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Abstract 

The increasing number of neuroimaging scans in recent years has facilitated the use of complex 

nonlinear approaches to analyzing such data. More specifically, deep learning, which has been 

previously hindered by the curse of dimensionality is now feasible. However, it remains 

challenging to use these techniques develop reliable biomarkers and find an optimal 

representation of data that explains the biological underpinnings of the mental disorders Here, 

we employed a 3-dimensional autoencoder with an architecture designed from the ground up 

for task-fMRI data. Our study presented a coherent strategy for optimizing model parameters 

and architecture and a method for visualizing and interpreting the latent space representation. 

We trained our model with multi-task fMRI data derived from the Human Connectome Project 

(HCP) that provides whole-brain coverage across a range of cognitive tasks. Next, in a transfer 

learning setting, we tested the generalization of our latent space on UK Biobank data as an 

independent dataset. We showed that the model did not only learn salient features such as 

age but also high-level behavioral characteristics and that this representation was highly 

generic and generalizable to an independent dataset. Furthermore, we demonstrated that the 

projection of latent space back into the original space is meaningful and interpretable. Finally, 

our results show that with careful implementation, nonlinear features can provide 

complementary information that accessible to purely linear methods. Our results provide an 

important step toward learning interpretable and generalizable latent representations that link 

cognition with underlying brain systems. 
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Introduction 

The application of machine learning methods and, more specifically, deep-learning methods 

have shown remarkable returns on many medical imaging problems. [1]. In particular, the 

applications of deep learning to neuroimaging data are rapidly increasing, mostly the use of 

supervised learning approaches to solve, for example, classification problems [2]–[9]. 

However, linear approaches often [10]–[12], but not always [13], produce equal or better 

performance compared to complex deep neural network models. This is not because the 

mapping between external covariates and brain correlates is necessarily linear but may instead 

be due to the lack of data or the choice of input features (e.g., regional averages). While in 

neuroimaging studies, dealing with a limited number of high-dimensional data had hindered 

employing such approaches for a time due to the curse of dimensionality [14], the recent 

increase in the availability of neuroimaging data has provided a great opportunity to move 

toward employing complex nonlinear methods [12], [13], [15]–[19]. 

One ultimate challenge in the application of machine learning to neuroimaging is to find 

reliable biomarkers that explain the biological underpinnings of healthy and disordered mental 

states. Model interpretability is therefore an important consideration when determining which 

model to use.[1], [20]–[23]. Many deep learning studies in neuroimaging use hand-crafted 

features e.g., regions of interest (ROIs) or image-derived phenotypes (IDPs), which are 

potentially suboptimal for prediction because (i) hand-crafted features may not accurately 

capture complex structural or functional brain characteristics e.g. overlapping latent 

representations encoded in the brain, nor their intricate relationships with behavior and (ii) 

they do not benefit from the strength of deep neural networks in automatically learning the 

optimal representation from the data (for example using convolutional filters). Particularly in 

task fMRI studies, which are designed to study mappings from brain activations to cognition 

and behavior, there are many challenges in understanding the underlying mechanisms, 

including the extensive heterogeneity across subjects, finding an optimal representation, and 

a reliable reference to compare the activations [24]–[30]. Consequently, using hand-crafted 

features potentially leads to losing crucial information relevant, for example, for understanding 

inter-subject variability [23], [31]. In these scenarios, learning an optimal representation of 

high-dimensional neuroimaging data rather than – for example – using pre-defined ROIs may 

enable us to better understand individual variation and more accurately predict clinical and 

cognitive variables. This representation, also called a latent representation, allows us to reduce 

the data dimensionality and extract only the essential features from the data. In other words, 

a latent representation model maps complex and high-dimensional data into a reduced and 

low-dimensional space[32]. There are two steps to assess the latent representations here: first, 

whether the derived latent representation shows a stronger association with clinically relevant 

covariates compared to data in the original space (e.g., mapping from brain to behavioral 

scores) and further, whether the latent space can be generalized to new data (new brain scans/ 

new participants) which may have a partially different distribution. In the event that this is 
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proven applicable, then, the knowledge learned from one (big) dataset can be transferred to 

modeling smaller datasets in a transfer learning paradigm [33].  

