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Abstract: Linear B-cell epitope prediction research has received a steadily growing interest ever since the first method was developed 
in 1981. B-cell epitope identification with the help of an accurate prediction method can lead to an overall faster and cheaper vaccine 
design process, a crucial necessity in the covid-19 era. Consequently, several B-cell epitope prediction methods have been developed 
over the past few decades, but without significant success. In this study, we review the current performance and methodology of 
some of the most widely used linear B-cell epitope predictors which are available via a command-line interface, namely BcePred, 
BepiPred, ABCpred, COBEpro, SVMTriP, LBtope, and LBEEP. Additionally, we attempted to remedy performance issues of the 
individual methods by developing a consensus classifier, which combines the separate predictions of these methods into a single 
output, accelerating the epitope-based vaccine design. While the method comparison was performed with some necessary caveats 
and individual methods might perform much better for specialized datasets, we hope that this update in performance can aid re-
searchers towards the choice of a predictor, for the development of biomedical applications such as designed vaccines, diagnostic 
kits, immunotherapeutics, immunodiagnostic tests, antibody production, and disease diagnosis and therapy. 
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1. Introduction 
B-cell epitopes are regions on the surface of an antigen, where specific antibodies recognize and bind to, triggering 

the immune response. This interaction is at the core of the adaptive immune system, which among others is responsible 
for immunological memory and antigen-specific responses in vertebrates. The ability to identify these binding areas in 
the antigen’s sequence or structure is important for the development of synthetic vaccines [1-3], diagnostic tests [4], and 
immunotherapeutics [5,6], especially in the COVID-19 era. Focus on these applications through the lens of epitope dis-
covery has gained attention over the years, especially in regard to the safety benefits of synthetic vaccine development 
[7]. 

Generally, B-cell epitopes are divided into two categories: linear (continuous) epitopes, that consist of a linear se-
quence of residues, and conformational (discontinuous) epitopes which consist of residues that are not contiguous in 
the primary protein sequence but are brought together by the folded protein structure [8]. Moreover, about 90% of B-
cell epitopes have been estimated to be conformational and only about 10% to be linear [9]. Nonetheless, it has been 
shown that many discontinuous epitopes contain several groups of continuous residues that are also contiguous in the 
tertiary structure of the protein [10], making the distinction between them unclear.  

All aforementioned immunological applications share the need for the discovery of all possible epitopes for any 
given antigen, a process called “Epitope mapping”. Although epitope mapping can be carried out using several exper-
imental techniques [11], it is time-consuming and expensive, especially on a genomic scale. To address this problem 
and tap into the ever-growing data on epitopes deposited in biological databases daily, several computational methods 
for predicting conformational or linear B-cell epitopes have been published over the last decades [12-14] (Supplemen-
tary Table 1). Despite the relatively small percentage of linear B-cell epitopes, most methods developed over the past 
few years focus on their prediction. This is mainly attributed to the requirement of an antigen’s 3D structure when 
predicting its conformational epitopes [15]. Thus, in this review, we will discuss solely the performance of linear B-cell 
epitope (BCE) predictors. 

Here, we review the performance of some of the most widely used linear B-cell epitope predictors currently avail-
able via a Command-Line Interface (CLI), namely BcePred [16], BepiPred [17], ABCpred [18], COBEpro [19], SVMTriP 
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[20], LBtope [21] and LBEEP [22]. We also examine the performance of a consensus classifier combining these methods, 
to test whether a consensus approach can boost predictive performance [23-25]. Finally, we compare the performance 
of all these classifiers and the consensus method we developed against one of the most recently published BCE predic-
tors, BepiPred-2.0 [26]. This review aims to give non-expert researchers an overview of available linear BCE predictors, 
as well as an update in their current performance and availability, which they can use to quickly locate and choose the 
appropriate tools for their research work. Moreover, we have created contemporary non-redundant datasets of linear 
BCEs that could aid both experimental researchers as well as bioinformaticians actively working in the field of algorithm 
development.  

