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Abstract 

Understanding the dynamics of brain-scale functional networks at rest and during cognitive tasks 

is the subject of intense research efforts to unveil fundamental principles of brain functions. To 

estimate these large-scale brain networks, the emergent method called “electroencephalography 

(EEG) source connectivity” has generated increasing interest in the network neuroscience 

community, due to its ability to identify cortical brain networks with satisfactory spatio-temporal 

resolution, while reducing mixing and volume conduction effects. However, no consensus has 

been reached yet regarding a unified EEG source connectivity pipeline, and several 

methodological issues have to be carefully accounted for to avoid pitfalls. Thus, a validation 

toolbox that provides flexible "ground truth" models is needed for an objective 

methods/parameters evaluation and, thereby an optimization of the EEG source connectivity 

pipeline. In this paper, we show how a recently developed large-scale model of brain-scale activity, 

named COALIA, can provide to some extent such ground truth by providing realistic simulations 

of source-level and scalp-level activity. Using a bottom-up approach, the model bridges cortical 

micro-circuitry and large-scale network dynamics. Here, we provide an example of the potential 

use of COALIA to analyze, in the context of epileptiform activity, the effect of three key factors 

involved in the “EEG source connectivity” pipeline: (i) EEG sensors density, (ii) algorithm used 

to solve the inverse problem, and (iii) functional connectivity measure. Results showed that a high 

electrode density (at least 64 channels) is required to accurately estimate cortical networks. 

Regarding the inverse solution/connectivity measure combination, the best performance at high 

electrode density was obtained using the weighted minimum norm estimate (wMNE) combined 

with the weighted phase lag index (wPLI). Although those results are specific to the considered 

aforementioned context (epileptiform activity), we believe that this model-based approach can be 

successfully applied to other experimental questions/contexts. We aim at presenting a proof-of-
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concept of the interest of COALIA in the network neuroscience field, and its potential use in 

optimizing the EEG source-space network estimation pipeline. 

Keywords: neural mass models, electroencephalography, EEG sensor density, inverse problem, 

functional connectivity, network neuroscience.  
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Introduction 

There is now growing evidence suggesting that large-scale functional brain networks underlie 

complex brain functions during rest (Allen et al., 2014; Kabbara, Falou, Khalil, Wendling, & 

Hassan, 2017) and tasks (Hassan et al., 2015; O’Neill et al., 2017). Among the neuroimaging 

techniques used to derive the functional brain networks, the electroencephalography (EEG) 

technique provides a direct measure of electrical brain activity at the millisecond time scale. The 

past years have seen a noticeable increase of interest in “EEG source connectivity” methods to 

estimate brain networks at the cortical sources level while minimizing the volume conduction and 

field spread problems. Although consisting only of two main steps: 1) source reconstruction, and 

2) connectivity assessment, there is still no consensus on a unified pipeline adapted to this 

approach, and many methodological questions remain unanswered. A first issue lies at the very 

first step of data recording with the question of optimal spatial resolution (i.e., density of sensors) 

needed to avoid misrepresentation of spatial information of brain activity (Song et al., 2015; 

Srinivasan, Tucker, & Murias, 1998). Another issue concerns the subsequent analysis: for each of 

the aforementioned steps, a large number of methods are available, each having its own properties, 

advantages and drawbacks, and addressing a different aspect of the data. An additional parameter 

warranting investigation is the spatial resolution of the reconstructed cortical sources (i.e., number 

of regions of interest) ranging from dozens to thousands of regions.  

To tackle those challenges, several comparative studies have been conducted with the aim of 

evaluating the performance of the adopted techniques and the influence of different parameters 

affecting the network estimation procedure (Anzolin et al., 2019; Colclough et al., 2016; Fornito, 

Zalesky, & Bullmore, 2010; Halder, Talwar, Jaiswal, & Banerjee, 2019; Lantz, Grave de Peralta, 

Spinelli, Seeck, & Michel, 2003; Sohrabpour et al., 2015; Song et al., 2015; J. Wang et al., 2009). 
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In the context of EEG, several studies investigated the effect of different electrode montages on 

the estimation of functional connectivity. Increasing the number of electrodes has been shown to 

decrease the localization error in different contexts (Lantz et al., 2003; Sohrabpour et al., 2015; 

Song et al., 2015). (Song et al., 2015) recommended using 128 or 256 electrodes, while in 

(Sohrabpour et al., 2015) the most dramatic decrease in localization error was obtained when going 

from 32 to 64 electrodes. Other studies have focused on evaluating the performance of different 

inverse solutions using simulated and real EEG signals (Anzolin et al., 2019; Bradley, Yao, 

Dewald, & Richter, 2016; Grova et al., 2006; Halder et al., 2019). Compared methods include 

those based on the minimum norm estimate (MNE, LORETA, sLORETA, eLORETA, etc.) as 

well as beamformers (DICS, LCMV). However, to the best of our knowledge, there is no 

consensus yet on which inverse solution provides the most accurate results when estimating EEG- 

source-space networks. In the context of functional connectivity, the performance of various 

measures covering direct/indirect causal relations, marginal/partial associations, leakage 

correction, amplitude/phase coupling have been evaluated, and compared using either real data 

(Colclough et al., 2016), or simulated data in (H. E. Wang et al., 2014; Wendling, Ansari-Asl, 

Bartolomei, & Senhadji, 2009). Nevertheless, no agreement has been reached on which 

connectivity measure to adopt. 

A challenging issue in such comparative studies resides in the absence of a ‘ground truth’ when 

dealing with real EEG data. Ideally, simultaneous scalp EEG and depth (intracranial) recordings 

are required, which is challenging to perform and is therefore unavailable in most studies. Thus, 

to overcome this issue, one possible solution is to use simulated data. It is worth mentioning that 

many studies have attempted to provide a ground truth for the validation of source reconstruction 

and connectivity estimation algorithms. For example, in (Schelter et al., 2006), a toy model was 

used in which the signal was considered as an oscillator and was driving the activity of other 
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structures. However, such approach is limited in terms of spectral properties. A frequently adopted 

method is the use of multivariate autoregressive (MVAR) models as generator filters, in 

combination along with volume conductor head models to generate pseudo-EEG data (Anzolin et 

al., 2019; Haufe & Ewald, 2016). However, such models are linear and too simple compared to 

the complexity of actual brain activity. Another solution that overcomes some of the limitations of 

previous methods is the use of physiologically-inspired models. Here, we use a computational 

model named “COALIA” (Bensaid, Modolo, Merlet, Wendling, & Benquet, 2019), able to 

generate realistic brain-scale, cortical-level simulations while accounting for macro- (between 

regions) as well as the micro-circuitry (within a single region) of the human cortex, including the 

specificities of each neuronal type within each region. Scalp EEG signals can be then obtained 

through solving the EEG direct problem. We highlight the implications of this model in enhancing 

our interpretation of the reconstructed brain networks and in evaluating the key factors of the EEG 

source connectivity pipeline, such as 1) EEG sensor density, 2) solution of the EEG inverse 

problem, and 3) functional connectivity measure. 

