	922 (55.8%)	742	34~(4.6%)	297 (40.0%)	
$^{\mathrm{sbp}}$	$3 \mathrm{~kb}$	83	69 (83.1%)	69(83.1%)	0	NA	NA	
	20 kb	191	166 (86.9%)	178 (93.2%)	14	8 (57.1%)	12 (85.7%)	
	41 kb	511	359(70.3%)	441 (86.3%)	145	43 (29.7%)	97~(66.9%)	
	$81 \mathrm{~kb}$	830	517(62.3%)	663(79.9%)	334	88(26.3%)	200 (59.9%)	
	208 kb	1183	643(54.4%)	885 (74.8%)	622	154 (24.8%)	358~(57.6%)	
	425 kb	1543	709(45.9%)	983(63.7%)	1005	225 (22.4%)	474 (47.2%)	

Table S11: Numbers of KnockoffGWAS discoveries confirmed by other studies or enrichment analysis using independent GWAS summary statistics. Enrichment results are estimates. The results are stratified based on whether they are also detected by BOLT-LMM (as in Table S9).

			Total	Not fo	ound by BOLT-LMM
Phenotype	Resolution	Input	Confirmed	Input	Confirmed
cvd	20 kb 41 kb 81 kb 208 kb 425 kb	$51 \\ 73 \\ 144 \\ 202 \\ 122$	$\begin{array}{c} 23-40 \ (45\%-78\%) \\ 33-53 \ (45\%-73\%) \\ 57-88 \ (40\%-61\%) \\ 8-47 \ (4\%-23\%) \\ 0-7 \ (0\%-6\%) \end{array}$	$31 \\ 55 \\ 125 \\ 194 \\ 120$	$\begin{array}{c} 15-27 \ (48\%-87\%) \\ 27-43 \ (49\%-78\%) \\ 45-74 \ (36\%-59\%) \\ 5-40 \ (3\%-21\%) \\ 0-5 \ (0\%-4\%) \end{array}$
diabetes	3 kb 20 kb 41 kb 81 kb 208 kb 425 kb	1 7 21 20 16 52	$\begin{array}{c} 1-1 \ (100\% \ 0.\%) \\ 1-1 \ (100\% \ -100\%) \\ 0-5 \ (0\% \ -71\%) \\ 3-14 \ (14\% \ -67\%) \\ 6-15 \ (30\% \ -75\%) \\ 4-14 \ (25\% \ -88\%) \\ 6-27 \ (12\% \ -52\%) \end{array}$	$ \begin{array}{r} 120 \\ 0 \\ 5 \\ 18 \\ 19 \\ 15 \\ 51 \\ \end{array} $	$\begin{array}{c} \mathrm{NA} \\ \mathrm{0-5}\;(0\%-100\%) \\ \mathrm{1-11}\;(6\%-61\%) \\ \mathrm{5-14}\;(26\%-74\%) \\ \mathrm{3-12}\;(20\%-80\%) \\ \mathrm{4-25}\;(8\%-49\%) \end{array}$
hypothyroidism	single-SNP 3 kb 20 kb 41 kb 81 kb 208 kb 425 kb	12 16 34 117 142 139 161	$\begin{array}{c} 12-12 \ (100\%-100\%) \\ 11-16 \ (69\%-100\%) \\ 13-26 \ (38\%-76\%) \\ 53-81 \ (45\%-69\%) \\ 69-98 \ (49\%-69\%) \\ 55-86 \ (40\%-62\%) \\ 41-74 \ (25\%-46\%) \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 13 \\ 73 \\ 114 \\ 123 \\ 153 \end{array}$	$\begin{array}{c} \mathrm{NA} \\ \mathrm{NA} \\ 2-9 \; (15\%-69\%) \\ 30-51 \; (41\%-70\%) \\ 49-76 \; (43\%-67\%) \\ 43-73 \; (35\%-59\%) \\ 40-73 \; (26\%-48\%) \end{array}$