2. Materials and Methods 
2.1. Selection of suitable linear B-cell epitope predictors 

The first priority of this work was to gather and test as many individual predictors as possible. However, the scope 
of methods that were to be tested could not be limitless, and thus some criteria for their selection were applied. At first, 
we decided to catalogue all available B-cell epitope predictors (Supplementary Table 1). This is when we first noticed 
an alarming trend; where many of the online tools of the predictors that we looked up were either offline for some hours 
during the day or – even worse – completely unreachable. Furthermore, even when operational, most prediction servers 
have limitations on the amount of sequences and the workload they can process. Considering the present issues and 
the future problems that might arise, we decided to resort only to methods that were available as standalone software, 
which became our main selection criterion. The second criterion was that methods should be usable via a CLI and not 
only through a Graphical User Interface (GUI) and the third criterion was that each method’s way of operation should 
be somewhat comparable and in tune with the rest of the available predictors. Out of the many methods that have been 
developed through the years (Supplementary Table 1), seven were selected for testing: BcePred [16], BepiPred [17], 
ABCpred [18], COBEpro [19], SVMTriP [20], LBtope [21] and LBEEP [22]. During our study the second version of 
BepiPred was released, and its comparison with the rest of the methods and our decision not to utilize it in the devel-
opment of the consensus method is discussed later in this article. 

Once all methods were installed in a local Unix-based machine, their output was validated by comparing example 
sequences of the local versions of software with the corresponding online tools. Additionally, all methods used in this 
analysis had their threshold set on its default value except for BcePred and COBEpro (Table 1). In the case of BcePred 
the default threshold value of the method used, which combines the results of four different propensity scales, was 
decreased from 2.38 to 2. This decrease was decided after extensive testing because the default threshold value proved 
to be extremely high. Nevertheless, it should be noted that the new value used agreed with the default threshold cur-
rently used by both the online and the local version of the method, in contrast with the one reported in the initial pub-
lication. COBEpro on the other hand didn’t have a default threshold value, since its results are printed out in a chart 
where epitopic propensity is given a relative positive or negative score for each position of the query protein. The 
threshold value that was chosen for this method was that of four positive votes above the baseline score of zero because 
it yielded the best results during testing. 

Table 1. A summary of methods, threshold values, and modifications applied to each predictor. Each predictor first had its best 
performing mode selected and its threshold value set to a specific value shown in the table, using the criteria described in the man-
uscript. 

Predictor Threshold Mode Threshold Type 
BcePred 2 Combined Not Default 

BepiPred-1.0 0.35 BepiPred Default 
ABCpred 0.51 20 Default 
COBEpro 4 - Not Default 
SVMTriP 0.2 20 Default 

LBtope 0.6 - Default 
LBEEP 0.6 Balanced Default 

A consensus method was developed to incorporate all available methods that were selected in the first stage, and 
it is available upon request, due to free distribution limitations, at http://thalis.biol.uoa.gr/BCEconsensus/ as a 
standalone application. All sequence-based methods can be divided into two categories based on their classification 
approach. The first category comprises of the methods that assign an epitopic propensity score to each residue of the 
provided sequence. Four methods are included in it: BcePred, BepiPred, COBEpro, and LBtope. The second category 
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comprises of the methods that classify peptides within certain length sizes as epitopes or non-epitopes, such as 
ABCpred, SVMTriP, and LBEEP. The two categories are summarized in Supplementary Table 2. 

2.2. Data sets 
Typically, the development of machine learning classifiers requires both a training data set and a test data set, but 

since all the predictors tested in this work were previously developed, only the latter was necessary. However, due to 
the fact that the individual training data sets for each predictor contained a significant number of overlapping se-
quences, gathered from a select few databases (like IEDB [27] and Bcipep [28]), their inclusion in our test data set would 
introduce bias in the results. So, in order to test all the different methods in an unbiased manner, the positive and 
negative training data sets for each method were gathered from their respective publications and webpages. As shown 
in Table 2, the positive training data set for the majority of predictors comprises of all available BCEs from a given 
database, while the negative set contains random amino acid sequences from Swiss-Prot [29]. The way the negative set 
of control data is constructed, changed in algorithms developed after 2012 to include only sequences from confirmed 
non-epitopes, as is the case for SVMTriP, LBtope, and LBEEP. This change was introduced in order to improve the 
ability of prediction algorithms to effectively distinguish “epitopic” from random sequences, as it had been previously 
proposed [30]. 

