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Abstract  

 

Speech processing is supported by the synchronization of cortical oscillations to its rhythmic 

components, including syllable rate. This has been shown to be the case for normal rate speech 

as well as artificially accelerated speech. However, the case of natural speech rate variations, 

which are among the most ubiquitous sources of variability in speech, has been largely 

overlooked. Here, we directly compared changes in the properties of cortico-acoustic coupling 

when speech naturally shifts from normal to fast rate and when it is artificially accelerated. 

Neuromagnetic brain signals of 24 normal-hearing adults were recorded with 

magnetoencephalography (MEG) while they listened to natural normal (~6 syllables/s), natural 

fast (~9 syllables/s) and time-compressed (~9 syllables/s) sentences, as well as to envelope-

matched amplitude-modulated noise. We estimated coherence between the envelope of the 

acoustic input and MEG source time-series at frequencies corresponding to the mean syllable 

rates of the normal and fast speech stimuli. We found that listening to natural speech at normal 

and fast rates was associated with coupling between speech signal envelope and neural 

oscillations in right auditory and (pre)motor cortices. This oscillatory alignment occurred at 

~6.25 Hz for normal rate sentences and shifted up to ~8.75 Hz for naturally-produced fast 

speech, mirroring the increase in syllable rate between the two conditions. Unexpectedly, 

despite being generated at the same rate as naturally-produced fast speech, the time-compressed 

sentences did not lead to significant cortico-acoustic coupling at ~8.75 Hz. Interestingly, neural 

activity in putative right articulatory cortex exhibited stronger tuning to natural fast rather than 

to artificially accelerated speech, as well as stronger phase-coupling with left temporo-parietal 

and motor regions. This may reflect enhanced tracking of articulatory features of naturally-

produced speech. Altogether, our findings provide new insights into the oscillatory brain 

signature underlying the perception of natural speech at different rates and highlight the 

importance of using naturally-produced speech when probing the dynamics of brain-to-speech 

coupling.  

 

Keywords: Speech processing, Neural entrainment, Syllable rate, Natural speech, Neuronal 

Oscillations, Cortico-acoustic coupling, Magnetoencephalography (MEG). 
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Introduction 

 

Understanding the neural mechanisms at play during natural spoken language comprehension 

remains a challenging issue, especially given the large variability of the speech acoustic signal 

in everyday life. For communication to be efficient, the brain has to rapidly accomplish a 

cascade of sophisticated operations. One of the first is to parse the continuous acoustic stream 

into smaller units that will then be mapped onto internal linguistic representations. In this 

regard, the (quasi-)rhythmicity of speech is fundamental as it allows the listener’s cognitive 

system to make predictions about the incoming signal, thus helping speech segmentation and 

comprehension (1,2). Neurocognitive models of speech perception assign a key functional role 

to ongoing neural oscillations in the tracking of speech rhythm (3–7). By aligning to speech at 

multiple timescales, brain oscillatory activity in the gamma (~25-40 Hz), theta (~4-7 Hz) and 

delta (~1-3 Hz) frequency bands would segment the acoustic stream into phoneme-, syllable- 

and word-sized packets, respectively. These units may then be integrated hierarchically for 

higher-order linguistic processes. Convincing evidence from electro- and 

magnetoencephalography (EEG/MEG) revealed coupling between theta-band oscillations in 

the auditory cortex and the slow modulations (2-8 Hz) in speech amplitude envelope (8–13). 

Modulations in this range are inherently tied to syllable production (14) and are crucial for 

speech intelligibility as they convey, among other information, prosodic cues such as stress and 

tempo (15). Interestingly, auditory cortex oscillations are therefore able to track and align to 

the speech input in a frequency range which coincides with the average syllable rate of speakers 

across languages (16).  

Speech rate can however substantially vary within and between speakers and contexts. As 

listeners, we need to rapidly adapt to the changing rates for efficient understanding (17,18). 

Surprisingly, only a few studies so far examined brain-to-speech coupling in the case of speech 

rate variations, and we know little about the spatial and frequency dynamics of cortical 

oscillations involved in processing naturally accelerated speech. Most of previous studies used 

time-compressed speech, where the duration is artificially reduced but the spectral content is 

kept intact (19–22). Results showed that brain-to-speech coupling occurs for moderately time-

compressed, still intelligible speech but not for higher compression rates, yielding unintelligible 

stimuli (23). Accordingly, it has been suggested that the efficiency of speech decoding may 

depend on the capacity of neural oscillations (primarily in the theta range) to remain in sync 

with the syllable rate. Once the latter exceeds the upper limit of the neural theta band, 

comprehension has been found to deteriorate (1,8,24–26). This said, one EEG study (27) 
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reported cortical coupling to the syllabic structure of time-compressed speech up to 14 Hz, even 

for poorly understood sentences (i.e. > 10 syllable/s). This suggests that neural oscillations are 

able to align to the incoming speech signal at higher frequencies to match its temporal structure, 

at least for artificial acceleration (see also 30) and even if speech is not fully intelligible (but 

see 31 for convincing evidence of a functional contribution of theta-band cortical tracking to 

speech intelligibility).  

Taken together, previous studies of neural coupling to fast rate speech have mainly focused on 

artificially compressed stimuli and have led to heterogenous and partly contradictory results. In 

fact, although insightful, studying the perception of time-compressed speech may not provide 

the best model of how neural oscillations handle natural changes in speech rate. This question 

has been largely overlooked in the literature, yet it seems crucial given the subtle differences 

between naturally-produced fast speech and artificially accelerated speech. Artificial and 

natural acceleration of speech rate both reduce the acoustic signal in terms of length of acoustic 

cues, formant transitions and pauses. However, and by contrast to time-compressed speech, 

these changes operate non-linearly when we naturally speak at a fast rate, partly due to 

articulatory restrictions (30,31). In French and English for instance, vowel duration and 

unstressed syllables (for English) are more reduced than consonant duration and stressed 

syllables. Besides temporal reduction, natural fast speech also undergoes a series of spectro-

temporal changes resulting in increased processing load for the listener as compared to time-

compressed speech (30,32,33). Uttering speech at a fast rate decreases the spatial magnitude of 

articulatory movements (i.e., they are achieved more quickly and less accurately) and enhances 

coarticulation (i.e., increased gestural overlap) and assimilation, which can even lead to the 

suppression of whole segments (34). Accordingly, the listener’s auditory system faces a major 

challenge, namely to adjust not only to a shortened (as in time-compressed speech) but also 

spectro-temporally degraded signal for efficient decoding. Although adaptation to naturally 

accelerated speech has been reported behaviourally (17), the underlying brain oscillatory 

dynamics remain, to our knowledge, largely underinvestigated. In a compelling MEG study, 

