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Abstract

Neural decoding can be conceptualized as the problem of mapping brain responses back
to sensory stimuli via a feature space. We introduce (i) a novel experimental paradigm
which uses well-controlled yet highly naturalistic stimuli with a priori known feature
representations and (ii) an implementation thereof for HYPerrealistic reconstruction
of PERception (HYPER) of faces from brain recordings. To this end, we embrace
the use of generative adversarial networks (GANs) at the earliest step of our neural
decoding pipeline by acquiring fMRI data as subjects perceive face images synthesized
by the generator network of a GAN. We show that the latent vectors used for generation
effectively capture the same defining stimulus properties as the fMRI measurements. As
such, GAN latent vectors can be used as features underlying the perceived images that
can be predicted for (re-)generation, leading to the most accurate reconstructions of
perception to date.

1 Introduction 1

Neural decoding can be conceptualized as the inverse problem of mapping brain responses 2

back to sensory stimuli via a feature space [21]. Such a mapping can be modeled as 3

a composite function of linear and nonlinear transformations (Figure 1). A nonlinear 4

transformation models the stimulus-feature mapping whereas the feature-response map- 5

ping is modeled by a linear transformation. Invoking this in-between feature space 6

factorizes the direct stimulus-response transformation into two to make it not only data 7

Fig 1. Neural coding. The mapping between sensory stimuli (left) and brain
measurements (right) via a feature space (middle). Neural encoding seeks to find a
transformation from stimulus to the observed brain response. Conversely, neural decoding
seeks to find the information present in the observed brain responses by a mapping from
brain activity back to the originally perceived stimulus.
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efficient (given that neural data is scarce) but also possible to test alternative hypotheses 8

about the emergence and nature of neural representations of the environment. That 9

is, each stimulus-feature model transforms stimuli to a different set of underlying fea- 10

tures to construct candidate feature representations. Each feature-response model then 11

transforms these candidate feature representations to brain responses to test similarity 12

thereof. Feature representations of stimuli are assumed to have a linear relationship with 13

neuroimaging measurements of underlying neural responses such that both capture the 14

same statistical invariances in the environment. 15

The systematic correspondence between various feature representations of discrimina- 16

tive task-optimized (supervised) convnets and neural representations of sensory cortices 17

are well established [2, 5–7, 14, 24]. As such, exploiting this correspondence in neu- 18

ral decoding of visual perception has pushed the state-of-the-art forward [21] such as 19

classification of perceived, imagined and dreamed object categories [9, 10], and recon- 20

struction of perceived natural images [16–18] and faces [8, 22]. However, unlike their 21

supervised counterparts, more biologically plausible unsupervised deep neural networks 22

have paradoxically been less successful in modeling neural representations [15]. 23

At the same time, generative adversarial networks (GANs) [4] have emerged as 24

perhaps the most powerful generative models to date [1,4,11,12] that can potentially 25

bring neural decoding to the next level. In short, a generator network is pitted against a 26

discriminator network that learns to distinguish synthesized from real data. The goal of 27

the generator is to fool the discriminator by mapping ”latent” vector samples from a 28

given (simple) distribution (e.g., standard Gaussian) to unique data samples such that 29

they appear to have been drawn from the real data distribution. This competition drives 30

the networks to improve in tandem until the synthesized samples are indistinguishable 31

from the real ones. The generator has now learned the unidirectional mapping from 32

latent- to data distribution. This mapping can model the nonlinear feature-stimulus 33

transformation (as defined under neural decoding) where the latent vectors are the 34

in-between feature representations underlying the perceived stimuli. 35

For this reason, GANs have high potential in modeling neural representations but 36

testing this hypothesis is not directly possible because latent vectors cannot be obtained 37

retrospectively; arbitrary stimuli cannot be directly transformed into latent vectors 38

since GANs do not have such an inverse transformation. As a result, the adoption of 39

GANs in neural decoding has been relatively slow since they cannot be readily used for 40

this purpose without resorting to approximate inversion methods (see [17] for such an 41

earlier attempt) unlike those of the aforementioned discriminative convnets. That is, 42

the feature-stimulus transformation entails information loss since the images need to be 43

reconstructed from the predicted feature representations using an approximate inversion 44

network, leading to a severe bottleneck to the maximum possible reconstruction quality 45