Table 2. A summary of the source of positive and negative data sets for each predictor. For every predictor, a database had to be 
used to construct its training data sets, which comprise of a positive and a negative subset of data. In this table, we outline the data-
base or curated data set from which each method sourced its training data set, along with the date that the data was obtained. The 
date could be used to determine the snapshot of the data, which could have been obtained for each predictor’s training, allowing us 
to determine possible overlaps of our testing data set with the relevant training data. 

Predictor Positive Negative 
BcePred BCIPEP (2004) 1029 random sequences 

BepiPred-1.0 HΙV/PELLEQUER/ANTIJEN Not described in the original publication 
ABCpred BCIPEP (2006) 700 random sequences 
COBEpro HΙV/PELLEQUER HIV/Pellequer non-Epitopes 
SVMTriP ΙEDB (2012) 4925 IEDB non-epitopes 

LBtope ΙEDB (2012) IEDB (2012) non-epitopes 
LBEEP ΙEDB (2015) IEDB (2015) non-epitopes 

While developing the consensus algorithm, a new version of BepiPred was published called BepiPred-2.0 [26]. 
Even though the method itself wasn’t utilized in the development of the consensus method, its curated publicly avail-
able data set of linear epitopes was used as the source for this work’s data sets. This data set represents the biggest 
collection of linear epitope and non-epitope data used for the development of a prediction method to date, as IEDB is 
the largest and most frequently updated epitope database[31]. The BepiPred-2.0 data set was created by procuring from 
this database, all available epitopes (positive assay results) and non-epitopes (negative assay results), which were con-
firmed as such from two or more separate experiments. Afterwards, all peptides with a length smaller than 5 and longer 
than 25 residues were removed from the data set, because epitopes are rarely found outside this range [32]. Any epitopes 
that were found both in the positive and negative subsets were also removed. The resulting data set contains 11834 
epitopes in the positive subset and 18722 non-epitopes in the negative subset. Aside from its curation, a useful feature 
of this data set was the mapping of all epitopes and non-epitopes on their respective parent protein sequence. This made 
extending each epitope to a desired length much easier.  

The predictors that used IEDB as their source of epitope data are SVMTriP, LBtope, and LBEEP (Table 2). In order 
to produce an unbiased data set, their data sets were compared with BepiPred-2.0’s data set and all the matching pep-
tides were removed. This resulted in our first data set, named Consensus_Redundant (Consensus_R) which comprises 
of 7675 epitopes and 15617 non-epitopes. Using this data set as the source, a second non-redundant data set was con-
structed, by clustering peptides with the online tool CD-HIT [33]. All parameters were set to default and the sequence 
identity cut-off was set to 0.6 or 60%, as previously done in LBEEP’s data set creation [22]. The resulting data set was 
named Consensus_Non_Redundant (Consensus_NR) and it includes 4286 epitopes and 5266 non-epitopes. By creating 
the Consensus_NR data set in this manner, we essentially made the largest non-redundant data set possible, which 
contained known sequences that none of the predictors had previously “seen”. Additionally, from the Consensus_NR 
data set a subset was extracted, containing 552 epitopes and 480 non-epitopes with a peptide length of exactly 20 amino 
acids, which was named Consensus_NR_exact. This subset was used to test the performance of predictors using only 
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true epitopes and not epitope containing regions that result from the extension-truncation technique. A summary of all 
data sets used in this study is presented in Table 3, while the complete data sets are provided in Supplementary Table 
3. 

Table 3. A summary of test data sets utilized in this study. The counts of positive and negative subsets of data used in each of the 
three data sets developed for method testing is shown. 

Data set Epitopes Non-Epitopes 
BepiPred-2.0* 11814 18689 
Consensus_R 7675 15617 

Consensus_NR 4286 5266 
*A slightly modified version of BepiPred-2.0’s data set was used, which had a few epitopes removed because their sequence of 
origin was shorter than 20 amino acid residues and thus the epitope couldn’t be extended to the desired length. 