Alexandrou and colleagues (35) recently reported alignment of auditory and parietal cortex 

oscillations to speech spontaneously produced at different rates (from ~2 to 7 syllables/s). Yet 

their fast rate condition falls within the canonical theta range (4-7 Hz), and therefore does not 

address the question whether neural oscillations change their coupling frequency beyond the 

theta limit to track natural speech acceleration. More generally, and to the best of our 

knowledge, no study to date has directly compared neural entrainment to speech using either 

natural fast rate speech or artificially accelerated stimuli. Such a comparison may elucidate 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 11, 2021. ; https://doi.org/10.1101/2020.10.20.344895doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.20.344895


5 
 

whether using artificial acceleration of speech stimuli accurately captures the brain mechanisms 

at play during perception of natural speech rate changes. 

Here we address this question using an unprecedented MEG experiment where we compare the 

modulations of cortico-acoustic tracking patterns induced by normal and fast speech, generated 

either naturally or using time compression. Although seemingly subtle, the distinction we 

address is of fundamental importance to better understand how our brains track and encode the 

spectro-temporal changes we encounter in daily communication. Furthermore, observing 

differences in the neural processing of naturally versus artificially accelerated speech could be 

key to improving oscillatory models of speech perception. Based on previous work (27,28), one 

would expect that increases in speech rate would be associated with upward shifts in cortico-

acoustic coupling frequency, matching the change in syllable rate, and that this would occur 

both for natural and artificial acceleration of the stimuli. However, given the articulatory 

changes elicited by natural acceleration (34) and the tight relationship between speech 

perception and production processes (36–38), the parsing process may particularly engage 

sensorimotor mechanisms during natural fast speech perception. As a result, we expect neural 

coupling to occur not only in auditory but also in motor regions and importantly, that this motor 

resonance may be stronger for naturally accelerated than for artificially manipulated speech. 

To test these assumptions, we sought to unravel the oscillatory brain signature of speech 

naturally produced at a normal or fast rate, and of time-compressed speech. We investigated 

whether neural oscillations in auditory and motor cortex, recorded with MEG, align to syllable 

rate when it is naturally accelerated and how this compares to artificially manipulated speech. 

To this end, we computed cortico-acoustic coherence at the source level while participants 

listened to single sentences naturally produced at a normal and fast rate, or time-compressed. 

Most previous work assessed neural coupling to speech amplitude envelope in the canonical 

theta band (e.g., 9,12,34), yet speakers can naturally slow down or speed up their syllable rate 

outside the limits of this range. Examining cortical tracking of speech rate variations in 

frequency ranges that specifically match the temporal structure of heard speech therefore 

appears as a more straightforward approach (39). Accordingly, we assessed brain 

synchronization to the envelope of normal and fast rate speech at two frequencies of interest, 

identified as peaks in the respective power spectra of the speech signals. By including 

amplitude-modulated noise control stimuli (based on the temporal envelopes of normal and fast 

rate sentences), we additionally investigated whether cortico-acoustic coupling depends on the 

presence of linguistic content in the stimuli or simply reflects brain responses to low-level 
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acoustic cues. Finally, the results of the speech-brain coupling were used to further examine the 

oscillatory network dynamics using seed-based phase-coupling analyses.  

 

Results 

 

We recorded MEG brain activity of 24 healthy French adult participants during perception of a 

set of natural normal rate (mean = 6.76 + 0.57 syllables/s), natural fast rate (9.15 + 0.60 

syllables/s) and time-compressed sentences (to the same syllable rate as natural fast rate 

speech). Amplitude-modulated noise stimuli (modulated with normal rate and fast rate sentence 

envelopes) served as non-speech control conditions. Participants were instructed to attentively 

listen to the different stimuli and detect beep-sounds embedded in filler sentences (not 

analyzed) by pressing a button as quickly as possible. To assess neural tracking of speech rate 

variations, we computed cortico-acoustic coherence between signal’s amplitude envelope and 

source-localized MEG time-series (see Fig. 1 for an overview of the method). We defined two 

frequencies of interest for analysis (~6.25Hz and ~8.75 Hz), based on the frequency peaks 

identified in the power spectra of normal and fast rate sentences respectively (Fig. 2, see also 

supplementary Fig. S1 and Table S1). These peaks closely matched the mean syllable rate of 

the speech stimuli, derived by assessing the number of syllables over time with Praat (40). For 

statistical analysis, we contrasted coherence measures obtained for actual stimulus encoding 

with coherence values obtained using surrogate data, as well as with during a pre-stimulus 

baseline. We generated the surrogate data by randomly shuffling the speech trial order so that 

they no longer matched the associated MEG signals (see Material and Methods). 
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Fig 1. Overview of the cortico-acoustic coupling analysis.  Computation of cortico-acoustic coherence required 

three inputs: the reference signal, namely the audio recordings; the anatomical data, i.e. the participants’ MRI; and 

the functional data, i.e. MEG recordings. We used the amplitude envelope of speech as the reference signal to 

investigate cortical alignment at the syllable rate. We segmented each participant’s MRI and then constructed the 

source space based on a warped Montreal Neurological Institute (MNI) anatomical grid template, which we used 

for group analysis. After preprocessing the individual MEG recordings, we computed the source modelling and 

cortico-acoustic coupling using the Dynamical Imaging of Coherent Sources (DICS) beamformer (41). Lastly, for 

statistical analysis we applied non-parametric randomization, cluster-based permutation statistical tests across 

participants for each frequency of interest and condition in five bilateral regions-of-interest (ROIs). We achieved 

the statistical assessment of cortico-acoustic coherence by comparison to two control conditions: coherence 

obtained either using surrogate data (trial shuffling) or using pre-stimulus data. 
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Fig 2. Power spectra of the acoustic signal for the five conditions. (A) Power spectra of the acoustic signals’ 

envelopes across the five experimental conditions: Natural Normal and Natural Fast correspond to naturally-

produced speech at a normal (mean syllable rate 6.76 syllables/s) and fast rate (mean rate 9.15 syll/s), respectively. 

