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Abstract  36 

The development of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) has been a 37 

critical in vitro advance in the study of patient-specific physiology, pathophysiology and 38 

pharmacology. We designed a new deep learning multitask network approach intended to address 39 

the low throughput, high variability and immature phenotype of the iPSC-CM platform. It was 40 

trained using simulated action potential (AP) data and applied to classify cells into the drug-free 41 

and drugged categories and to predict the impact of electrophysiological perturbation across the 42 

continuum of aging from the immature iPSC-CMs to the adult ventricular myocytes. The phase of 43 

the AP extremely sensitive to perturbation due to a steep rise of the membrane resistance was 44 

found to contain the key information required for successful network multitasking. We also 45 

demonstrated successful translation of both experimental and simulated iPSC-CM AP data 46 

validating our network by prediction of experimental drug-induced effects on adult cardiomyocyte 47 

APs by the latter.   48 
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Introduction 49 

The development of novel technologies has resulted in new ways to study cardiac function and 50 

rhythm disorders [1]. One such technology is the induced pluripotent stem cell-derived 51 

cardiomyocyte (iPSC-CMs) in vitro model system [2]. The iPSC-CM system constitutes a powerful 52 

in vitro tool for preclinical assessment of cardiac electrophysiological impact and drug safety 53 

liabilities in a human physiological context [3-8].  Moreover, because iPSC-CMs can be cultured 54 

from patient specific-cells, it has shown to be an ideal model system for patient-based medicine 55 

[8-10]. 56 

 57 

While utilization of in vitro iPSC-CMs allows for testing of responses to drugs and understanding 58 

physiological mechanisms [11-14], there is still a major inherent limitation of the approach: The 59 

complex differentiation process to create iPSC-CMs results in a model of cardiac electrical behavior 60 

that resembles fetal cardiomyocytes. Hallmarks of the immature phenotype include spontaneous 61 

beating, immature calcium handling, presence of developmental currents, and significant 62 

differences in the relative contributions of repolarizing potassium currents compared to adult 63 

cardiomyocytes (adult-CMs) [15-17]. The profound differences between the immature iPSC-CMs 64 

and the adult-CMs have led to persistent questions about the utility and applicability of the iPSC-65 

CM action potential (AP) to predict relevant drug impacts on adult human electrophysiology [18, 66 

19].  67 

 68 

Several recent studies have proposed computational frameworks to address the primary limitation 69 

in using iPSC-CMs and animal cardiomyocytes for drug screening [11, 12, 20, 21]. The innovative 70 

studies described by Tvieto and colleagues [9, 10] presented a translation algorithm that identified 71 

a mapping function to identify the relationships between the parameters that are defined by key 72 

ion channel conductances in the iPSC-CM APs and the adult-CM APs. In another study by Gong 73 

and Sobie, additional insights were revealed through application of an efficient partial least 74 

squares regression (PLSR) methodology to translate key physiological features between iPSC-CMs 75 

and adult-CMs. They also demonstrated the potential to translate between species, between drug-76 

free and simple drugged models as well as between healthy and diseased phenotypes [20]. 77 
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Koivumäki et al. also tried to address the problem of iPSC-CMs immaturity by establishing a novel 78 

in silico mathematical model for iPSC-CMs, which can estimate adult-CM behavior [22].     79 

 80 

The efficacy of the linear translation algorithms used in the earlier studies relies on a collection of 81 

underlying assumptions [20]. One described by Tvieto et al. is that cardiac protein expression levels 82 

would differ but their functional properties remain invariant during maturation and that a drug 83 

will modify protein function in the same way for iPSC-CMs and the adult-CMs [11]. Tvieto et al. 84 

also acknowledged the difficulty in minimizing the cost function that measures the differences 85 

between the initial and target parameters, which therefore required a brute force search 86 

algorithm for minimization. One possible explanation for the difficulty in cost function 87 

minimization is that linear translation may not capture the nonlinearities comprising the actual 88 

underlying physiological differences [20]. Another underlying assumption with linear translation is 89 

the required representation of drug effects as a simple pore-block, modeled as a reduction in the 90 

maximal conductance of the channel [11, 20]. The earlier studies employed a biased method in 91 

that they rely on a priori parameter identification and extraction from voltage and calcium traces 92 

to allow feature mapping from immature to mature conditions [11, 20]. Earlier translators must 93 

also consider drug-free and drugged conditions independently.  94 

 95 

In this study, we describe a deep learning multitask network that simultaneously performs 96 

translation and classification of signals from simulated cardiac myocytes for both drug-free and 97 

drugged conditions and we demonstrate its utility for translating and predicting experimental data 98 

as well. The multitask network is an unbiased approach in that the user does not predefine the 99 

important parameters of the system. Rather, the network learns from the data to define important 100 

parameter regimes and data ranges. The new approach is indifferent to the underlying form of the 101 

models and can translate time series data from any source.  Moreover, the deep learning approach 102 

accepts non-linearity of the system, makes no assumptions about changes in cardiac protein 103 

expression and function during maturation and can successfully translate simple pore block and 104 

complex conformation state-dependent channel – drug interaction. The network learns from all 105 

of these data sources for robust and successful translation, suggesting broad applicability.  106 
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Artificial neural networks are increasingly used to advance personalized medicine [23-27]. Long-107 

short-term-memory (LSTM) based networks, which are capable of learning order dependence in 108 

sequence prediction problems [28], have been widely used for cardiac monitoring purposes [29-109 

31]. They have been used to extract important biomarkers from raw ECG signals [32-34] and help 110 

clinicians to accurately detect common heart failure biomarkers in ECG screenings [32, 35-39]. 111 

LSTM networks, which can catch existing temporal information in the electronic health records 112 

(EHR), have been highlighted as the best predictive models using real time data [40]. LSTM based 113 

classifiers have also empowered early arrhythmia detection by automatically classifying 114 

arrhythmias using ECG features [41-45]. In addition, deep learning algorithms have been employed 115 

to predict drug-induced arrhythmogenicity associated with blockade of the delayed rectifier K+ 116 

channel current (IKr) in the CMs encoded by  human ether-à-go-go-related gene (hERG) [46] for 117 

sets of small molecules in drug discovery and screening process [46-51].  118 

 119 

Here, we implemented a deep learning LSTM based multitask network to classify iPSC-CM AP 120 

traces into drug-free and drugged categories and translate them into adult-CM AP waveforms. To 121 

collect robust realistic simulated data for training the multitask network, we paced simulated 122 

cardiac myocytes with the addition of a physiological noise current at matching cycle lengths for 123 