Here, we generate epileptiform, cortical activity (confined to the left hemisphere) and present a 

(not exhaustive) comparative study to evaluate, in this specific context, the effect of: 1) five 

different electrode densities (256, 128, 64, 32, 19); 2) two inverse solution algorithms, weighted 

minimum norm estimate (wMNE) and exact low resolution electromagnetic tomography 

(eLORETA); and 3) two functional connectivity measures, phase locking value (PLV) and 

weighted phase lag index (wPLI) ) as they represent one of the most used combination of methods 

in the context of EEG source-space network estimation. We believe that the present study can be 

extended to address other methodological /experimental questions related to source connectivity 

estimation. We aim at presenting a proof-of-concept of the interest of COALIA in the network 
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neuroscience field, and its potential use in optimizing the EEG source-space network estimation 

pipeline. 

Materials and Methods 

The full pipeline of our study is summarized in Fig. 1. 
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Fig. 1 Pipeline of the study.  Cortical sources were simulated using COALIA. The forward 
model was solved for five electrode montages (19, 32, 64, 128, 256 electrodes). Scalp EEG 
signals were generated.  Cortical sources were reconstructed using wMNE and eLORETA 
as inverse solutions. Functional connectivity between reconstructed sources was assessed 
over 30 trials using PLV and wPLI algorithms.  Accuracy was computed to assess the 
performance of the network estimation. 

Simulations 

Source-space brain activity was generated using a physiologically-grounded computational model, 

named COALIA. As aforementioned, it generates brain-scale electrophysiology activity while 

accounting for the macro- (between regions) as well as the micro-circuitry (within a single region) 

of the brain (for details, see (Bensaid et al., 2019)). We considered a scenario inspired from a 

general scheme of the organization of human partial seizures presented in (Bartolomei, Guye, & 

Wendling, 2013), and proposing the existence of an epileptogenic subnetwork as well as a 

propagation subnetwork. In the present study, the two subnetworks were located in the left 

hemisphere. The epileptogenic subnetwork included four cortical regions: the rostral middle 

frontal gyrus, pars opercularis, pars triangularis, and pars orbitalis; and the propagation subnetwork 

included the supramarginal, banks superior temporal sulcus, and transverse temporal cortex. 

Regions affiliations were based on the Desikan-Killiany atlas (Desikan et al., 2006). Epileptiform 

activity was generated in the epileptogenic and propagation subnetworks, while background 

activity was assigned to the remaining cortical regions. A detailed description of the model along 

with along with all simulation parameters relative to the data are provided in the Supplementary 

Materials and the generated source signals are provided in the GitHub repository. All sources 

belonging to a single patch were synchronized at a zero lag, while a delay of 30 ms was introduced 

between the two subnetworks to reflect the propagation of spikes between relatively distant regions 

in the brain. A timeseries of  ̴ 6 min at 2048 Hz was simulated, and was segmented into 10-second 

epochs. A total of 30 epochs was selected for the subsequent analysis. This value was chosen based 
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on a previous study (Hassan et al., 2017), dealing with similar issues based on computational 

modeling and epileptic spikes. 

EEG Electrodes density and direct problem 

Five different electrode montages were used to generate scalp EEG signals. We selected the GSN 

HydroCel EEG configuration (EGI, Electrical geodesic Inc) for the 256, 128, 64 and 32 channels 

density, as well as the international 10-20 system (Klem, Lüders, Jasper, & Elger, 1999) for the 19 

channels array. For each electrode configuration, the lead field matrix describing the electrical and 

geometrical characteristics of the head was computed for a realistic head model using the Boundary 

Element Method (BEM) using OpenMEEG (Gramfort, Papadopoulo, Olivi, & Clerc, 2010) 

implemented in the Brainstorm toolbox (Tadel, Baillet, Mosher, Pantazis, & Leahy, 2011) for 

Matlab (The Mathworks, USA, version 2018b). To generate EEG scalp simulations, we solved the 

forward problem as follows: 

 𝑋(𝑡) = 𝐺. 𝑆(𝑡) (1) 

where 𝑋(𝑡), 𝑆(𝑡) are scalp EEG and cortical timeseries respectively, and 𝐺 the lead field matrix. 

We used only the lead field vectors reflecting the contribution of the sources located at the centroid 

of the regions of interest defined on the basis of the Desikan-Killiany atlas (Desikan et al., 2006) 

(right and left insula were excluded, leaving 66 regions of interest). 

Finally, in order to simulate measurement noise, spatially and temporally uncorrelated signals were 

added to the scalp EEG as follows (Anzolin et al., 2019): 

 𝑋)*+,-(𝑡) = 𝜆 ×
𝑋(𝑡)

‖𝑋(𝑡)‖1
+ (1 − 𝜆) ×

𝑛(𝑡)
‖𝑛(𝑡)‖1

 (2) 
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where 𝑋(𝑡) are the scalp EEG and 𝑛(𝑡) is the white uncorrelated noise. ‖𝑋(𝑡)‖1 and ‖𝑛(𝑡)‖1 

refers to the Frobenius norm of the multivariate time series 𝑋(𝑡) and 𝑛(𝑡) respectively. First, 𝜆 

was fixed to 1 (i.e. no measurement noise was added). Second, for evaluating the different methods 

in the presence of noise, 𝜆 was varied between 0.85 and 0.95 with a 0.01 step. 