Each data set used for testing contained peptides modified beforehand into fixed-length patterns using the tech-
nique of sequence extension and truncation, employed in previous methods [34,19,12,18]. This was done to accommo-
date the fixed-size input methods and thus included only their corresponding input lengths, namely 10, 12, 14, 16, 18, 
and 20 residues. For example, for a window size of 20, any epitopes or non-epitopes that were longer than 20 amino 
acids were shortened from both sides to have the desired length. Moreover, peptides with a length shorter than 20 
residues were extended sideways on their parent sequence up to the desired length. The primary input size that was 
tested in this study was that of 20 residues for performance reasons as described in the development of the consensus 
algorithm. However, preliminary testing was also performed on a length of 16 residues, after analyzing the distribution 
of epitope lengths in the BepiPred-2.0 data set (Supplementary Figure 1). The mean peptide length of the data set was 
about 14 and the median value 15, which coincides with previous research on the characteristics of epitopes [32].  

The workflow used to create the non-redundant data sets is shown in Supplementary File 1 (Figure 3) and all data 
sets referenced in this section can be downloaded from this web page http://thalis.biol.uoa.gr/BCEconsensus/. 

2.3. Performance measures 
To evaluate a classifier’s performance both threshold dependent and independent metrics are used. The main 

threshold independent metric used in such cases is the AUC of the ROC curve. This metric was suggested as the pre-
ferred metric for benchmarking epitope prediction performance at a workshop by Greenbaum et al. [30] and thus, it 
grew to become a standard in the BCE prediction field. However, because all the predictors that we examined were 
already fully developed and their optimal thresholds set, it didn’t make sense to use such a metric in our testing, since 
no model training was performed. For that reason, only threshold dependent metrics were employed, namely Sensitiv-
ity (SN), Specificity (SP), Accuracy (ACC), and Matthew’s Correlation Coefficient (MCC). Out of these metrics, signifi-
cant attention was given to MCC, since it is generally regarded as the best performance metric for binary classifiers 
[35,36]. The coefficient’s value can range from -1 to +1, where the maximum value represents a perfect prediction and 
the minimum a total disagreement between predictions and observations. When the coefficient’s value is zero it indi-
cates a prediction that is no better than random. Aside from the known value in accessing performance utilizing the 
MCC and accuracy metrics, regarding the other metrics, more importance was attached to sensitivity rather than spec-
ificity. Sensitivity indicates how effectively a predictive method manages to successfully locate areas that are actual 
epitopes, in contrast to specificity, which measures how effectively a predictive method manages to locate the sites that 
are not epitopes. In this study, the correctly predicted epitopes or “epitopic” residues were considered True Positive 
(TP), whereas the correctly predicted non-epitopes or “non-epitopic” residues were characterized as True Negative 
(TN). Conversely, the respective false predictions were defined as False Positive (FP) and False Negative (FN), respec-
tively. 

3. Results and Discussion 
As mentioned in the Methods section, two approaches are followed to evaluate all predictions made by the consen-

sus algorithm. In the first approach results from all methods are incorporated in the consensus method — both those 
predicting in a “per residue” and in a “per peptide” manner — while in the second approach the consensus prediction 
only utilizes the “per residue” methods. Two different versions of the consensus algorithm were created in the “per 
peptide” mode, as seen in Table 4; one which includes all predictors and one which utilizes all of them except LBEEP. 
This was done after noticing that LBEEP performs much worse, compared to the rest of the predictors. This performance 
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issue can be mainly attributed to the fact that the optimal prediction window of 5-15 residues for LBEEP is different 
than the 20-residue length that was used for our testing purposes (Supplementary Table 2). 

The evaluation of the predictors’ performance was done primarily by measuring their MCC values, while second-
ary importance was assigned to achieving higher accuracy, and sensitivity. Sensitivity was considered more important 
than specificity for this particular application since a BCE predictor’s primary goal is to find possible BCEs in unknown 
sequences. Naturally, sensitivity and specificity are not mutually exclusive entities, yet in this study optimal sensitivity 
is preferred to optimal specificity. For further testing results please refer to Supplementary File 2. 