Kernik in silico iPSC-CMs [52] and O’Hara-Rudy in silico human adult-CMs [53] to generate a 124 

population of drug-free simulated cardiac myocyte data. To ensure that our model could perform 125 

for both drug-free and drugged iPSC-CM and adult-CM APs simultaneously, we simulated drugged 126 

samples via both a simple drug-induced IKr block model of hERG channel conduction, GKr, reduction 127 

by 1-50% and a complex Markov model of conformation-state dependent IKr block in the presence 128 

of a clinical concentration, 2.72 ng/mL, of a potent hERG blocking drug dofetilide from our recent 129 

study [46]. We evaluated the multitask network performance on a test dataset and showed 130 

excellent performance to translate and classify signals in the form of time-resolved AP traces. We 131 

performed an ablation study to reveal the most important iPSC-CM AP information for network 132 

translation into adult-CM APs by removing iPSC-CM AP values during various time frames (feature 133 

ablation). We also explored the importance of individual LSTM network building blocks and how 134 

decoupling of the translation and classification tasks affected overall network performance. We 135 
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then showed how proposed multitask network can be applied even to scarce experimental data, 136 

which was also used to validate the model. 137 

 138 

In this study we show that developments in iPSC-CM experimental technology and cardiac 139 

electrophysiological modeling and simulation of iPSC-CMs can be leveraged for the application of 140 

artificial neural networks (ANN) as a universal approximator [54] to find the most accurate 141 

mapping function which is capable of learning nonlinear relationships to predict disease 142 

phenotype  and drug response in cardiac myocytes from immaturity to maturation. 143 

 144 

Results 145 

In this study, we set out to build a multitask network that would perform two distinct tasks: The 146 

first task is to classify iPSC-CM APs into drug-free and drugged categories. The second goal is to 147 

translate iPSC-CM APs into corresponding adult-CM AP waveforms. To collect the data for training 148 

the multitask network, we simulated a population of 208 AP waveforms for both Kernik in silico 149 

human iPSC-CMs [52] (Figure 1E blue) and O’Hara-Rudy in silico human adult-CMs [53] (Figure 1F 150 

blue). We ensured consistency across a population of simulated myocytes by applying 151 

physiological noise at the matching the cycle lengths into the iPSC-CMs and adult-CMs. The cell 152 

variability in each population is intended to represent the individual variability that is observed in 153 

a drug-free human population [52, 53, 55]. An average AP trace from the population is shown in 154 

Figure 1A for iPSC-CMs and Figure 1B for adult-CMs. In Figure 1 panels C and D, the ionic currents 155 

underlying the in silico iPSC-CM APs and adult-CM APs show marked differences, one reason for 156 

the broadly expressed concerns about the applicability of utilizing immature iPSC-CM APs in the 157 

study of human disease and pharmacology. The substantial current differences illustrate the 158 

necessity of a generalized approach to perform translation from immature myocytes into mature 159 

myocytes. To ensure that our multitask network could perform over a range of conditions and 160 

model forms, we simulated drugged iPSC-CM and adult-CM APs via both a simple IKr drug block 161 

model of GKr reduction by 1-50% (250 samples in Figure 1E, F green) and a complex model of 162 

conformation-state dependent IKr block in the presence of 2.72 ng/mL dofetilide (300 samples in 163 

Figure 1E, F purple). We combined the drug-free and drugged models with simple and complex IKr 164 
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block model schemes (758 samples) for training the multitask network.  The differences in key 165 

parameters, upstroke velocity (Vmax), maximum diastolic potential (MDP) and action potential 166 

durations (APD) across the three conditions are tabulated and shown in Figure 1G.  167 
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Figure 1. Cellular action potential (AP) and ionic currents for iPSC-CMs and adult-CMs (O’Hara-168 

Rudy human ventricular action potentials). Comparison of Cellular APs in the baseline model of 169 

(A) iPSC-CMs and (B) adult-CMs at a matched cycle length of 982 ms. (C – D) Simulated ionic 170 

current (ICaL, IKr, IKs, Ito, IK1) profiles during (C) iPSC-CM and (D) adult-CM APs. (E) APs of 171 
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spontaneously beating iPSC-CM cells (n =208) and (F) adult-CM APs at matched cycle lengths 172 

were simulated after incorporating physiological noise currents as drug-free (blue) and drugged 173 

IKr modeled as simple GKr reduction by 1-50% IKr block (green) and a complex model of 174 

conformation-state dependent IKr block in the presence of 2.72 ng/mL dofetilide (purple). (G) 175 

Comparison between iPSC-CM and adult-CM drug-free and drugged models with simple and 176 

complex IKr block model schemes (as indicated in right column), including upstroke velocity 177 

(Vmax), maximum diastolic potential (MDP) and action potential duration (APD). 178 

 179 

Next, we applied a digital forward and backward data filtering technique [56]  to the simulated 180 

iPSC-CM and adult-CM AP traces (Figure 2 left panels). Since we applied physiological noise to 181 

introduce a source of variability (as observed in human populations) in our model simulations, we 182 

assessed the possible phase distortion for AP waveforms following noise filtering.  In Figure 2 (right 183 

panels), the distribution of iPSC-CM and adult-CM AP duration at 90% repolarization (APD90) values 184 

are shown. The near superimposition of the histogram distributions assures that noise filtering 185 

does not change the AP waveform morphology or time course and primarily removes existing 186 

vertical noises. Panel A and B show simulated drug-free iPSC-CM and adult-CM APs and 187 

corresponding APD90 distribution with physiological noise in blue and after applying the noise 188 

filtering technique in black for iPSC-CM APs and red for adult-CM APs.  The same plots are 189 

illustrated for drugged AP traces with simple 1-50% IKr block (Figure 2C and D) and with complex 190 