EEG inverse problem 

Solving the EEG inverse problem consists of estimating the position, orientation and magnitude 

of dipolar sources 𝑆6(𝑡). Cortical sources were positioned at the centroids of Desikan-killiany 

regions, and oriented normally to the cortical surface. Thus, the inverse problem was reduced to 

the computation of the magnitude of dipolar sources 𝑆6(𝑡): 

 𝑆6(𝑡) = 𝑊.𝑋(𝑡) (3) 

where 𝑋(𝑡) is the scalp EEG. Several algorithms have been proposed to solve this problem and 

estimate W based on different assumptions related to the spatiotemporal properties of the sources 

and regularization constraints (see (Baillet, Mosher, & Leahy, 2001) for a review). Here, we used 

two methods widely used in EEG source connectivity analysis: the weighted minimum norm 

estimate (wMNE) and the exact low-resolution electromagnetic tomography (eLORETA). 

Weighted Minimum Norm Estimate (wMNE) 

The minimum norm estimate (MNE) originally proposed by (Hämäläinen & Ilmoniemi, 1994)h 

searches for a solution that fits the measurements with a least square error. The wMNE (Fuchs, 

Wagner, Köhler, & Wischmann, 1999; Lin et al., 2006) compensates for the tendency of MNE to 

favor weak and surface sources: 
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 𝑊89:; = 𝐵𝐺=(𝐺𝐵𝐺= + 𝜆𝐶)?@ (4) 

where 𝜆 is the regularization parameter and 𝐶 is the noise covariance matrix computed, in our case, 

from the pre-spikes baseline. The matrix 𝐵 is a diagonal matrix built from matrix G with non-zero 

terms inversely proportional to the norm of lead field vectors. It adjusts the properties of the 

solution by reducing the bias inherent to the standard MNE solution: 

 𝐵+A = B
(𝐺+=𝐺+)@ C⁄ 																					𝑖𝑓	𝑖 = 𝑗
0																																							𝑖𝑓	𝑖 ≠ 𝑗

																				
																																							

 (5) 

Exact low-resolution brain electromagnetic tomography (eLORETA) 

The exact low-resolution electromagnetic tomography (eLORETA) belongs to the family of 

weighted minimum norm inverse solutions. However, it does not only account for depth bias, it 

also has exact zero error localization in the presence of measurement and structured biological 

noise (Pascual-Marqui, 2007): 

 𝐵+A = B
(𝐺+=(𝐺+𝐵𝐺+= + 𝜆𝐶)?@𝐺+)@ C⁄ 																								𝑖𝑓	𝑖 = 𝑗
0																																																																							𝑖𝑓	𝑖 ≠ 𝑗																																							

 (6) 

eLORETA was originally described using the whole brain volume as source space. However, in 

the present study, in order to facilitate the comparison with other methods, we restricted the source 

space to the cortical surface. Regarding the regularization parameters of wMNE and eLORETA, 

we used default values included in Brainstorm and fieldtrip toolboxes.  

Connectivity measures 

We evaluated in this study two of the most popular connectivity metrics, both based on the 

assessment of the phase synchrony between regional time-courses, namely PLV (phase-locking 

value) and PLI (phase-lag index), as detailed below. 
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Phase-locking value 

For two signals 𝑥(𝑡) and 𝑦(𝑡), the phase-locking value (Lachaux et al., 2000) is defined as: 

 𝑃𝐿𝑉 = P𝐸{𝑒+PTU(V)?TW(V)P}P (7) 

where 𝐸{	. } is the expected value operator and 𝜑(𝑡) is the instantaneous phase derived from the 

Hilbert transform. 

Weighted phase-lag index  

While the phase-lag index (PLI) quantifies the asymmetry of the phase difference, rendering it 

insensitive to shared signals at zero phase lag (Stam, Nolte, & Daffertshofer, 2007) that supposedly 

induce spurious volume conduction effects, the weighted PLI (wPLI) attempts to further weight 

the metric away from zero-lag contributions (Vinck, Oostenveld, Van Wingerden, Battaglia, & 

Pennartz, 2011). 

 𝑤𝑃𝐿𝐼 =
|𝐸{|𝐼{𝑋}|	𝑠𝑖𝑔𝑛(𝐼{𝑋})}|

𝐸{|𝐼{𝑋}|}  (8) 

where 𝐼{𝑋} denotes the imaginary part of the signal’s cross-spectrum. 

Connectivity matrices were computed in broadband [1-45 Hz] for all considered electrode 

densities and possible inverse solution/connectivity combinations, resulting in 20 connectivity 

matrices for each epoch. The resulting matrices were thresholded by keeping nodes with the 

highest 12% strength values, corresponding to the proportion of nodes originally used to simulate 

the 2 subnetworks. A node’s strength was defined as the sum of the weights of its corresponding 

edges.   

Results quantification  
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In order to assess the performance of each investigated parameter (i.e., electrodes number, inverse 

solution, connectivity measure), the accuracy of the estimated networks with respect to the ground 

truth was computed as follows: 

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (9) 

where 𝑇𝑃 (i.e., true positive) represents the connections present in the reference as well as in the 

estimated network, 𝑇𝑁 (i.e., true negative) refers to the absent connections in both the reference 

and estimated networks, 𝐹𝑃 (i.e., false positive) represents the connections obtained in the 

estimated network exclusively, and 𝐹𝑁 stands for the links missing in the estimated network. 

Accuracy values range between 0 and 1. 

Statistical analysis 

Statistical analyses were performed using R (R Core Team, 2020). We used linear mixed model 

analyses to investigate the effects of electrode number, inverse solution method, and connectivity 

measure on the accuracy of the estimated networks. Mixed models have several advantages, such 

as the ability to account for the dependence between the different measures, and to model random 

effects (see (Gueorguieva & Krystal, 2004)). We used the lmer function of the {lme4} package 

(Bates, Mächler, Bolker, & Walker, 2015) with the following model that includes, epoch, electrode 

number, inverse solution method and connectivity measures as interacting fixed effects, and also 

a random intercept for epochs: 

 𝑚𝑜𝑑𝑒𝑙 = 𝑙𝑚𝑒𝑟(𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦			k	𝐸𝑝𝑜𝑐ℎ ∗ 𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒	𝑛𝑢𝑚𝑏𝑒𝑟 ∗ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒	𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛	 

𝑚𝑒𝑡ℎ𝑜𝑑 ∗ 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦	𝑚𝑒𝑎𝑠𝑢𝑟𝑒 + (1 𝐸𝑝𝑜𝑐ℎ)	𝑑𝑎𝑡𝑎 = 𝑑𝑎𝑡𝑎)⁄  

(10) 
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We applied a square root transform to the data, since this led to a better compliance of the model 

with the assumptions of normality and homoscedasticity of model’s residuals than for raw data. 