Most applications of deep learning in neuroscience focus on learning a latent representation 

that is optimized for a single supervised learning problem, such as predicting age/ sex (e.g. [13] 

[10]–[12]). However, this may reduce the generalizability of the learned latent representation 

to other problems. Therefore, we sought to learn a general-purpose latent space that is not 

bound to a particular task, and instead aims to learn features from the data that are predictive 

of many different cognitive scores. There have been a number of efforts to that end, e.g. to 

generate synthetic neuroimaging data [34]–[37]. However, most of these studies evaluate the 

data representation on the basis of specific measures like reconstruction error. However, this 

does not necessarily suggest that the latent space presents relevant features, and what is more 

important is how accurately such representations can predict behavioral or clinical variables. 

Although linear data-driven transformations like Principle Component Analysis (PCA) and 

Independent Component Analysis (ICA) [38]–[42] are widely used for feature representation 

and dimensionality reduction in neuroimaging, these methods often fail to extract complex 

nonlinear relationships in data. [43], [44].  

In this paper, we propose to explore the value of learning a general purpose nonlinear latent 

space representation of task-fMRI images using a 3-dimensional autoencoder. Autoencoder 

neural networks provide a powerful tool in various applications in neuroimaging studies, from 

image segmentation to abnormality detection and latent representation [4], [15], [16], [45]–

[48]. Complementary to these approaches, we are interested in automatically learning 

contextual features using an autoencoder.  Briefly, Autoencoder is a deep neural network 

architecture that consists of two parts an encoder and a decoder. The encoder projects the 

inputs to a lower-dimensional latent space using a non-linear transformation. The decoder 

translates back the latent space to the original space by reconstructing the inputs[49]. In 

contrast to many previous approaches, this does not require the prior specification of nodes 

or regions of interest, can learn overlapping representations, can use the full range of spatial 

patterns in the fMRI signal and takes advantage of the strengths of deep learning, for example 

by learning convolutional filters that capture low-level features of the images.  

More specifically, in a fully data-driven approach, we showed that there is useful information 

about the data in the nonlinear latent space that is not fully captured by a linear data 

representation and that such information can be extracted using a hierarchical non-linear 

autoencoder architecture. Here, we employed an autoencoder with an architecture designed 

from the ground up for task-fMRI data. We trained our model with multi-task fMRI data derived 

from the Human Connectome Project (HCP)[24] that provides whole-brain coverage across a 

range of cognitive tasks. Next, in a transfer learning setting, we tested the generalization of our 

latent space on a UK Biobank dataset[28] after fine-tuning. Our experimental results show that 

our nonlinear data representation provides a strong foundation for subsequent in-depth 

analysis and results in more accurate brain-behavior mappings than a commonly used linear 

approach. 
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Methods 

An overview of our approach is shown in Figure 1. Here, we used two different data sets. The 

first data set is task-based fMRI data from HCP [24] S500 release. The second tfMRI data is 

from the 2020 UK Biobank imaging release[50]. 

HCP data  

Imaging data: We used tfMRI contrast data from 468 participants in total (187 males and 281 

females, Age= 29.2±3.5) from seven different tasks (emotion processing, gambling, language, 

relational processing, social cognition, motor, working memory) across 86 contrasts which 

served as the basis in previous brain-imaging work [51], [52]. This yields a total of N≈40K task-

fMRI contrasts. The HCP dataset is well suited for this purpose because the task battery covers 

a wide range of cognitive domains and the neuronal activations associated with the task 

provide good coverage of the entire brain [25]. The number of participants may vary from task 

to task; not all the participants have data in all the tasks. While HCP has a large number of 

samples, the number of participants is relatively small. Therefore, we split data into 5 subsets 

in a 5-fold cross-validation scheme. The splits are made at the subject level so that each fold 

contains all the contrasts for a specified set of subjects. In each fold, about 95 participants (20% 

of the data) were reserved for the test set (N=8K brain scans) and the rest for the training (N= 

32K brain scans). For each fold, we trained a separate model. 