IKr block model in the presence of 2.72 ng/mL dofetilide (Figure 2E and F). Next, we normalized 191 

drug-free and drugged noise-filtered iPSC-CM APs and adult-CM APs to use them as input and 192 

output, respectively, for training the multitask network. 193 
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Figure 2. Application of a digital forward and backward data filtering technique to simulated 194 

iPSC-CM and adult-CM APs population (left panels) indicates zero phase distortion for APD90 195 

value distributions (right panels) for:  (A) drug-free iPSC-CM APs with physiological noise in blue 196 

and after applying the noise filtering technique in black; (B) drug-free adult-CM APs – blue and 197 

red traces; (C) drugged iPSC-CM APs with 1-50% IKr block – green and black traces; (D) drugged 198 
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adult-CM APs with 1-50%  IKr block  – green and red traces; (E) drugged iPSC-CM APs with 2.72 199 

ng/mL dofetilide – purple and black traces. (F) drugged adult-CM APs with 2.72 ng/mL dofetilide 200 

–purple and red traces. 201 

The building blocks of the multitask network are illustrated in Figure 3A. The multitask network 202 

receives preprocessed simulation generated iPSC-CM AP waveforms (noise-filtered and 203 

normalized) as input and scans whole AP time series values through two stacked LSTM layers 204 

(Figure 3A, D).  The LSTM layers remember the most important iPSC-CM AP values (features) they 205 

need to perform the translation and classification tasks and passes the information to two fully 206 

connected layers (Figure 3A, E), one for the translation task to predict the corresponding adult-207 

CM AP waveform (Figure 3B) and one for the classification task to classify iPSC-CM APs into drug-208 

free and drugged categories (Figure 3C).  209 

   210 
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Figure 3. The building blocks of the multitask network. (A) The general overview of the multitask 211 

network presented in this study. (B) The translation task to reconstruct adult-CM APs from 212 

corresponding iPSC-CM APs. (C) The classification task to classify iPSC-CM APs into drug-free and 213 

drugged categories. (D) The logic flow process in the LSTM layers. (E) The architecture of the 214 

implemented fully connected layers in the multitask network. 215 

 216 

The workflow for training and evaluating the multitask network is depicted in Figure 4. As 217 

described above, we generated simulated drug-free and drugged iPSC-CM and adult-CM APs and 218 

applied a noise filtering technique to the AP waveforms.  The waveforms were then normalized in 219 

a data preprocessing step for more efficient training of the multitask network. We used 220 

preprocessed iPSC-CM APs as the network input and adult-CM APs along with corresponding drug-221 

free and drugged labels as network outputs, respectively. Next, we randomly split input and output 222 

data in 70:10:20 ratio into three subcategories: training, validation, and test data sets. We used 223 

the training dataset for training the multitask network to simultaneously perform translation and 224 
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classification. The mean squared error, R2-score [57] and error in adult-CM APD90 prediction were 225 

used as evaluation metrics for the translation task. For the classification task, area under the 226 

receiver operating characteristic (AUROC) curve [58], network prediction accuracy, precision and 227 

recall [59] were used to evaluate the network performance. To prevent overfitting, we calculated 228 

the evaluation metrics for both tasks using validation data during each iteration of training and 229 

compared those with values from the training dataset. When the model performance on the 230 

training dataset exhibited degradation relative to the validation dataset, we ceased training and 231 

tuning of the network hyperparameters. We evaluated the underlying mechanisms that inform 232 

the network performance by using a holdout test data set to perform an ablation study.  The 233 

ablation study allowed us to identify the most important information for network performance 234 

and is an indicator of the data that the network deems most important to remember to allow 235 

accurate translation into adult-CM APs (feature ablation). Finally, we performed a type of network 236 

component dissection by sequentially eliminating individual LSTM layers or the classification task 237 

to determine if all elements of the network are important to the overall performance.  238 
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Figure 4. Machine learning workflow in this study: 1) Data preprocessing includes noise-filtering 239 

and normalization of the drug-free and drugged iPSC-CM and adult-CM APs; 2) Incorporating the 240 

preprocessed iPSC-CM APs as input and adult-CM APs and corresponding labels (drug-free (0) 241 

and drugged (1)) of iPSC-CM APs as targets into the multitask network; 3) Splitting the input and 242 

target data into training, validation and test set, and using training and validation set for training 243 

and tuning the network hyperparameters;  4) Comparing the network performance for training 244 

set and validation set to decide when to stop training and tuning the network hyperparameters; 245 

5) Testing the overall multitask network performance using holdout test dataset and removing 246 

the LSTM layers, classification task (model ablation) and iPSC-CM AP values at different time 247 

frames (feature ablation) to study the performance of the network in the absence of its building 248 

blocks. 249 

Figure 5 and Table 1 illustrate the overall multitask network performance for translation and 250 

classification tasks for the training and test data sets. Panels A and D in Figure 5 represent iPSC-251 

CM APs (black), which were used for training and testing the multitask network, respectively. 252 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 11, 2021. ; https://doi.org/10.1101/2020.09.28.317461doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.28.317461


15 

 

Panels B and E depict the comparison between simulated (red) and translated (cyan) adult-CM APs 253 

used for the training and testing the network. The comparison between histogram distribution of 254 

APD90 values for simulated and translated adult-CM APs in Figure 5C and F show good agreement 255 

in terms of the frequency of virtual cells with similar APD.  256 

 257 

 258 

Figure 5. The performance of the multitask network for translating iPSC-CM APs into adult-CM 259 

APs. (A) The iPSC-CM APs used for training the multitask network contained a variety of drug-260 

free and drugged action potential morphologies (Training set). (B) Comparison between 261 

simulated (red) and translated adult-CM APs (cyan) in the training set. (C) Comparison between 262 

the histogram distribution of APD90 values for simulated and translated adult-CM APs in the 263 

training set. (D) Dedicated iPSC-CM APs for testing the performance of the multitask network 264 

(Test set) (E) Comparison between simulated (red) and translated adult-CM APs (cyan) in the test 265 

set. (F) Comparison between histogram distribution of APD90 values for simulated and translated 266 

adult-CM APs in the test set. 267 

 268 

The performance evaluation metrics for both the translation and classification tasks are listed in 269 