Calculation of the significance of the fixed effects was performed using the anova function of the 

{car} package that computes ANOVA F-tests (Fox & Weisberg, 2019). In order to assess the 

quality of the model, we computed marginal and conditional R² that were obtained from the 

{MuMin}package. In case of significant main effects, we performed post-hoc analyses  using the 

glht function of the {multcomp} package that calculates adjusted p-values using individual z tests 

(Hothorn, Bretz, & Westfall, 2008). The significance threshold was set to 𝑝 = 0.05. 

Results 

For each sensor density and inverse solution connectivity measure, estimated networks averaged 

over trials are illustrated in Fig. 2. Those results illustrate clearly that the accuracy of the estimated 

networks was dramatically influenced by scalp sensors density. The higher the number of 

electrodes, the more accurate the reconstructed networks were. Also, the inverse 

solution/connectivity measures combinations performed distinctively. The best performance was 

obtained using wMNE/wPLI at 64, 128, and 256 electrodes. wMNE/PLV and eLORETA/PLV 

performed similarly and were slightly less accurate than wMNE/wPLI at a high sensor density. 

However, eLORETA/wPLI exhibited the least estimation accuracy even with a high number of 

electrodes. The accuracy values for all electrodes montage and inverse solution/connectivity 

measures combinations were plotted in Fig. 3. The influence of the sensor density was confirmed 

by the statistical analysis with a significant sensor density effect (𝐹(r,tuC) = 333.53, 𝑝 < 0.001,

𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙		𝑅C = 0.84, 𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙	𝑅C = 0.82). Post-hoc analyses showed significant accuracy 

improvement when using 256 electrodes as compared to 64 (𝑝 < 0.05), 32 (𝑝 < 0.001), and 19 
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(𝑝 < 0.01) electrodes. Increasing the sensor density from 128 electrodes to 256 electrodes did not 

provide further benefit.  

 

Fig. 2 Average networks over trials for all electrode montages and inverse 
solution/connectivity measure combinations. Networks were thresholded by keeping nodes 
with the highest 12% strength values, which corresponds to the proportion of nodes 
originally present in the reference network. Connections in green and yellow belong to the 
epileptogenic and propagation subnetworks respectively. Connections in blue represent the 
connectivity between the two subnetworks. Connections in red are spurious connections, that 
do not exist in the reference network. 

A non-significant difference was obtained in all other cases. Differences between results obtained 

with 19 electrodes and those obtained with 32, 64, or 128 electrodes were all non-significant. 

Similarly, no differences were detected between 32 and 64, 32 and 128, 64 and 128 electrode 

montages. Regarding the inverse solution, wMNE significantly outperformed eLORETA 
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(𝐹(@,tuC) = 281.75, 𝑝 < 0.001, 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙		𝑅C = 0.84, 𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙	𝑅C = 0.82). Also, 

statistical analyses showed a significant effect of the connectivity measure (𝐹(@,tuC) = 83.19, 𝑝 <

0.001, 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙		𝑅C = 0.84, 𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙	𝑅C = 0.82). The accuracy of the estimated networks 

was slightly higher with wPLI than with PLV. Interestingly, the combination inverse 

solution/connectivity measure combination had also a significant effect on the network estimation 

accuracy (𝐹(@,tuC) = 478.91, 𝑝 < 0.001, 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙		𝑅C = 0.84,𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙	𝑅C = 0.82).  

 

Fig. 3 Accuracy of the estimated networks based on different electrode montages for each 
inverse solution/connectivity measure.  
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The highest network estimation accuracy was reached using wMNE/wPLI, while the worst 

performance was obtained with eLORETA/wPLI. eLORETA/PLV and wMNE/PLV had similar 

average accuracy values. Post-hoc analyses showed significant difference between wMNE/wPLI 

and both eLORETA/PLV (𝑝 < 0.001) and wMNE/PLV (𝑝 < 0.001). Similarly, results obtained 

with eLORETA/wPLI were significantly different from those obtained with eLORETA/PLV (𝑝 <

0.001) and wMNE/PLV (𝑝 < 0.001). On the other hand, differences between eLORERA/PLV 

and wMNE/PLV and between eLORETA/wPLI and wMNE/wPLI were not statistically 

significant. All the detailed results of the statistical analysis can be found in the Supplementary 

Materials. 

In Fig. 4, the mean accuracy and standard error of each inverse solution/connectivity measure 

combination are plotted against different levels of noise (see Materials and Methods) for the case 

of 256 electrodes. With the exception of wMNE/PLV, the different combination methods 

maintained a relatively stable performance at different levels of noise. Plots relative to other 

electrode montages were also included in the Supplementary Materials. 
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Fig. 4 Mean accuracy and standard error of each inverse solution/connectivity measure 
combination plotted against different levels noise for the case of 256 electrodes 

Discussion 

To the best of our knowledge, there is still no consensus on the most optimized pipeline for 

reconstructing EEG source-space networks. At each step of this pipeline, several methods have 

indeed been proposed and many parameters need to be defined. Several comparative studies have 

investigated different methods/parameters affecting the estimation of functional networks. A key 

challenge in such studies (i.e., when dealing with real EEG data) is the difficulty to obtain a ground 

truth, which prevents the exact evaluation of the performance of each considered method. In order 

to overcome this issue, in this paper we propose to use a recently developed, physiologically-

grounded computational model, and highlight its potential use in optimizing the EEG network 

estimation procedure. Our objective was to provide a proof-of-concept regarding the use of 
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COALIA for testing methods and parameters included in the source connectivity estimation. We 

believe that it can be used to address many of the methodological considerations related to EEG 

source connectivity estimation, and ultimately provide a validation of the pipeline, a step of 

increased interest, especially with the emergence of the relatively new field called “network 

neuroscience” (Bassett & Sporns, 2017). In this study, we used the model to simulate cortical-level 

sources from which scalp-EEG signals were generated, and then evaluated the effects of EEG 

channels density, two source reconstruction algorithms, and connectivity measures. Specifically, 

as a first step of this strategy to provide a ground truth using COALIA, we considered a scenario 

consisting of an epileptogenic and propagation network where epileptiform activity is present. 

