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Abstract 30 

Large-scale biophysical circuit models can provide mechanistic insights into the fundamental 31 

micro-scale and macro-scale properties of brain organization that shape complex patterns of 32 

spontaneous brain activity. By allowing local synaptic properties to vary across brain regions, 33 

recent large-scale circuit models have demonstrated better fit to empirical observations, such 34 

as inter-regional synchrony averaged over several minutes, i.e. static functional connectivity 35 

(FC). However, most previous models do not capture how inter-regional synchrony patterns 36 

vary over timescales of seconds, i.e., time-varying FC dynamics. Here we developed a 37 

spatially-heterogeneous large-scale dynamical circuit model that allowed for variation in 38 

local circuit properties across the human cortex. We showed that parameterizing local circuit 39 

properties with both anatomical and functional gradients was necessary for generating 40 

realistic static and dynamical properties of resting-state fMRI activity. Furthermore, empirical 41 

and simulated FC dynamics demonstrated remarkably similar sharp transitions in FC patterns, 42 

suggesting the existence of multiple attractors. We found that time-varying regional fMRI 43 

amplitude tracked multi-stability in FC dynamics. Causal manipulation of the large-scale 44 

circuit model suggested that sensory-motor regions were a driver of FC dynamics. Finally, 45 

the spatial distribution of sensory-motor drivers matched the principal gradient of gene 46 

expression that encompassed certain interneuron classes, suggesting that heterogeneity in 47 

excitation-inhibition balance might shape multi-stability in FC dynamics. 48 

 49 

 50 

 51 
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Introduction 53 

Spontaneous fluctuations in large-scale brain activity exhibit complex spatiotemporal 54 

patterns across animal species (Hutchison et al., 2013; Gozzi and Schwarz, 2016; Ma et al., 55 

2016; Betzel, 2020). Inter-regional synchrony of resting-state brain activity averaged over 56 

several minutes (i.e., time-averaged static functional connectivity) has informed our 57 

understanding of brain network organization (Damoiseaux et al., 2006; Smith et al., 2009; 58 

Gratton et al., 2018), individual differences in behavior (Finn et al., 2015; Kong et al., 2019) 59 

and mental disorders (Xia et al., 2018; Kebets et al., 2019). Recent studies have shown that 60 

additional important insights can be gained from studying moment-to-moment variation in 61 

inter-regional synchrony, i.e., time-varying dynamic functional connectivity (Allen et al., 62 

2014; Zalesky et al., 2014; Vidaurre et al., 2017; Liegeois et al., 2019; Lurie et al., 2020). 63 

However, it is currently unclear how anatomical and functional heterogeneity in local circuit 64 

properties contribute to both time-averaged and time-varying properties of large-scale brain 65 

dynamics. 66 

Large-scale spontaneous brain activity is thought to arise from the reverberation of 67 

intrinsic dynamics of local circuits interacting across long-range anatomical connections 68 

(Deco et al., 2011; Breakspear, 2017). Simulations of large-scale biophysically plausible 69 

models of coupled brain regions have provided mechanistic insights into spontaneous brain 70 

activity (Honey et al., 2007; Ghosh et al., 2008; Deco et al., 2014; Hansen et al., 2015). 71 

However, most previous large-scale circuit models assumed that local circuit properties (e.g., 72 

local synaptic strength, etc.) are identical across brain regions, which is not biologically 73 

plausible. Recent studies in both humans and macaques (Chaudhuri et al., 2015; Demirtas et 74 

al., 2019; Wang et al., 2019) have demonstrated that allowing local circuit properties to vary 75 

along the brain’s hierarchical axis yielded significantly more realistic static functional 76 

connectivity (FC). However, these heterogeneous models have not been shown to recapitulate 77 

time-varying FC dynamics.  78 

In this study, we developed a spatially-heterogeneous mean field model (MFM) to 79 

realistically capture time-varying FC dynamics. Local circuit heterogeneity can be informed 80 

by in-vivo structural and functional neuroimaging measures. For example, T1-weighted/T2-81 
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weighted (T1w/T2w) MRI estimates of intracortical myelin and the principal resting-state FC 82 

gradient have been shown to index anatomical (Burt et al., 2018) and functional (Margulies et 83 

al., 2016) hierarchies respectively. Parameterization of local circuit properties with T1w/T2w 84 

maps led to more realistic static FC than a spatially-homogeneous mean field model 85 

(Demirtas et al., 2019). However, local circuit properties might be more strongly associated 86 

with the principal FC gradient than the T1w/T2w map (Wang et al., 2019). Thus, we 87 

hypothesized that parameterizing local circuit properties with both the T1w/T2w map and the 88 

principal FC gradient might lead to a more realistic computational model, which we will refer 89 

to as the parametric mean field model (pMFM). Using data from the Human Connectome 90 

Project (HCP), we demonstrated that pMFM achieved markedly more realistic static FC and 91 

FC dynamics in new out-of-sample participants, confirming the importance of functional and 92 

anatomical gradients to fully capture brain dynamics.  93 

Both empirical and pMFM-simulated FC dynamics demonstrated remarkably similar 94 

sharp transitions in FC patterns, suggesting the existence of multiple FC states or attractors. 95 

Previous studies have suggested that multi-stability in nonlinear brain systems might arise 96 

from noise driven transitions between dynamic states or attractors (Freyer et al., 2012; 97 