Table 1. The multitask network exhibits high accuracy in performing translation, despite large 270 

variability in APDs and regardless of the underlying model form. The network is able to translate 271 

iPSC-CM APs into adult-CM APs with less than 0.003 mean-squared error (MSE), 0.99 R2_score and 272 

less than 4% error in APD90 prediction for both training and test datasets. To evaluate the network 273 

performance for the classification task we compared the AUROC, prediction accuracy, recall and 274 

precision for both training and test datasets. The multitask network proved to perform well in 275 

categorizing iPSC-CM APs into drug-free and drugged waveforms with approximately 90% 276 
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accuracy (Table 1). Finally, we performed a type of network component dissection by sequentially 277 

eliminating individual LSTM layers or the classification task to determine if all elements of the 278 

network are important to the overall performance. The impact of removing these elements of the 279 

network on the network performance is shown in Table 1.  280 

 281 

Table 1. Statistical measures for evaluating the performance of the multitask network for both 282 

iPSC-CM AP trace classification into drug-free and drugged categories and their translation into 283 

adult-CM APs for training and test datasets as well as the effect of removing LSTM layers and 284 

classification task on the network performance. 285 

Translation 

Performance metrics MSE R2_score 
Error in APD90 

prediction 

Training dataset  0.0027 0.992 3.41% 

Test dataset  0.0029 0.991 3.60% 

Remove LSTM layers test dataset 0.0031 0.991 3.78% 

Remove classification task test 
dataset 

0.0034 0.990 4.33% 

Classification 

Performance metrics AUROC Accuracy Recall Precision 

Training dataset  0.93 92% 0.92 0.93 

Test dataset  0.91 92% 0.92 0.92 

Remove LSTM layers test dataset 0.90 92% 0.90 0.91 

 

Next, we performed a “computational” ablation study as a correlate to the types of physiological  286 

ablations that are used to examine the roles and functions of a physiological system [60, 61]. We 287 

tested how the performance of the multitask network would change by removing various 288 

information contained within specified time frames as shown in Figure 6A. To reveal the most 289 

important iPSC-CM AP information for translation into adult-CM APs, we did not allow the network 290 

to process data from within designated time frames from the iPSC-CM APs (feature ablation). We 291 

then retrained the multitask network by setting the missing information equal to zero and 292 

compared the calculated MSE in adult-CM APs translation (red bars) with the recorded MSE for 293 

multitask network (green line) when it was provided full access to the complete iPSC-CM AP data. 294 

We observed that network is extremely sensitive to information contained within the 400-500 ms 295 

timeframe (blacked dashed bar in Figure 6A).  296 

 297 
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This result suggests that the most important information needed to distinguish adult-CM AP 298 

signals from iPSC-CM AP signals is contained in a particular region of the AP plateau.  The 299 

timeframe of the AP between 400 and 500 ms (Figure 6A), corresponds to a phase of exquisite 300 

sensitivity to perturbation. We have identified this particular AP range in an earlier study as the 301 

phase when the membrane resistance of the myocyte increases markedly (Figure 6B) [62]. This 302 

occurs as the inward and outward currents balance each other, leading to a net whole cell current 303 

that is nearly constant so that dI → 0, dV/dI →  (Figure 6C), followed by a rapid reduction in 304 

outward current. Figure 6D demonstrates that individual current densities have a period of inward 305 

and outward current balance followed by rapid changes in IKr and other repolarizing currents at 306 

400-500 ms time interval.  307 

 308 

 

Figure 6. The feature ablation study on the proposed multitask network is performed by 309 

removing iPSC-CM AP values during different time frames and evaluating their importance on 310 

adult-CM AP translation. The largest effect (most important information) is observed at 400-500 311 

ms interval (dotted black line). (A) Comparison between intact multitask network MSE (cyan line) 312 

and obtained MSE values for adult-CM AP translation during removal of indicated time frames 313 

within iPSC-CM APs (red bars). (B) AP trace (green) and membrane resistance (red) as a function 314 

of simulation time indicating very high values (as dI → 0, dV/dI → ) for the latter at 400-500 315 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 11, 2021. ; https://doi.org/10.1101/2020.09.28.317461doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.28.317461


18 

 

ms. (C) Total current density, Itotal, demonstrates a plateau followed by a rapid decline at 400-500 316 

ms. (D) Individual current densities indicate a period of inward and outward current balance 317 

followed by rapid changes in IKr and other repolarizing components at 400-500 ms time interval. 318 

 319 

We next set out to demonstrate the real-world utility of the multitask classification and translation 320 

network by applying the network to experimental data.  We used experimental iPSC-CM APs from 321 

the Kurokawa lab (Figure 7A) as the input data into the multitask network and translated to 322 

predicted adult-CM APs as shown in Figure 7B. The translation notably resulted in a reduction in 323 

variability in APD in the adult translated cells, consistent with our simulated results and with 324 

previous experimental observations [18, 63].   In an additional validation of the multitask network, 325 

we undertook a test of the network to accurately translate drug block in iPSC-CMs to adult AP 326 

effects and then compared the predicted results with measured experimental data [53].  We first 327 

simulated iPSC-CM APs with 50% block of IKr. We then used these simulated APs as an input for 328 

the multitask network and used the output from the translation task to predict 50% block on adult-329 

CMs.  In Figure 7C, the translated drugged APD90 values are shown as turquoise asterisks plotted 330 

against simulations from O’Hara-Rudy adult-CM APs with 50% IKr block (red curve) and 331 

experimental 50% block of IKr by 1M E-4031 (blue squares) [53].  These data validate that the 332 

effects of drug block in iPSC-CMs can be successfully translated to predict its effect on adult human 333 

cardiomyocyte APs.  334 

 335 

 336 
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Figure 7. Translation of experimentally recorded iPSC-CM APs into adult-CM APs to validate the 337 

multitask network performance. (A) Experimentally recorded iPSC-CM APs from the Kurokawa 338 

lab. (B) Translated adult-CM APs from experimentally recorded iPSC-CM APs via the multitask 339 

network. (C) Comparing translated adult-CM APD90 values with 50% IKr block (turquoise asterisks) 340 
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with previously published simulated (red curve for drugged and black for drug-free control) and 341 

experimental (blue squares) values from O’Hara-Rudy study [1] indicates model validation. 342 

 343 

Discussion 344 

In this study, we developed a data-driven deep learning approach to address well known 345 

shortcomings in the induced pluripotent stem cell-derived cardiomyocyte (iPSC-CM) platform.  A 346 

concern with iPSC-CM is that the data collection results in measurements from immature action 347 

potentials, and it is unclear if these data reliably indicate impact in the adult cardiac environment 348 

[14, 64-68]. Here, we set out to demonstrate a new way to allow translation of results from the 349 

iPSC-CM to a mature adult cardiac response. The deep learning network also revealed new 350 

mechanisms that are critical to convert iPSC-CM APs to mature adult cardiac APs.  351 