Time-compressed speech was compressed at the same syllable rate as in the natural fast rate condition (mean 

syllable rate 9.15 syll/s). Noise Normal and Noise Fast correspond to noise stimuli modulated with the amplitude 

envelopes of normal rate and fast rate sentences, respectively. The depicted spectra represent parametric model 

fits of the PSD (Power Spectral Density), that consist of aperiodic and periodic components computed using the 

FOOOF algorithm (42) (B) Periodic components of the full model shown in (A), i.e. after removal of the aperiodic 

(the so-called 1/f) component of the spectra. The spectral power peaks in the speech stimuli for each condition 

occur at frequencies that match the corresponding mean syllable rates calculated using the Praat software (see 

supplementary Table S1 and supplementary Fig S1 for details).  

 

The ROI-based analysis using shuffled data as control revealed a shift in the frequency domain 

of cortical oscillations to align to the syllable rate of naturally-produced heard sentences. 

Significant increase of cortico-acoustic coherence for the normal rate condition was found at 

the frequency matching the mean normal syllable rate (~6.25 Hz) (Fig. 3A). Crucially, for 

natural fast speech, coherence significantly increased at the frequency matching the mean fast 
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syllable rate (~8.75 Hz; Fig. 3B). The time-compressed speech condition did not show any 

significant brain coupling at the corresponding frequency (~8.75 Hz). Comparable patterns of 

cortico-acoustic coupling were obtained when coherence during speech encoding was 

compared to coherence computed for baseline data (Fig. S2). As Fig. 3 shows, in both natural 

speech rate conditions, cortical tracking of speech envelope at the corresponding frequencies 

was seen in the primary auditory cortex (Brodmann Area BA 41), middle and superior temporal 

gyri (BAs 21/22), primary sensory (BA 1) and primary motor and premotor cortices (BAs 4/6) 

of the right hemisphere (see also Fig. S2). Note that we also found significant brain coupling in 

the right dorsal precentral gyrus (BA 4) for naturally and artificially accelerated speech at ~6.25 

Hz (normal rate frequency). By contrast, we did not find any significant increase in coherence 

for normal rate speech at the higher frequency (~8.75 Hz). Neither of the two amplitude-

modulated noise conditions presented statistically significant cortico-acoustic coupling at any 

of the two frequencies of interest (Figs. 3A and 2B).  

 

 

Fig. 3.  Cortical tracking of speech at (A) 6.25 (±1 Hz) and (B) 8.75 (±1 Hz) matching the normal and fast 

speech rates respectively. Coherence maps between signal’s amplitude envelope and neural oscillations in the 

active period (i.e. during stimulus presentation), as compared to surrogate data, together with statistical maps in 

the right hemisphere (corrected, α = .05; results were not significant in the left hemisphere) presented for the five 

conditions. Natural Normal = naturally-produced normal rate speech; Natural Fast = naturally-produced fast rate 

speech; Time-compressed = artificially accelerated speech from normal rate sentences at the same rate as natural 

fast speech; Noise Normal = amplitude-modulated noise with the envelope of normal rate sentences; Noise Fast = 

amplitude-modulated noise with the envelope of natural fast rate sentences.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 11, 2021. ; https://doi.org/10.1101/2020.10.20.344895doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.20.344895


10 
 

To specifically test our hypothesis of a stronger involvement of the motor cortex in the tracking 

of natural fast as compared to time-compressed speech, we computed direct contrasts between 

speech conditions at the frequency matching the mean fast syllable rate (~8.75 Hz). More 

specifically, we focused on a putative right articulatory area which we defined as the region of 

the right motor cortex (BA 4) that showed a cortico-acoustic coherence peak at ~8.75 Hz (Fig. 

3B) and based on previous neuroimaging reports on the involvement of the articulatory cortex 

in speech perception and production (43,44). Fig. 4A shows the maps of cortico-acoustic 

coherence for the three computed contrasts. Remarkably, the right articulatory motor cortex 

showed stronger entrainment to natural fast rate speech, compared to both time-compressed and 

natural normal speech (Fig. 4B, articulatory ROI). Note that contrasts between speech 

conditions using the whole set of predefined ROIs (as in Fig. 1) showed an increase of 

coherence for natural fast as compared to time-compressed speech in the same region as well 

as in the right auditory and temporal cortex (uncorrected results; see suppl Fig. S3). For 

completeness, we also computed direct pairwise contrasts between speech conditions at ~6.25 

Hz (normal syllable rate range). Results showed significantly stronger coupling to natural 

speech, both at normal and fast rates, compared to time-compressed speech in the right 

precentral ROI (see Fig. S4). The two naturally-produced conditions did not significantly differ 

from each other at the frequency of normal speech (~6.25 Hz).  
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Fig. 4.  Direct contrasts between speech conditions at 8.75 (±1 Hz) reveal increased coupling to natural fast 

speech in articulatory cortex. (A) Contrast maps show the difference in cortico-acoustic coherence in the three 

pairs of speech conditions. The values represent the difference in Fisher z-transformed coherence between each 

two conditions. The black rings highlight the right articulatory ROI. (B) Mean cortico-acoustic coherence in the 

right articulatory ROI for the natural normal, natural fast and time-compressed conditions. Stars (*) indicate 

significant differences between conditions (t-test, α = .05, corrected).  

 

Next, in a supplementary follow-up analysis, we sought to assess differences in cortico-cortical 

network dynamics associated with processing naturally and artificially accelerated speech. To 

this end, we measured seed-based phase interaction patterns at ~8.75 Hz using weighted Phase 

Lag Index (wPLI). In light of the cortico-acoustic coherence results, we chose to focus the inter-

areal coupling analyses on two key ROIs: the right articulatory motor and right auditory areas, 

as both showed stronger entrainment to natural fast than to time-compressed speech (Figs. 3B, 

4 and S3). As illustrated in Fig. S6B, the right articulatory motor cortex showed higher inter-

areal phase coupling for natural fast than for time-compressed sentences, mainly with the right 

auditory cortex (BA 41/42) and a left-lateralized network encompassing the inferior parietal 

cortex (supramarginal and angular gyri BA 39/40), Broca’s area (BA 44/45), the primary motor 

and premotor cortices  (BAs 4/6) extending to the supplementary motor area (SMA), the 

primary sensory cortex (BA 1) and the dorsolateral prefrontal cortex (BA 9/10/46). Direct 

comparison between natural fast and normal rate speech at the same frequency (~8.75 Hz) 

showed enhanced coupling between the right motor cortex and the left lateral premotor cortex 

(BA 6 including SMA) and left dorsolateral prefrontal cortex (BA 46). 
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When the right auditory cortex was used as the seed (Fig. S6A), results showed stronger 

coupling for the natural fast than for the time-compressed condition mainly with the left inferior 

parietal cortex (BA 39/40), Broca’s area, left inferior part of the primary motor and premotor 

cortices (BA 4/6), left primary sensory cortex (BA 1) and left primary auditory cortex (BA 41). 