Non-imaging data: the HCP dataset contains various sets of clinical, behavioral, and cognitive 

tasks, which we use to assess the quality of the latent representation (i.e. how well it predicts 

behavior). We grouped the scores into 19 categories e.g. sleep quality contains scores relevant 

to Pittsburgh Sleep Quality Index (PSQI) scores [53] (see supplementary information for the full 

list of categories). We only included the measures that their scores are available more than 

half of participants. Moreover, in line with previous studies [54], [55] the measures that had 

same value for more than 80% of the participants were excluded from further analysis.    

UK Biobank 

Imaging data:  we used UK Biobank task-fMRI contrast data from 20781 participants and 5 

contrasts, in total N≈104K scans (9,860 males, 10,921 females, Age=63.3 ±7.5). The fMRI data 

derived from UK Biobank uses the same paradigm as the emotion task from the HCP with only 

minor modifications (e.g. to accommodate shorter run length) [28], [50]. Since UK Biobank 

provides a larger number of participants than HCP, we trained separate model for each 

contrast. We randomly selected N=15585 of participants for the train set and 5196 for the test 

set. All the contrast-models employ the same dataset configuration (the test and train sets).  

Non-imaging data: The UK Biobank study provides an extensive number of clinical, behavioral, 

lifestyle and cognitive scores, which categorized to eight groups e.g., cognitive phenotypes, 

lifestyle, and mental health (see supplementary information). The exclusion criteria are the 

same as HCP measures.  
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Preprocessing image data and Model architecture selection:  

For both datasets we used the volumetrically preprocessed images in standard reference space 

provided by the respective consortia [56], [57] (for HCP using the ‘minimally processed’ 

pipeline [56]). Subsequently the scans images were downsampled from 2mm to 3mm voxel 

resolution to reduce the computational burden then cropped tightly to the whole brain such 

that the dimension of the image decreased to 56×64×56. The model was trained on the whole-

brain contrast images. 

We first conducted a pilot study to determine the optimal autoencoder architecture across a 

wide range of architectures, optimizers, feature scaling approaches with various numbers of 

hyper-parameters. To do so, we trained the network using half of the HCP training data and 

tested the performance of the model on reserved test data containing 30 participants (N≈2580 

scans). Note that to ensure accurate estimates of generalizability, the reserved test data was 

used exclusively during pilot study (i.e. we did not re-use these data in subsequent analyses). 

The details of the models evaluated can be found in the supplementary Table 3. To preserve 

the details in the image, we choose 3×3×3 kernels for the convolutional layers. More 

specifically, here, we tested different image normalization (sample-wise and feature-wise of 

Min-Max and standardization), the number of latent variates (nodes) in the fully connected 

layer, the number of filters in each layer in addition to different model's optimizer. The 

reconstruction error of the model reported using mean squared error (MSE) as performance 

metric of interest.  

Training the model 

The final instance of our autoencoder with the optimal architecture from the pilot study was 

trained using HCP training data with 200 epochs using early-stopping approach to prevent 

model from overfitting. Next, we used the trained model and transferred the learned 

parameters from HCP to UK Biobank. We fine-tuned the model with the same hyper-

parameters using UK Biobank data. We tested if the convolutional kernels are learning relevant 

features through the fine-tuning and demonstrated several random kernels’ weights in the 

supplementary information. This is important to ensure that the autoencoder avoids learning 

the trivial solution (i.e. a semi-identity function via down-sampling in the encoding phase and 

up-sampling in the decoding phase). To compare nonlinear transformation to linear, we 

trained a PCA model with the same number of components as the number of nodes in the 

autoencoder's fully-connected layer using HCP data. PCA is a natural choice of baseline 

reference model because it is equivalent (up to a rotation) to a single fully-connected layer 

autoencoder with a linear activation function [49]. We applied the same PCA model to UK 

Biobank to compare the results after transfer learning. 