Hansen et al., 2015; Deco et al., 2017). These noise-driven transitions might be reflected in 98 

the amplitude of regional brain activity. Therefore, we further investigated the relationship 99 

between the amplitude of regional fMRI signals and transitions in functional connectivity 100 

dynamics in both empirical and pMFM-simulated data. We also performed causal 101 

perturbations of the large scale circuit model to better understand the origins of FC multi-102 

stability. Finally, the amplitude of regional fMRI signals have been linked with the gene 103 

expression markers of parvalbumin (PVALB) and somatostatin (SST) inhibitory interneurons 104 

(Anderson et al., 2020a), in line with rodent studies suggesting that differential interneuron 105 

abundance may underlie regional variability in local cortical function (Kim et al., 2017). 106 

Thus, we also investigated the spatial relationship among FC dynamics, fMRI signal 107 

amplitude and gene expression patterns from the Allen Human Brain Atlas (AHBA).  108 

The contributions of this study are multi-fold. First, we showed that local circuit 109 

properties, parameterized by both anatomical and functional gradients, are important for 110 

generating realistic models of static FC and FC dynamics. Second, in both pMFM-111 
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simulations and empirical fMRI data, the amplitude of regional fMRI signals of sensory-112 

motor regions tracked state transitions in FCD. Causal perturbations of the pMFM provide 113 

further evidence that sensory-motor regions might be drivers of FCD. Finally, the spatial 114 

distribution of sensory-motor drivers appeared to match the differential expression of 115 

PVALB and SST, as well as the first principal component of brain-specific genes. Overall, 116 

this suggests a potential link between FC dynamics and heterogeneity in excitation/inhibition 117 

balance across the cortex.  118 

  119 
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Results 120 

 121 

Figure 1. Schematic of parametric mean field model (pMFM) optimization. (A) The pMFM 122 

comprised ordinary differential equations (ODEs) at each cortical region coupled by a 123 

structural connectivity (SC) matrix. The circuit-level parameters were allowed to vary across 124 
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cortical regions, parameterized by a linear combination of resting-state functional 125 

connectivity (FC) gradient and T1w/T2w spatial maps. The pMFM was used to generate 126 

simulated static FC and functional connectivity dynamics (FCD). The Covariance Matrix 127 

Adaptation Evolution Strategy (CMA-ES) was used to estimate the pMFM by minimizing a 128 

cost function of disagreement with empirically observed FC and FCD. (B) The CMA-ES 129 

algorithm was applied to the Human Connectome Project (HCP) training set (N = 351) to 130 

generate 5000 candidate parameter sets. The top 10 candidate parameter sets were then 131 

selected from the 5000 candidate sets based on the model fit in the validation set (N = 350). 132 

These top 10 candidate sets were then evaluated in the HCP test set (N = 351).  133 

 134 

Automatic optimization of the parametric mean field model (pMFM) yielded highly realistic 135 

functional connectivity dynamics 136 

1052 participants from the HCP S1200 release were randomly divided into training (N 137 

= 351), validation (N = 350), and test (N = 351) sets. The Desikan-Killiany anatomical 138 

parcellation (Desikan et al., 2006) with 68 cortical regions of interest (ROIs) was used to 139 

generate group-averaged structural connectivity (SC) and static functional connectivity (FC) 140 

matrices from the training, validation and test sets separately. Analyses with a functional 141 

parcellation yielded similar conclusions (see “Control analyses”). For each rs-fMRI run, 142 

time-varying functional connectivity was computed using the sliding window approach 143 

(Allen et al., 2014; Liegeois et al., 2017). Briefly, for each rs-fMRI run, a 68 x 68 FC matrix 144 

was computed for each of 1118 sliding windows. Each window comprised 83 timepoints (or 145 

59.76 seconds). The 68 x 68 FC matrices were then correlated across the windows, yielding a 146 

1118 x 1118 functional connectivity dynamics (FCD) matrices for each run (Hansen et al., 147 

2015; Liegeois et al., 2017).  148 

The dynamic mean field model (MFM) was used to simulate neural dynamics of the 149 

68 cortical ROIs (Deco et al., 2013). Based on the simulated neural activity at each ROI, the 150 

hemodynamic model (Stephan et al., 2007; Heinzle et al., 2016) was then used to simulate 151 

blood oxygen level–dependent (BOLD) fMRI. Details of the model can be found in the 152 

Methods section. Here we highlight the intuitions behind the MFM. In the MFM, the neural 153 

dynamics of each ROI are driven by four components: (1) recurrent (intra-regional) input, (2) 154 

inter-regional inputs, (3) external input (potentially from subcortical relays) and (4) neuronal 155 

noise. There are “free” parameters associated with each component. First, a larger recurrent 156 
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connection strength 𝑤 corresponds to stronger recurrent input current. Second, the inter-157 

regional inputs depend on the neural activities of other cortical ROIs and the connectional 158 

strength between ROIs. The inter-regional connectional strength is parameterized by the SC 159 

matrices, scaled by a global scaling constant 𝐺. Third, 𝐼 is the external input current. Fourth, 160 

the neuronal noise is assumed to be Gaussian with standard deviation 𝜎.  161 

In the current study, the recurrent connectional strength 𝑤, external input current 𝐼, 162 

and noise amplitude 𝜎 are each parameterized as a linear combination of the principal 163 

resting-state FC gradient (Margulies et al., 2016) and T1w/T2w myelin estimate (Glasser and 164 

Van Essen, 2011), resulting in 10 unknown linear coefficients. We refer to the resulting 165 

model as parametric MFM (pMFM). The 10 unknown linear coefficients were automatically 166 

estimated by minimizing disagreement between the empirical and simulated BOLD signal 167 

(Figure 1A).  168 

More specifically, the simulated fMRI was used to compute a 68 x 68 static FC matrix 169 

and a 1118 x 1118 FCD matrix. The agreement between the simulated and empirical static 170 