bmi	20 kb 41 kb 81 kb 208 kb 425 kb	$35 \\ 262 \\ 615 \\ 1319 \\ 1369$	$\begin{array}{c} 13-27 \ (37\%-77\%) \\ 146-184 \ (56\%-70\%) \\ 284-350 \ (46\%-57\%) \\ 494-595 \ (37\%-45\%) \\ 424-529 \ (31\%-39\%) \end{array}$	$ 18 \\ 197 \\ 498 \\ 1162 \\ 1257 $	$\begin{array}{c} 8-18 & (44\%-100\%) \\ 115-147 & (58\%-75\%) \\ 231-289 & (46\%-58\%) \\ 422-518 & (36\%-45\%) \\ 361-461 & (29\%-37\%) \end{array}$
height	single-SNP 3 kb 20 kb 41 kb 81 kb 208 kb 425 kb	$14 \\ 153 \\ 401 \\ 777 \\ 1127 \\ 1453 \\ 1404$	$\begin{array}{c} 0-9 (0\%-64\%)\\ 90-123 (59\%-80\%)\\ 225-272 (56\%-68\%)\\ 353-426 (45\%-55\%)\\ 460-552 (41\%-49\%)\\ 555-660 (38\%-45\%)\\ 509-615 (36\%-44\%)\end{array}$	$egin{array}{c} 0 \\ 0 \\ 27 \\ 171 \\ 478 \\ 947 \\ 1080 \end{array}$	$\begin{array}{c} {\rm NA}\\ {\rm NA}\\ 7-19~(26\%-70\%)\\ 47-84~(27\%-49\%)\\ 174-234~(36\%-49\%)\\ 349-434~(37\%-46\%)\\ 387-478~(36\%-44\%)\end{array}$
platelet	single-SNP 3 kb 20 kb 41 kb 81 kb 208 kb 425 kb	12 78 628 852 1134 1290 1224	$\begin{array}{c} 3-12 \ (25\%-100\%) \\ 53-70 \ (68\%-90\%) \\ 373-433 \ (59\%-69\%) \\ 488-561 \ (57\%-66\%) \\ 578-665 \ (51\%-59\%) \\ 514-614 \ (40\%-48\%) \\ 442-542 \ (36\%-44\%) \end{array}$	$\begin{array}{c} 0 \\ 1 \\ 95 \\ 212 \\ 434 \\ 657 \\ 708 \end{array}$	NA 0-0 (0%-0%) 29-55 (31%-58%) 100-138 (47%-65%) 181-238 (42%-55%) 190-264 (29%-40%) 224-301 (32%-43%)
sbp	3 kb 20 kb 41 kb 81 kb 208 kb 425 kb	$14 \\ 25 \\ 152 \\ 313 \\ 540 \\ 834$	$\begin{array}{c} 3-12 \ (21\%-86\%) \\ 5-18 \ (20\%-72\%) \\ 67-97 \ (44\%-64\%) \\ 122-169 \ (39\%-54\%) \\ 209-273 \ (39\%-51\%) \\ 232-316 \ (28\%-38\%) \end{array}$	$egin{array}{c} 0 \\ 6 \\ 102 \\ 246 \\ 468 \\ 780 \end{array}$	NA 2-6 (33%-100%) 40-67 (39%-66%) 90-133 (37%-54%) 173-233 (37%-50%) 209-289 (27%-37%)

Table S12: Bootstrap confidence intervals (90%) for the proportion of novel discoveries confirmed by the enrichment analysis in Table S11.

Phenotype	Discoveries	Contains gene	Known lead SNP consequence	Known lead SNP association
cvd	31	26 (84%)	28 (90%)	21 (68%)
diabetes	5	5(100%)	3(60%)	5(100%)
hypothyroidism	13	12~(92%)	8~(62%)	9(69%)
respiratory	6	5(83%)	4 (67%)	3 (50%)

Table S13: Numbers of novel discoveries (not found by BOLT-LMM and not confirmed by the other studies in Table S9) that either contain a gene or whose lead SNP has a known functional annotation or a known association with phenotypes closely related to that of interest.