For the contrast between natural fast and normal rate sentences, the right auditory cortex was 

more strongly coupled mainly to the bilateral primary motor and premotor cortices (BA 4/6, 

more ventrally in the right hemisphere) and right inferior frontal gyrus (BAs 44/45). 

 

Finally, we sought to rule out that the observed increases in coupling between cortical 

oscillations and the speech envelope can be linked to increases in cortical power at the coupling 

frequency. To this end, we analyzed source power modulations, contrasting power for the 

speech encoding period with power measured during a pre-stimulus baseline. The analyses 

showed significant increases of spectral power at ~6.25 Hz in the left prefrontal and inferior 

frontal cortex for all sentence conditions (Fig. S6). These areas did not overlap with the regions 

that exhibited significant cortico-acoustic coherence at this frequency. This was accompanied 

by significant desynchronization at ~8.75 Hz in the right temporal cortex in all conditions 

(except for noise modulated with the envelope of fast rate sentences) and in the left inferior 

frontal cortex for the two naturally-produced speech conditions (Fig. S7). These power 

reductions in the same areas and frequencies in which we report entrainment to the natural fast 

stimuli suggest that the observed coupling cannot be attributed to local increases in power. 

 

 

Discussion 

 

To date, most of the evidence for brain alignment to speech rate variations has come from 

research using artificially accelerated speech and has thereby left the issue of natural speech 

rate changes largely unaddressed. The present MEG study is the first to directly compare brain-

to-speech coupling between naturally-produced fast speech and artificially compressed speech. 

We first showed that neural oscillations in auditory and (pre)motor cortex track natural 

variations of syllable rate at frequencies that specifically reflect the temporal structure of the 

speech material. Cortical rhythms indeed shift up their coupling frequency to match the faster 

modulations in natural fast speech. Surprisingly, we did not observe any significant cortical 

coupling at the same frequency (~8.75 Hz) when the speech was generated through time-

compression. Crucially, direct contrasts between conditions at this higher frequency revealed 
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stronger tracking of speech envelope in the right motor cortex for natural fast than for artificially 

accelerated speech, possibly reflecting specific mapping to articulatory features of naturally-

produced material. Furthermore, although the results of seed-based source-space wPLI analyses 

did not survive correction for multiple comparison across 8693 sources, the uncorrected 

statistics suggest that the right articulatory/motor ROI showed enhanced phase synchronization 

with the left temporo-parietal and motor cortices in the natural fast compared to the time-

compressed condition. Finally, we found that the reported cortico-acoustic coupling is sensitive 

to the linguistic content of the stimuli as no significant increase of coherence is seen for 

amplitude-modulated noise, despite being generated using the speech signal envelopes.  

 

Auditory and motor cortices track syllabic rate changes in natural speech 

 

Brain coupling to the amplitude envelope of naturally-produced speech was found in auditory 

and precentral regions of the right hemisphere, in agreement with oscillatory-based models of 

speech perception (4,6) and previous work showing right-lateralized brain responses to speech 

envelope (13,19,45–47). Specific MEG responses in the right pre/postcentral gyri were also 

recently reported for sequences of random syllables at 4 Hz (48). Most importantly, our 

coherence measures revealed that neural oscillatory activity is tuned to speech rate variations: 

cortical tracking of naturally-produced sentences was observed at frequencies coinciding with 

the syllable rate of the stimuli. For normal rate speech, cortico-acoustic coherence in auditory 

and (pre)motor regions increased at ~6.25 Hz, whereas when participants listened to natural fast 

speech, the peak of coupling shifted up to ~8.75 Hz (Fig. 3). Note that a significant increase of 

coherence in the right precentral cortex was also observed for naturally accelerated speech at 

the lower frequency. Syllable frequencies in natural speech tend to overlap between speech 

rates (49). Along this line, the envelope of our natural fast sentences also contains slower 

frequency components, which may account for the observed pattern of results. In fact, this 

explanation is consistent with the spectral power density plots (see supplementary Fig. S1). The 

lack of coupling for normal rate speech at the higher frequency (~8.75 Hz), which was expected, 

however underlines the specificity of the reported effects. Similar patterns of brain-to-speech 

coupling were observed when we contrasted coherence between speech and MEG brain activity 

with coherence computed for baseline trials (supplementary Fig. S2). This replication using two 

distinct methods supports the reliability of our observations.  

Importantly, the significant increases of cortico-acoustic coherence for natural normal and fast 

rate speech were not accompanied by power increases (but rather power suppression at ~8.75 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 11, 2021. ; https://doi.org/10.1101/2020.10.20.344895doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.20.344895


14 
 

Hz) in the same cortical regions and frequencies (Figs S5 and S6), suggesting a genuine 

synchronization phenomenon that cannot be attributed to increases in signal amplitude. The 

power increase at ~6.25 Hz (~theta) to sentences in left prefrontal and inferior frontal cortex 

may be related to increased working memory load and lexico-semantic retrieval during sentence 

processing (50,51). Besides, the ~8.75 Hz desynchronization in right anterior temporal and left 

inferior frontal regions agrees with studies showing alpha band (8-13 Hz) desynchronization 

during auditory stimulus processing. This is classically thought to reflect enhanced mental 

operations and thus more active cognitive processing of the signal (52,53). Alpha suppression 

associated with theta power enhancement in frontal regions have also been reported in response 

to speech for lexico-semantic processing (52,54,55). 

Our findings first add new evidence to previous work on artificially accelerated speech (28,27) 

by revealing that cortical oscillations align to envelope modulations at a higher frequency to 

match the faster syllable rate of naturally-produced speech, despite increased articulatory 

variation (as compared to time-compressed speech). Such auditory and motor coupling at ~8.75 

Hz fits with recent results showing three peaks of resting-state theta-band activity in auditory 

cortex (4.5, 6.5 and 8.5 Hz) as well as intrinsic alpha-band activity (7-13 Hz) in the right 

precentral gyrus (56). It is also of note that the shift in coupling frequency was found for single, 

relatively short sentences with a syllable rate up to 10 syllables/s (mean = 9.15 syllables/s). 