FC matrices was defined as the Pearson’s correlation (r) between the z-transformed upper 171 

triangular entries of the two matrices. Larger r indicated more similar static FC. The 172 

disagreement between the simulated and empirical FCD matrices was defined as the 173 

Kolmogorov–Smirnov (KS) distance between the upper triangular entries of the two matrices 174 

(Hansen et al., 2015). A smaller KS distance indicated more similar FCD. To optimize both 175 

static FC and FCD, an overall cost was defined as (1 - r) + KS and minimized in the training 176 

set. We considered three different minimization algorithms, each generating 5000 candidate 177 

sets of model parameters from the training set. Covariance matrix adaptation evolution 178 

strategy (CMA-ES; Hansen, 2006) performed the best in the validation set (Figure S1), so the 179 

10 best CMA-ES parameter sets from the validation set were evaluated in the test set. 180 

Figure 2A shows a representative empirical FCD from a participant in the test set. 181 

Figure 2B shows a simulated FCD generated by the pMFM using the best model parameters 182 

(from the validation set) using SC from the test set. Both empirical and simulated FCD 183 

exhibited red off-diagonal blocks representing recurring FC patterns. Across the 10 best 184 

candidate sets, KS distance between empirical and simulated FCD was 0.115 ± 0.031 (mean 185 
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± std). Correlation between empirical and simulated static FC was 0.66 ± 0.03. As a 186 

reference, the correlation between SC and static FC in the test set was 0.28. 187 

 188 

 189 
Figure 2. Parametric mean field model (pMFM) generates more realistic static functional 190 

connectivity (FC) and functional connectivity dynamics (FCD) than a previous spatially 191 

heterogeneous MFM (Wang et al., 2019). (A) Empirical FCD from a participant from the 192 

HCP test set. (B) Simulated FCD from the pMFM using the best model parameters from the 193 

validation set using structural connectivity (SC) from the test set. (C) Agreement (Pearson’s 194 

correlation) between empirically observed and pMFM-simulated static FC. (D) Simulated 195 

FCD generated by the previous spatially heterogeneous MFM (Wang et al., 2019).  196 

 197 

Figure 2C shows the simulated FCD using the MFM parameters from our previous 198 

study (Wang et al., 2019). The almost constant values in off-diagonal elements suggests a 199 

lack of realistic FC dynamics. KS distance between empirical and simulated FCD was 0.88. 200 

Correlation between static empirical and simulated static FC was 0.48. Thus, the pMFM was 201 

able to generate much more realistic static FC and FCD than the MFM (Wang et al., 2019).  202 
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 203 

Anatomical & functional gradients are critical to generating functional connectivity 204 

dynamics  205 

In the previous section, we demonstrated that pMFM was able to generate realistic 206 

static FC and FCD. To explore what aspects of pMFM are important for generating realistic 207 

static FC and FCD, we performed a number of control analyses. First, we investigated the 208 

importance of utilizing both anatomical and functional gradients in generating realistic static 209 

FC and FCD. Most large-scale circuit model studies assume spatially homogeneous 210 

parameters. When recurrent connectional strength 𝑤, external input current 𝐼, and noise 211 

amplitude 𝜎 were optimized by CMA-ES, but constrained to be spatially homogeneous 212 

(Figure 3), then there was substantially weaker agreement with empirical static FC (r = 0.56 ± 213 

0.05) and FCD (KS = 0.50 ± 0.30). Similarly, spatial heterogeneity for all three parameters 214 

(𝑤, 𝐼 and 𝜎) were necessary to generate the most realistic static FC and FCD in the test set 215 

(Figures S2A to S2C).  216 

Second, if recurrent connectional strength 𝑤, external input current 𝐼, and noise 217 

amplitude 𝜎 were parameterized with only T1w/T2w (i.e., Demirtas et al., 2019) or only FC 218 

gradient, then the resulting static FC and FCD were less realistic in the test set (Figure 3C). 219 

Furthermore, if recurrent connectional strength 𝑤, external input current 𝐼, and noise 220 

amplitude 𝜎 were allowed to be spatially heterogeneous across brain regions, but not 221 

constrained by T1w/T2w or FC gradient (i.e., non-parametric), then simulations could 222 

achieve realistic static FC, but not FCD (Figure S2D). One reason could be the large number 223 

of “free” parameters leading to overfitting in the training set.  224 

Finally, instead of fitting to both static FC and FCD in the training set, we also tried 225 

fitting only to static FC. Not surprisingly, the resulting model yielded unrealistic functional 226 

connectivity dynamics (Figure S3; KS = 0.88 ± 0.004). On the other hand, correlation 227 

between static empirical and simulated static FC was 0.74 ± 0.01, which was only slightly 228 

better than when optimizing both static FC and FCD (Figure 2C). This suggests that the goals 229 

of generating realistic static FC and FCD were not necessarily contradictory. 230 
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Overall, these results suggest the importance of parameterizing recurrent connectional 231 

strength 𝑤, external input current 𝐼, and noise amplitude 𝜎 with spatial gradients that 232 

smoothly varied from sensory-motor to association cortex. Furthermore, T1w/T2w and FC 233 

gradient are complementary in the sense that combining the two spatial maps led to more 234 

realistic static FC and FCD (Figure 3). 235 

 236 

 237 

Figure 3. Importance of multiple spatial gradients for generating realistic static functional 238 

connectivity (FC) and functional connectivity dynamics (FCD). (A) Simulated FCD from a 239 

mean field model (MFM) optimized using the same algorithm as pMFM, but with model 240 

parameters constrained to be the same across cortical regions. (B) Agreement between 241 

empirically observed and simulated static FC from MFM optimized using the same algorithm 242 

as pMFM, but with model parameters constrained to be the same across cortical regions. (C) 243 