3.1. Performance of all predictors on Consensus_NR 
The results regarding the “per peptide” approach (Table 4) show that the highest MCC value was achieved by the 

BepiPred method with 0.0778, followed by our Consensus_NoLBEEP algorithm — the one without LBEEP — that 
achieved an MCC of 0.0721. Moreover, LBEEP had the lowest MCC (-0.0103), while BcePred and SVMTriP also scored 
low (0.0251 and 0.0290, respectively). The highest accuracy was achieved by our Consensus_ALL method with 55.59%, 
which was marginally better than those of SVMTriP and BcePred. SVMTriP had the best specificity out of all the meth-
ods (85.87%), followed by LBEEP and BcePred. Additionally, the ABCpred method achieved the greatest sensitivity 
with 66.44%, and COBEpro achieved the second highest with 58.63%. The Consensus_NoLBEEP algorithm achieved 
values close to the best for both MCC and accuracy, and also had a relatively improved MCC and a significantly in-
creased sensitivity compared to its first version. 

Table 4. Performance of all predictors in “per peptide” mode. The methods are tested against the Consensus_NR data set. 

Predictor SN% SP% ACC% MCC 
Consensus_noLBEEP  48.39 58.81 54.14 0.0721 

Consensus_ALL 27.15 78.73 55.59 0.0687 
BcePred 22.21 79.85 53.99 0.0251 

ABCpred 66.44 36.9 50.16 0.0348 
LBtope 45.91 58.94 53.1 0.0488 

BepiPred-1.0 49.95 57.84 54.3 0.0778 
COBEpro 58.63 45.67 51.49 0.0431 
SVMTriP 16.21 85.87 54.62 0.0290 

LBEEP 19.06 80.12 52.72 -0.0103 
In the case of the “per residue” approach (Table 5), the consensus method (Consensus_RES) achieved the best MCC 

with 0.489, while BepiPred scored marginally worse with 0.0488. The same pattern was also observed for accuracy, 
where the Consensus_RES method scored 53.04% and BepiPred 52.88%. The greatest sensitivity was achieved by COBE-
pro with 49.27%, while BepiPred was again second best with 48.12%. The worst performance regarding MCC was at-
tained by BcePred and COBEpro with scores of 0.0154 and 0.0175 respectively. Overall, despite the slight improvement 
in MCC and accuracy, the performance of the consensus algorithm was not significantly better in any of the statistical 
measures examined in the second part of the results.  

Table 5. Performance of “per residue” predictors. The methods are tested against the Consensus_NR data set. 

Predictor SN% SP% ACC% MCC 
Consensus_RES 46.64 58.24 53.04 0.0489 

BcePred  29.18 72.21 52.9 0.0154 
LBtope 45.56 57.47 52.13 0.0304 

BepiPred-1.0 48.12 56.76 52.88 0.0488 
COBEpro 49.27 52.49 51.05 0.0175 

When comparing the results of the two approaches only minor differences in performance are observed between 
the two modes of prediction for the four “per residue” methods. Generally, we notice a slight decrease in MCC from a 
maximum of 0.0778 in the first approach to a maximum of 0.0489 in the second, while accuracy is comparatively worse 
on average. Out of the “per residue” methods, BepiPred comes on top in both approaches in MCC and accuracy. The 
Bcepred method appears to perform relatively worse than the rest in both groups with the lowest MCC in both cases, 
whereas the COBEpro method performs relatively better in its “per peptide” iteration, with an average MCC score in 
the first part but a poor score in the second segment of the results. Moreover, in both approaches, our consensus 
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algorithm doesn’t significantly outperform the rest of the predictors and only achieves a performance that is quite sim-
ilar to that of BepiPred. 

In summary, we observe that in all cases: MCC values are less than 0.1, accuracy is ranging from 50% to 55%, there 
are relatively high specificity values in certain cases such as SVMTriP and BcePred, and sensitivity values are low. Aside 
from our consensus methods, the best performers were LBtope and BepiPred and the worst ABCpred and LBEEP, which 
also displayed the lowest MCC scores.  

