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Differential expression analysis in single-cell transcriptomics enables the dissection of cell-type-specific re-
sponses to perturbations such as disease, trauma, or experimental manipulation. While many statistical methods
are available to identify differentially expressed genes, the principles that distinguish these methods and their
performance remain unclear. Here, we show that the relative performance of these methods is contingent on
their ability to account for variation between biological replicates. Methods that ignore this inevitable variation
are biased and prone to false discoveries. Indeed, the most widely used methods can discover hundreds of
differentially expressed genes in the absence of biological differences. Our results suggest an urgent need for a
paradigm shift in the methods used to perform differential expression analysis in single-cell data.

The abundance of RNA species informs on the past, present
and future state of cells and tissues. By enabling the com-
plete quantification of mRNA populations, RNA sequenc-
ing (RNA-seq) has provided unprecedented access to the
molecular processes active in a biological sample1. Dis-
eases, traumas, and experimental manipulations perturb these
processes, which leads to changes in the expression of spe-
cific mRNAs. Historically, these altered mRNAs were iden-
tified using bulk RNA-seq in non-perturbed versus perturbed
tissues2. However, biological tissues are composed of multi-
ple cell types, whose responses to a perturbation can differ
dramatically. Changes in mRNA abundance within multi-
cellular tissues are confounded by different responses across
cell types and changes in the relative abundance of these cell
types3. Consequently, the resolution of bulk RNA-seq is in-
sufficient to characterize the multifaceted responses to bio-
logical perturbations.

Single-cell RNA-seq (scRNA-seq) enables the quantifi-
cation of RNA abundance at the resolution of individual
cells4. The maturation of single-cell technologies now en-
ables large-scale comparisons of cell states within complex
tissues, thus providing the appropriate resolution to dissect
cell-type-specific responses to perturbation5,6. The sparsity
and heterogeneity of single-cell data initially encouraged the
development of specialized statistical methods to identify dif-
ferentially expressed mRNAs7,8. The proliferation of statisti-
cal methods for differential expression analysis prompted in-
vestigators to ask which methods produced the most biologi-
cally accurate results. To answer this question, investigators
turned to simulations in an attempt to create a ground truth
against which the various methods could be benchmarked.
However, simulations require specifying a model from which

synthetic patterns of differential expression are generated.
Differences in the specification of this model have led inves-
tigators to contrasting conclusions9,10.

These divergences emphasize the importance of develop-
ing a sound epistemological foundation for differential ex-
pression in single-cell data11. We reasoned that developing
such a foundation would require quantifying the performance
of the available methods across multiple datasets in which an
experimental ground truth is known, and defining the princi-
ples that are responsible for differences in performance. We
therefore first established a methodological framework that
enabled us to curate a resource of ground-truth datasets. Us-
ing this resource, we conducted a definitive comparison of the
various available methods for differential expression analy-
sis. We found that differences in the performance of these
methods reflect the failure of certain methods to account for
intrinsic variation between biological replicates. This mech-
anistic understanding led to the discovery that the most fre-
quently used methods can identify differentially expressed
genes even in the absence of biological differences. These
false discoveries are poised to mislead investigators. How-
ever, we show that false discoveries can be avoided using
statistical methodologies that account for between-replicate
variation. In summary, we expose the principles that underlie
valid differential expression analysis in single-cell data, and
provide a toolbox to implement relevant statistical methods
for single-cell users.

Results
A ground-truth resource to benchmark single-cell differen-
tial expression. We aimed to compare available statistical

Squair et al. | March 11, 2021 | 1–23

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.12.435024doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.12.435024


Fig. 1 | A systematic benchmark of differential expression in single-cell transcriptomics.
a, Schematic overview of the eighteen ground-truth datasets analyzed in this study.
b, Statistical methods for DE analysis employed in 500 recent scRNA-seq papers. Grey bars represent DE analysis methods included in this study.
“Other” includes methods used in two or fewer studies. Inset pie chart shows the total proportion of recent scRNA-seq papers that employed DE analysis
methods included in this study.
c, Area under the concordance curve (AUCC) for fourteen DE methods in the eighteen ground-truth datasets shown in a.
d, Mean difference in the AUCC (∆AUCC) between the fourteen DE methods shown in c. Asterisks indicate comparisons with a two-tailed t-test p-value
less than 0.05.
e, AUCC of GO term enrichment, as evaluated using gene set enrichment analysis12, in the eighteen ground-truth datasets shown in a.
f, Rank and statistical significance of the GO term GO:0043330 (“response to exogenous dsRNA”) in GSEA analyses of mouse bone marrow mononu-
clear cells stimulated with poly-I:C, a type of synthetic dsRNA, for four hours, using the output of fourteen DE methods.

methods for differential expression (DE) analysis based on
their ability to generate biologically accurate results. We rea-
soned that performing this comparison in real datasets where
the experimental ground truth is known would faithfully re-
flect differences in the performance of these methods, while
avoiding the shortcomings of simulated data. We posited that
the closest possible approximation to this ground truth could
be obtained from matched bulk and scRNA-seq performed
on the same population of purified cells, exposed to the same
perturbations, and sequenced in the same laboratories. An
extensive survey of the literature identified a total of eighteen
‘gold standard’ datasets that met these criteria (Fig. 1a)13–16.
This compendium allowed us to carry out a large-scale com-
parison of DE methods in experimental settings where the
ground truth is known.

Pseudobulk methods outperform generic and specialized
single-cell DE methods. We selected a total of fourteen DE
methods, representing the most widely used statistical ap-
proaches for single-cell transcriptomics, to compare (Meth-
ods). Together, these methods have figured in nearly 90%
of recent studies (Fig. 1b). We evaluated the relative perfor-
mance of each method based on the concordance between DE
results in bulk versus scRNA-seq datasets. To quantify this
concordance, we calculated the area under the concordance
curve (AUCC) between the results of bulk versus scRNA-seq
datasets17,18.

We compared the performance of the fourteen methods
across the entire compendium of the eighteen gold standard
datasets. This analysis immediately revealed that all six
of the top-performing methods shared a common analytical
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Fig. 2 | Single-cell DE methods are biased towards highly expressed genes.
a, Schematic illustration of the creation of ‘pseudobulks’ from single-cell data by aggregating cells of a given type within each biological replicate.
b, Mean AUCCs across eighteen ground-truth datasets after dividing the transcriptome into terciles of lowly, moderately, or highly expressed genes.
c, Mean expression levels of the 100 top-ranked false-positive genes from each DE method.
d, Spearman correlation between the mean expression of 80 ERCC spike-ins13 expressed in at least three cells and the –log10 p-value of differential
expression assigned by each DE method.
e, Scatterplots of mean ERCC expression vs. –log10 p-value for exemplary single-cell and pseudobulk DE methods.
f, Mean expression levels of the 200 top-ranked genes from each DE method in a collection of 46 scRNA-seq datasets.

property. These methods aggregated cells within a biologi-
cal replicate, to form so-called ‘pseudobulks’, before apply-
ing a statistical test (Fig. 1c)19. In comparison, methods
that compared individual cells performed poorly. The dif-
ferences between pseudobulk and single-cell methods were
highly significant (Fig. 1d), and robust to the methodology
used to quantify concordance (Supplementary Fig. 1a-d).
Moreover, comparisons to matching proteomics data14 re-
vealed that pseudobulk methods also more accurately pre-
dicted changes in protein abundance (Supplementary Fig.
1e-f).

We asked whether the differences between DE methods
could also impact the functional interpretation of transcrip-
tomic experiments. For this purpose, we compared Gene On-
tology (GO) term enrichment analyses in bulk versus scRNA-
seq DE. We found that pseudobulk methods again more faith-
fully reflected the ground truth, as captured in the bulk RNA-
seq (Fig. 1e and Supplementary Fig. 1g). For exam-
ple, single-cell methods failed to identify the relevant GO
term when comparing mouse phagocytes stimulated with
poly(I:C)13, a synthetic double-stranded RNA (Fig. 1f).