(i.e., noise ceiling). 46

Fig 2. Illustration of the HYPER pipeline. Face images are generated from
randomly sampled latent vectors z by a GAN and presented as stimuli during brain
scanning. A linear model predicts latent vectors ẑ for unseen brain responses to feed
back to the GAN for reconstruction.
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We overcome the aforementioned problem by introducing a very powerful yet simple 47

experimental paradigm for neural (de)coding where participants are presented with 48

synthetic yet highly naturalistic stimuli with known latent vectors. We also present an 49

instance of this paradigm for HYperrealistic reconstruction of PERception (HYPER) 50

which elegantly integrates GANs in neural decoding of faces by combining the following 51

components (Figure 2): 52

• A pretrained generator network of a progressive growing of GAN (PGGAN) [11] 53

that generates photorealistic face images from latent vectors. 54

• A new dataset of synthesized face images and whole-brain fMRI activations of two 55

participants. 56

• A decoding model that predicts latent vectors from fMRI activations which are 57

then fed to the generator for reconstruction. 58

We demonstrate that our approach constitutes a leap forward in our ability to reconstruct 59

percepts from patterns of human brain activity. 60

2 Materials and methods 61

2.1 Neural decoding 62

The generator of PGGAN is adapted by adding a dense layer at the beginning of 63

the network that performs the response-feature transformation. While the remainder 64

of the network was kept fixed, this response-feature layer is trained by minimizing 65

the Euclidean distance between true and predicted latent vectors (batchsize = 30, 66

lr = 0.00001, Adam optimization) with weight decay (alpha = 0.01) to reduce complexity 67

and multicollinearity of the model. 68

2.2 Datasets 69

2.2.1 Visual stimuli 70

High-resolution face images (1024×1024 pixels) are synthesized by the generator network 71

of a Progressive GAN (PGGAN) model [11] from latent vectors that are randomly 72

sampled from the standard Gaussian. Each generated face image is cropped and resized 73

to 224 × 224 pixels. In total, 1050 unique faces are presented once for the training set 74

and 36 faces are repeated 14 times for the test set. This ensured that the training set 75

covers a large stimulus space to fit a general face model whereas the voxel responses 76

from the test set contain less noise and higher statistical power. 77

2.2.2 Brain responses 78

An fMRI dataset was collected that consists of brain responses to the perceived face 79

stimuli. The fMRI activations (TR = 1.5 s, voxel size = 2 × 2 × 2 mm3, whole-brain 80

coverage) of two healthy subjects were measured (S1: 30-year old male; S2: 32-year old 81

male) while they were fixating on a target (0.6 × 0.6 degrees) [20] superimposed on the 82

stimuli (15 × 15 degrees) to minimize involuntary eye movements. 83

During preprocessing, the brain volumes are realigned to the first functional scan and 84

the mean functional scan, respectively, after which the volumes are normalized to MNI 85

space. A general linear model is fit to deconvolve task-related neural activation with the 86

canonical hemodynamic response function (HRF). Next, we computed the t-statistic for 87

each voxel which was standardized to obtain brain maps in terms of z-scores. In the end, 88
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Fig 3. Voxel masks. 4096 most active voxels based on highest z-statistics within the
averaged z-map from the training set responses.

the most-active 4096 voxels on average were selected from the training set to define a 89

voxel mask (Figure 3). Most of these mask voxels are located in the downstream brain 90

regions. Voxel responses from the test set are not used to create this mask to avoid 91

circularity. 92

The experiment was approved by the local ethics committee (CMO Regio Arnhem- 93

Nijmegen). Subjects provided written informed consent in accordance with the Dec- 94

laration of Helsinki. The fMRI dataset for both subjects and used models are openly 95

accessible via Github. 96

2.3 Evaluation 97

Model performance was evaluated in terms of three metrics: latent similarity, feature simi- 98

larity and structural similarity. First, latent similarity is the Euclidean similarity between 99

predicted and true latent vectors. Second, feature similarity is the Euclidean similarity 100

between feature extraction layer outputs (n = 2048) of the ResNet50 model, pretrained 101

for face recognition. Third, structural similarity measured the spatial interdependence 102

between pixels of stimuli and reconstructions [23]. 103

Next, we introduce a new metric ”attribute similarity” to assess model performance. 104

Based on the assumption that there exists a hyperplane in latent space for binary 105

semantic attributes (e.g., male vs. female), [19] have identified the decision boundaries 106

for five semantic face attributes in PGGAN’s latent space: gender, age, the presence 107

of eyeglasses, smile, and pose. Attribute scores can be computed by taking the inner 108

product between latent vector and decision boundary. In this way, model performance 109

can be evaluated in terms of these specific visual attributes along a continuous spectrum. 110