Agreement (Pearson’s correlation) between simulated and empirically observed static FC, as 244 

well as disagreement (KS distance) between simulated and empirically observed FCD across 245 

different conditions. The pMFM utilizing both anatomical and functional gradients (FC 246 
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gradient and T1w/T2w spatial maps) performed the best, suggesting that T1w/T2w and FC 247 

gradient provided complementary contributions.  248 

 249 

 250 

Opposite gradient directions in recurrent connection strength, noise amplitude and external 251 

input 252 

Figures 4B to 4D illustrate the spatial distribution of recurrent connection strength 𝑤, 253 

external input current 𝐼, and noise amplitude 𝜎 based on the best parameter estimate from 254 

the validation set. The black lines indicate seven resting-state network boundaries (Figure 255 

3A; Yeo et al., 2011). While the resting-state network boundaries do not exactly align with 256 

the anatomically defined parcels, there was a striking correspondence between the resting-257 

state networks and estimated pMFM parameters. Given the parameterization of pMFM by a 258 

linear combination of FC gradient (Margulies et al., 2016) and T1w/T2w spatial maps 259 

(Demirtas et al., 2019), it was not surprising that the parameter estimates exhibited a 260 

hierarchical gradient of values monotonically changing from sensory-motor to association 261 

networks (right column of Figures 4B to 4D).  262 

However, the gradient directions were different across the three parameters. In 263 

particular, both recurrent connection strength and noise amplitude appeared to increase from 264 

sensory-motor to association (limbic, control and default) networks. On the other hand, 265 

external input current was the highest in sensory-motor networks and decreased towards the 266 

default network. The directionalities of noise amplitude and external input current were 267 

consistent across all the top ten parameter estimates from the validation set. In the case of 268 

recurrent connection strength, one of the ten parameter sets exhibited the opposite direction 269 

(i.e., decrease from sensory-motor regions to association networks; Figure S4), suggesting 270 

potential degeneracy in the case of recurrent connection strength.  271 

 272 
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 273 

Figure 4. Spatial distribution of recurrent connection strength 𝑤, external input current 𝐼, 274 

and noise amplitude 𝜎, and their relationships with resting-state networks. (A) Seven resting-275 

state networks (Yeo et al., 2011). (B) Strength of recurrent connection 𝑤 in 68 Desikan-276 

Killiany cortical ROIs (left) and seven resting-state networks (right). (C) Strength of external 277 

input 𝐼 in 68 Desikan-Killiany cortical ROIs (left) and seven resting-state networks (right). 278 
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(D) Strength of noise amplitude 𝜎 in 68 Desikan-Killiany cortical ROIs (left) and seven 279 

resting-state networks (right). The bars represent the mean values across regions within each 280 

network. The error bars show the standard error across regions within each network. 281 

Recurrent connection strength and noise amplitude increased from sensory-motor to 282 

association (limbic, control and default) networks. On the other hand, external input current 283 

was the highest in sensory-motor networks and decreased towards the default network. 284 

 285 

 286 

Time-varying amplitude of regional fMRI time courses tracks time-varying functional 287 

connectivity 288 

Given that the pMFM was able to generate realistic FCD, we now seek to use the 289 

pMFM to provide further insights into mechanisms underlying FCD. Previous studies have 290 

suggested that FCD might arise from switching between multi-stable states (Hansen et al., 291 

2015; Deco et al., 2017). Indeed, a magnified portion of the FCD matrix from a HCP test 292 

participant (Figure 5A) suggests the presence of at least two distinct states. In one state (white 293 

asterisk in Figure 5A), the sliding window FC pattern appeared to be coherent over a period 294 

of time. In a second state (black asterisk in Figure 5A), the sliding window FC patterns were 295 

incoherent over a period of time, so the high correlations within the block were restricted to 296 

the diagonals, and likely driven by autocorrelation in the fMRI signals and overlapping 297 

sliding windows. We hypothesized that fMRI signals might be dominated by large coherent 298 

amplitude fluctuations during the coherent state and dominated by noise during the 299 

incoherent state (right panel in Figure 5A; see Cocchi et al., 2017 for a review of multi-300 

stability). If our hypothesis were true, we would expect large regional fMRI signal amplitude 301 

during the coherent state and small regional fMRI signal amplitude during the incoherent 302 

state.  303 
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Figure 5. Correspondence between functional connectivity dynamics (FCD) and time-varying 305 

amplitude of regional fMRI time courses. (A) Inspection of FCD from a HCP test participant 306 

suggests at least two states. The first state (white asterisk) exhibits coherent FC patterns over 307 

a period of time. The second state (black asterisk) exhibits incoherent FC patterns over a 308 

period of time. The right panel illustrates our hypothesis that the coherent state might be 309 

characterized by large coherent amplitude in regional fMRI signals, i.e., high standard 310 

deviation (STD), while the incoherent state might be characterized by noise in regional fMRI 311 

signals, i.e., low standard deviation (STD). (B) Top panel shows empirical FCD matrix of a 312 

HCP test participant. The middle panel shows the FCD mean time course obtained by 313 

averaging the rows of the FCD matrix from the top panel. The bottom panel shows the 314 

standard deviation of each regional fMRI time course within each sliding window (SW-315 

STD). The color of the lines corresponds to the correlation between the first derivative of the 316 