Single-cell DE methods are biased towards highly expressed
genes. The unexpected superiority of pseudobulk methods
compelled us to study the mechanisms that are responsible
for their ability to recapitulate biological ground truth. To in-
vestigate these mechanisms, we formulated and tested several
hypotheses that could potentially explain these differences in
performance.

Previous studies demonstrated that inferences about DE
are generally more accurate for highly expressed genes20,21.
Measurements of gene expression in single cells are inher-
ently sparse. By aggregating cells within each replicate,
pseudobulk methods dramatically reduce the number of zeros
in the data, especially for lowly expressed genes (Fig. 2a).
Consequently, we initially hypothesized that the difference in
accuracy between pseudobulk and single-cell methods could
be explained by superior performance of pseudobulk meth-
ods among lowly expressed genes.

To test this hypothesis, we allocated genes into three
equally sized bins, comprising lowly, moderately, and highly
expressed genes. We then re-calculated the concordance
between bulk and scRNA-seq DE within each bin. Con-
trary to our prediction, we observed minimal differences
between pseudobulk and single-cell methods for lowly ex-
pressed genes (Fig. 2b and Supplementary Fig. 2a). In-
stead, the most pronounced differences between pseudobulk
and single-cell methods emerged among highly expressed
genes.

This unexpected result led us to ask whether single-cell
DE methods produce systematic errors for highly expressed
genes. To explore this possibility, we scrutinized the bulk
datasets to identify genes falsely called as DE by each method
within scRNA-seq data. We found that false positives identi-
fied by single-cell DE methods were more highly expressed
than those identified by pseudobulk methods (Fig. 2c and
Supplementary Fig. 2b). Conversely, false-negatives over-
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looked by single-cell DE methods tended to be lowly ex-
pressed (Supplementary Fig. 2c-d). Together, these find-
ings implied a systematic tendency for single-cell methods
to identify highly expressed genes as DE, even when their
expression remained unchanged.

To validate this conclusion experimentally, we analyzed
a dataset in which a population of synthetic mRNAs were
spiked into each well containing a single cell13,22. Each of
these single-cell libraries therefore contained equal concen-
trations of each synthetic mRNA. We found that single-cell
methods incorrectly identified many abundant spike-ins as
DE (Fig. 2d-e and Supplementary Fig. 2e-f). In contrast,
pseudobulk methods avoided this bias.

We then asked whether this bias was universal in
single-cell transcriptomics. We assembled a compendium
of 46 scRNA-seq datasets that encompassed disparate
species, cell types, technologies, and biological perturbations
(Supplementary Fig. 3). We found that single-cell DE meth-
ods displayed a systematic preference for highly expressed
genes across the entire compendium (Fig. 2f).

Together, these experiments suggest that the inferior per-
formance of single-cell methods can be attributed to their bias
towards highly expressed genes.

DE analysis of single-cell data must account for biological
replicates. These findings implied that pseudobulk meth-
ods possess a common analytical property that allows them
to avoid this bias. We conducted a series of experiments to
identify this mechanism.

The statistical tools applied to identify DE genes in pseu-
dobulk data (i.e., edgeR, DESeq2, and limma) have been re-
fined over many years of development. We therefore asked
whether these methods incorporate inherent advantages that
are independent from the procedure of aggregating gene ex-
pression across cells. To test this possibility, we disabled the
aggregation procedure and applied the pseudobulk methods
to individual cells (Fig. 3a). Strikingly, this procedure abol-
ished the superiority of the pseudobulk methods (Fig. 3b
and Supplementary Fig. 4a). The emergence of a bias to-
wards highly expressed genes paralleled this decrease in per-
formance (Fig. 3b and Supplementary Fig. 4b-c).

This result raised the possibility that the aggregation pro-
cedure itself was directly responsible for the superiority of
pseudobulk methods. To evaluate this notion, we applied the
aggregation procedure to random groups of cells, which pro-
duced a pseudobulk matrix composed of ‘pseudo-replicates’
(Fig. 3c). This experiment induced a similar decrease in the
performance of pseudobulk methods, combined with the re-
emergence of a bias towards highly expressed genes (Fig. 3d
and Supplementary Fig. 3d-f).

We sought to understand the common factors that could
explain the decreased performance of pseudobulk methods
in these two experiments. We recognized that both experi-
ments entailed a loss of information about biological repli-
cates. Aggregating random groups of cells to form pseudo-
replicates, or ignoring replicates altogether in comparisons of
single cells, both introduced a bias towards highly expressed
genes and a corresponding loss of performance.

Within the same experimental condition, replicates ex-
hibit inherent differences in gene expression, which reflect
both biological and technical factors23. We reasoned that fail-
ing to account for these differences could lead methods to
misattribute the inherent variability between replicates to the
effect of the perturbation. To study this potential mechanism,
we compared the variance in the expression of each gene in
pseudobulks and pseudo-replicates. Initially, we performed
this comparison in a dataset of bone marrow mononuclear
cells stimulated with poly-I:C13. We found that shuffling the
replicates produced a systematic decrease in the variance of
gene expression, affecting 98.2% of genes (Fig. 3e). We next
tested whether this decrease in variance occurred systemat-
ically across our compendium of 46 datasets. Every com-
parison displayed the same decrease in the variance of gene
expression (Fig. 3f).

The decrease in the variance of gene expression led sta-
tistical tests to attribute small changes in gene expression
to the effect of the perturbation. For instance, in the poly-
I:C dataset, failing to account for the variable expression of
Txnrd3 across replicates led to the spurious identification of
this gene as differentially expressed (Fig. 3g). Moreover, we
found that highly expressed genes exhibited the largest de-
crease in variance in pseudo-replicates, thus explaining the
bias of single-cell methods towards highly expressed genes
(Supplementary Fig. 4g-k).

Together, this series of experiments exposed the principle
underlying the unexpected superiority of pseudobulk meth-
ods. Statistical methods for differential expression must ac-
count for the intrinsic variability of biological replicates to
generate biologically accurate results in single-cell data. Ac-
counting for this variability allows pseudobulk methods to
correctly identify changes in gene expression caused by a bi-
ological perturbation. In contrast, failing to account for bi-
ological replicates causes single-cell methods to systemati-
cally underestimate the variance of gene expression. This
underestimation of the variance biases single-cell methods
towards highly expressed genes, compromising their ability
to generate biologically accurate results.

False discoveries in single-cell DE. We realized that if fail-
ing to account for the variation between biological replicates
could produce false discoveries in the presence of a real bio-
logical perturbation, then false discoveries might also arise
in the absence of any biological difference. To test this
possibility, we simulated single-cell data with varying de-
grees of heterogeneity between replicates (Fig. 4a). We
randomly assigned each replicate to an artificial ‘control’ or
‘treatment’ group, and tested for DE between the two con-
ditions. Strikingly, single-cell methods identified hundreds
of DE genes in the absence of any perturbation (Fig. 4b
and Supplementary Fig. 5a). Moreover, in line with our
understanding of the mechanisms underlying the failure of
single-cell DE methods, the genes that were falsely called as
DE were those whose expression was most variable between
replicates (Fig. 4c and Supplementary Fig. 5b). Pseu-
dobulk methods abolished the false detection of DE genes.
However, creating pseudo-replicates led to the reappearance
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Fig. 3 | DE analysis of single-cell data must account for biological replicates.
a, Schematic illustration of the experiment shown in b, in which the aggregation procedure was disabled and pseudobulk DE methods were applied to
individual cells.
b, Left, AUCC of the original fourteen DE methods, plus six pseudobulk methods applied to individual cells, in the eighteen ground-truth datasets. Right,
Spearman correlation between ERCC mean expression13 and –log10 p-value assigned by six pseudobulk DE methods, before and after disabling the
aggregation procedure.
c, Schematic illustration of the experiment shown in d, in which the replicate associated with each cell was shuffled to produce ‘pseudo-replicates.’
d, Left, AUCC of the original fourteen DE methods, plus six pseudobulk methods applied to pseudo-replicates, in the eighteen ground-truth datasets.
Right, Spearman correlation between ERCC mean expression13 and –log10 p-value assigned by six pseudobulk DE methods, before and after shuffling
replicates to produce pseudo-replicates.
e, Variance of gene expression in pseudobulks formed from biological replicates and pseudo-replicates in mouse bone marrow mononuclear cells
stimulated with poly-I:C13. Shuffling the replicate associated with each cell produced a systematic decrease in the variance of gene expression. Right,
pie chart shows the proportion of genes with increased or decreased variance in pseudo-replicates, as compared to biological replicates.
f, Decreases in the variance of gene expression in pseudo-replicates as compared to biological replicates across 46 scRNA-seq datasets. Points show
the mean variance in biological replicates; arrowheads show the mean variance in pseudo-replicates.
g, Left, expression of the gene Txnrd3 in biological replicates (points) and pseudo-replicates (arrowheads) from unstimulated cells and cells stimulated
with poly-I:C, with the range of possible pseudo-replicate expression values shown as a density. Right, mean and variance of Txnrd3 expression in
biological replicates (left) and pseudo-replicates (right).