Ahissar et al. (23) suggested that coupling to short sentences compressed to ratios of 0.35 (~9 

Hz) and 0.2 (~14 Hz) failed in their experiment because neural oscillations may not have had 

enough time to change their coupling frequency to match that of the stimuli. Although this is a 

plausible explanation, the present data using naturally-produced material show that even with 

single and relatively short sentences, neural oscillations are able to adjust their coupling 

frequency to higher syllable rates.  

In line with the study by Keitel and collaborators (39), our results emphasize the relevance of 

assessing neural tracking of speech at frequencies given by stimulus properties rather than in 

generic frequency bands which may not capture the specific underlying processes at stake. The 

MEG study by Alexandrou et al. (35) showed cortical tracking of spontaneously-produced 

connected speech at slow (~2.6 syllables/s), normal (~4.7 syllables/s) and fast (~6.8 syllables/s) 

syllable production frequencies (yet slower than our fast rate condition). Despite providing 

valuable evidence regarding natural speech perception, the authors however examined coupling 

in the canonical delta (2-4 Hz) and theta (4-7 Hz) bands and did not look at potential variations 

in brain coupling frequency according to speech rates. Although our study used single 

sentences, we bring novel evidence for cortical alignment to natural syllable rates up to an 
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average of 9 Hz and at frequencies that are specific to the speech material. Future work should 

certainly investigate brain coupling to longer extracts of naturally-produced speech at such 

normal and fast rates and in stimulus-based frequency bins as we did in our study.  

 

Role of motor cortex in tracking naturally produced fast speech 

 

Assaneo and colleagues reported cortico-acoustic coupling in inferior and middle frontal gyri 

at 4.5 Hz (57), as well as enhanced phase coupling between both left and right auditory and 

motor regions (58), when participants listened to synthesized syllables at the same rate (see also 

41 for delta motor coupling to normal rate sentences embedded in noise). Sheng and colleagues 

(48) also found specific tracking of syllables at a rate of 4 Hz in the right pre/postcentral cortex. 

Here, we show that right (pre)motor regions synchronize their oscillatory activity to more 

complex speech stimuli (i.e. meaningful sentences) that are naturally produced at faster rates 

(up to 9.15 syllables/s on average). Similar to auditory cortex, oscillations in the motor cortex 

are therefore able to shift up their coupling frequency to follow the natural increase in syllable 

rate. Remarkably, analyses at ~8.75 Hz revealed tracking of natural fast speech in a region of 

the ventral motor cortex (BA 4) which coordinates are very close to those of the articulatory 

cortex (mouth motor region) identified in neuroimaging studies on speech production and/or 

perception (43,44,59). Coupling to naturally-produced fast speech in this ventral motor region 

may therefore reflect articulatory mechanisms and more particularly simulation of the syllable 

production rhythm of heard sentences.  

Motor regions have also been suggested to contribute to top-down auditory processing and to 

the establishment of auditory temporal predictions (9,60–63). Our findings, along with those of 

few other studies (35,48,57), underline that motor regions do not only exert a modulatory 

control but directly track the speech signal. Neural oscillations in motor regions align to low-

frequency modulations in natural speech, both at normal and fast rates, possibly reflecting 

sensorimotor integration processes. In the present study, participants listened to sentences with 

the same syntactic structure, it is therefore possible that motor regions tracked and synchronized 

to syllable rate regularities so as to predict the occurrence of the next syllables. Such a predictive 

timing mechanism may facilitate the syllabic parsing of the unfolding speech stream by the 

auditory cortex (61).  
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Stronger motor coupling to naturally-produced than to artificially accelerated speech 

 

No significant cortical coupling to time-compressed sentences was observed at the 

corresponding frequency (~8.75 Hz), which is at odds with previous work, at least regarding 

auditory cortex oscillations (20,23,27). To the best of our knowledge, these studies have mostly 

focused on neural coupling in the auditory cortex and we are only aware of a few studies that 

documented theta (4-7 Hz) synchronization to degraded (though noise-vocoded, not time-

compressed) speech in distributed cortical networks including the motor cortex (10,64). Note 

from Fig. 3B that coherence maps tend to show increase of coherence, although weaker, for 

time-compressed speech at ~8.75 Hz in a similar fronto-temporal network as for natural fast 

rate speech, however this did not survive statistical correction despite a sample size of 23 

analyzed participants. Some methodological considerations may account, at least partly, for this 

apparent discrepancy between studies. Unlike previous work, we mixed two types of 

accelerated speech, with sentences pseudo-randomly presented to participants. This may have 

elicited different coupling effects because of the attention-grasping nature of natural fast 

speech, which may be more difficult to process than time-compressed speech (30,32). Along 

this line, the increase of coherence at ~8.75 Hz in the right temporal cortex for natural fast 

speech only (see Fig. 3B) may reflect encoding of greater spectro-temporal variations in this 

natural condition than in time-compressed speech, in line with the role of the right superior 

temporal gyrus in spectral processing (65–67). In fact, this stronger neural coupling to sentences 

in the natural fast compared to the time-compressed conditions in the right temporal cortex was 

also visible on the direct contrast map at the same frequency (~8.75 Hz; see supplementary Fig. 

S3).  

Most importantly, the way speech rate was sped up in our study may have affected brain 

oscillatory responses to sentences. Uttering speech at a fast rate is a nonlinear phenomenon 

whereby segments are not reduced similarly, partly because of articulatory constraints, thus 

enhancing the prosodic pattern (30,31). By contrast, artificially accelerated speech was obtained 

by linear compression, meaning that all segments were shortened in the same way. This leads 

to unnatural patterns that are not biologically (articulatory-speaking) plausible and may thus 

not resonate in brain motor regions (or less so) as naturally-accelerated speech does. Whereas 

we are indeed rather accustomed to and can reproduce natural fast sentences relatively easily, 

this is not the case for linearly time-compressed speech. Crucially, our results revealed 

significant coupling of the right motor cortex at ~8.75 Hz to naturally accelerated but not to 

time-compressed speech, despite having the same syllable rate. Direct contrasts between the 
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two conditions corroborated this result (Fig. 4). This major finding may reflect differences in 

the rhythmic structure of the two types of signals and demonstrate specific mapping, in the 

motor cortex, to articulatory features that characterize naturally-produced fast speech as 

compared to synthesized fast speech.  