 352 

Application of a deep learning artificial neural network to simultaneously translate and classify 353 

signals from simulated iPSC-CMs for both drug-free and drugged conditions has several key 354 

advantages. Because there is no need for the multitask network user to a priori define the 355 

important system parameters, the approach is by definition an unbiased model. A key part of the 356 

“artificial intelligence” is learning from the data to make decisions about which elements of the 357 

data are the most important. Another benefit is the model-agnostic approach in that the learning 358 

network is indifferent to the underlying form of the models and can readily translate time series 359 

data from any source.  The non-linearity of the system is accepted by the deep learning approach, 360 

and there are no assumptions made about cardiac protein expression levels and changes in their 361 

function during cardiomyocyte maturation. The deep learning artificial neural network can 362 

successfully translate simple pore block and complex conformation state-dependent channel – 363 

drug interaction models. The network can learn from multiple sources of data even when they are 364 

generated from different models and learns from all the data sources concurrently for robust and 365 

successful translation. All of these aspects of the technology presented here suggest broad 366 

applicability for use across ages, species and conditions and we demonstrate its utility for 367 

translating and predicting experimental data. 368 

 369 
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The multitask network presented here performed well in the setting of the noted variability in 370 

measurements from iPSC-CM APs.  As described in Figure 1, we utilized a modeling and simulation 371 

approach from our recent study [52, 69] to generate a population of iPSC-CM action potentials 372 

that incorporate variability comparable to that in experimental measurements. Utilizing simulated 373 

data presented a unique opportunity: We were able to generate large amounts of data that were 374 

used both to train and optimize the network and then to test the network with specifically 375 

designated distinct simulated data sets. Utilizing simulated data to train a deep learning network 376 

may constitute a widely applicable approach that could be used to train variety of networks to 377 

perform multiple functions where access to comparable experimental data is not feasible.  378 

 379 

The multitask network exhibits high accuracy in performing translation, despite large variability in 380 

APDs and regardless of the underlying model form (Figure 5 and Table 1). The network was able 381 

to translate iPSC-CM APs into adult-CM APs with less than 0.003 mean-squared error (MSE), 0.99 382 

R2_score and less than 4% error in APD90 prediction for both the training and test dataset. To 383 

evaluate the network performance for the classification task we compared the AUROC, prediction 384 

accuracy, recall and precision for both training and test datasets. The multitask network proved to 385 

perform well in categorizing iPSC-CM APs into drug-free and drugged waveforms with 386 

approximately 90% accuracy (Table 1). Finally, we performed a type of network component 387 

dissection by sequentially eliminated individual LSTM layers or the classification task to determine 388 

if all elements of the network are important to the overall performance. The impact of removing 389 

these elements of the network on its performance is shown in Table 1. The studies show that the 390 

multi-task network conferred additional benefit over considering the translation task alone. For 391 

example, we noted that adding the classification task to distinguish drug-free and drugged action 392 

potentials could improve the performance of the translation task (Table 1).  393 

 394 

When we performed an ablation study to prevent the deep learning network from using 395 

information within prespecified time windows, the results revealed that the most important 396 

information needed to predict adult-CM APs from iPSC-CM AP signals is contained in the phase of 397 

the AP between 400 and 500 ms (Figure 6). This result suggests that the most important 398 
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information needed to distinguish iPSC-CM AP signals from adult-CM AP signals is contained in the 399 

range of the AP that corresponds to a phase of exquisite sensitivity to perturbation. We have 400 

identified this particular AP range in an earlier study as the phase when the membrane resistance 401 

of the myocyte increases markedly (Figure 6B) [62].This occurs as the inward and outward currents 402 

balance each other, leading to a net whole cell current that is unchanging (dI → 0, dV/dI → ), 403 

followed by a rapid reduction in the outward current (Figure 6C and D).  404 

 405 

Following the optimization and demonstration of the network as an accurate tool for both 406 

translating and classifying data, we then used the same network to translate experimentally 407 

obtained data. We showed that the proposed network can effectively take experimental data as 408 

an input from immature iPSC-CM APs and translate those data to produce adult action potential 409 

waveforms. It is notable that the variation observed in the adult-CM AP duration is smaller 410 

compared to iPSC-CM APDs (Figure 7A-B). This has been observed both experimentally [18, 63] 411 

and in our simulated cell environment [52, 69] . Although the simulated iPSC-CM has a large initial 412 

calcium current (Figure 1C) compared to the simulated adult-CM (Figure 1D), the amplitude of 413 

currents flowing through adult-CM action potential plateau is notably larger. The immature iPSC-414 

CM cells have low conductance during the AP plateau rendering it comparably higher resistance. 415 

For this reason, small perturbations to the iPSC-CM APs have a larger impact on the resulting AP 416 

duration than observed in adult cells [62]. We also used simulated iPSC-CM APs subject to 50% 417 

block of IKr.  We translated those data to adult-CM APs and then compared with the previously 418 

reported impact of 50% IKr block on adult human cell APs from experiments [53] and noted 419 

excellent agreement thereby providing validation of our network. 420 

 421 

In this study, we show that a deep learning network can be applied to classify cells into the drug-422 

free and drugged categories and can be used to predict the impact of electrophysiological 423 

perturbation across the continuum of aging from the immature iPSC-CM action potential to the 424 

adult ventricular myocyte action potential. We translated experimental immature APs into mature 425 

APs using the proposed network and validated the output of some key model simulations with 426 

experimental data.  The multitask network in this study was used for translation of iPSC-CMs to 427 
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adult APs but could be readily extended and applied to translate data across species and classify 428 

data from a variety of systems. Also, another extension of the technology presented here is to 429 

predict the impact of naturally occurring mutations and other genetic variations [70]. 430 

 431 

Methods 432 

 433 

Simulated data for training and testing the multitask network: 434 

The drug-free iPSC-CM and adult-CM action potentials  435 

The Kernik in silico iPSC-CM baseline cells were paced from resting steady-state. The O’Hara-Rudy 436 

in silico endocardial cell model was used for the baseline adult-CMs [53]. The control adult-CMs 437 

were paced at the cycle length of 982 ms to match the cycle length of the last beat of the 438 

spontaneously depolarizing iPSC-CM AP. The iPSC-CM AP populations (n =208) were generated by 439 

incorporating physiological noise (see Simulated physiological noise currents section below). The 440 

adult-CMs were paced with noise for 100 beats after reaching steady state at the matching cycle 441 

length of the last beat of iPSC-CM AP populations. The numerical method used for updating the 442 

voltage was Forward Euler method [71]. 443 

 444 

A simple drug-induced 1-50% IKr block model through GKr reduction  445 

The iPSC-CMs and the adult-CMs populations were paced with 1-50% IKr block with 1% increments. 446 