of spurious DE genes (Fig. 4b-c and Supplementary Fig.
5a-b), further corroborating the requirements for accurate
DE analyses. The number of false discoveries was reduced
when additional replicates were introduced to the dataset
(Supplementary Fig. 5c). In contrast, introducing additional
cells to the simulated data only exacerbated the underlying
problem (Supplementary Fig. 5d).

These findings compelled us to investigate whether sim-
ilar false discoveries could arise in real single-cell data. To

explore this possibility, we initially analyzed a dataset of hu-
man peripheral blood mononuclear cells (PBMCs) exposed
to interferon5. We extracted the control samples that had not
been exposed to interferon, and split them randomly into two
groups. We then performed DE analysis. Failing to account
for the intrinsic variability of biological replicates produced
hundreds of DE genes between randomly assigned replicates
(Fig. 4d and Supplementary Fig. 6a-b).

Unsettled by this appearance of false discoveries, we
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Fig. 4 | False discoveries in single-cell DE.
a, Schematic illustration of simulation experiments. Single-cell RNA-seq datasets were simulated with varying degrees of heterogeneity between
replicates. Replicates were then randomly assigned to either a ‘treatment’ or ‘control’ group, and DE analysis was performed between groups.
b, Number of DE genes detected in stimulation experiments with varying degrees of heterogeneity between replicates by a representative single-cell
DE method, a representative pseudobulk method, and the same pseudobulk method applied to pseudo-replicates.
c, Number of DE genes detected by the tests shown in b for genes divided into deciles by the magnitude of the change in variance between biological
replicates and pseudo-replicates (∆-variance).
d, Volcano plots showing DE between T cells from random groups of unstimulated controls drawn from Kang et al.5 using a representative pseudobulk
method, edgeR-LRT, applied to biological replicates or pseudo-replicates. Discarding information about biological replicates leads to the appearance of
false discoveries.
e, Number of DE genes detected in comparisons of random groups of unstimulated controls from fourteen scRNA-seq studies with at least six control
samples.
f, Number of DE genes detected within spinal cord regions from control mice profiled by spatial transcriptomics24 using a representative pseudobulk
method, edgeR-LRT (points), or a representative single-cell method, the Wilcoxon rank-sum test (arrowheads).
g, Mean change in variance between biological replicates and pseudo-replicates for eighteen human and 20 mouse scRNA-seq datasets.

asked whether this observation reflected a universal pitfall.
To address this concern comprehensively, we identified a to-
tal of fourteen datasets that included at least six replicates
in the control condition. As in the previous experiment, we
split these unperturbed samples randomly into synthetic con-
trol and treatment groups, before conducting DE analyses be-
tween these two groups. This systematic analysis confirmed
that single-cell methods produced a systematic excess of false
positives compared to pseudobulk methods (Fig. 4e). The
resulting DE genes were enriched for hundreds of Gene On-
tology (GO) terms, despite a complete absence of biologi-
cal perturbation (Supplementary Fig. 6c). Moreover, we
again confirmed that the genes falsely identified as DE corre-
sponded to those with the highest variability between repli-
cates (Supplementary Fig. 6d).

Together, these experiments exposed a fundamental pit-
fall for DE analysis in single-cell transcriptomics. We intu-
ited, however, that this pitfall could afflict any technology in
which many observations are obtained from each biological
replicate. For example, we anticipated that false discoveries
would also emerge in spatial transcriptomics data25. To test
this prediction, we analyzed a spatial transcriptomics dataset
that profiled spinal cords from a model of amyotrophic lat-
eral sclerosis (ALS)24. We randomly partitioned data from
control mice into two groups, and performed DE within each
region of the spinal cord. Statistical methods that failed to
account for variability between biological replicates identi-
fied thousands of DE genes within each region (Fig. 4f and
Supplementary Fig. 6e). In contrast, pseudobulk methods
abolished these false discoveries.
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These experiments demonstrated that the variability be-
tween biological replicates can confound the identification
of genes affected by a biological perturbation. Many of the
factors that produce this variability between replicates can
be minimized in animal models, including the genetic back-
ground, environment, intensity and timing of the biologi-
cal perturbation, and sample processing. In contrast, these
sources of variation are inherently more difficult to control
in experiments involving human subjects. This distinction
raised the possibility that single-cell studies of human tis-
sue would exhibit greater variability between biological repli-
cates, and consequently, would be more vulnerable to false
discoveries. To evaluate this possibility systematically, we
calculated the variability between replicates within 41 human
and mouse scRNA-seq datasets. In agreement with our hy-
pothesis, we detected significantly more variability between
replicates in the human datasets (Fig. 4g). While we show
that accounting for biological replicates is critical for any DE
analysis, this result stresses the paramount importance of ad-
dressing this issue in single-cell studies of human tissue.

Discussion
Accurate DE analysis in single-cell transcriptomics is re-
quired to dissect the transcriptional programs underlying the
multifaceted responses to disease, trauma, and experimental
manipulations. Despite the importance of statistical methods
for DE analyses, the principles that determine their perfor-
mance have remained elusive. Here, we demonstrate that the
central principle underlying valid DE analysis is the ability of
statistical methods to account for the intrinsic variability of
biological replicates. Accounting for this variability dictates
the biological accuracy of statistical methods. Conversely,
methods that fail to account for the variability of biological
replicates can produce hundreds of false discoveries in the
absence of any biological difference.

Investigators study single cells to understand more gen-
eral principles underlying the response to a biological pertur-
bation. Clarifying these principles requires statistical infer-
ences that generalize beyond the individual cells that consti-
tute any particular dataset. Our results demonstrate that by
performing a statistical inference at the level of individual
cells, single-cell DE methods conflate variability between bi-
ological replicates with the effect of a biological perturbation.
The presence of variability between replicates is an intrinsic
biological phenomenon that cannot be avoided, and accord-
ingly affects other high-dimensional assays, including spatial
transcriptomics. Moreover, this variability is greatest in stud-
ies of human tissue, suggesting that inference at the level of
biological replicates is critical to understand the cellular and
molecular basis for human disease.

Our experiments established that accounting for varia-
tion between biological replicates dictated the performance
of single-cell DE methods. We were therefore puzzled by the
unsatisfying performance of a linear mixed model. By ex-
plicitly modeling variation both within and between biologi-
cal replicates, mixed models should benefit from increased
statistical power compared to pseudobulk methods10. To

clarify this discrepancy, we evaluated eight additional Pois-
son or negative binomial generalized linear mixed models
(GLMMs; Supplementary Fig. 7a-b). In datasets of 25-
50 cells, GLMMs could produce accurate results under very
specific parameter combinations. However, in datasets com-
prising 500 or more cells, their performance converged to
that of pseudobulk DE methods. Moreover, the computa-
tional resources required to fit the best-performing GLMMs
were enormous. Even in downsampled datasets, DE anal-
ysis of a single cell type took an average of 13.5 hours
(Supplementary Fig. 7c-d). In contrast, pseudobulk meth-
ods required only minutes per cell type in our compendium of
46 datasets (Supplementary Fig. 7e-f). These observations
suggest that, in practice, pseudobulk approaches provide an
excellent trade-off between speed and accuracy for single-
cell DE analysis.