Remarkably, our contrasts analyses at the lower frequency (~6.25 Hz) highlighted significantly 

stronger tuning in the precentral cortex for naturally-produced speech, either at a normal or fast 

rate, than for time-compressed speech (supplementary Fig. S4). No difference was observed 

when we contrasted the natural normal and fast rate conditions. This finding is particularly 

interesting and can be interpreted in the framework of studies showing that the motor cortex 

intrinsically oscillates in the theta band (56,68–70). Given that our ~6.25 Hz frequency of 

interest fell within this range, our results may emphasize the tendency of the motor cortex to 

preferentially align to natural rather than to artificially speech. Hence, the motor cortex more 

strongly resonates, at its own preferred rhythm, with speech perception when the signal is 

naturally produced, irrespective of the syllable rate, than when it has been artificially 

manipulated. This may indicate enhanced synchronization to articulatory patterns that are most 

prominent in natural vs compressed speech as well as increased sensorimotor integration 

required to match phonological and articulatory templates of natural speech.   

 

Enhanced phase synchronization between right motor cortex and left dorsal stream for 

naturally-produced speech 

 

Supplementary cortico-cortical coupling analyses at ~8.75 Hz revealed enhanced connectivity 

between the right motor/articulatory cortex and the left inferior parietal and (pre)motor cortices 

and Broca’s area during perception of natural fast with respect to time-compressed sentences 

(supplementary Fig. S5). We also found the right auditory cortex to be more strongly coupled 

to these same regions in the naturally accelerated condition. This left-lateralized temporo-

parieto-frontal network is part of the sensorimotor dorsal stream thought to instantiate forward 

and inverse articulatory-orosensory-auditory internal models to facilitate speech perception, 

especially under challenging conditions (36,37,71–77). In line with this, we show that listening 

to naturally-produced fast speech specifically increases the functional connectivity between the 

right motor cortex, which synchronizes to syllable rate, and regions of the left dorsal stream 

(extending to the SMA). Interestingly, such inter-hemispheric coupling was also described 

during the perception of distorted speech in a recent dual-coil TMS study (78). The results 

showed that disrupting the right ventral premotor cortex inhibited left motor cortex excitability, 
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as reflected by decreased motor evoked potentials over lip muscles, when participants listened 

to imprecisely articulated syllables as compared to clear speech.  

Consistent with the involvement of reverberant, dynamic bilateral speech motor networks in 

speech perception (79), our findings thus show that the right motor cortex specifically entrains 

to the syllable rate of naturally-accelerated speech, and is more strongly coupled to left parietal 

and (pre)motor regions when perceiving natural fast as compared to time-compressed speech. 

This may reflect enhanced resonance to the increased articulatory complexity of natural fast 

speech, which may more strongly rely on internal models than artificially accelerated speech to 

efficiently map distorted perceptually representations to stored orosensory and articulatory 

representations. Of course, one should keep in mind that the cortico-cortical phase 

synchronization patterns observed in the present study (Fig. S5) need to be interpreted with 

caution as the effects did not survive correction for multiple comparisons across the 8693 

sources.  

 

Linguistic information influences cortico-acoustic coupling  

 

Previous work documented auditory cortex alignment to both verbal and non-verbal stimuli 

(e.g., 44,79). Our data show that amplitude-modulated noise did not significantly “entrain” 

cortical oscillations at the two frequencies of interest, although these stimuli were generated 

using the temporal envelopes of normal rate and fast rate sentences. In other words, increased 

cortico-acoustic coherence was found for normal rate and fast rate sentences but not for stimuli 

with the same envelope characteristics but which lack linguistic information. This result 

suggests that brain coupling to natural syllable rate variations does not only reflect passive 

tracking of acoustic features present in the low modulations of the amplitude envelope, but that 

it is sensitive to the linguistic content of the heard items, consistent with previous studies 

(10,13,81–83). Alternatively, stronger coherence for sentences than for amplitude-modulated 

noise could result from the richer spectral structure of the former stimuli and not from the 

availability of linguistic information. Our results cannot currently disentangle these two 

interpretations and future work comparing brain oscillatory responses to unintelligible natural 

speech that has the same spectro-temporal complexity as intelligible natural speech are certainly 

needed (64). 
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Conclusions 

 

Our findings shed new light onto the brain oscillatory dynamics that mediate natural speech 

perception, by revealing that neural oscillations are tuned to natural speech rate variations at 

frequencies that match the syllabic structure of the acoustic input. We found such frequency-

specific coupling not only in auditory but also in (pre)motor regions, emphasizing their role in 

speech sensorimotor integration. Our results also provide unprecedented evidence for a stronger 

oscillatory coupling in right motor cortex to naturally accelerated compared to artificially 

manipulated speech. In addition, our follow-up cortico-cortical connectivity analysis suggests 

enhanced coupling between right motor cortex and left parietal and motor regions for natural 

fast speech. These observations likely reflect enhanced distributed tracking and encoding of 

articulatory features of naturally accelerated speech. Our data thus highlight the relevance of 

using both natural speech material (despite being more methodologically constraining) and 

stimulus-specific (vs generic) frequencies to thoroughly assess brain-to-speech alignment in 

future studies. The prominent role of right auditory but also motor areas unveiled by our study 

might provide valuable insights for the advancement of oscillatory models of speech perception 

and production Finally, the proposed paradigm may also prove of high interest to investigate 

the developmental trajectory of neural tracking of speech, both in children with typical and 

atypical language development. 

 

 

Materials and Methods 

 

Participants 

 

Twenty-four French native speakers participated in the study after providing informed consent 

(14 females, mean age 23 years, range 18-45 years). All participants were right-handed (mean 

score at the Edinburgh handedness inventory = 94) (84) and reported normal hearing together 

with no history of neurological or psychiatric disorder. The protocol conformed to the 

Declaration of Helsinki and was approved by the local ethical committee (Comité de Protection 

des Personnes Lyon Sud-Est II; ID RCB: 2012-A00857-36). Participants received monetary 

compensation for their participation. 
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Stimuli 

 

We created 288 meaningful sentences (7-9 words) following the same syntactic structure: 

Determiner – Noun 1 – Verb – Determiner – Noun 2 – Preposition – Determiner – Noun 3 (e.g., 

“Sa fille déteste la nourriture de la cantine” / His daughter hates the food at the canteen). 

Sentences were recorded in a sound-attenuated booth by a French native professional theatre 

actor who was able to produce sentences at the required fast rate while remaining intelligible. 