FCD mean time course and the first derivative of the SW-STD time courses. Sharp transitions 317 

in SW-STD corresponded to sharp FCD transitions (red dashed lines). (C) Same as panel B, 318 

but simulated from pMFM using the best model parameters from the validation set and 319 

structural connectivity from the test set. (D) SW-STD during coherent (high FCD mean) and 320 

incoherent (low FCD mean) states. Boxplots illustrate variation across HCP test participants. 321 

Coherent states were characterized by large amplitude (STD) in fMRI signals (p = 2.4e-168). 322 

(E) Same as panel D, but simulated from pMFM.  323 

 324 

To test our hypothesis, the standard deviation of average fMRI signal of each cortical 325 

ROI within each sliding window was computed. Figure 5B (top panel) shows the FCD matrix 326 

of a single participant from the HCP test set. Figure 5C (top panel) shows the simulated FCD 327 

matrix from the pMFM using the best model parameters from the validation set and structural 328 

connectivity (SC) from the test set. The middle panels of Figures 5B and 5C show the FCD 329 

mean time course obtaining by averaging the rows of the FCD matrices from the top panels. 330 

Sharp transitions in the FCD mean time course reflected sharp transitions in the FCD matrix. 331 

The bottom panel shows the sliding window standard deviation (SW-STD) of empirical and 332 

simulated fMRI signals. There was striking correspondence between sharp transitions in the 333 

FCD mean time course and SW-STD time courses in both empirical and simulated data (red 334 

dashed lines in Figures 5B and 5C). 335 

Consistent with our hypothesis, there was large signal amplitude during the coherent 336 

state and low signal amplitude during the incoherent state (Figure 5B). To quantify this 337 

phenomenon, for each run of each participant in the HCP test set, the top 10% of each FCD 338 

mean time course was designated as the coherent state (high FCD mean) and the bottom 10% 339 

of each FCD mean time course was designated as the incoherent state (low FCD mean). The 340 
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SW-STD was then averaged across all cortical regions and across all runs of each participant. 341 

As shown in Figure 5D, the SW-STD was significantly higher during the coherent state than 342 

the incoherent state (p = 2.4e-168). Similar results were obtained for the pMFM simulations 343 

(Figure 5E). 344 

 345 

Sensory-motor regions drive switching behavior in functional connectivity dynamics 346 

In the previous section, we found striking correspondence between the FCD mean 347 

time course and the regional SW-STD time courses (Figures 5B & 5C). We note that the 348 

FCD mean time course reflected cortex-wide fluctuations in FC patterns, while SW-STD 349 

time courses were region-specific. Therefore, to investigate regional heterogeneity of FCD-350 

STD correspondence (Figure 5) across the cortex, correlation between the first derivative of 351 

the FCD mean time course and the first derivative of the SW-STD time course was computed 352 

for each cortical region. In the case of empirical observations, the FCD-STD correlations 353 

were averaged across all runs of all participants in the test set yielding a final FCD-STD 354 

correlational spatial map (Figure 6A). In the case of pMFM simulations, the correlations were 355 

averaged across 1000 random simulations using the best model parameters from the 356 

validation set using structural connectivity (SC) from the test set, yielding a final FCD-STD 357 

correlational spatial map (Figure 6B). 358 

Statistical significance was established using a permutation test (see Methods). 359 

Almost all cortical regions were significant after correcting for multiple comparisons (FDR q 360 

< 0.05; Figure S5). Across both pMFM simulations and empirically observed data, FCD-STD 361 

correlations were the highest in sensory-motor regions and lowest in association cortex. 362 

There was strong spatial correspondence between simulated and empirical results (r = 0.87; 363 

Figure 6C). We note that the pMFM was optimized to yield realistic FCD with no regard for 364 

spatial correspondence, so the high level of spatial correspondence suggests that the pMFM 365 

was able to generalize to new unseen properties of FCD.  366 

To explore the causal relationship between sensory-motor regions and FCD, we tested 367 

whether perturbation of sensory-motor regions could “kick” the system from an incoherent 368 

FCD state to a coherent FCD state. Among 1000 random simulations of pMFM, time 369 

segments in the incoherent state (low FCD mean) lasting for at least 200 contiguous fMRI 370 
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timepoints were selected. The neural signals of the top five FCD-STD regions (sensory-motor 371 

drivers; Figure 6B) were then perturbed to increase their amplitude. The perturbation led to 372 

the successful transition of the FCD into a more coherent state with higher FCD mean (p = 373 

6e-14; Figure 7D). Perturbation of the bottom five FCD-STD regions (Figure 6B) did not 374 

lead to an increase in FCD mean. Figure 7E illustrates example results of the perturbation 375 

experiment. Similar results were obtained if we perturbed top 10 and bottom 10 regions. 376 

Overall, this suggests that sensory-motor regions were a driver of switching behavior in FCD.      377 

 378 
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 379 

Figure 6. Sensory-motor regions drive sharp transitions in functional connectivity dynamics 380 

(FCD). (A) FCD-STD correlations obtained by correlating the first derivative of the FCD 381 

mean time course and the first derivative of the SW-STD time course of each cortical region. 382 

These correlations were performed for each HCP test participant and averaged across all runs 383 

and participants. (B) Same as panel A but simulated from pMFM using the best model 384 

parameters from the validation set and structural connectivity from the test set. The 385 

correlations were averaged across 1000 random simulations. (C) Correlation between 386 

empirical and simulated FCD-STD correlation spatial maps from panels B and C, showing 387 

strong correspondence between empirical and simulated results. (D) Casual perturbation of 388 

top 5 FCD-STD correlated regions (panel B) during the incoherent state (low FCD mean) led 389 
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to transition into the coherent state (high FCD mean). As a control analysis, perturbation of 390 

the bottom 5 FCD-STD correlated regions (panel B) during the incoherent state (low FCD 391 

mean) did not lead to a state change (FCD mean remains low). (E) Example FCD from the 392 

perturbation experiments. (Left) original incoherent state. (Middle) perturbation of top 5 393 