Our results demonstrate that single-cell DE methods are
poised to produce false discoveries. This understanding con-
trasts with the current default methods in the most widely
used analysis packages in the field26,27. Our results stress
the urgent need for a paradigm shift in the statistical meth-
ods that are used for DE analyses. To catalyze this transition,
we implement all of the methods tested here in an R pack-
age that can be run on a laptop computer (Supplementary
Software 1).

Squair et al. | Confronting false discoveries in single-cell differential expression 7

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.12.435024doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.12.435024


Methods
Literature review. To identify which statistical methods for DE
analysis have been most commonly used within the field, we con-
ducted an extensive literature review. We annotated the statistical
method used to perform DE analysis across experimental conditions
within cell types for each publication included in a large database of
scRNA-seq studies28. Because this database spans a large period
of time, and we wanted to establish which methods for DE analysis
are in current use, we limited our analysis to the 500 most recently
published studies. We did not annotate methods used to identify
genes differentially expressed between cell types (i.e., marker gene
identification), as this problem presents a distinct set of statistical
challenges9,29.

Ground-truth datasets. Previous benchmarks of DE analysis
methods for single-cell transcriptomics have relied heavily on sim-
ulated data, or else have compared the results of different meth-
ods in scenarios where no ground truth was available9,18. We rea-
soned that the best possible approximation to the biological ground
truth in a scRNA-seq experiment would consist of a matched bulk
RNA-seq dataset in the same purified cell type, exposed to the
same perturbation under identical experimental conditions, and se-
quenced in the same laboratory. We surveyed the literature to iden-
tify such matching single-cell and bulk RNA-seq datasets, which
led us to compile a resource of eighteen ground truth datasets from
four publications13–16. Datasets of mouse, rat, pig, and rabbit
bone marrow-derived mononuclear phagocytes stimulated with ei-
ther lipopolysaccharide or poly-I:C for 4 h were obtained from Ha-
gai et al.13 Datasets of naive or memory T cells stimulated for 5
d with anti-CD3/anti-CD28 coated beads in the presence or ab-
sence of various combinations of cytokines (Th0: anti-CD3/anti-
CD28 alone; Th2: IL-4, anti-IFNγ; Th17: TGFβ, IL6, IL23, IL1β,
anti-IFNγ, anti-IL4; iTreg: TGFβ, IL2) were obtained from Cano-
Gamez et al.14 We additionally obtained label-free quantitative pro-
teomics data for the same comparisons from this study. Datasets of
alveolar macrophages and type II pneumocytes from young (3 m)
and old (24 m) mice were obtained from Angelidis et al.15 Datasets
of alveolar macrophages and type II pneumocytes from patients
with pulmonary fibrosis and control individuals were obtained from
Reyfman et al.16

Differential expression analysis methods. We compared
fourteen statistical methods for DE analysis of single-cell tran-
scriptomics data on their ability to recover ground-truth patterns
of DE, as established through bulk RNA-seq analysis of matching
cell populations. These fourteen methods comprised seven statisti-
cal tests that compared gene expression in individual cells (“single-
cell methods”); six tests that aggregated cells within a biological
replicate to form pseudobulks before performing statistical analysis
(“pseudobulk methods”); and a linear mixed model.

The seven single-cell methods analyzed here included a t-test,
a Wilcoxon rank-sum test, logistic regression30, negative binomial
and Poisson generalized linear models, a likelihood ratio test31, and
the two-part hurdle model implemented by MAST8. The imple-
mentation provided in the Seurat function ‘FindMarkers’ was used
for all seven tests, with all filters (‘min.pct’, ‘min.cells.feature’, and
‘logfc.threshold’) disabled. In addition, we implemented a linear
mixed model within Seurat, using the ‘lmerTest’ R package to op-
timize the restricted maximum likelihood and obtain p-values from
the Satterthwaite approximation for degrees of freedom. We ob-
served that some statistical tests returned a large number of p-values
below the double precision limit in R (approximately 2 × 10–308),
potentially confounding the calculation of the concordance metrics

described below. To avoid this pitfall, we modified the Seurat im-
plementation to also return the value of the test statistic from which
the p-value was derived. The modified version of Seurat 3.1.5 used
to perform all single-cell DE analyses reported in this study is avail-
able from http://github.com/jordansquair/Seurat.

The pseudobulk methods employed the DESeq232, edgeR33,
and limma34 packages for analysis of aggregated read counts.
Briefly, for cells of a given type, we first aggregated reads across bi-
ological replicates, transforming a genes-by-cells matrix to a genes-
by-replicates matrix using matrix multiplication. For DESeq2, we
used both a Wald test of the negative binomial model coefficients
(DESeq2-Wald) as well as a likelihood ratio test compared to a
reduced model (DESeq2-LRT) to compute the statistical signifi-
cance. For edgeR, we used both the likelihood ratio test (edgeR-
LRT)35 as well as the quasi-likelihood F-test approach (edgeR-
QLF)36. For limma, we compared two modes: limma-trend, which
incorporates the mean-variance trend into the empirical Bayes pro-
cedure at the gene level, and voom (limma-voom), which incorpo-
rates the mean-variance trend by assigning a weight to each indi-
vidual observation37. Log-transformed counts per million values
computed by edgeR were provided as input to limma-trend.

DE analysis of bulk RNA-seq datasets was performed with six
methods (DESeq2-LRT, DESeq2-Wald, edgeR-LRT, edgeR-QLF,
limma-trend, and limma-voom), except for the two pulmonary fibro-
sis datasets16; for these datasets, the raw bulk RNA-seq data from
sorted cells could not be obtained, so only the results of the bulk DE
analysis performed by the authors of the original publication were
used. The AUCC and rank correlation were calculated for each bulk
DE analysis method separately, and subsequently averaged over all
six methods. DE analysis of normalized bulk proteomics data was
performed using the moderated t-test implemented within limma, as
in the original publication.

Measuring concordance between single-cell and bulk
RNA-seq. To evaluate the concordance between DE analyses of
matched single-cell and bulk RNA-seq data, we computed two met-
rics, designed to evaluate the concordance between only the most
highly ranked subset of DE genes and across the entire transcrip-
tome, respectively. To calculate the first of these metrics, the area
under the concordance curve (AUCC)17,18, we ranked genes in both
the single-cell and bulk datasets in descending order by the statis-
tical significance of their differential expression. Then, we created
lists of the top-ranked genes in each dataset of matching size, up to
some maximum size k. For each of these lists (that is, for the top-1
genes, top-2 genes, top-3 genes, and so on), we computed the size
of the intersection between the single-cell and bulk DE genes. This
procedure yielded a curve relating the number of shared genes be-
tween datasets to the number of top-ranked genes considered. The
area under this curve was computed by summing the size of all in-
tersections, and normalized to the range [0, 1] by dividing it by its
maximum possible value, k × (k + 1) / 2. To evaluate the con-
cordance of DE analysis, we used k = 500 except where otherwise
noted, but found our results were insensitive to the precise value of
k. To compute the second metric, the transcriptome-wide rank cor-
relation, we multiplied the absolute value of the test statistic for each
gene by the sign of its log-fold change between conditions, and then
computed the Spearman correlation over genes between the single-
cell and bulk datasets.

In addition to evaluating the consistency of DE analyses at
the gene level, we also asked whether each DE method yielded
broader patterns of functional enrichment that were similar be-
tween the single-cell and bulk datasets, allowing for some diver-
gence in the rankings of individual genes. To address this question,
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we performed gene set enrichment analysis12 using the ‘fgsea’ R
package38. GO term annotations for human and mouse (2019-12-09
release) were obtained from the Gene Ontology Consortium web-
site. GO terms annotated to less than 10 genes or more than 1,000
genes within each dataset were excluded in order to mitigate the in-
fluence of very specific or very broad terms. Genes were ranked in
descending order by the absolute value of the test statistic, and 106

permutations were performed. To evaluate the concordance of GO
term enrichment, we used k = 100, on the basis that fewer top-ranked
GO terms are generally of interest than are top-ranked genes.