Latent space representation using UMAP 

To further evaluate our model, we visualized the latent space using a Uniform Manifold 

Approximation and Projection (UMAP) approach [58] with two components. UMAP is a 

manifold learning technique similar to t-distributed stochastic neighbor embedding (t-SNE) 
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[59] that preserves the local structure of high dimensional data in a nonlinear space. UMAP is 

superior to tSNE since it better preserves the global structure of data (in addition to its local 

structure). Furthermore, it is more stable under perturbation or resampling of the data. 

Moreover, UMAP is relatively fast which is beneficial when tuning the hyperparameters. 

Here, we used UMAP to visualize the learned latent space without any preprocessing steps [58] 

(see supplementary information for more details).   

To assist the interpretation of the latent space, we use a simple method to project back the 

latent spaces in input (i.e., brain) space. To achieve this, we take advantage of the fact that the 

UMAP algorithm finds clearly separated clusters for the different fMRI contrasts (see results 

below). Then, for each contrast, we calculated the center of its cluster (i.e., the centroid of K-

means clustering) in 2- dimensional UMAP space. We transformed these centroid points to the 

latent space (using the inverse UMAP transformation) and used the decoder component of the 

autoencoder to reconstruct the images corresponding to these cluster centers. 

Behavioral Associations 

Furthermore, to assess the biological validity of our latent space, we calculated the linear 

association between clinical and behavioral measures and the reduced latent space for HCP 

and UK Biobank data. 

We used two different approaches because of the different resampling schemes employed in 

each dataset. For HCP (trained under cross-validation), we regressed non-imaging scores onto 

the first two UMAP-components using ordinary least squares (OLS) regression in each contrast 

individually. We used OLS because: (i) the number of test participants in each fold was 

relatively small in HCP, and (ii) each split resulted in a different latent space, which would make 

a straight correlation across splits uninterpretable. In the end, we reported the average 

association (adjusted-r) across separate regression models estimated for each of the five cross-

validation splits. In contrast, a single training/test split was used for UK Biobank, so we 

calculated a straight Pearson correlation between each UMAP component and non-imaging 

score individually. We repeated the same procedure for behavioral association analysis on the 

first two PCA components separately. 

Results 

Model selection: autoencoder architecture and hyper-parameter tuning 

The optimal model architecture derived from the pilot study is shown in Figure 2. In more 

detail, the pilot study (Table 3 in supplementary information) suggested that the relatively 

larger number of filters in the first layers and last layers of the autoencoder results in lower 

reconstruction error. Moreover, among different image normalization strategies, robust 

feature-wise normalization was more effective. The number of nodes in the fully-connected 

layer was another important hyper-parameter, and our results show that the reconstruction 

performance improves significantly from 10 nodes to 100 nodes while from 50 to 100 nodes, 

the improvement is small ((Table 3 in supplementary information)).  
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Table 1: Mean square for PCA model and Autoencoder on HCP data 

 
MSE   EXPLAINED VARIANCE 

PCA(100) 0.706 ±0.009 0.331 ± 0.002 

AE(100) 0.741 ±0.012 0.301 ± 0.007 

 

Autoencoder outperforms PCA in separating tasks and subtasks 

The out-of-sample MSE of PCA, shown in Table 1, is comparable with the autoencoder (but for 

practical purposes equivalent) performance, however as noted above, the association with 

behavior is of greater importance for the purposes of assessing the quality of the 

representation.  

The scatterplot of the first two components of PCA and two UMAP components of the 

autoencoder’s latent variables for selected contrasts [25] is shown in Figure 3Error! Reference 

source not found. (See supplementary information for more tasks). As noted above, the UMAP 

projections show a good separation between tasks.  

Projection the latent representations to brain images 

Figure 4 shows the centroids of contrasts that are back-projected from the UMAP latent space 

to the original brain space. The patterns of activations for these contrasts show an excellent 

correspondence with the expected task activations as shown in with previous studies (e.g. 

[25]). For instance, for language task, our projection of latent space to original image space 

shows the left lateralization which is accord with previous findings [25] 

 

Association between latent variables and non-imaging covariates 

The radar plots in Figure 5 shows the overall association across contrasts per each task in HCP 

data. These plots indicate that the autoencoder’s latent variables have stronger associations 

with non-imaging variables in comparison to PCA. 