2.4 Implementation details 111

fMRI preprocessing is implemented in SPM12 after which first-order analysis is carried 112

out in Nipy. We used a custom implementation of PGGAN in MxNet together with 113

the pretrained weights from the original paper. Keras’ pretrained implementation of 114

VGGFace (ResNet50 model) is used to evaluate similarities between feature maps of the 115

perceived and reconstructoed images. 116

3 Results 117

Neural decoding of fMRI measurements via the GAN latent space has resulted in unprece- 118

dented stimulus reconstructions. Figure 4 shows arbitrarily chosen but representative 119

examples. The complete set of stimulus-reconstruction pairs can be found in the supple- 120

mentary materials. Figure 5 illustrates how well the HYPER model captures and decodes 121

attributes by matching polarity and intensity of attribute scores between perceived and 122

reconstructed examples. For most stimulus-reconstruction pairs, the graphs matched in 123

terms of directionality. Correlating observed and predicted feature scores resulted in 124

significant (p ¡ 0.05; Student’s t-test) results for gender, age, eyeglasses and pose, but 125

not for smile (Figure 6). 126
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Fig 4. Stimulus-reconstruction examples.

Fig 5. Attribute scores. Stimulus-reconstruction examples from subject 1 together
with rotated bar graphs that visualize the attribute scores to demonstrate how attribute
similarity can be used to evaluate model performance.
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Fig 6. Attribute scores. Significant correlations are found for gender (S1: r = 0.89,
p = 6.55e − 13; S2: r = 0.20, p = 4.20e − 10), age (S1: r = 0.78, p = 1.70e − 08; S2:
r = 0.69, p = 3.91e− 06), eyeglasses (S1: r = 0.59, p = 0.0001; S2: r = 0.56, p = 0.0003)
and pose (S1: r = 0.83, p = 4.20e− 10; S2: r = 0.72, p = 4.20e− 10), but not for smile
(S1: r = 0.10, p = 0.57; S2: r = 0.20, p = 0.25).

Table 1. Quantitative results. Model performance of the HYPER model compared
to the state-of-the-art VAE-GAN approach [22] and the eigenface approach [3] in terms
of the feature similarity (column 2) and structural similarity (column 3) between stimuli
and reconstructions (mean ± std error). The first column displays latent similarity
between true and predicted latents which is only applicable to the HYPER model. For
a fair comparison, all images are resized to 224 × 224 pixels, smoothed with a Gaussian
filter (kernel size = 3) and backgrounds are removed. Statistical significance of HYPER
is evaluated against randomly generated latent vectors and their generated images.

Lat. sim. Feat. sim. Struct. sim.
S1 HYPER 0.4521 ± 0.0026 0.1745 ± 0.0038 0.6663 ± 0.0115

(p < 0.001; perm.test) (p < 0.001; perm.test) (p < 0.001; perm.test)
VAE-GAN - 0.1416 ± 0.0025 0.5598 ± 0.0151
Eigenface - 0.1319 ± 0.0016 0.5877 ± 0.0115

S2 HYPER 0.4447 ± 0.0020 0.1715 ± 0.0049 0.6035 ± 0.0128
(p < 0.001; perm.test) (p < 0.001; perm.test) (p < 0.001; perm.test)

VAE-GAN - 0.1461 ± 0.0022 0.5832 ± 0.0141
Eigenface - 0.1261 ± 0.0019 0.5616 ± 0.0097

Next, the performance of the HYPER model is compared to two baseline models 127

that map the brain recordings onto different latent spaces. First, the state-of-the-art 128

VAE-GAN approach [22] predicts 1024-dimensional latent vectors that are fed to the 129

VAE decoder network for reconstruction (128 × 128 pixels). Second, the traditional 130

eigenface approach [3] predicts the first 512 principal components (or ”eigenfaces”) and 131

reconstructed face images (64 × 64 pixels) by applying an inverse PCA transform. For a 132

fair comparison, the same voxel masks are used to evaluate all three methods presented in 133

this study without any optimization to a particular decoding approach. All quantitative 134

(Table 1) and qualitative (Figure 7) results showed that the HYPER model outperformed 135

the baselines and had significantly above-chance latent and feature similarity (p < 0.001, 136

permutation test) which indicates the probability that a random latent vector or face 137

image would outperform our model predictions. 138

4 Discussion 139

The novel experimental paradigm for neural decoding that we introduced uses synthesized 140

stimuli such that the underlying latent/feature representations needed for (re)generation 141

are known a priori. The HYPER model is an implementation of this paradigm which 142

March 12, 2021 6/11

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 12, 2021. ; https://doi.org/10.1101/2020.07.01.168849doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.01.168849