Impact of mean expression. We initially hypothesized that
differences between single-cell DE analysis methods could be at-
tributed to their differing sensitivities towards lowly expressed
genes. To explore this hypothesis, we performed the following
analyses. First, we divided genes from the eighteen gold standard
datasets into three equally sized bins on the basis of their mean ex-
pression, then re-calculated the AUCC as described above within
each bin separately. Second, we inspected the properties of genes
falsely called as DE in the single-cell data (false positives) or incor-
rectly inferred to be unchanging in the single-cell data (false nega-
tives). To identify false positive genes, we used the bulk DE analysis
to exclude genes called as DE at a false discovery rate of 10% from
the matched single-cell results, then retained the 100 top-ranked
remaining genes in the single-cell data. To identify false negative
genes, we used the bulk DE analysis to identify genes called as DE
at a false discovery rate of 10%, but with a false discovery rate ex-
ceeding 10% in the matched single-cell results, again retaining the
100 top-ranked such genes. For each of these genes, we computed
both the mean expression level and the proportion of zero gene ex-
pression measurements. Third, we analyzed a Smart-seq2 dataset of
human dermal fibroblasts stimulated with interferon-β, in which a
mixture of synthetic RNAs was spiked into each individual cell13.
We performed DE analysis on the synthetic spike-ins, then calcu-
lated the Spearman correlation between the mean expression level of
each spike-in and the statistical significance of differential expres-
sion, as assigned by each single-cell DE method. Fourth, we assem-
bled a compendium of 46 published scRNA-seq datasets, and asked
whether the genes called as DE by each method tended to be more
or less highly expressed across the entire compendium. Complete
details on the preprocessing of these 46 datasets are provided below.
Because each of these datasets were sequenced to different depths,
and captured different total numbers of genes (depending on both
the sequencing depth and the biological system under study), mean
expression values were not directly comparable across datasets. To
enable such a comparison, we first calculated the mean expression
for each gene, then converted this value into the quantile of mean
expression using the empirical cumulative distribution function. We
then calculated the mean expression quantile of the 200 top-ranked
genes from each method in each of the 46 datasets.

Dissecting pseudobulk DE methods. To understand the prin-
ciples underlying the improved performance of the six pseudobulk
DE methods, we performed the following analyses. First, we dis-
abled the aggregation procedure that led to the creation of pseudob-
ulks (that is, we treated each individual cell as its own replicate),
then performed an identical DE analysis of individual cells. For
each DE method, we then re-calculated both the AUCC and the bias
towards highly expressed genes, as quantified by (i) the rank cor-
relation to mean-spike in expression, and (ii) the expression quan-
tile across 46 scRNA-seq datasets. Second, we aggregated random
groups of cells into ‘pseudo-replicates’ by randomizing the repli-
cate associated with each cell. We then again re-calculated both the
AUCC and the bias towards highly expressed genes.

These experiments led us to suspect that discarding information
about the inherent variability of biological replicates caused both
the bias towards highly expressed genes and the attendant decrease
in performance. To test this hypothesis, we compared the vari-
ance of gene expression in pseudobulks and pseudo-replicates. For
each gene, we calculated the difference in variance (‘∆-variance’)
between pseudobulks and pseudo-replicates. We initially visual-
ized the ∆-variance in an exemplary dataset, consisting of mouse
bone marrow mononuclear cells stimulated with poly-I:C13. Sub-
sequently, we calculated the mean ∆-variance across all genes in
each of the 46 datasets in our scRNA-seq compendium, observ-
ing a decrease in the variance in all 46 cases. To clarify the re-
lationship between the ∆-variance and mean gene expression, we
computed the correlation between ∆-variance and mean expression,
first in the poly-I:C dataset and then across all 46 datasets in the
compendium. We observed a significant negative correlation, con-
firming that the variance of highly expressed genes is disproportion-
ately underestimated when discarding information about biological
replicates. We performed a similar analysis correlating the origi-
nal variance of gene expression to the ∆-variance, demonstrating
that the variance of the most variable genes is disproportionately
underestimated when discarding information about biological repli-
cates. However, in partial correlation analyses, only gene expres-
sion variance remained correlated with ∆-variance, implying that
failing to account for biological replicates induces a bias towards
highly expressed genes because these genes are also more variably
expressed. Supplementary Fig. 4h-i employ the signed pseudo-
logarithm transformation from the ‘ggallin’ R package to visualize
the ∆-variance.

Simulation studies. Our understanding of the importance of ac-
counting for variability between biological replicates led us to ask
whether failing to account for biological replication could lead to the
appearance of false discoveries in the absence of a perturbation. To
test this hypothesis, we simulated scRNA-seq data with no biolog-
ical effect, in which we systematically varied the degree of hetero-
geneity between replicates. Simulations were performed using the
‘Splatter’ R package39, with simulation parameters estimated from
the Kang et al. dataset5 using the ‘splatEstimate’ function. Popula-
tions of between 100 and 2,000 cells were simulated, with between
3 and 20 replicates per condition. DE of varying magnitudes was
simulated between replicates by varying the location parameter of
the DE factor log-normal distribution (‘de.facLoc’) between 0 and
1, treating each replicate as its own group, and the total propor-
tion of DE genes (‘de.prob’) set to 0.5. Then, half of the replicates
were randomly assigned to an artificial ‘treatment’ condition and
the remaining half to a ‘control’ condition, and DE analysis was
performed between the treatment and control groups. Except where
otherwise noted, plots show results from a simulated population of
500 cells, with three replicates per condition.

Analysis of published scRNA-seq control groups. To con-
firm that the trends observed in simulation studies were reflective of
experimental datasets, we performed a similar analysis using pub-
lished scRNA-seq data. Within our compendium, we identified a
total of fourteen studies with control groups that included six or
more samples5,6,16,40–50. Details on the preprocessing of each of
these datasets are provided below. For each of these studies, we
split the control group randomly into artificial ‘control’ and ‘treat-
ment’ groups, and performed DE analysis. In addition to comput-
ing the total number of DE genes, we identified GO terms enriched
among DE genes using a hypergeometric test. We also performed
a similar analysis for one spatial transcriptomics dataset24, identi-
fying DE genes between random groups of control mice with bar-
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codes grouped by spinal cord region rather than cell type. Spa-
tial transcriptomics data was downloaded from the supporting web-
site at https://als-st.nygenome.org. Only data from wild-type mice
was retained for the analysis. Last, we hypothesized that scRNA-
seq studies of human tissues would display more heterogeneity be-
tween replicates than studies of animal models, where factors such
as genotype, environment, and perturbation can be precisely con-
trolled. To test this hypothesis, we computed the mean ∆-variance
across all genes in the 38 human or mouse scRNA-seq datasets in
our compendium (n = 18 human datasets and 20 mouse datasets).

Mixed models. Having established that the performance of DE
methods is contingent on their ability to account for biological repli-
cates, we asked why mixed models failed to match the performance
of pseudobulk methods. In addition to the linear mixed model de-
scribed above, we implemented generalized linear mixed models
(GLMMs) based on the negative binomial or Poisson distributions,
adapting implementations provided in the ‘muscat’ R package9. For
each of these models, we evaluated the impact of incorporating the
library size factors as an offset term, and compared the Wald test of
model coefficients to a likelihood ratio test against a reduced model,
yielding a total of four GLMMs from each distribution. The enor-
mous computational requirements of the GLMMs prevented us from
evaluating these models in the full ground truth datasets; instead, we
analyzed a series of downsampled datasets, each containing between
25 and 1,000 cells. To quantify the computational resources re-
quired by each DE method, we monitored peak memory usage using
the ‘peakRAM’ R package, and the base R function ‘system.time’
to record wall time.

Preprocessing and analysis of published single-cell
datasets. We assembled a compendium of 46 published single-
cell or single-nucleus RNA-seq studies (Supplementary Fig. 3),
and performed DE analyses across this compendium to establish
the generality of our conclusions. For publications containing more
than one comparison, only a single comparison was retained, as
described in detail below. We retained the comparison involving the
greatest number of cells, and used the most fine-grained cell type
annotations provided by the authors of the original studies. When
count matrices did not use gene symbols, the provided identifiers
were mapped to gene symbols, and counts summed across genes
mapping to identical symbols. Only cell types with at least three
cells in each condition were subjected to DE analysis, and genes
detected in less than three cells were removed.