Figure 6 shows the same association for the most important contrasts from social, language, 

gambling and emotion tasks selected [25] (See supplementary information more extensive 

results). This shows that the autoencoder consistently produces a stronger association with 

behavior than the PCA (i.e. produces higher correlation in nearly all contrasts).  

Parameter transfer from HCP data to UK Biobank The performance of PCA and fine-tuned 

model on UK Biobank data (Emotion, face-Shape contrast) are shown in (Table 2) indicating 

that the autoencoder performed equivalently well to PCA in terms of the reconstruction error 

and explained variance (or slightly better).  

 

Table 2: Mean square for PCA model and Autoencoder on UK Biobank data 

 
MSE   EXPLAINED VARIANCE 

HCP-PCA(100) 0.529 0.33 

Fine-tuned AE(100) 0.458 0.38 
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Figure 7 shows the Manhattan plot of p-value of univariate correlation between non-imaging 

measures and brain measures; UMAP components of latent space in addition to mean square 

error. Overall, the autoencoder detected 19 significant Bonferroni-corrected associations with 

behavior relative to 3e for PCA, demonstrating that after transfer learning to a second 

independent dataset, the autoencoder also provides a latent space that links more strongly to 

behavior. Here, PCA principally detects age while autoencoder links to more high-level features 

e.g., prospective memory, fluid intelligence, length of working weak or mother’s age family 

history. The Manhattan plots of all of contrasts are available in supplementary information. 

 

Discussion 

In this study, we present an optimal 3-D convolutional autoencoder architecture for non-linear 

transformation of fMRI data to a lower-dimensional yet more informative latent space. We 

present a coherent strategy for optimizing parameters and architecture of the model and a 

method to visualize and interpret the learned latent space representation. We showed that 

our model learned not only salient features that capture age and other sources of population 

stratification  but also high-level behavioral features and that this representation was highly 

generic and generalized to the UK Biobank population cohort as an independent dataset. 

Task-fMRI data  

Regarding the dataset, HCP task-fMRI data enabled us to estimate a generic latent space 

representation with diverse cognitive tasks and behavioral and clinical scores [24], [25]. 

Notably, the HCP data provides good whole brain coverage across all the tasks [25]. During the 

training, this comprehensive mapping allows the autoencoder to learn the various activation 

patterns across the brain instead of learning specific task-related effects that may be localized 

to particular brain regions. To validate the generalizability of latent representation of HCP, we 

used UKB . Complementarily, UK-biobank contains the Hariri faces-shapes emotion task [60], 

which is similar with emotion task of HCP in a shorter version. The common contrasts provide 

a great opportunity for further validation of the model and test the across-cohort 

generalization of the latent space.  

Latent space 

The HCP-derived UMAP representation illustrates that the autoencoder can better 

differentiate between tasks and contrasts compared to a linear model like PCA. As shown in 

Error! Reference source not found., contrasts are well-separated in the latent space in 

comparison to the first two components of PCA. This observation demonstrates that the 

resulting latent space indicated meaningful features in the data. To the contrary, the PCA 

representation does not separate the different task contrasts as cleanly, potentially leading to 

a mixing or averaging of different signals. Linear methods like PCA tend to identify prominent 

information in the data, e.g. age, site, sex. Indeed, these salient information were the only 

features that were associated with the latent representation derived from PCA in UK Biobank. 

These features have a substantial effect on data distribution and are easily identified by linear 
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models, in contrast complex behavioral associations are often missed [21]. Here, using a 

nonlinear transformation, we aim to identify more complex features. The fact that our 

nonlinear mapping is more sensitive to the different tasks compared to PCA indicates that the 

nonlinear latent space can retrieve a different and more informative dimensions in data.  

Autoencoders reduce a complex and multidimensional input space into a non-linear 

combination of latent factors. In contrast with linear decomposition methods such as PCA or 

supervised learning methods, which are linked to a specific decision problem, the work 

presented here, provides and effective tool to distill a non-linear representation of images and 

a powerful and more accurate pipeline to detect anomalies in brain images [5], [15], [61]. 