This was accomplished by scaling down hERG channel (IKr) conduction, GKr , by the fraction of the  447 

block,  GKrscale, in the 0.50 – 0.99 range with 0.01 decrements (see central rows in Fig. 1G).  The 448 

adult-CM model was simulated at five varying beating rates for each percentage of block that 449 

matches to the last beat of iPSC-CMs with 1-50% IKr block (n = 250). For example, one drugged 450 

adult-CM (50% IKr inhibition) was paced at cycle length of 1047 ms to match the cycle length of 451 

the last beat of iPSC-CMs AP with 50% IKr block.  452 

 453 

Complex model of conformation-state dependent IKr block in the presence of 2.72 ng/mL dofetilide 454 

The IKr channel Hodgkin-Huxley model in both iPSC-CM and adult-CM AP models was replaced with 455 

a drug – hERG channel interaction Markov model (see bottom rows in Fig. 1G) that we have 456 
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previously published [72]. iPSC-CM (n = 300) and adult-CM AP populations (n = 300) were 457 

generated with physiological noise in the presence of 2.72 ng/mL dofetilide, a potent hERG 458 

channel blocker.  The adult-CM populations were paced with dofetilide for 100 beats after 459 

reaching steady state at the matching cycle length of the last beat of iPSC-CM AP populations with 460 

dofetilide as described above. 461 

Simulated physiological noise currents:   462 

Simulated noise current was added to the last 100 paced beats in the simulated AP models, and 463 

simulated APs were recorded at the 2000th paced beat in single cells. This noise current was 464 

modeled using the equation from [55], 465 

𝑉𝑡+∆𝑡 = 𝑉𝑡 −
𝐼(𝑉𝑡)∆𝑡

𝐶𝑚
+ 𝜉𝑛√∆𝑡                                                                                                                        (1) 466 

Where nN(0,1) is a random number from a Gaussian distribution, and ∆t is the time step.  = 0.3 467 

is the diffusion coefficient, which is the amplitude of noise.  The noise current was generated and 468 

applied to membrane potential, Vt, throughout the last 100 beats of simulated time course. 469 

 470 

Experimental iPSC-CMs: 471 

Human iPSC-CMs (201B7, RIKEN BRC, Tsukuba, Japan) were cultured and subcultured on SNL76/7 472 

feeder cells as described in detail previously [73]. Cardiomyocyte differentiation was performed 473 

as described [73]. Commercially available iCell-cardiomyocytes (FUJIFILM Cellular Dynamics, Inc., 474 

Tokyo, Japan) were cultured according to the manual provided from the company. Action 475 

potentials were recorded with the perforated configuration of the patch-clamp technique as 476 

described in detail previously [73]. Measurements were performed at 36 ± 1 °C with the external 477 

solution composed of (in mM): NaCl (135), NaH2PO4 (0.33), KCl (5.4), CaCl2 (1.8), MgCl2 (0.53), 478 

glucose (5.5), HEPES, pH 7.4. To achieve patch perforation (10-20 MΩ; series resistances), 479 

amphotericin B (0.3-0.6 µg/mL) was added to the internal solution composed of (in mM): aspartic 480 

acid (110), KCl (30), CaCl2 (1), adenosine-5’-triphosphate magnesium salt (5), creatine phosphate 481 

disodium salt (5), HEPES (5), EGTA (11), pH 7.25. In quiescent cardiomyocytes, action potentials 482 

were elicited by passing depolarizing current pulses (2 ms in duration) of suprathreshold intensity 483 

(120 % of the minimum input to elicit action potentials) with a frequency at 1 Hz unless noted 484 

otherwise. 485 
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The multitask network architecture: 486 

The multitask network was comprised of two stacked LSTM layers followed by independent fully 487 

connected layers (Figure 3A) for the classification and translation tasks.  The LSTM layers 488 

memorized the important information the network needed to perform two discussed tasks and 489 

then transferred the extracted information (features) into the subsequent fully connected layers 490 

to translate iPSC-CM APs into adult-CM AP waveforms (Figure 3B) and classify iPSC-CM APs into 491 

drug-free and drugged categories (Figure 3C).  492 

 493 

Long-short term memory (LSTM) layers (Figure 3D):  494 

We used LSTM layers as the first two layers of the multitask network to promote network temporal 495 

information learning which data in a sequence was important to keep or to throw away. At each 496 

time step, the LSTM cell took in three different pieces of information, the current input data 497 

(𝐴𝑃𝑖𝑃𝑆𝐶𝑡
), incoming short-term memory (hidden state) (ℎ𝑡−1) and incoming long-term memory 498 

(cell state) (𝐶𝑡−1). The LSTM layers were responsible for extracting the most important 499 

information while scanning the AP traces using the short- and long-term memory components. 500 

The short-term memory weighted the importance of AP values at subsequent time steps and long-501 

term memory has been using the short-term memory to decide the overall importance of all AP 502 

values from the beginning (t = 0 ms) to the end (t = 701 ms) for performing classification and 503 

translation tasks. The LSTM cells contained internal mechanisms called gates.  The gates were 504 

neural network with weights (w) and bias terms (b) that regulated the flow of information at each 505 

time step before passing on the long-term and short-term information to the next cell [74]. These 506 

gates are called input gate, forget gate, and output gate (Figure 3D). 507 

 508 

The forget gate, as the name implies, determined which information from the long-term memory 509 

should be kept or discarded. This was done by multiplying the incoming long-term memory by a 510 

forget vector generated by the current input (𝐴𝑃𝑖𝑃𝑆𝐶𝑡
) and incoming short-term memory (ℎ𝑡−1). 511 

To obtain the forget vector, the incoming short-term memory and current input were passed 512 

through a sigmoid function (𝜎𝑓)  [75]. The output vector of sigmoid function, Ft, (Eq. 2) was a binary 513 
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comprising 0s and 1s and was then multiplied by the incoming long-term memory (𝐶𝑡−1). to 514 

choose, which parts of the long-term memory were retained. 515 

𝐹𝑡 = 𝜎𝑓(𝑤𝑓𝐴𝑃𝑖𝑃𝑆𝐶𝑡
+ 𝑤𝑓ℎ𝑡−1 + 𝑏𝑓)     𝑡 ∈  {0,1, … ,701}                                                                        (2) 516 