Angelidis et al., 201915. scRNA-seq data from young and
aged mouse lung (3 m and 24 m, respectively), as well as
matching bulk data from two purified cell types, was obtained
from GEO (GSE124872). Metadata was obtained from GitHub
(https://github.com/theislab/2018_Angelidis). Cells with missing
cell type annotations were removed from the single-cell data. DE
analysis was performed by comparing cells from young and old
mice.

Arneson et al., 201851. scRNA-seq data from the hippocampus
of mice after a mild traumatic brain injury (mTBI), delivered us-
ing a mild fluid percussion injury model, and matched controls was
obtained from GEO (accession: GSE101901). Metadata, including
cell type annotations, were provided by the authors. DE analysis
was performed by comparing cells from mTBI and control mice.

Avey et al., 201852. scRNA-seq data from the nucleus accum-
bens of mice treated with morphine for 4 h and saline-treated con-
trols was obtained from GEO (accession: GSE118918). Cells iden-
tified as doublets and non-unique barcodes were removed. Meta-
data, including cell type annotations, were provided by the authors.

DE analysis was performed by comparing cells from morphine- and
saline-treated mice.

Aztekin et al., 201953. scRNA-seq data from regeneration-
competent (NF stage 40-41) Xenopus laevis tadpoles was obtained
from ArrayExpress (E-MTAB-7716). DE analysis was performed
by comparing cells from tadpoles at 1 d post-amputation to control
tadpoles.

Bhattacherjee et al., 201954. scRNA-seq data from the pre-
frontal cortex of mice exposed to a cocaine withdrawal paradigm
was obtained from GEO (accession: GSE124952). DE analysis was
performed by comparing cells at the 15 d post-withdrawal timepoint
from cocaine- or saline-treated mice.

Brenner et al., 202055. snRNA-seq data from the prefrontal cor-
tex of alcoholic and control individuals was obtained from GEO (ac-
cession: GSE141552). Metadata, including cell type annotations,
were provided by the authors. DE analysis was performed by com-
paring nuclei from alcoholic and control individuals.

Cano-Gamez et al., 202014. scRNA-seq data from naive
and memory T cells, stimulated with anti-CD3/anti-CD28
coated beads in the presence or absence of various combina-
tions of cytokines, was obtained from the supporting website
(https://www.opentargets.org/projects/effectorness). Matching bulk
RNA-seq and proteomics data was obtained from the same source.
For the analyses presented as part of the compendium of 46 datasets,
DE analysis was performed by comparing iTreg and control cells.

Cheng et al., 201956. scRNA-seq data from intestinal crypt cells
in wild-type and Hmgcs2 knockout mice was obtained directly from
the authors of the original publication. DE analysis was performed
by comparing wild type and KO mice.

Co et al., 202057. scRNA-seq data of sorted cells from Drd1a-
tdTomato+ control and Foxp2 KO mice was obtained from GEO
(accession: GSE130653). Cell type annotations were provided by
the authors. Cell types annotated as ‘Low quality’ were removed
prior to further analysis. DE analysis was performed by comparing
WT and Foxp2 KO mice.

Crowell et al., 20209. snRNA-seq data from the prefrontal cor-
tex of mice peripherally stimulated with lipopolysaccharide (LPS)
and control mice was obtained from the Bioconductor package
‘muscData’, using the ‘Crowell19_4vs4’ function. DE analysis was
performed by comparing nuclei from LPS-treated and control mice.

Davie et al., 201858. scRNA-seq data from the brains
of flies of varying ages, sexes, and genotypes was ob-
tained from the supporting website (http://scope.aertslab.org, file
‘Aerts_Fly_AdultBrain_Filtered_57k.loom’). Cells marked as
‘Unannotated’ were removed. DE analysis was performed by com-
paring cells from DGRP-551 and W1118 flies.

Denisenko et al., 202059. scRNA-seq data from human kidneys
subjected to varying dissociation methods and cell fixation tech-
niques was obtained from GEO (accession: GSE141115). Meta-
data, including cell type annotations, was obtained from the sup-
porting information files accompanying the published manuscript.
DE analysis was performed by comparing cells fixed with methanol
and freshly dissociated cells, both at –20 ◦C.

Der et al., 201960. scRNA-seq data of skin samples from pa-
tients with lupus nephritis (LN) and healthy controls was obtained
from ImmGen (accession: SDY997; experiment: EXP15077). Cell
type annotations were obtained from the authors of the original
manuscript. Other metadata, including biological replicate and ex-
perimental condition annotations for each individual cell, was ob-
tained from the supporting information files accompanying the pub-
lished manuscript. DE analysis was performed by comparing cells
from patients with LN and healthy controls.
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Goldfarbmuren et al., 202048. scRNA-seq data of tracheal ep-
ithelial cells from smokers and non-smokers was obtained from
GEO (accession: GSE134174). Patients designated as ‘excluded’
were removed prior to downstream analysis. DE analysis was per-
formed by comparing cells from smokers and non-smokers.

Grubman et al., 201943. snRNA-seq data from the
entorhinal cortex of patients with Alzheimer’s disease and
matched controls was obtained from the supporting website
(http://adsn.ddnetbio.com). Nuclei annotated as ‘undetermined’ or
‘doublet’ were removed. DE analysis was performed by comparing
nuclei from patients with Alzheimer’s disease and controls.

Gunner et al., 201961. scRNA-seq data from the mouse barrel
cortex before or after whisker lesioning was obtained from GEO
(accession: GSE129150). Cell types not included in Supplementary
Fig. 10 of the original publication were removed. DE analysis was
performed by comparing cells from lesioned and control mice.

Haber et al., 201762. scRNA-seq data from epithelial cells of
the mouse small intestine in healthy mice and after ten days of in-
fection with the parasitic helminth Heligmosomoides polygyrus was
obtained from GEO (accession: GSE92332), using the Drop-seq
data collected by the original publication. DE analysis was per-
formed by comparing cells from infected and uninfected mice.

Hagai et al., 201813. scRNA-seq data of bone marrow-derived
mononuclear phagocytes from four different species (mouse, rat,
pig, and rabbit) exposed to lipopolysaccharide (LPS) or poly-I:C for
two, four, or six hours was obtained from ArrayExpress (accession:
E-MTAB-6754). Matching bulk RNA-seq data was also obtained
from ArrayExpress (accession: E-MTAB-6773). Finally, scRNA-
seq data from human dermal fibroblasts stimulated with interferon-β
for two or six hours, in which the ERCC mixture of synthetic mR-
NAs was spiked in alongside every cell, was obtained from Array-
Express (accession: E-MTAB-7051). Counts were summed across
technical replicates of the same biological samples. For the analy-
ses presented as part of the compendium of 46 datasets, DE analysis
was performed by comparing rabbit cells stimulated with LPS for
2 h and control cells. DE analysis of the spike-in dataset was per-
formed by comparing cells stimulated for 2 h and 6 h.

Hashimoto et al., 201963. scRNA-seq data of periph-
eral blood mononuclear cells from human supercentenarians and
younger controls was obtained from the supporting website
(http://gerg.gsc.riken.jp/SC2018). Metadata, including cell type an-
notations, were provided by the authors. DE analysis was performed
by comparing cells from supercentenarians and younger controls.

Hrvatin et al., 201841. scRNA-seq data from the visual cortex
of mice housed in darkness, then exposed to light for 0 h, 1 h, or
4 h was obtained from GEO (accession: GSE102827). Cell types
labeled as ‘NA’ were removed from downstream analyses. DE anal-
ysis was performed by comparing cells from mice stimulated with
light for 4 h to control mice.

Hu et al., 201764. snRNA-seq data from the cere-
bral cortex of mice after pentylenetetrazole (PTZ)-induced
seizure and saline-treated controls was obtained from the
Google Drive folder accompanying the original publication
(https://github.com/wulabupenn/Hu_MolCell_2017). DE analysis
was performed by comparing cells from PTZ- and saline-treated
mice.