Overall, results obtained for the five considered electrode montages demonstrate clearly that the 

spatial resolution of the sensor array dramatically affects the accuracy of network estimation: as 

expected, increasing spatial resolution involves a higher accuracy of reconstructed networks. 

These results were expected theoretically, and are in line with previous studies (Lantz et al., 2003; 

Sohrabpour et al., 2015; Song et al., 2015). Recording EEG data with a low sensor density array 

can indeed contribute to a misrepresentation of high spatial frequency signal as a low spatial 

frequency signal. Therefore, to avoid aliasing the Nyquist criteria (𝐹, > 2 ∗ 𝐹���) should be 

respected and high spatial resolution is required (i.e., small interelectrode distance) (Song et al., 

2015; Srinivasan et al., 1998). Interestingly, increasing the number of electrodes from 128 to 256 

did not provide a significant improvement. On a different note, (Song et al., 2015) found that 

adding sensors on the inferior surface of the head (including the neck and the face) improves 

localization accuracy, even with sparse arrays. Therefore, it may be interesting to study the effect 

of the head coverage provided by different sensor array layouts, and not only the number of 

electrodes in each array. 
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Comparing inverse solutions and connectivity measures showed that wMNE performed better than 

eLORETA, and wPLI performed better than PLV. In contrast to our results, in (Tait, Szul, & 

Zhang, 2020), eLORETA outperformed wMNE at both voxel and ROI level. Even though 

(Colclough et al., 2016) did not recommend phase-based metrics as a first choice for assessing 

MEG functional connectivity, they were in favor of using measures that are not affected by zero-

lag phase coupling. Interestingly, our study showed that a more crucial parameter is the 

combination of inverse method and connectivity measure. Although wMNE/wPLI performed 

better than eLORETA/wPLI, the PLV connectivity measure performed similarly with both 

eLORETA and wMNE methods. Thus, the choice of the inverse solution and connectivity measure 

is recommended to be made simultaneously. In a previous study (Hassan, Dufor, Merlet, Berrou, 

& Wendling, 2014), wMNE/PLV combination had the best performance in the context of a picture 

naming task. This combination has also showed better performance than other combinations 

(eLORETA and wPLI were not included) when applied to simulated epileptic spikes (Hassan et 

al., 2017). A possible difference between the current simulations and (Hassan et al., 2017) is that, 

in the latter, the reference network were very dense locally with a very high number of zero-lag 

correlations which may favor methods that do not remove these connections (such as PLV). 

Moreover, neither eLORETA nor wPLI were investigated in that study. It is therefore worth noting 

that the results obtained in this study are specific to the analyzed condition, i.e., epileptic spikes: 

therefore, we cannot be certain that the same combination of methods will provide the best network 

estimation accuracy when analyzing networks related to cognitive tasks or resting state, such as 

the alpha/beta DMN for instance (i.e., physiological activity), which is the main objective of the 

future steps of this work.  

Finally, we varied 𝜆 between 0.85 and 0.95 to evaluate the effect of different noise levels on the 

performance of the inverse solutions and connectivity estimates. Our results have showed that the 
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additive scalp-level noise mostly affected wMNE/PLV, while other methods had a more stable 

performance. In (Anzolin et al., 2019; Haufe & Ewald, 2016), 𝜆 was fixed at 0.9. Results reported 

in Fig. 4 show that, at this specific value, wMNE/PLV reached a good performance (mean = 0.50 

as compared to wMNE/wPLI (mean = 0.83), eLORETA/PLV (mean = 0.39), and 

eLORETA/wPLI (mean = 0.13). One can also notice that at higher SNR (𝜆 > 0.9), wMNE/PLV 

outperforms other combinations. These observations highlight the importance of applying an 

effective preprocessing of EEG signals before reconstructing the cortical networks, as well as a 

robust source connectivity method to correctly estimate functional connectivity. A more detailed 

assessment of the effect of noise levels on the performance of source connectivity algorithms is a 

possible future avenue of research. 

Methodological considerations 

Here, our objective was to provide a typical example of the use of the COALIA model to 

investigate the effect of different pipeline-related parameters on EEG source-space network 

analysis. With our approach, we aimed at promoting the use of computational modeling as a 

ground-truth to evaluate parameters of EEG source connectivity methods. Using this approach, 

other parameters could be also evaluated and other scenarios could be also generated, and we 

suggest hereafter possible extensions for this work. First, we simulated in this study a network 

with 7 regions generating spike activity, while background brain activity was attributed to all other 

regions. However, it would be even more realistic for the network neuroscience field to use the 

model to simulate different rhythms of resting-state data (alpha/beta-band activity in the DMN 

network, for instance) and then evaluate the desired techniques in such context, rather than 

restricting the study to spikes/background activity scenarios. Second, the inverse solutions 

compared in this paper both belong to the family of minimum norm estimates methods. Other 
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algorithms based on beamformers, such as the widely used linearly constrained minimum variance 

(LCMV) were not tested here. Moreover, it is worthy to mention that the two connectivity 

measures included in this study estimate phase synchrony between regional time-series. Other 

existing methods investigate instead the amplitude correlation between signals, such as the 

amplitude envelope correlation (AEC), which is widely used in the context of MEG functional 

connectivity. In a large study investigating the reliability of different connectivity metrics 

(Colclough et al., 2016), Colclough et al. have suggested that AEC between orthogonalized signals 

is the most consistent connectivity measure to employ in the context of resting-state recordings. 

Thus, it is noteworthy that the results obtained here do not necessarily extend to other inverse 

solutions or connectivity measures, nor they are generalized to all experimental context.  

Moreover, the connectivity assessed here using PLV and wPLI is bidirectional, however, since we 

introduced a time delay between the two subnetworks, we propose that studying directional 

connectivity metrics (e.g., Granger causality) may also lead to additional insights specifically 

related to Bartolomei's model, where epileptic activity is transferred from the epileptogenic 

network to the propagation network. 