Phenotype	Associations			
cvd	NA (10), blood pressure (9), BMI (8), obesity (3), cardiovascular disease (1),			
	CCL2 (1), cholesterol (1), triglycerides (1), heart rate (1)			
diabetes	diabetes (3) , Factor VII (1) , glyburide metabolism (1)			
hypothyroidism	NA (4), autoimmune thyroid disease (2), psoriasis (2), diabetic nephropathy (1),			
	Graves disease (1), hypothyroidism (1), rheumatoid arthritis (1), thyroid function (1)			
respiratory	NA (3) , hypersonnia (1) , interaction with air pollution (1) , serum IgE (1)			

Table S14: Associations of our novel discoveries (20 kb resolution) in Table S13 to related traits. The same discovery may have more than one relevant association in this table.

		1. 1	1 .1 .1.	• .
Consequence	cvd	diabetes	hypothyroidism	respiratory
2KB Upstream		1		
3 Prime UTR	2			
500B Downstream				1
Intron	19	2	6	3
Missense	3		1	
Non coding transcript exon	1			
Regulatory region	2			
Stop gained			1	
Tf binding site	1			
Unknown	3	2	5	2
Total	31	5	13	6

Table S15: Numbers of lead variants with known consequences for our novel discoveries (20 kb resolution) in Table S13.

References

- E. Candès, Y. Fan, L. Janson, and J. Lv. "Panning for Gold: Model-X Knockoffs for High-dimensional Controlled Variable Selection". In: J. R. Stat. Soc. B. 80 (2018), pp. 551–577.
- [2] S. Bates, M. Sesia, C. Sabatti, and E. Candès. "Causal inference in genetic trio studies". In: Proc. Natl. Acad. Sci. U.S.A 117.39 (2020), pp. 24117–24126.
- [3] J. Yedidia, W. Freeman, and Y. Weiss. "Understanding belief propagation and its generalizations". In: Exploring Artificial Intelligence in the New Millenium. Vol. 8. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., Jan. 2003, pp. 239–269.
- M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and variational inference. Now Publishers Inc, 2008.
- [5] M. Sesia, C. Sabatti, and E. Candès. "Gene hunting with hidden Markov model knockoffs". In: *Biometrika* 106 (2019), pp. 1–18.
- [6] M. Sesia, E. Katsevich, S. Bates, E. Candès, and C. Sabatti. "Multi-resolution localization of causal variants across the genome". In: *Nat. Comm.* 11.1 (2020), p. 1093.
- [7] S. Bates, E. Candès, L. Janson, and W. Wang. "Metropolized knockoff sampling". In: J. Am. Stat. Assoc. (2020), pp. 1–15.
- [8] P.-R. Loh, G. Kichaev, S. Gazal, A. P. Schoech, and A. L. Price. "Mixed-model association for biobankscale datasets". In: *Nat. Genet.* 50 (2018), pp. 906–908.
- J. L. Marchini. "Discussion of Gene hunting with hidden Markov model knockoffs". In: *Biometrika* 106 (2019), pp. 27–28.
- [10] A. Naseri, X. Liu, K. Tang, S. Zhang, and D. Zhi. "RaPID: ultra-fast, powerful, and accurate detection of segments identical by descent (IBD) in biobank-scale cohorts". eng. In: *Genome Biol.* 20.1 (July 2019), pp. 143–143.
- [11] B. Japan. Biobank Japan Project. 2020.
- [12] FinnGen. FinnGen Documentation of R3 release. 2020.
- [13] J. D. Storey and R. Tibshirani. "Statistical significance for genomewide studies". In: Proc. Natl. Acad. Sci. U.S.A 100.16 (2003), pp. 9440–9445.
- [14] B. Klaus, K. Strimmer, and M. K. Strimmer. "Package 'fdrtool'". In: ().