Huang et al., 201944. scRNA-seq data from the colon of
pediatric patients with colitis and inflammatory bowel disease
and matched controls was obtained from the supporting website
(https://zhanglaboratory.com/research-data/). DE analysis was per-
formed by comparing cells from patients with colitis and healthy
controls.

Jaitin et al., 201965. scRNA-seq data from white
adipose tissue of mice fed either a high-fat diet or nor-
mal chow for six weeks were obtained from the Bit-
bucket repository accompanying the original publication
(https://bitbucket.org/account/user/amitlab/projects/ATIC). Meta-
data, including cell type annotations, were provided by the authors.
DE analysis was performed by comparing cells from high-fat diet
and normal chow-fed mice.

Jakel et al., 201966. snRNA-seq data of oligodendrocytes from
patients with multiple sclerosis and matched controls was obtained
from GEO (accession: GSE118257). DE analysis was performed
by comparing nuclei from individuals with multiple sclerosis versus
matched controls.

Kang et al., 20185. scRNA-seq data from peripheral blood
mononuclear cells (PBMCs) stimulated with recombinant IFN-β for
6 h and unstimulated PBMCs was obtained from GEO (accession:
GSE96583). Doublets and unclassified cells were removed. DE
analysis was performed by comparing IFN-stimulated and unstimu-
lated cells.

Kim et al., 201967. scRNA-seq data from the ventromedial hy-
pothalamus of mice exposed to a range of behavioral stimuli and
control mice was obtained from the Mendeley repository accompa-
nying the original publication. Cell type annotations were provided
directly by the authors. DE analysis was performed by comparing
cells from animals engaging in aggressive behaviour to the common
population of control animals.

Kotliarov et al., 202068. scRNA-seq data of peripheral
blood mononuclear cells from subjects who were subsequently
given an influenza vaccination were obtained from Figshare
(https://doi.org/10.35092/yhjc.c.4753772). DE analysis was per-
formed by comparing cells from high and low responders to the
influenza vaccination, as categorized by the authors.

Madissoon et al., 202069. scRNA-seq data from
esophagus, lung, and spleen samples after varying dura-
tions of cold storage was obtained from the study website
(https://cellgeni.cog.sanger.ac.uk/tissue-stability/). DE analysis was
performed by comparing cells from samples preserved for 12 h and
fresh samples.

Mathys et al., 20196. snRNA-seq data from the prefrontal cor-
tex of patients with Alzheimer’s disease and matched controls was
obtained from Synapse (accession: syn18681734). Patient data and
additional metadata were also obtained from Synapse (accessions:
syn3191087 and syn18642926, respectively). DE analysis was per-
formed by comparing nuclei from patients with Alzheimer’s disease
and controls.

Nagy et al., 202049. snRNA-seq data from the dorsolateral pre-
frontal cortex of patients with major depressive disorder (MDD) and
matched controls was obtained from GEO (accession: GSE144136).
DE analysis was performed by comparing nuclei from patients with
MDD and controls.

Nault et al., 202170. snRNA-seq data from the livers of mice
gavaged with 2,3,7,8-tetrachlorodibenzo-p-dioxin or sesame oil ve-
hicle was obtained from GEO (accession: GSE148339). DE anal-
ysis was performed by comparing nuclei from treated and vehicle
livers.

Ordovas-Montanes et al., 201871. scRNA-seq data from eth-
moid sinus cells of patients with chronic rhinosinusitis (CRS), with
and without nasal polyps, from Supplementary Table 2 of the orig-
inal publication. DE analysis was performed by comparing cells
from patients with polyposis and non-polyposis CRS.

Reyes et al., 202072. scRNA-seq data of peripheral blood
mononuclear cells from patients with sepsis and healthy controls
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was obtained from the Broad Institute’s Single Cell Portal (acces-
sion: SCP548). DE analysis was performed by comparing cells
from individuals with bacterial sepsis and controls.

Reyfman et al., 201916. scRNA-seq data from the lungs of pa-
tients with pulmonary fibrosis and healthy controls was obtained
from GEO (accession: GSE122960). Metadata, including cell type
annotations, was provided by the authors. One sample (“Cry-
obiopsy_01”) was removed as it was sequenced separately from the
rest of the experiment. The results of DE analysis of bulk RNA-seq
data, comparing purified AT2 cells or alveolar macrophages from
patients with pulmonary fibrosis and healthy controls, were obtained
from the supporting information accompanying the original publica-
tion. DE analysis was performed by comparing cells from patients
with pulmonary fibrosis and controls.

Rossi et al., 201945. scRNA-seq data from the hypothalamus
of mice fed either a high-fat diet or normal chow for between 9-
16 weeks was obtained directly from the authors, in the form of
a processed Seurat object. Cells annotated as ‘unclassified’ were
removed. DE analysis was performed by comparing cells from high-
fat diet and normal chow-fed mice.

Sathyamurthy et al., 201842. snRNA-seq data from the spinal
cord parenchyma of adult mice exposed to formalin or matched con-
trols was obtained from GEO (accession: GSE103892). Cell types
with blank annotations, or annotated as ‘discarded’, were removed.
DE analysis was performed by comparing cells from mice exposed
to formalin and control animals.

Schafflick et al., 202073. scRNA-seq data of peripheral blood
mononuclear cells from individuals with multiple sclerosis and
matched controls was obtained from GEO (accession: GSE138266).
Metadata, including cell type annotations, was obtained from
Github (https://github.com/chenlingantelope/MSscRNAseq2019).
DE analysis was performed by comparing cells from individuals
with multiple sclerosis and controls.

Schirmer et al., 201974. snRNA-seq data from cortical and
subcortical areas from the brains of patients with multiple scle-
rosis and control tissue from unaffected individuals was obtained
from the web browser accompanying the original publication
(https://cells.ucsc.edu/ms). DE analysis was performed by compar-
ing cells from multiple sclerosis and control patients.

Skinnider et al., 202175. snRNA-seq data from the spinal cords
of mice with a spinal cord injury, some of which were exposed to
epidural electrical stimulation to restore locomotion after paralysis,
was obtained from GEO (accession: GSE142245). DE analysis was
performed by comparing nuclei from paralyzed and walking mice.

Tran et al., 201947. scRNA-seq data from the retinal gan-
glion of mice at various timepoints after an optic nerve crush in-
jury, as well as uninjured controls, was obtained from GEO (acces-
sion: GSE137398). Metadata, including cell type annotations, was
obtained from the Broad Institute’s Single-Cell Portal (accession:
SCP509). DE analysis was performed by comparing cells from mice
at 12 h post-injury and uninjured mice.

Wagner et al., 201876. scRNA-seq data from zebrafish embryos
between 14-16 hours post-fertilization, with either the chordin locus
or a control locus (tyrosinase) disrupted by CRISPR-Cas9 knock-
out, was obtained from GEO (accession: GSE112294). DE analy-
sis was performed by comparing cells from chordin- or tyrosinase-
targeted embryos.

Wang et al., 202077. scRNA-seq data from the ovaries of young
and old cynomolgus monkeys was obtained from GEO (accession:
GSE130664). Metadata, including cell type annotations, was ob-
tained from the supporting information accompanying the original
publication. Spike-ins were removed. DE analysis was performed

by comparing cells from young and old primates.
Wilk et al., 202050. scRNA-seq data of peripheral

blood mononuclear cells from patients with COVID-19 and
healthy controls was obtained from the supporting website
(https://www.covid19cellatlas.org/). DE analysis was performed by
comparing patients with COVID-19 and controls.

Wirka et al., 201978. scRNA-seq data from the aortic root of
mice fed a high-fat diet or normal chow for eight weeks from GEO
(accession: GSE131776). Metadata, including cell type annota-
tions, was provided by the authors, and unannotated cells were re-
moved. DE analysis was performed by comparing cells from high-
fat diet and normal chow-fed mice.

Wu et al., 201740. scRNA-seq data from the amygdala of mice
subjected to 45 min of immobilization stress and control mice was
obtained from GEO (accession: GSE103976). DE analysis was per-
formed by comparing cells from stressed and control mice.