Back-projection of latent representation: 

The back-projection of latent space shows that we may be able to translate the learned 

features to a clinical biomarker. For the majority of the contrasts and particularly language 

(story-math), social (theory of mind) and relational (relational-baseline), the projection of the 

center of K-means of latent space to the original scan image space were in line with findings in 

[25]. It is an increasingly challenging problem to figure out how to adapt machine learning 

algorithms to the discourses we carry on in neuroimaging[62], [63]. In this context, the 

meaningful projection of the latent space can be viewed as an example of explainable AI in 

complex models.     

Non-imaging variables relevance 

Overall, the latent variables extracted by autoencoder shows stronger association with non-

imaging variables compared with PCA. In the HCP dataset, the autoencoder has shown stronger 

associations with the non-imaging variables in six of the seven tasks, excepting the relational 

task where PCA showed a stronger association with behavior. Note that the radar plot is the 

average correlation of the subtasks with each non-imaging variable within the set of clinical 

and cognitive measures [51]. The detailed correlation map shown in Figure 6 and Error! 

Reference source not found., indicates that PCA and autoencoder have a comparable 

performance for captured brain patterns related to categories like clinical and working 

memory. Importantly, many interesting measures are not associated with the PCA components 

but are strongly associated with the autoencoder’s latent variables. For instance, many social 

relationships category measures in the Theory of Mind (TOM) contrast show strong 

correlations with latent variables from the autoencoder but not in the PCA model (dotted circle 

in Figure 6). 

Another example of relevant-behaviors association with latent variables is the reward-punish 

contrast; while the overall performance in terms of correlation strength sounds similar in two 

models, the gambling category measures are showing relatively high correlation with latent 

variables in the autoencoder but not with PCA components. 

These results suggest strongly that the our built autoencoder can be adjusted to identify and 

predict a different set of non-imaging measures and therefore contains potentially 
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complementary information to linear models. Note that the HCP autoencoder was trained 

using all the contrasts- in contrast with UK Biobank which was trained only on single Emotion 

task- hence, the network may only learn the features relevant to all the contrasts and lose the 

information on contrasts variability. In spite of that, we still can find relevant non-imaging 

measures associated with the latent variables, showing that the nonlinear manifold may 

contain interesting information about the data, which can be simply identified through 

correlation-based correspondence. The association plots show that the derived latent space 

on UK Biobank data is associated with otherwise challenging-to-predict  measures in the 

lifestyle and the cognitive-phenotype category alongside sex and age. Whilst we recognize the 

possibility of many confounding effects in large cohorts like UK Biobank [64], our goal was to 

show that autoencoders produce a meaningful representation for finding brain-behavior 

associations. Therefore, we consider that a detailed examination of the potential effects of 

confounding variables was out of the scope of this paper.  

Network architecture 

It should be stressed that here, the architectural hyperparameters of the autoencoder are not 

optimized to deliver the best results concerning reconstruction error but to provide a 

meaningful nonlinear mapping from input images to the latent space. Nevertheless, the hyper-

parameter selection procedure has for simplicity been done on the basis of reconstruction 

error. Some decisions about the network structure have been made before estimating the 

model. For example, to preserve the morphology of the images and hence better 

interpretability , we decided to use a 3-D convolutional network [34]–[36], [45]. In order to 

control order of latent space,  we used dense layer in the bottleneck of the autoencoder [49].  

We emphasize that we designed our autoencoder with the specific nature of our high-

dimensional neuroimaging data in mind and therefore, a number of constraints were imposed 

on the model beforehand. For example, the networks evaluated were not particularly deep, 

also to reduce the memory usage and computational complexity, we took advantage of the 

weight sharing of convolutional layers. Here, we are in search of  low-level features that may 

be translation invariant, but a more important benefit is that the weight sharing enables the 

networks to be scaled to whole-brain data [65]. The kernel size was set to be 3 × 3 × 3 to keep 

the details of the downsampled image scans. Average pooling layers were positioned right 

after each convolutional layer to ignore the sharp features, reduce the number of parameters 

and consequently, minimize the chance of overfitting. We relied on the pilot study to select 

the rest of the model's parameters, such as the number of filters.  