We recorded each sentence twice (44.1 kHz, mono, 16 bits) using ROCme! software (85), first 

at a normal and then at a fast rate. The procedure was the following: the sentence was first 

displayed on a computer screen in front of the speaker who was instructed to silently read it and 

to subsequently produce it aloud as a declarative statement at his normal speech rate. The 

speaker then produced the sentences at a fast rate (i.e. as fast as possible while remaining 

intelligible) using the same procedure (i.e. no external pacing was imposed).  

We calculated the durations of the 2×288 sentences and the number of actually produced 

syllables for each sentence with Praat software (40). The mean syllable rate was 6.76 syllables/s 

(SD 0.57) for natural normal rate sentences and 9.15 syllables/s (SD 0.60) for natural fast rate 

sentences. This led to an overall fast-to-normal ratio of 0.74 (i.e. speed-up factor of 1.35). 

Subsequently, we computed time-compressed sentences by digitally shortening them with a 

PSOLA (Pitch Synchronous Overlap and Add) algorithm (86), as implemented in Praat. We 

obtained compression rates for each sentence: we matched each individual time-compressed 

sentence in terms of syllable rate to its equivalent natural fast item. This artificial compression 

corresponds to a re-synthesis of the natural normal rate stimulus, changing only its temporal 

structure. For the total of 864 sound files (288×3 speech rate variants), we applied an 80 Hz 

high-pass filter, and smoothed the amplitude envelope sentence-initially and finally. We then 

peak normalized the intensity of the sound files.  

Finally, for each of the 288 normal rate and 288 fast rate sentences, we created amplitude-

modulated noise stimuli (i.e., Gaussian white noise with no linguistic content) using the 

amplitude envelope of the sentence material. These stimuli served as control non-speech 

conditions. We also used 48 filler sentences (different from the experimental stimuli but with 

the same syntactic structure, either at a normal rate, natural fast rate, or time-compressed) in 

which we added beep-sounds at the end and to which the participants had to respond during the 

experiment (see MEG data acquisition and task design). 

We divided the total number of stimuli into two experimental lists, each including 288 sentences 

(96 normal rate, 96 natural fast rate and 96 time-compressed), 192 amplitude-modulated noise 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 11, 2021. ; https://doi.org/10.1101/2020.10.20.344895doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.20.344895


21 
 

stimuli (96 with normal rate envelope and 96 with fast rate envelope) and 48 filler sentences. 

Each stimulus appeared in each rate condition across all participants but only once per list (to 

avoid repetition effects).  

 

MEG data acquisition and task design 

 

Participants were comfortably sitting in a sound-attenuated, magnetically-shielded recording 

room with a screen in front of them. We presented stimuli binaurally through air-conducting 

tubes with foam insert earphones (Etymotic ER2 and ER3). Prior to the MEG recording, we 

determined participants’ auditory detection thresholds for each ear with a 1-minute pure tone 

of 44 kHz; the level was then adjusted so that we presented the stimuli at 50 dB Sensation Level 

with a central position (stereo) with respect to the participant’s head. 

During the experiment, participants attentively listened to all stimuli from one of the two 

experimental lists while looking at a fixation cross at the center of the screen. Their task was to 

detect beep-sounds embedded in filler sentences by pressing a button (response button 

Neuroscan, Pantev) with their left index finger. Participants detected 100% of these trials, which 

we excluded from subsequent analysis. We pseudo-randomly presented all stimuli in 8 blocks 

of 66 trials allowing for short breaks. A training phase with 5 sentences (different from 

experimental stimuli) preceded the actual experiment. Each trial started with the appearance of 

a fixation cross which remained on the screen throughout the duration of the trial. An auditory 

stimulus (sentence or amplitude-modulated noise) was delivered 1500 ms after trial onset. Each 

trial was followed by an inter-trial interval (grey screen) of 1250 ms. We instructed the 

participants to attentively listen to the presented stimuli. In the case of filler stimuli, they had 

to press the response button as quickly as possible. To maintain the participants’ attention 

throughout the experiment, we informed them there would be questions about the content of 

the sentences at the end of the experiment. We used Presentation software (Neurobehavioral 

Systems) to run the experiment. 

We recorded brain activity of the 24 participants using a 275-channel whole-head MEG system 

(CTF OMEGA 275, Canada) at 1200 Hz sampling rate. We placed three fiducial coils (nasion, 

left and right pre-auricular points) on each participant to determine head position within the 

MEG helmet. We also placed four electrooculographic (EOG) electrodes to record horizontal 

and vertical eye movements. We monitored reference head position before each of the 8 

experimental blocks and tracked head movements throughout the experiment using continuous 

head position identification (HPI).   
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Data analysis 

 

We performed all analyses using custom written Matlab scripts (Mathworks Inc., MA, USA) 

and the Fieldtrip toolbox (87). Fig. 1 describes the general methodology. The following section 

describes the processing of (1) speech recordings, (2) MEG data, (3) Magnetic Resonance 

Imaging (MRI) data, (4) source localization and coherence analyses, and (5) statistical analyses.  

 

Speech recordings (reference signals) 

We computed the amplitude envelope of the speech signal following the methodology of Peelle 

and colleagues (10). We first rectified the signal (full wave rectification) and then filtered it 

using a Butterworth low-pass filter (30 Hz, fifth order Butterworth filter, zero-phase digital 

filtering). For the cortico-acoustic coupling analysis, we selected speech envelope segments 

between 200 and 1000 ms post-stimulus onset (equal to the time of interest of the functional 

MEG data). We computed the spectral power for all sentence envelopes for each condition and 

identified the central frequencies of the prominent rhythmic components, using the FOOOF 

algorithm (fitting a parameteric model to the power spectral densities PSD) and subtracting the 

1/f (i.e. aperiodic) component (42). The main peaks in the speech PSD were found at 6.35 Hz 

for normal rate, 8.91 Hz for natural fast rate and 8.61 Hz for time-compressed speech (Fig. 2, 

see supplementary Table S1 and Fig. S1 for details), which closely match the mean syllable 

rates calculated with Praat (6.76 syllables/s (SD 0.57) for natural normal rate and 9.15 

syllables/s (SD 0.60) for natural fast and time-compressed speech). The frequency peaks 

identified in the spectra of the speech signals using the FOOOF method were used to define the 

frequencies of interest for the coherence analysis, namely 6.25 (±1 Hz) and 8.75 (±1 Hz) for 

the normal and fast speech rates respectively. 