The input gate decided what new information is being stored in current long-term memory (𝐶𝑡). 517 

It considered the current input (𝐴𝑃𝑖𝑃𝑆𝐶𝑡
) and the incoming short-term memory (ℎ𝑡−1) and 518 

transformed the values to be between 0 (unimportant) and 1 (important) using a sigmoid 519 

activation function (𝜎𝑖) (Eq. 3). The second layer in input gate took the incoming short-term 520 

memory (ℎ𝑡−1) and current input (𝐴𝑃𝑖𝑃𝑆𝐶𝑡
) and passed them through a hyperbolic tangent 521 

activation function (𝑡𝑎𝑛ℎ𝑖)  to regulate the network computation (Eq. 4). 522 

𝐼𝑡 = 𝜎𝑖(𝑊𝑖𝐴𝑃𝑖𝑃𝑆𝐶𝑡
+ 𝑊𝑖ℎ𝑡−1 + 𝑏𝑖)     𝑡 ∈  {0,1, … ,701}                                          (3) 523 

𝑆𝑡 = 𝑡𝑎𝑛ℎ𝑖(𝑤𝑠𝐴𝑃𝑖𝑃𝑆𝐶𝑡
+ 𝑤𝑠ℎ𝑡−1 + 𝑏𝑠)                                                      (4) 524 

The outputs from the forget and input gates then underwent a pointwise addition to find the 525 

current long-term memory (𝐶𝑡) (Eq . 5), which was then passed on to the next cell.  526 

𝐶𝑡 =  𝐹𝑡 ∗ 𝐶𝑡−1 + 𝐼𝑡 ∗ 𝑆𝑡                      (5) 527 

Finally, the output gate utilized current input (𝐴𝑃𝑖𝑃𝑆𝐶𝑡
)  and the incoming short-term memory 528 

(ℎ𝑡−1) and passed them into a sigmoid function (𝜎𝑜)   (Eq. 6). Then the current long-term memory 529 

(𝐶𝑡)  passed through a tanh activation function (𝑡𝑎𝑛ℎ𝑜)  and the outputs from these two processes 530 

were multiplied to produce the current short-term memory ℎ𝑡 (Eq. 7). 531 

𝑂𝑡 = 𝜎𝑜(𝑤𝑜𝐴𝑃𝑖𝑃𝑆𝐶𝑡
+ 𝑤𝑜ℎ𝑡−1 + 𝑏𝑜)                                (6) 532 

ℎ𝑡 = 𝑂𝑡 ∗ 𝑡𝑎𝑛ℎ𝑜(𝐶𝑡)                                                     (7) 533 

The short-term and long-term memory produced by these gates were carried over to the next cell 534 

for the process to be repeated. The output of LSTM layers for each time step (ℎ𝑡)  was obtained 535 

from the short-term memory, also known as the hidden state, and was subsequently passed into 536 

fully connected layers to perform the translation and classification tasks as described below. 537 

 538 

 539 
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Fully connected layers (Figure 3E):  540 

The fully connected neural network layers contained input, hidden and output layers (Figure 2E) 541 

with various numbers of neurons (𝑙𝑟). Every neuron in a layer was connected to neurons in the 542 

next layer [76]. Fully connected layers received the output of LSTM layers as input.  The fully 543 

connected layers calculated a weighted sum of LSTM outputs and added a bias term to the 544 

outputs.  These data were then passed to an activation function ( f ) to define the output for each 545 

neuron (Eqs. 8 and 9)   [77]. 546 

𝑎𝑗
𝑘 = 𝑓(𝑍𝑗

𝑘)                                                                                                                                                                 (8) 547 

𝑍𝑗
𝑘 =  𝑊𝑖,𝑗

𝑘 ∗ 𝑎𝑗
𝑘−1 + 𝑏𝑘                                                                                                                                                  (9) 548 

Where 𝑘 ∈ {1, … , 𝑛} and (i , j) represent the number of hidden layers and neurons in each pair of 549 

subsequent hidden layers (𝑙𝑟 , 𝑙𝑟+1 ). The optimized values for these parameters were found via 550 

hyperparameter tunning where, 𝑎k is each neuron output where 𝑎0  ∈  {ℎ1, … , ℎ𝑚} is the LSTM 551 

layers output and the input to the fully connected layers and 𝑎𝑛+1 is the network output: 552 

𝑦 ̂𝜖{𝑦𝑡𝑖
, 𝑦𝑐𝑖

} where 𝑦𝑡𝑖
 and 𝑦𝑐𝑖

 are the outputs for translation and classification tasks, respectively. 553 

We first assigned random values to all network parameters 𝜃𝑡; each neuron weight (𝑊𝑖,𝑗) (Figure 554 

3E), bias term (𝑏) which is a constant added to calculate the neurons output and other network 555 

hyperparameters (the number of hidden layers, the number of neurons for each hidden layer and 556 

activation functions for each hidden layer) to start the optimization process for finding the best 557 

network infrastructure. Next, we estimated the network errors using mean squared error, MSE 558 

(Eq. 10) and cross-entropy loss functions (Eq. 11) to map the translation and classification tasks 559 

[54, 78], respectively.  560 

𝑀𝑆𝐸 =  
1

𝑚
∑ ‖𝑦𝑡𝑖

− 𝑦̂𝑡𝑖
‖

2𝑛

𝑖=1
                                                                                                                                                  (10) 561 

𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  − (𝑦𝑐𝑖
log(𝑦̂𝑐𝑖

) + (1 − 𝑦𝑐𝑖
)log (1 − 𝑦̂𝑐𝑖

))                                                                             (11) 562 

where m is the total number of LSTM layers outputs (ℎ𝑚) and 𝑦𝑡𝑖
 and 𝑦̂𝑡𝑖

 are the simulated and 563 

translated adult-CM APs (the network output for translation task). The 𝑦𝑐𝑖
 is binary indicator of 564 

class labels for iPSC-CM APs (0 for drug-free or 1 for drugged categories) and 𝑦̂𝑐𝑖
 is predicted 565 

probability of APs being classified into the discussed classes. We used sum of both loss functions 566 

(Eq. 12) to calculate the overall network error (𝐽) for both translation and classification tasks during 567 
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the network training process.  We updated network parameters (𝜃𝑡+1) using adaptive momentum 568 

estimation (ADAM) optimization algorithm [79] based on the average gradient of overall loss 569 

function with respect to the network parameters for 64 randomly selected simulated AP traces 570 