Using the Consensus_NR data set we implemented many iterations of the consensus method utilizing many dif-
ferent method combinations, in order to find the optimum. As expected, LBEEP's presence undermined the consensus 
predictor’s performance and it was therefore omitted from the final version (Consensus_NoLBEEP) and any further 
testing in the 20-residue window size. It was also observed that ABCpred overestimated the presence of epitopes in 
their respective peptides, which led to reduced accuracy and increased sensitivity. Nevertheless, it remained part of the 
final consensus algorithm to improve its overall sensitivity. 

At this point, it should be noted that LBEEP was also tested on a peptide length of 14-residues since the method 
was reported to perform optimally when a window size between 5-15 residues is used for prediction. Results showed 
that the method indeed performs better at this window size, but it is still marginally better than a random prediction 
according to its MCC (Supplementary Table 4-A). Even though, the results were better for LBEEP the rest of the methods 
either cannot be used at that window size or perform way worse than what we had already seen and so we opted to 
not use the 14-residue window any further.  

3.2. Overall method performance and comparison with BepiPred-2.0  
The performance of the linear B-cell epitope predictors examined was found to be poor in the data sets and window 

sizes used during testing (Figure 1).  

 
Figure 1. MCC values achieved by all methods tested on the Consensus_NR data set at 20 amino acid residues in “per peptide” 
mode. The vertical axis represents the MCC value for all the methods and the horizontal axis the names of these methods. The 
best MCC is achieved by the BepiPred method, followed closely by our Consensus methods, while the worst performers are 
the LBEEP, SVMTriP, and BcePred methods. 

Additionally, despite our optimization, our consensus method performed only marginally better than the rest of 
the methods, thus nullifying its usefulness. We believe that the problems which may explain these results can be divided 
into two categories; those concerning the individual methods and those of the consensus approach. 

The first problem regarding the prediction methods is that the epitope data used to train and test them, and as a 
result, the methods themselves are outdated. This probably is what caused their significantly reduced performance in 
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our contemporary and considerably larger set of data. Furthermore, the general difficulty of creating a relatively reliable 
sequence-based predictor is well known, in contrast with those available for example in the prognosis of T-cell epitopes 
[37]. This is mainly due to the 3D nature of all B-cell epitopes, which consist of seemingly unrelated residue patterns of 
the antigen. Their emergence is also subject to multiple factors, such as antigen concentration and the type of chemical 
test [30]. 

In our attempt to create a consensus predictor, the first problem we encountered was the different modes of oper-
ation of the individual prediction methods, namely their distinction into “per peptide” and “per residue” predictors. 
To effectively compare the two modes, “per residue” predictor outputs were converted to “per peptide”, by using a 
percentage cut-off to classify peptides as epitopes and non-epitopes. This, however, is not their intended operation 
mode, which certainly influences the performance of these methods and thus the performance of the consensus method.  

Another obstacle in this effort was time and complexity. The prediction and evaluation process for all possible 
windows (10, 12, 14, 16, 18 and 20) is very time-consuming. This also had to be performed for as many predictors as 
possible to make the consensus classifier more effective, leading to a significant increase in software development com-
plexity as the number of incorporated predictors grew. In addition, accurate assessment of the viability of such an effort 
is very difficult, due to the inability to accurately compare them beforehand using the results presented in the corre-
sponding publications, as there is no single set of evaluation data or metrics [12]. Finally, there was a lack of variety in 
the methods utilized in our selected predictors, where most of them were based on SVM models, which may have 
negatively affected the performance of our consensus predictor [38]. 