 
 

MEG data 

We first segmented the MEG data into periods of 3 s (from 1 s before stimulus onset to 2 s after 

onset) for preprocessing. We rejected data segments contaminated by eye blinks, heartbeat and 

muscle artefacts using a standard semi-automatic procedure available in the Fieldtrip toolbox 

as follows. First, we filtered the signals at 50, 100 and 150 Hz, we then re-sampled the data to 

300 Hz and rejected the deviant trials from visual inspection. Second, we detected and rejected 

EOG artifacts, jumps and muscle artifacts and visually double-checked the trials. Finally, we 
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performed an Independent Component Analysis (ICA) to correct for electrocardiographic 

(ECG) artifacts as well as to check for residual EOG artifacts. For each trial, we defined the 

speech encoding period (i.e. active period) as the time from 200 ms to 1000 ms post-stimulus 

onset, and the baseline from 1000 ms to 200 ms before onset. 

 

MRI data 

We acquired the T1-weighted structural MRIs (MRI 1.5 T, Siemens AvantoFit) of 23 of the 24 

participants after the MEG study. We aligned each MRI to the MEG coordinate system using 

the localization coils marked on the MRIs and the interactive alignment option in the Fieldtrip 

toolbox. We segmented each MRI and then computed each subject’s head model and source 

space using Fieldtrip. We used the single-shell as volume conductor model (88). To have a 

common space for group analysis, we constructed each subject’s source space based on a 

warped MNI template grid. This way, each location on the template grid corresponds to 

homologous grid points across subjects and therefore, we can average results across subjects at 

the source level. We used a template grid with 8693 vertices.  

 

Source localization, power and cortico-acoustic coherence estimation  

We estimated source power and cortico-acoustic coupling using Dynamical Imaging of 

Coherent Sources (DICS) beamformer (41). This method allowed us to appropriately assess 

cortico-acoustic coupling by computing coherence between speech envelope and cortical 

activity.  

The magnitude squared coherence is defined as the linear correlation between two signals as a 

function of frequency. It is mathematically defined by: 

Coh (ref,rc,f) = |Cs(ref,rc,f) |
2 / (Cs(ref,ref,f) Cs(rc,rc,f))        (1) 

Where ref is the reference signal, namely the amplitude envelope of the speech signal; rc is the 

signal at each vertex of the anatomical grid estimated with DICS; f is the frequency bin and Cs 

is the cross spectral density matrix. 

We computed the cross spectral density (CSD) matrix using the multitaper FFT with Slepian 

tapers (i.e. Discrete Prolate Spheroidal Sequences, DPSS), at the frequency bins closest to the 

frequencies of interest, with +1 Hz of spectral smoothing. The identification of the frequencies 

of interest for the normal and fast conditions was based on the FOOOF analysis. Given the 

length of the data windows (0.8s), the coherence frequency bins closest to the peaks identified 

from the spectra of the speech signals (using FOOOF) turned out to be 6.25 and 8.75 Hz for the 

normal and fast speech conditions respectively. 
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In addition to computing cortico-acoustic coherence during the speech encoding period (200 to 

1000 ms), we also computed cortico-acoustic coherence (a) for the baseline window (-1000 to 

-200 ms) and (b) for shuffled data, as control conditions for statistical analysis. In the case of 

shuffled data, we randomly permuted the speech trial order (i.e. destroying the correspondence 

between the speech stimulus heard by the participant and the associated MEG data segment) 

before computing cortico-acoustic coherence. We repeated the shuffling procedure 100 times 

and averaged coherence across iterations for each participant, each condition, each node and 

frequency of interest. This led to 23 surrogate coherence values associated with 23 true 

coherence values, for each node, frequency and condition. 

 

Cortico-cortical connectivity analyses 

To quantify task-based modulations of cortico-cortical interaction patterns, we computed seed-

based connectivity via weighted Phase Lag Index (wPLI). To this end, we used two key ROI as 

seeds: the right auditory ROI and the right articulatory/motor ROI. This choice was based on 

the results of the cortico-acoustic coupling analyses, as it was intended as an additional follow-

up analysis. For each participant, we computed the wPLI connectivity matrix in the frequency 

band ~8.75 +/- 1 Hz for three distinct conditions: time-compressed, natural fast rate and normal 

rate speech. We chose wPLI because of its relative insensitivity to linear mixing effects 

compared to other metrics such as coherence or phase-locking value (89,90). 

 

Statistical analyses 

We conducted group statistical analysis for the 23 participants (out of 24) with individual MRI. 

As control conditions, we used shuffled data and the baseline period for cortico-acoustic 

coherence, and the baseline for source power analysis. We compared the speech encoding 

period to each control condition applying non-parametric Monte-Carlo randomization (1000 

randomizations), dependent-samples T-test statistics using FieldTrip. We corrected for multiple 

comparisons using ‘maxsum’ cluster-based correction and used a statistical significance 

threshold of 0.05 (91). Because we hypothesized that brain-speech coherence increases 

compared to control conditions, we used one-sided tests for the coherence analyses. However, 

two-sided tests were used when we explored task-based differences in spectral power, since we 

tested for both increases and decreases of mean power. Furthermore, and in line with several 

previous studies on neural entrainment to speech (10,28,60), statistical analyses were performed 

on regions of interest (ROIs). These were determined using the Automated Anatomical 

Labeling (AAL) atlas (92). We chose ten ROIs (five in each hemisphere) based on 
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neurocognitive models (5,36) and neuroimaging data on speech perception (74,93,94). The 

ROIs consisted of Heschl’s gyrus, superior temporal gyrus, middle temporal gyrus, precentral 

and postcentral gyri (bilaterally). For the analysis of direct contrasts between speech conditions, 

we additionally defined the motor/articulatory cortex ROI as all the voxels located within 8 mm 

from two locations in MNI space at (66, 3, 17) and (66, -4, 17). These were chosen based 

respectively on (a) previous reports identifying articulatory cortex (43,44) and (b) the location 

of the speech-brain coherence peak found at ~8.75 Hz. Finally, we used the BioImage Suite 

software (www.bioimagesuite.org) (95,96) to identify the Brodmann areas detected as 

significant in the statistical analysis. As for the wPLI analyses, we contrasted the natural fast 

with (a) the time-compressed condition and (b) the normal rate condition using non-parametric 

Monte-Carlo randomization (10000 randomizations) and dependent-samples one-sided T-test 

statistics using FieldTrip. 
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