Fig 7. Qualitative results. Model performance of the HYPER model compared to
VAE-GAN approach [22] and the eigenface approach [3]. The model columns display
the best possible results by direct encoding and decoding of the stimulus (i.e., no brain
data is used).

resulted in state-of-the-art reconstructions of perceived faces from brain activations. 143

This indicates that the GAN latent space approximates the neural face manifold and 144

that unsupervised deep neural networks can successfully model neural representations of 145

naturalistic stimuli. 146

HYPER achieved considerably better reconstructions than the two baselines. It 147

should be noted that the reconstructions by the VAE-GAN approach appear to be of 148

lower quality than those presented in the original study. Likely explanations for this 149

are the differences in dataset size and the voxel selection procedure. Most importantly, 150

we do not attribute the high performance of the HYPER model to the specific type of 151

generative model but instead to the training on synthesized yet photorealistic stimuli 152

(i.e., a GAN is not necessarily better than a VAE-GAN). 153

4.1 Limitations 154

While HYPER owes its performance to the current advances in generative modeling, it 155

also inherits the limitations thereof in what can and cannot be generated. So far, the 156

generator had to reconstruct faces it already generated before. The next step is verifying 157

whether a decoding model trained on fMRI recordings during perception of synthetic 158

faces generalizes to faces of real people. Latent vectors of real faces are not directly 159

accessible but would also no longer be required when the decoding model has learned to 160

accurately predict them from the synthetic data. It should however be noted that the 161

results of this study are still valid reconstructions of visual perception regardless of the 162

nature of the stimuli themselves. 163

Reconstructions by HYPER appear to contain biases; the model predicts primarily 164

latent vectors corresponding to young, western-looking faces without eyeglasses as they 165

tend to follow the image statistics of the (celebrity) training set. Also, the PGGAN gen- 166

erator is known to suffer from this problem of feature entanglement where manipulating 167

one particular feature in latent space affects other features as well [19]. For example, 168

editing a latent vector to make the generated face wear eyeglasses simultaneously makes 169

the face look older because of such biases in the training data. Feature entanglement 170

obstructs the generator to map unfamiliar latent elements to their respective visual 171
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features. It is easy to foresee potential complications for reconstructing images of real 172

faces. 173

Fortunately, a modified version of PGGAN, called StyleGAN [12,13], is designed to 174

overcome the feature entanglement problem. StyleGAN maps the entangled latent vector 175

to an additional intermediate latent space (thereby reducing feature entanglement) which 176

is then integrated into the generator network using adaptive instance normalization. This 177

results in superior control over the features in the reconstructed images and possibly the 178

generator’s ability to reconstruct unfamiliar features. The generated face photographs 179

by StyleGAN have improved considerably in quality and variation in comparison to 180

PGGAN. Replacing PGGAN with StyleGAN would therefore be a logical next step for 181

studies concerned with the neural decoding of faces. 182

4.2 Future applications 183

The field of neural decoding has been gaining more and more traction in recent years as 184

advanced computational methods became increasingly available for application on neural 185

data. This is a very welcome development in both neuroscience and neurotechnology 186

since reading neural information will not only help understand and explain human brain 187

function but also find applications in brain computer interfaces and neuroprosthetics 188

to help people with disabilities. For example, extensions of this framework to imagery 189

could make it a preferred means for communication with locked-in patients. 190

4.3 Ethical concerns 191

Care must be taken as “mind reading” technologies also involve serious ethical concerns 192

regarding mental privacy. Although current neural decoding approaches such as the one 193

presented in this manuscript would not allow for involuntary access to thoughts of a 194

person, future developments may allow for the extraction of information from the brain 195

more easily, as the field is rapidly developing. As with all scientific and technological 196

developments, ethical principles and guidelines as well as data protection regulations 197

should be followed strictly to ensure the safety of potential users of these technologies. 198

5 Conclusion 199

We have presented a novel experimental framework together with a model for HYperre- 200

alistic reconstruction of PERception (HYPER) by neural decoding of brain responses 201

via the GAN latent space, leading to unparalleled stimulus reconstructions. Considering 202

the speed of progress in the field of generative modeling, we believe that this framework 203

will likely result in even more impressive reconstructions of perception and possibly even 204

imagery in the near future. 205
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A Stimulus-reconstructions 278

Fig 8. Stimuli (left) and reconstructions (right) for subject 1 and 2. The
linear interpolations visualize the distance between predicted and true latent vector that
underlie the (re)generated faces. In this way, it is easy to see which features are being
retained or change.

B Github Repository 279

https://github.com/neuralcodinglab/HYPER 280
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