FCD-STD correlated regions (sensory-motor drivers). (Right) perturbation of bottom 5 FCD-394 

STD correlated regions. 395 

  396 

Parvalbumin-somatostatin and first genetic principal component correlate with sensory-397 

motor drivers of time-varying functional connectivity dynamics 398 

Results from the previous sections suggest that time-varying amplitude of sensory-399 

motor regions tracks switching behavior in time-varying functional connectivity. A recent 400 

study (Anderson et al., 2020a) demonstrated that difference in the spatial distribution of 401 

molecular markers of parvalbumin and somatostatin interneurons (PVALB-SST) is linked 402 

with the amplitude of regional fMRI signals (Figure 7A). This intriguing finding is in line 403 

with data in rodents documenting the importance of these interneuron classes in local cortical 404 

circuit function (Kim et al., 2017). Inspection of the cortical distribution of PVALB-SST 405 

transcripts from the Allen Human Brain Atlas (AHBA) dataset (Figure 7A) suggests strong 406 

similarity with the FCD-STD correlational spatial maps (Figure 6). 407 

PVALB -SST (Figure 7A) was averaged within each cortical ROI and correlated with 408 

the FCD-STD correlational spatial maps (Figure 6). The correlations were 0.72 and 0.65 for 409 

the empirical (Figure 7B) and simulated (Figure 7C) data respectively. As shown in Figure 410 

7D, both correlations were significant based on spin-tests preserving spatial autocorrelation 411 

(Gordon et al., 2016; Alexander-Bloch et al., 2018). To test for specificity of PVALB-SST, a 412 

null distribution was also generated based on random pairs of brain-specific genes. Both 413 

correlations were again significant (Figure 7D). Overall, this suggests that the spatial 414 

distribution of sensory-motor drivers was associated with the differential expression of 415 

PVALB and SST 416 

Given that previous studies have suggested the existence of multiple similar gene 417 

expression gradients, the first principal component of AHBA brain-specific gene expression 418 

data (Burt et al., 2018; Anderson et al., 2020b) was correlated with the FCD-STD 419 

correlational spatial maps (Figure 6). The first gene expression principal component was also 420 

correlated with both empirical and simulated FCD-STD spatial maps , although the 421 
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correlations were slightly weaker than the correlations with PVALB-SST gene expression 422 

map (Figure 7D).  423 

The recurrent connection strength 𝑤 and noise amplitude 𝜎 were also correlated with 424 

the PVALB-SST gene expression map under the spin-test, but not the random-gene-pair tests. 425 

This suggests a lack of specificity to PVALB-SST (Figure 7D). The external input 𝐼 was not 426 

correlated with any gene expression pattern. 427 

 428 

 429 

 430 

Figure 7. Correlations between the spatial distribution of sensory-motor drivers (FCD-STD 431 

correlational spatial maps) and gene expression spatial maps. (A) Difference in normalized 432 

expressions of parvalbumin and somatostatin (PVALB-SST) from the Allen Human Brain 433 

Atlas (AHBA). Panel is a re-rendering of (Anderson et al. 2020a). (B) Correlation between 434 

empirical FCD-STD correlational map (Figure 6B) and PVALB-SST gene expression map. 435 

(C) Correlation between simulated FCD-STD correlational map (Figure 6C) and 436 

PVALB/SST gene expression map. (D) Table of correlations between FCD-STD 437 

correlational spatial maps and two gene expression maps: PVALB-SST and first principal 438 
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component of gene expression (Burt et al., 2018; Anderson et al., 2020b). The “spin test” 439 

tested the significance of the correlations while controlling for spatial autocorrelation. The 440 

“random gene pair” tested for the specificity of PVALB-SST by randomly sampling pairs of 441 

brain-specific genes. P values that survived the false discovery rate (q < 0.05) are bolded. 442 

Standard deviations reported in the table were obtained by bootstrapping. 443 

 444 

 445 

Control analyses  446 

To ensure robustness of results, we performed several control analyses. First, we note 447 

that the simulation of pMFM utilized 10ms time step. To ensure that this time step was 448 

sufficiently small, the best model parameters from the validation set was applied to the test 449 

set using 1ms time step. KS distance between empirical and simulated FCD in the test set was 450 

0.113 ± 0.047. Correlation between empirical and simulated static FC was 0.344 ± 0.033.  451 

Second, the previous analyses utilized sliding window comprising 83 timepoints for 452 

computing FCD. To ensure the model parameters generalized to different window lengths, 453 

empirical and simulated FCD was computed in the test set using window lengths of 43 and 454 

125. KS distance between empirical and simulated FCD in the test set was 0.148 ± 0.068 and 455 

0.67 ± 0.040 for window lengths 43 and 125 respectively.  456 

Third, we investigated whether the FCD-STD correlation maps (Figure 6) might be 457 

influenced by global signal fluctuation. We repeated the analysis by restricting to 50 test 458 

participants with the lowest global signal fluctuation. The resulting FCD-STD correlation 459 

map were very similar to the original results (r = 0.82).  460 

Finally, we replicated our results with a higher resolution parcellation with 100 461 

cortical ROIs (Schaefer et al., 2018). Consistent with our main results, we found that pMFM 462 

yielded more realistic simulated FC and FCD in the test set (Figure S6) compared with our 463 

previous study (Wang et al., 2019). Across all 10 best parameter sets from the validation set, 464 

noise amplitude increased from sensory-motor to association (limbic, control and default) 465 

networks, while external input exhibited the opposite direction. In 8 of the 10 best parameter 466 

sets, recurrent connect strength increased from sensory-motor to association (limbic, control 467 

and default) networks, thus again suggesting potential degeneracy (Figure S7).   468 
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In the Schaefer parcellation, time-varying amplitude of sensory-motor time courses 469 

tracks switching behavior in time-varying functional connectivity (Figures S8 and S9). 470 