In order to threshold connectivity matrices, only the nodes with the highest 12% strength were 

kept. This proportional threshold was chosen to ensure that the number of nodes in the estimated 

networks matches the number of nodes within the reference network (7/66=12%). Obviously, this 

choice is not completely realistic, since we cannot have any a priori in terms of experimental data 

on the exact number of activated brain regions. However, adopting a proportional, rather than a 

statistical thresholding for example, ensures that the density of estimated networks matches that of 

the ground truth, which is necessary for the correct assessment of the accuracy of estimated 

networks in our case (van den Heuvel et al., 2017). 
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Let us mention that we used in this study the accuracy to quantify the difference between estimated 

and reference networks. Other network-based metrics can be also useful to compute the similarities 

between these networks (Mheich et al., 2018; Mheich, Wendling, & Hassan, 2020). Also, the 

present study is limited to cortical regions based on the assumption that sub-cortical regions are 

not easily accessible from scalp EEG recordings. However, it has been proved that the performance 

of some inverse algorithms and connectivity estimators depends on the position of the 

reconstructed sources (Anzolin et al., 2019). Thus, a more extensive study comparing source 

connectivity approaches should include the effect of the location of sources. 

In terms of head model, we have built for the purpose of this study a realistic head model for the 

ICBM152 MRI template that consisted in three nested homogeneous mesh surfaces shaping the 

brain (642 vertices), skull (642 vertices) and scalp (1,082 vertices) with conductivity values of 

0.33 Sm−1, 0.0042 Sm−1 and 0.33 Sm−1, respectively. However, source connectivity analysis in 

EEG/MEG are usually affected by the choice of the head model describing electrical and 

geometrical characteristics of the head (simplified/realistic head models, individual/template MRI, 

tissue types, tissue conductivity) (Cho, Vorwerk, Wolters, & Knösche, 2015; Wolters et al., 2006). 

Thus, it may be worthy to use COALIA and benefit from the presence of a ground truth to examine 

the influence of the head model on EEG source connectivity analysis. Finally, functional 

connectivity was estimated, here, in broadband [1 – 45] Hz. However, it can be also computed in 

each of the classical EEG frequency sub-bands (i.e., delta, theta, alpha, beta, gamma) separately 

(Bettus et al., 2008; Canuet et al., 2011) which could be done in a more exhaustive study. 

Conclusion 

In this work, we have provided evidence that COALIA, a recently developed, physiologically-

inspired computational model can provide a ground-truth for comparative studies aiming at 

optimizing the EEG-source connectivity pipeline. Using this model-based approach, several 
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methodological questions can be addressed. Here, we assessed the effect of the number of EEG 

electrodes, as well as the inverse solution/connectivity measure combination in the context of 

simulated epileptic activity. Our results suggest that a higher network estimation accuracy requires 

a high number of EEG electrodes, and suggest a careful choice of an efficient inverse 

solution/connectivity measure combination. 

Funding 

This work was financed by Rennes University, the Institute of Clinical Neurosciences of Rennes 

(project named EEGCog). It was also supported by the Programme Hubert Curien CEDRE 

(PROJECT No. 42257YA), the National Council for Scientific Research (CNRS-L) and the 

Agence Universitaire de la Francophonie (AUF) and the Lebanese university. 

Conflicts of interest/Competing interest 

The authors have no conflicts of interest to declare that are relevant to the content of this article. 

Availability of data and material 

Data used in this work can be found at https://github.com/sahar-allouch/comp-epi.git. 

Code availability 

Data and Codes supporting the results of this study are available at https://github.com/sahar-

allouch/comp-epi.git. We used Matlab (The Mathworks, USA, version 2018b), Brainstorm 

toolbox (Tadel et al., 2011), Fieldtrip toolbox ((Oostenveld, Fries, Maris, & Schoffelen, 2011); 

http://fieldtriptoolbox.org), OpenMEEG (Gramfort et al., 2010) implemented in Brainstorm, and 

BrainNet Viewer (Xia, Wang, & He, 2013). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 14, 2021. ; https://doi.org/10.1101/2020.09.16.299305doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.16.299305
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 
 

Acknowledgments 

This work was financed by the Rennes University, the Institute of Clinical Neuroscience of Rennes 

(project named EEGCog). Authors would also like to thank the Lebanese Association for Scientific 

Research (LASER) and Campus France, Programme Hubert Curien CEDRE (PROJECT No. 

42257YA), for supporting this study. The authors would like to acknowledge the Lebanese 

National Council for Scientific Research (CNRS-L), the Agence Universitaire de la Francophonie 

(AUF) and the Lebanese university for granting Ms. Allouch a doctoral scholarship. 

References 

 
Allen, E. A., Damaraju, E., Plis, S. M., Erhardt, E. B., Eichele, T., & Calhoun, V. D. (2014). Tracking 

Whole-Brain Connectivity Dynamics in the Resting State. Cerebral Cortex, 24, 663–676. 
https://doi.org/10.1093/cercor/bhs352 

Anzolin, A., Presti, P., Van De Steen, F., Astolfi, L., Haufe, S., & Marinazzo, D. (2019). Quantifying the 
Effect of Demixing Approaches on Directed Connectivity Estimated Between Reconstructed EEG 
Sources. Brain Topography. https://doi.org/10.1007/s10548-019-00705-z 

Baillet, S., Mosher, J. C., & Leahy, R. M. (2001). Electromagnetic Brain Mapping. IEEE Signal Processing 
Magazine, (November), 14–30. 

Bartolomei, F., Guye, M., & Wendling, F. (2013). Abnormal binding and disruption in large scale networks 
involved in human partial seizures. EPJ Nonlinear Biomedical Physics, 1(4), 1–16. 
https://doi.org/10.1140/epjnbp11 

Bassett, D. S., & Sporns, O. (2017). Network neuroscience. Nature Neuroscience, 20(3), 353–364. 
https://doi.org/10.1038/nn.4502 

Bates, D., Mächler, M., Bolker, B. M., & Walker, S. C. (2015). Fitting linear mixed-effects models using 
lme4. Journal of Statistical Software, 67(1). https://doi.org/10.18637/jss.v067.i01 

Bensaid, S., Modolo, J., Merlet, I., Wendling, F., & Benquet, P. (2019). COALIA: A Computational Model 
of Human EEG for Consciousness Research. Frontiers in Systems Neuroscience, 13, 1–18. 
https://doi.org/10.3389/fnsys.2019.00059 