(mini-batch = 64) at each training iteration (Eqs. 13-15).  571 

𝐽(𝜃𝑡) =  𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝜃𝑡) + MSE𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛(𝜃𝑡)                                                                       (12) 572 

𝜃𝑡+1 = 𝜃𝑡 −
𝛼 .𝑚̂𝑡

√𝜈̂𝑡+𝜖
   ,       𝜃𝑡 𝜖 {𝑊𝑖,𝑗

𝑛 , 𝑏𝑗
𝑛}                                                                                                              (13) 573 

𝑚̂𝑡 =
𝑚𝑡

1−𝛽1
,       where     𝑚𝑡 =  (1 − 𝛽1)𝛻𝐽(𝜃𝑡) + 𝛽1𝑚𝑡−1                                                                             (14) 574 

𝜈̂𝑡 =
𝜈𝑡

1−𝛽2
,         where    𝜈𝑡 = (1 − 𝛽2)(𝛻𝐽(𝜃𝑡))

2
+ 𝛽2𝑣𝑡−1                                                                           (15) 575 

 576 

We used a rectified linear unit (ReLu) [80] as activation function in Eq. 8 to calculate the output 577 

for each hidden layer neuron at each training iteration. We used dropout regularization [81] to 578 

randomly drop neurons with 0.2 probability of elimination along with their connections from the 579 

LSTM and fully connected layers during training to reduce the overfitting. We kept updating the 580 

network parameters using ADAM optimization algorithm (Eq. 13) to find global minimum of loss 581 

function (Eq. 12). We computed the exponential average of the gradient (Eq. 14) as well as the 582 

square of the gradient (Eq. 15) for each parameter (𝜃𝑡) where 𝛼 is the learning rate equal to 0.001, 583 

𝛽1, 𝛽2 are first and second momentum coefficients equal to 0.9 and 0.999, and 𝜖 is a small term 584 

equal to 1e-8 preventing division by zero.  585 

 586 

Computational workflow (Figure 4) 587 

We first preprocessed iPSC-CM and adult-CM APs by applying a digital forward and backward data 588 

filtering technique [56] and normalizing the AP values for more efficient training process. Next, we 589 

split the preprocessed data in 70:10:20 ratio into training, validation and test data sets, 590 

respectively, and implemented the network architecture using Pytorch [82]. During the training 591 

process the multitask network received iPSC-CM AP time course data as inputs and predicted 592 

adult-CM AP time courses.  The network also received the category (drug-free and drugged) of the 593 

iPSC-CM AP data. The network next calculated the MSE (Eq. 10) between predicted AP waveforms 594 

and the expected waveforms for adult-CM APs. It also calculated cross-entropy (Eq. 11) between 595 

the predicted category for the iPSC-CM AP and the expected value. The cross-entropy was added 596 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 11, 2021. ; https://doi.org/10.1101/2020.09.28.317461doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.28.317461


29 

 

to the calculated MSE to determine the total loss for training.  The ADAM optimization algorithm 597 

was then used to update the network weights and bias terms.  598 

 599 

We performed updating the network parameters (Eq. 13) and monitored the network 600 

performance for the training and validation data sets until the point at which the network 601 

performance on the training data set began to degrade compared to the validation dataset. This 602 

process was used to identify the optimal number of iterations (epochs = 300) for the training 603 

process. The last trained network was designated as the best possible model to perform both 604 

translation and classification tasks. We then used a holdout test dataset and calculated MSE (Eq. 605 

10), R2_score (Eqs. 16-17 below) and the error in prediction for adult-CM APD90 as evaluation 606 

metrics to assess the performance of the network for translation task and the area under the 607 

receiver operating characteristic (AUROC) curve, accuracy, recall and precision to measure 608 

capability of network for classification task as described below. The network codes have been 609 

made publicly available at Clancy lab Github. 610 

(https://github.com/ClancyLabUCD/Multitask_network) 611 

 612 

Evaluation metrics for the translation and classification tasks 613 

As we discussed, we used MSE and cross-entropy loss functions for performance evaluation of 614 

translation and classification tasks. In addition to MSE, we computed R2_score [57] (Eqs. 16,17) to 615 

measure how close the translated adult-CM AP (𝑦̂𝑡𝑖
) was to the expected simulated adult-CM AP 616 

(𝑦𝑡𝑖
). We compared the histogram distribution of simulated and translated adult-CM APD90 values 617 

and the error in APD90 prediction to assess the accuracy of network prediction.   618 

𝑦̅̂𝑡𝑖
=  

1

𝑚
∑ 𝑦̂𝑡𝑖

𝑚

𝑖=1
                                                                                                                                                                  (16)   619 

𝑅2 =
∑ (𝑦̂𝑡𝑖

 − 𝑦̅̂𝑡𝑖
)𝑖

∑ (𝑦𝑡𝑖
 −𝑦̅𝑡𝑖

 )𝑖

                                                                                                                                                                    (17) 620 

 621 

We used AUROC to measure the capability of the model to distinguish between drug-free and 622 

drugged iPSC-CM APs [58]. AUROC is the area under the Receiver Operating Characteristic (ROC) 623 

curve, which is a plot of the false positive rate (FPR), the probability that the network classified 624 
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drug-free iPSC-CM APs into drugged categories (FP) (Eq. 18) versus the true positive rate (TPR) or 625 

recall, the probability that the network correctly classified drugged iPSC-CM APs into drugged 626 

category (TP) (Eq. 19). AUROC close to 1 indicated a model with a desirable measure of 627 

separability, while a poor model had AUROC near 0, which means that it had poor separability. 628 

  629 

In addition, we used recall, accuracy, and precision to describe the performance of the network 630 

for the classification task [13], where the accuracy and precision indicated the proportion of all 631 

correct, TP + true negatives (TN), i.e., predicted drug-free APs (Eq. 20) and correct positive 632 

identifications (Eq. 21).  False negatives (FN) in Eqs. 19-20 were the total number of drugged iPSC-633 

CM APs classified as drug-free. 634 

FPR =
𝐹𝑃

𝐹𝑃+𝑇𝑁
                                                                                                                                                              (18) 635 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                                                                                              (19) 636 

Accuracy = 100 ∗
𝑇𝑃 + 𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                                                                                                      (20) 637 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                                                                                   (21) 638 

 639 

 640 
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