Causal perturbation analysis also confirmed that sensory-motor regions appeared to drive 471 

transitions in FCD (Figure S9). Both simulated and empirical FCD-STD correlation maps 472 

were correlated with PVALB-SST gene expression maps (Table S1). Both correlations were 473 

significant under the spin-test and random gene-pair tests. The simulated, but not the 474 

empirical, FCD-STD correlation maps were correlated with the first principal component of 475 

gene expression.  476 

 477 

  478 
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Discussion 479 

By incorporating anatomical and functional gradients into the parameterization of 480 

local circuit properties, the resulting large-scale circuit model generated realistic time-481 

averaged (static) and time-varying (dynamic) properties of large-scale spontaneous brain 482 

activity. Both empirical and simulated fMRI data exhibited multi-stable properties, in which 483 

there was spontaneous switching between a high coherent state and a low coherent state. The 484 

multi-stability was tracked by time-varying amplitude of regional fMRI signals. By 485 

performing causal perturbations of the large-scale circuit model, we demonstrated that 486 

spontaneous amplitude fluctuations of sensory-motor regions were a driver of the observed 487 

switching behavior. Furthermore, the relationship between regional fMRI amplitude and 488 

functional connectivity dynamics was also associated with PVALB-SST and the first 489 

principal component of gene expression, suggesting that heterogeneity in excitation-490 

inhibition balance might shape multi-stability in FC dynamics. 491 

 492 

Anatomical and functional gradients contribute to spontaneous brain dynamics 493 

Previous studies have proposed a dominant gradient of cortical organization with 494 

sensory-motor and association regions at opposing ends (Huntenburg et al., 2018). 495 

Supporting this idea of a dominant axis, many studies have emphasized similarities among 496 

gradients estimated from diverse sources, including resting-state FC principal gradient, 497 

T1w/T2w myelin estimate, gene expression data, functional task activation and 498 

computational modeling (Margulies et al., 2016; Huntenburg et al., 2017; Burt et al., 2018; 499 

Wang et al., 2019; Gao et al., 2020). Yet, there are clear differences among the gradients and 500 

a growing number of studies have suggested dissociations among multiple spatially similar 501 

gradients (Paquola et al., 2019; Shafiei et al., 2020; Valk et al., 2020). Here, we showed that 502 

by parameterizing local circuit parameters with both anatomical (T1w/T2w) and functional 503 

(FC) gradients, the resulting mean field model was able to generate dramatically more 504 

realistic static FC and FC dynamics than either gradient alone (Figure 3).  505 

The optimized mean field model exhibited opposing gradient directions across local 506 

circuit parameters (Figure 4). Across all top ten parameter sets, noise amplitude increased 507 
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from sensory-motor to association cortex, while external input decreased from sensory-motor 508 

to association cortex. The higher external input in sensory-motor regions might reflect the 509 

flow of sensory information from the external environment via subcortical relays. In the case 510 

of the recurrent connection strength, nine of the ten best parameter sets exhibited increasing 511 

values from sensory-motor to association cortex, but one parameter set exhibited the opposite 512 

direction. Thus, recurrent connection strength might exhibit potential degeneracies in mean 513 

field models, thus explaining contradictions in the literature (Demirtas et al., 2019; Wang et 514 

al., 2019). 515 

 516 

Multi-stability in spontaneous brain dynamics  517 

The spontaneous ebb and flow observed in FC dynamics is an intriguing property that 518 

has fascinated the field (Allen et al., 2014; Hansen et al., 2015; Wang et al., 2016; Liegeois et 519 

al., 2017; Vidaurre et al., 2017; Reinen et al., 2018). As shown in Figure 5A, there are 520 

periods of brain activity with strong coherent FC and periods with incoherent FC. We found 521 

that the coherent FC state was characterized by larger fMRI signal amplitude across brain 522 

regions, while the incoherent FC state was characterized by smaller fMRI signal amplitude 523 

(Figure 5). Intriguingly, transitions in the regional amplitude of sensory-motor regions 524 

appeared to track switching behavior in FC dynamics (Figure 6). Perturbations of the mean 525 

field model suggests that this relationship might be causal.  526 

Regional fMRI amplitude has been previously linked with the differential expression 527 

of PVALB and SST across the cortex (Anderson et al., 2020a). PVALB and SST 528 

interneurons preferentially target perisomatic regions and dendrites of pyramidal cells 529 

respectively, and are thought to regulate synaptic outputs and inputs respectively (Wang et 530 

al., 2004). Thus the spatially heterogeneous distribution of PVALB and SST interneurons 531 

(Kim et al., 2017) might modulate regional neural signal amplitude (Anderson et al., 2020a). 532 

Here, we found that PVALB-SST gene expression map correlates with the spatial distribution 533 

of sensory-motor drivers whose time-varying amplitude tracks functional connectivity 534 

dynamics (Figure 7).  535 

However, we note that this association cannot be solely attributed to PVALB-SST 536 

given that the gradients of PAVLB-SST expression are embedded within a broader pattern of 537 
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gene expression variation across the cortex (Burt et al., 2018; Anderson et al., 2020b). 538 