Ximerakis et al., 201979. scRNA-seq data from whole brains of
young (2-3 mo) and old (21-23 mo) mice from the Broad Institute’s
Single Cell Portal (accession: SCP263). DE analysis was performed
by comparing cells from young and old mice.

Visualization. Throughout the manuscript, box plots show the
median (horizontal line), interquartile range (hinges) and smallest
and largest values no more than 1.5 times the interquartile range
(whiskers), and error bars show the standard deviation.

Code availability. We provide an R package, Libra, imple-
menting all methods for DE analysis discussed in this study
within a consistent interface. The Libra package is available from
GitHub (https://github.com/neurorestore/Libra) and as Supplemen-
tary Software 1.
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Supplementary Fig. 1 | A systematic benchmark of differential expression in single-cell transcriptomics.
a, Impact of varying the parameter k on the AUCC in the eighteen ground-truth datasets, as shown in Fig. 1c with k = 500.
b, Impact of varying the parameter k on the ∆AUCC in the eighteen ground-truth datasets, as shown in Fig. 1d with k = 500.
c, Transcriptome-wide rank correlation between single-cell and bulk RNA-seq in the eighteen ground-truth datasets shown in a.
d, Mean difference in the transcriptome-wide rank correlation (∆correlation) between the fourteen DE methods shown in c. Asterisks indicate compar-
isons with a two-tailed t-test p-value less than 0.05.
e, AUCC in eight scRNA-seq datasets with matching bulk proteomics data14.
f, Mean ∆AUCC between the fourteen DE methods shown in e. Asterisks indicate comparisons with a two-tailed t-test p-value less than 0.05.
g, Mean ∆AUCC of GO term enrichment between the fourteen DE methods shown in Fig. 1e. Asterisks indicate comparisons with a two-tailed t-test
p-value less than 0.05.
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Supplementary Fig. 2 | Single-cell DE methods are biased towards highly expressed genes.
a, AUCCs across eighteen ground-truth datasets after dividing the transcriptome into terciles of lowly (top), moderately (middle), or highly (bottom)
expressed genes, as shown in Fig. 2b.
b, Mean proportion of zero gene expression measurements for the 100 top-ranked false-positive genes from each DE method.
c, Mean expression levels of the 100 top-ranked false-negative genes from each DE method.
d, Mean proportion of zero gene expression measurements for the 100 top-ranked false-negative genes from each DE method.
e, Spearman correlation between the mean proportion of zero gene expression measurements for 80 ERCC spike-ins expressed in at least three cells
and the –log10 p-value of differential expression assigned by each DE method.
f, Scatterplots of mean proportion of zero gene expression measurements vs. –log10 p-value for exemplary single-cell and pseudobulk DE methods.
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Supplementary Fig. 3 | Overview of single-cell transcriptomics datasets.
Overview of n = 46 published scRNA-seq datasets comparing two or more experimental conditions, used to systematically confirm the universality of
the trends observed in analyses of individual datasets. Left, heatmap indicating the species of origin, the sequencing protocol, and whether cells or
nuclei were sequenced. Right, properties of each dataset, including the total number of cell types identified in the original studies; the total number of
cells sequenced; the number of cells per type (red bars indicate mean); and the mean number of reads for cells of each type.
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Supplementary Fig. 4 | DE analysis in single-cell data must account for biological replicates.
a, AUCC of the six pseudobulk methods applied to pseudobulks or individual cells in the eighteen ground-truth datasets.
b, Mean expression levels of the 200 top-ranked genes from six pseudobulk methods applied to pseudobulks or individual cells in a collection of 46
scRNA-seq datasets.
c, Scatterplots of mean ERCC expression vs. –log10 p-value for an exemplary pseudobulk method, edgeR-LRT, applied to pseudobulks (left) or individual
cells (right).
d, AUCC of the six pseudobulk methods applied to pseudobulks or pseudo-replicates in the eighteen ground-truth datasets.
e, Mean expression levels of the 200 top-ranked genes from six pseudobulk methods applied to pseudobulks or pseudo-replicates in a collection of 46
scRNA-seq datasets.
f, Scatterplots of mean ERCC expression vs. –log10 p-value for an exemplary pseudobulk method, edgeR-LRT, applied to pseudobulks (left) or pseudo-
replicates (right).
g, Schematic illustrating the calculation of the ∆-variance between biological replicates and pseudo-replicates.
h, Correlation between mean expression and ∆-variance for 10,448 genes with mean expression ≥ 1 CPM in the dataset of mouse bone marrow
mononuclear cells stimulated with poly-I:C. Mean expression is strongly correlated with ∆-variance, such that the variance of highly expressed genes is
disproportionately underestimated when ignoring information about biological replicates.
i, Correlation between expression variance and ∆-variance for 10,448 genes with mean expression ≥ 1 CPM in the dataset of mouse bone marrow
mononuclear cells stimulated with poly-I:C. Variance is even more strongly correlated with ∆-variance than mean expression, such that the most variable
genes are disproportionately underestimated when ignoring information about biological replicate.
j, Correlation between mean expression levels or expression variance and ∆-variance in 46 scRNA-seq datasets. Variance is even more strongly
correlated with ∆-variance than mean expression across a large compendium of datasets, corroborating the trends shown in h-i.
k, Partial correlation between mean expression and ∆-variance, controlling for variance, or between variance and ∆-variance, controlling for mean
expression. The variance of gene expression is the primary determinant of ∆-variance, implying that failing to account for biological replicates introduces
a bias towards highly expressed genes because these genes are also more variable.
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Supplementary Fig. 5 | Simulation studies expose false discoveries in single-cell DE.
a, Number of DE genes detected in stimulation experiments with varying degrees of heterogeneity between replicates by all DE methods.
b, Number of DE genes detected by the tests shown in a for genes divided into deciles by the magnitude of the change in variance between biological
replicates and pseudo-replicates (∆-variance).
c, Number of DE genes detected by a representative single-cell DE method, a representative pseudobulk method, and the same pseudobulk method
applied to pseudo-replicates, when varying the total number of replicates in the simulated dataset.
d, Number of DE genes detected by a representative single-cell DE method, a representative pseudobulk method, and the same pseudobulk method
applied to pseudo-replicates, when varying the total number of cells in the simulated dataset.
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Supplementary Fig. 6 | False discoveries in single-cell and spatial transcriptomics data.
a, Volcano plots showing DE between T cells from random groups of unstimulated controls drawn from Kang et al.5 using seven single-cell DE methods.
b, Number of DE genes detected by all DE methods in unstimulated T cells.
c, Number of GO terms enriched at 5% FDR among DE genes identified in comparisons of random groups of unstimulated controls from fourteen
scRNA-seq studies with at least six control samples.
d, Number of DE genes in comparisons of random groups of unstimulated controls from fourteen scRNA-seq studies with at least six control samples,
as shown in Fig. 4e, for genes divided into deciles by the magnitude of the change in variance between biological replicates and pseudo-replicates
(∆-variance).
e, Number of DE genes detected by all DE methods within spinal cord regions from control mice profiled by spatial transcriptomics24.
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Supplementary Fig. 7 | Single-cell DE analysis with generalized linear mixed models.
a, AUCC for ten different generalized linear mixed models (GLMMs), varying in the choice of link function (identity, Poisson, or negative binomial, NB);
method used to evaluate statistical significance (Wald test or likelihood ratio test, LRT), and presence of an offset term, in samples of between 25 and
1,000 cells from the eighteen ground-truth datasets shown in Fig. 1c, and compared to the fourteen DE methods shown in the same panel.
b, As in a, but showing the mean AUCC as a function of the number of cells sampled for each DE method.
c, Runtime in minutes for the ten GLMMs shown in a in samples of 1,000 cells. The top-performing GLMM required a mean of 13.5 h per cell type to
perform DE analysis.
d, Runtime of the ten GLMMs and the fourteen DE methods shown in Fig. 1c, shown as a percentage of the maximum runtime, as a function of the
number of cells sampled.
e, Runtime in minutes of the fourteen DE methods shown in Fig. 1c across 46 scRNA-seq datasets.
f, Maximum memory required in gigabytes by the fourteen DE methods shown in Fig. 1c across 46 scRNA-seq datasets.
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