Bettus, G., Wendling, F., Guye, M., Valton, L., Régis, J., Chauvel, P., & Bartolomei, F. (2008). Enhanced 
EEG functional connectivity in mesial temporal lobe epilepsy. Epilepsy Research, 81(1), 58–68. 
https://doi.org/10.1016/j.eplepsyres.2008.04.020 

Bradley, A., Yao, J., Dewald, J., & Richter, C. P. (2016). Evaluation of electroencephalography source 
localization algorithms with multiple cortical sources. PLoS ONE, 11(1), 1–14. 
https://doi.org/10.1371/journal.pone.0147266 

Canuet, L., Ishii, R., Pascual-Marqui, R. D., Iwase, M., Kurimoto, R., Aoki, Y., … Takeda, M. (2011). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 14, 2021. ; https://doi.org/10.1101/2020.09.16.299305doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.16.299305
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 
 

Resting-state EEG source localization and functional connectivity in schizophrenia-like psychosis of 
epilepsy. PLoS ONE, 6(11). https://doi.org/10.1371/journal.pone.0027863 

Cho, J. H., Vorwerk, J., Wolters, C. H., & Knösche, T. R. (2015). Influence of the head model on EEG and 
MEG source connectivity analyses. NeuroImage, 110, 60–77. 
https://doi.org/10.1016/j.neuroimage.2015.01.043 

Colclough, G. L., Woolrich, M. W., Tewarie, P. K., Brookes, M. J., Quinn, A. J., & Smith, S. M. (2016). 
How reliable are MEG resting-state connectivity metrics? NeuroImage, 138, 284–293. 
https://doi.org/10.1016/j.neuroimage.2016.05.070 

Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., … Killiany, R. J. 
(2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into 
gyral based regions of interest. NeuroImage, 31, 968–980. 
https://doi.org/10.1016/j.neuroimage.2006.01.021 

Fornito, A., Zalesky, A., & Bullmore, E. T. (2010). Network scaling effects in graph analytic studies of 
human resting-state fMRI data. Frontiers in Systems Neuroscience, 4, 1–16. 
https://doi.org/10.3389/fnsys.2010.00022 

Fox, J., & Weisberg, S. (2019). An R Companion to Applied Regression (Third). Sage. 
https://doi.org/10.1177/0049124105277200 

Fuchs, M., Wagner, M., Köhler, T., & Wischmann, H. A. (1999). Linear and nonlinear current density 
reconstructions. Journal of Clinical Neurophysiology, 16(3), 267–295. 
https://doi.org/10.1097/00004691-199905000-00006 

Gramfort, A., Papadopoulo, T., Olivi, E., & Clerc, M. (2010). OpenMEEG: opensource software for 
quasistatic bioelectromagnetics. BioMedical Engineering OnLine, 9(45). 
https://doi.org/10.1186/1475-925X-8-1 

Grova, C., Daunizeau, J., Lina, J. M., Bénar, C. G., Benali, H., & Gotman, J. (2006). Evaluation of EEG 
localization methods using realistic simulations of interictal spikes. NeuroImage, 29, 734–753. 
https://doi.org/10.1016/j.neuroimage.2005.08.053 

Gueorguieva, R., & Krystal, J. H. (2004). Move over ANOVA? Progress in Analyzing Repeated-Measures 
Data and Its Reflection in Papers Published in the Archives of General Psychiatry. Arch Gen 
Psychiatry, 61, 310–317. Retrieved from http://odur.let.rug.nl/~nerbonne/teach/rema-stats-meth-
seminar/presentations/Strik-AIC-2011-May-17.pdf 

Halder, T., Talwar, S., Jaiswal, A. K., & Banerjee, A. (2019). Quantitative evaluation in estimating sources 
underlying brain oscillations using current source density methods and beamformer approaches. 
ENeuro, 6(4), 1–14. https://doi.org/10.1523/ENEURO.0170-19.2019 

Hämäläinen, M. S., & Ilmoniemi, R. J. (1994). Inetrpreting magnetic fields of the brain: minimum norm 
estimates. Medical & Biological Engineering & Computing, 32, 35–42. 

Hassan, M., Benquet, P., Biraben, A., Berrou, C., Dufor, O., & Wendling, F. (2015). Dynamic 
reorganization of functional brain networks during picture naming. Cortex, 73, 276–288. 
https://doi.org/10.1016/j.cortex.2015.08.019 

Hassan, M., Dufor, O., Merlet, I., Berrou, C., & Wendling, F. (2014). EEG source connectivity analysis: 
From dense array recordings to brain networks. PLoS ONE, 9(8). 
https://doi.org/10.1371/journal.pone.0105041 

Hassan, M., Merlet, I., Mheich, A., Kabbara, A., Biraben, A., Nica, A., & Wendling, F. (2017). 
Identification of Interictal Epileptic Networks from Dense-EEG. Brain Topography, 30(1), 60–76. 
https://doi.org/10.1007/s10548-016-0517-z 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 14, 2021. ; https://doi.org/10.1101/2020.09.16.299305doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.16.299305
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 
 

Haufe, S., & Ewald, A. (2016). A Simulation Framework for Benchmarking EEG-Based Brain Connectivity 
Estimation Methodologies. Brain Topography, 32(4), 625–642. https://doi.org/10.1007/s10548-016-
0498-y 

Hothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous inference in general parametric models. 
Biometrical Journal, 50(3), 346–363. https://doi.org/10.1002/bimj.200810425 

Kabbara, A., Falou, W. E. L., Khalil, M., Wendling, F., & Hassan, M. (2017). The dynamic functional core 
network of the human brain at rest. (August 2016), 1–16. https://doi.org/10.1038/s41598-017-03420-
6 

Klem, G. H., Lüders, H. O., Jasper, H. H., & Elger, C. (1999). The ten-twenty electrode system of the 
International Federation. The International Federation of Clinical Neurophysiology. 
Electroencephalogr. Clin. Neurophysiol. Suppl. 