When comparing all of the methods we tested, with some of the newer methods such as BepiPred-2.0 and iBCE-
EL, which were tested on large non-redundant data sets much like the ones we used, their reported superiority is ap-
parent. Out of the two, BepiPred-2.0 was released during the initial part of testing in our research, and as such, it was a 
likely candidate for our consensus method. However, after observing the poor performance of all the different methods 
tested against its data set, we decided to not include it in our consensus approach, but simply to use it as a reference for 
what a modern predictor can achieve versus the older ones. Unlike its predecessor, BepiPred-1.0, and most other se-
quence-based predictors, BepiPred-2.0 is trained exclusively on epitope data derived from antigen-antibody crystal 
structure complexes obtained from the Protein Data Bank [39]. This was done in order to combat the generally poor 
performance of predictors, which can be partly attributed to poorly annotated and noisy training data, in comparison 
with data derived from crystal structures which is presumed to be of higher quality and indeed resulted in a signifi-
cantly improved predictive power [26]. From these complexes, all antigenic residues close enough to their respective 
antibody were gathered. These residues became the positive subset of the training data set, while the negative subset 
was constructed from randomly selected non-epitope residues.  

While, BepiPred-2.0 was trained using epitope data derived only from 3D structures, its performance on linear 
BCEs was also benchmarked on one such data set. We compared the performance of BepiPred-2.0 against our Consen-
sus_noLBEEP predictor using the Consensus_NR dataset at a window size of 20 amino acid residues. When compared 
to our consensus method, BepiPred-2.0 has a similar performance in accuracy and MCC, but exhibits higher sensitivity 
and lower specificity, as shown in the comparison performed in Table 6. However, the results for both methods are far 
from optimal, and a lot of work still remains to be done in order to create a predictor that will perform optimally during 
linear BCE detection. 

Table 6. Comparison of the performance of our consensus predictor and BepiPred-2.0 against the Consensus_NR data set. 

Predictor SN% SP% ACC% MCC 
Consensus_NoLBEEP 50.18 58.54 54.07 0.0873 

BepiPred-2.0 63.35 42.63 51.93 0.0607 

4. Conclusions 
In summary, in this paper, we independently evaluated the performance of seven of the most popular linear B-cell 

epitope predictors on the largest unbiased data set possible. In the process, we also presented the course of design, 
development, and evaluation of a consensus prediction algorithm for linear B-cell epitopes. The performance of all 
predictors, except for LBEEP on whom testing was exploratory, was found marginally better than random classification. 
Additionally, our Consensus classifier failed to significantly outperform its constituent methods. While the method 
comparison was performed with some necessary compromises, we believe that this update in performance can help to 
better inform researchers that wish to consult some of these tools to facilitate and direct their research. Instead, we 
should also like to suggest that researchers opt for some of the newer predictors referenced in this work, like BepiPred-
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2.0. Also, due to the apparent difficulty of constructing an accurate general-purpose linear BCE predictor, we believe 
that software development should instead be focused on the creation of more specialized predictors for specific anti-
genic systems, such as known viruses or viral families of high interest, like the SARS-CoV-2 virus or other coronaviruses. 
This could lead to optimization in the feature selection process during classifier training and better predictive perfor-
mance within that limited scope. 

Supplementary Materials: Supplementary Table 1: General information on Linear B-cell epitope predictors and supplementary in-
troductory. Supplementary Table 2: Supplementary information on the materials and methods used and a table of input window 
sizes along with the prediction approach of each method. Supplementary Table 3: Evaluation Datasets. Supplementary Table 4: A) 
LBEEP's performance on peptides of 14-amino acid residues. B) LBEEP’s performance using 3 different models for the 20 amino acid 
residue peptides of the Consensus_NR data set. Supplementary File 1: Supplementary Figure 2 showing the workflow of the consen-
sus method and Supplementary Figure 3 showing the workflow of the creation of the non-redundant data sets. Supplementary File 
2: Supplementary results and discussion. Supplementary Figure 1: Distribution of epitope lengths in the Bepipred 2.0 data set. 
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Abbreviations 
BCE   Linear B-cell epitope 
CLI Command Line Interface 
GUI Graphical User Interface 
AUC Area Under Curve 
ROC Receiver Operating Characteristic 
MCC Matthews Correlation Coefficient 
IEDB Immune Epitope Data Base 
Consensus_R Consensus_Redundant 
Consensus_NR Consensus_Non_Redundant 
SN Sensitivity 
SP Specificity 
ACC Accuracy 
TP True Positive 
TN True Negative 
FP False Positive 
FN False Negative 
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