While the new trend in neuroimaging is to use linear transformation instead of nonlinear 

models [12], [66], [67], here, we show that employing nonlinear mappings can add value. We 

showed that if the nonlinear model's hyperparameters are selected with careful consideration, 

then we can uncover particular features in the data that are not often revealed by linear 

models. As a matter of fact, having a solid methodological pipeline is not specific to complex 
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nonlinear models, but since the chance of over-engineering and hence overfitting is higher 

than these methods, it is necessary to carefully develop the architectural model design. 

Here, we employed a model with a simple reconstruction loss function while the network's 

primary goal was finding the relevant features to the non-imaging variables. Accordingly, we 

under-trained our network to preserve the essential aspects of the data, which could be 

assumed noise from the loss function perspective. It should be noted that our network is 

entirely unsupervised, and there is no information e.g., age is fed to the loss, although including 

additional information in the loss is an interesting future direction, for example in a semi-

supervised setting that allows the latent space to partially encode particular features of the 

data [15]. Another interesting future direction is to train an autoencoder to predict different 

data (e.g., a follow-up timepoint in longitudinal studies). This would serve to sensitize the latent 

space to changes relevant to ageing or pathology.   

The increased number of neuroimaging scans provides a unique opportunity to transcend the 

linear mapping, but it is also necessary to acknowledge some limitations. The traditional image 

processing techniques are not completely applicable here. For example, while data 

augmentation using image mirroring, flipping, skewing, or segmenting is a straightforward 

approach to increase the number of samples and has been applied before in neuroimaging 

applications  [13], we did not consider it to be appropriate here because such augmentation 

strategies do not faithfully preserve invariances known to occur in the brain, for example the 

lateralization  of brain functions e.g. the association of left lateralization in language processing 

[68]. Another limitation is computational complexity. Training an autoencoder on large 

neuroimaging data is computationally more demanding comparing with similar linear models.  

Conclusion 

This study aimed to explore nonlinear manifold in brain imaging using 3-dimensional 

autoencoders. We presented a coherent strategy for optimizing parameters and architecture 

of the model and a method to visualize and interpret the learned latent space representation. 

We showed that our model learned not only salient features like age but also high-level 

behavioral features and that this representation was highly generic and generalized to an 

independent dataset. Finally, our results show that with a careful implementation, nonlinear 

features can provide complementary information that accessible to purely linear methods. 
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Figures: 

Figure 1: Method's overview 

 

 

Figure 2: Autoencoder architecture 
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Figure 3: UMAP of the latent space versus two PCA components for selected contrasts according to 

Barch 2013 

 

 

Figure 4: The projection of centroid of UMAP in the latent space to the input brain space. The centers of 

UMAP of latent space were calculated using K-means clustering across the test data. The centroids 

corresponding to each contrast were passed to encoder of autoencoder to map to input original space.  

 

 

 

 

 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 14, 2021. ; https://doi.org/10.1101/2021.03.10.434856doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.10.434856
http://creativecommons.org/licenses/by/4.0/


Figure 5: The summary of association of latent variables and non-imaging measures across different 
behavioral categories in HCP data. Note that this is the average of association (OLS adjusted-r ) over five 
separated models. Autoencoder indicates stronger associations in most of targets compare to PCA. 
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Figure 6: The association of UMAP of latent variables and non-brain imaging variables in HCP contrasts. 

Showing contrasts were selected according to [25]. The association (adjusted-r score of OLS) of each 

contrast were averaged across five-fold cross-validation. The dotted circles show the higher associations 

for some behavioral measures in the relevant task in the autoencoder model compared to PCA. 
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Figure 7: Manhattan plot of p-value of univariate correlation of non-imaging measures with UMAP of 

latent variables (left ) and first two components of PCA (right) for faces-Shapes subtask. The black line 

is Bonferroni-corrected p-value threshold. 
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