Lachaux, J.-P., Rodriguez, E., Le Van Quyen, M., Lutz, A., Martinerie, J., & Varela, F. J. (2000). Studying 
Single-Trials of Phase Synchronous Activity in the Brain. International Journal of Bifurcation and 
Chaos, 10(10), 2429–2439. https://doi.org/10.1142/s0218127400001560 

Lantz, G., Grave de Peralta, R., Spinelli, L., Seeck, M., & Michel, C. M. (2003). Epileptic source 
localization with high density EEG: How many electrodes are needed? Clinical Neurophysiology, 
114(1), 63–69. https://doi.org/10.1016/S1388-2457(02)00337-1 

Lin, F. H., Witzel, T., Ahlfors, S. P., Stufflebeam, S. M., Belliveau, J. W., & Hämäläinen, M. S. (2006). 
Assessing and improving the spatial accuracy in MEG source localization by depth-weighted 
minimum-norm estimates. NeuroImage, 31, 160–171. 
https://doi.org/10.1016/j.neuroimage.2005.11.054 

Mheich, A., Hassan, M., Khalil, M., Gripon, V., Dufor, O., & Wendling, F. (2018). SimiNet: A Novel 
Method for Quantifying Brain Network Similarity. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 40(9), 2238–2249. https://doi.org/10.1109/TPAMI.2017.2750160 

Mheich, A., Wendling, F., & Hassan, M. (2020). Brain network similarity: Methods and applications. 
Network Neuroscience, 4(3), 507–527. https://doi.org/10.1162/netn_a_00133 

O’Neill, G. C., Tewarie, P. K., Colclough, G. L., Gascoyne, L. E., Hunt, B. A. E., Morris, P. G., … Brookes, 
M. J. (2017). Measurement of dynamic task related functional networks using MEG. NeuroImage, 
146, 667–678. https://doi.org/10.1016/j.neuroimage.2016.08.061 

Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J. M. (2011). FieldTrip: Open source software for 
advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence 
and Neuroscience, 2011. https://doi.org/10.1155/2011/156869 

Pascual-Marqui, R. D. (2007). Discrete, 3D distributed, linear imaging methods of electric neuronal 
activity. Part 1: exact, zero error localization. Retrieved from http://arxiv.org/abs/0710.3341 

Schelter, B., Winterhalder, M., Hellwig, B., Guschlbauer, B., Lücking, C. H., & Timmer, J. (2006). Direct 
or indirect? Graphical models for neural oscillators. Journal of Physiology Paris, 99(1), 37–46. 
https://doi.org/10.1016/j.jphysparis.2005.06.006 

Sohrabpour, A., Lu, Y., Kankirawatana, P., Blount, J., Kim, H., & He, B. (2015). Effect of EEG electrode 
number on epileptic source localization in pediatric patients. Clinical Neurophysiology, 126, 472–
480. https://doi.org/10.1016/j.clinph.2014.05.038 

Song, J., Davey, C., Poulsen, C., Luu, P., Turovets, S., Anderson, E., … Tucker, D. (2015). EEG source 
localization: Sensor density and head surface coverage. Journal of Neuroscience Methods, 256, 9–21. 
https://doi.org/10.1016/j.jneumeth.2015.08.015 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 14, 2021. ; https://doi.org/10.1101/2020.09.16.299305doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.16.299305
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 
 

Srinivasan, R., Tucker, D. M., & Murias, M. (1998). Estimating the spatial Nyquist of the human EEG. 
Behavior Research Methods, Instruments, and Computers, 30(1), 8–19. 
https://doi.org/10.3758/BF03209412 

Stam, C. J., Nolte, G., & Daffertshofer, A. (2007). Phase lag index: Assessment of functional connectivity 
from multi channel EEG and MEG with diminished bias from common sources. Human Brain 
Mapping, 28, 1178–1193. https://doi.org/10.1002/hbm.20346 

Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D., & Leahy, R. M. (2011). Brainstorm: A user-friendly 
application for MEG/EEG analysis. Computational Intelligence and Neuroscience, 2011. 
https://doi.org/10.1155/2011/879716 

Tait, L., Szul, M. J., & Zhang, J. (2020). Cortical source imaging of resting-state MEG with a high 
resolution atlas : An evaluation of methods. 
https://doi.org/https://doi.org/10.1101/2020.01.12.903302 

van den Heuvel, M. P., de Lange, S. C., Zalesky, A., Seguin, C., Yeo, B. T. T., & Schmidt, R. (2017). 
Proportional thresholding in resting-state fMRI functional connectivity networks and consequences 
for patient-control connectome studies: Issues and recommendations. NeuroImage, 152(February), 
437–449. https://doi.org/10.1016/j.neuroimage.2017.02.005 

Vinck, M., Oostenveld, R., Van Wingerden, M., Battaglia, F., & Pennartz, C. M. A. (2011). An improved 
index of phase-synchronization for electrophysiological data in the presence of volume-conduction, 
noise and sample-size bias. NeuroImage, 55(4), 1548–1565. 
https://doi.org/10.1016/j.neuroimage.2011.01.055 

Wang, H. E., Bénar, C. G., Quilichini, P. P., Friston, K. J., Jirsa, V. K., & Bernard, C. (2014). A systematic 
framework for functional connectivity measures. Frontiers in Neuroscience, 8. 
https://doi.org/10.3389/fnins.2014.00405 

Wang, J., Wang, L., Zang, Y., Yang, H., Tang, H., Gong, Q., … He, Y. (2009). Parcellation-dependent 
small-world brain functional networks: A resting-state fmri study. Human Brain Mapping, 30, 1511–
1523. https://doi.org/10.1002/hbm.20623 

Wendling, F., Ansari-Asl, K., Bartolomei, F., & Senhadji, L. (2009). From EEG signals to brain 
connectivity: A model-based evaluation of interdependence measures. Journal of Neuroscience 
Methods, 183, 9–18. https://doi.org/10.1016/j.jneumeth.2009.04.021 

Wolters, C. H., Anwander, A., Tricoche, X., Weinstein, D., Koch, M. A., & MacLeod, R. S. (2006). 
Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a 
realistic head model: A simulation and visualization study using high-resolution finite element 
modeling. NeuroImage, 30(3), 813–826. https://doi.org/10.1016/j.neuroimage.2005.10.014 

Xia, M., Wang, J., & He, Y. (2013). BrainNet Viewer: A Network Visualization Tool for Human Brain 
Connectomics. PLoS ONE, 8(7). https://doi.org/10.1371/journal.pone.0068910 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 14, 2021. ; https://doi.org/10.1101/2020.09.16.299305doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.16.299305
http://creativecommons.org/licenses/by-nc-nd/4.0/