Indeed, the spatial distribution of sensory-motor drivers were also correlated with the first 539 

principal component of cortical genes (Figure 7). The first gene principal component has 540 

been shown to strongly correlate with the spatial distribution of genes coding for different 541 

excitatory and inhibitory neurons (Burt et al., 2018), which might reflect spatial heterogeneity 542 

in excitation-inhibition balance (Wang, 2020). Overall, this suggests a potential link between 543 

FC dynamics and heterogeneity in excitation/inhibition balance across the cortex. 544 

 545 

546 
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Methods 547 

Data 548 

We considered 1052 participants from the Human Connectome Project (HCP) S1200 549 

release (Van Essen et al., 2013). All participants were scanned on a customized Siemens 3T 550 

Skyra using a multi-band sequence. Four resting-state fMRI (rs-fMRI) runs were collected 551 

for each participants in two sessions on two different days. Each rs-fMRI run was acquired 552 

with a repetition time (TR) of 0.72s at 2mm isotropic resolution and lasted for 14.4 min. The 553 

diffusion imaging consisted of 6 runs, each lasting approximately 9 minutes and 50 seconds. 554 

Diffusion weighting consisted of 3 shells of b = 1000, 2000, and 3000 s/mm2 with an 555 

approximately equal number of weighting directions on each shell. Details of the data 556 

collection can be found elsewhere (Van Essen et al., 2013). The 1052 subjects were randomly 557 

divided into training (N=351), validation (N=350) and test (N=351) sets. 558 

 559 

Preprocessing 560 

Details of the HCP preprocessing can be found in the HCP S1200 manual. We utilized 561 

rs-fMRI data, which had already been projected to fsLR surface space, denoised with ICA-562 

FIX and smoothed by 2mm. For each run of each participant. the fMRI data was averaged 563 

within each Desikan-Killiany (Desikan et al., 2006) ROI to generate a 68 x 1200 matrix. Each 564 

68 x 1200 matrix was used to compute 68 x 68 FC matrix by correlating the time courses 565 

among all pairs of time courses. The FC matrices were then averaged across runs of 566 

participants within the training (or validation or test) set, resulting in a group-averaged 567 

training (or validation or test) FC matrix.  568 

Functional connectivity dynamics (FCD) was computed as follows. For each run of 569 

each participant, FC was computing within each of 1118 sliding windows. The length of each 570 

sliding window was 83 time points (60 seconds) as recommended by previous studies 571 

(Leonardi and Van De Ville, 2015; Liegeois et al., 2017). We note that our results were 572 

robust to window length (see “Control analysis” in the Results section). Each sliding window 573 

FC matrix was then vectorized by only considering the upper triangular entries. The 574 

vectorized FCs were correlated with each other generating a 1118 x 1118 FCD matrix.  575 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 15, 2021. ; https://doi.org/10.1101/2021.03.15.435361doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.15.435361
http://creativecommons.org/licenses/by/4.0/


 

In the case of diffusion MRI, generalized Q-sampling imaging (GQI) was used to 576 

reconstruct the white matter pathways, allowing for complex diffusion fiber configurations 577 

and streamline tractography (van den Heuvel and Sporns, 2011). A 68 x 68 structural 578 

connectivity (SC) matrix was generated for each subject, where each entry corresponded to 579 

the number of streamlines between two ROIs. To generate a group-level SC matrix, a 580 

thresholding procedure was employed to remove false positives. More specifically, if less 581 

than 50% of participants had a non-zero value in a particular entry in the SC matrix, then the 582 

entry is set to zero in all individual-level SC matrices. For each SC entry, the number of 583 

streamlines was averaged across participants with non-zero streamlines. Separate group-level 584 

SC matrices were computed for the training, validation and test sets. 585 

 586 

Dynamic mean field model (MFM) 587 

The MFM was derived by the mean-field reduction of a detailed spiking neuronal 588 

network model (Deco et al., 2013). For each cortical ROI, the neural activity obeys the 589 

following nonlinear stochastic differential equations: 590 

 𝑆̇𝑖 = −
𝑆𝑖

𝜏𝑠
+ 𝑟(1 − 𝑆𝑖)𝐻(𝑥𝑖) + 𝜎𝑣𝑖(𝑡)  

𝐻(𝑥𝑖) =
𝑎𝑥𝑖 − 𝑏

1 − exp(−𝑑(𝑎𝑥𝑖 − 𝑏))
 591 

𝑥𝑖 = 𝑤𝐽𝑆𝑖 + 𝐺𝐽 ∑ 𝐶𝑖𝑗𝑆𝑗

𝑗

+ 𝐼, 592 

where 𝑆𝑖, 𝐻(𝑥𝑖) and 𝑥𝑖 denote the average synaptic gating variable, population firing rate 593 

and total input current of the 𝑖-th cortical ROI. The total input current 𝑥𝑖 is the superposition 594 

of three inputs. The first input, the intra-regional input, is controlled by the recurrent 595 

connection strength 𝑤. The second input, the inter-regional input, is controlled by the SC 596 

matrix (𝐶𝑖𝑗 is the SC between regions 𝑖 and 𝑗), as well as a global scaling factor 𝐺. The 597 

third input is the external input current 𝐼, which might include inputs from subcortical relays. 598 

Following previous studies (Deco et al., 2013; Wang et al., 2019), the synaptic coupling 𝐽 599 

was set to 0.2609 (𝑛𝐴). The parameter values of the input-output function 𝐻(𝑥𝑖) were set to 600 

𝑎 =  270(𝑛/𝐶), 𝑏 =  108(𝐻𝑧) and 𝑑 =  0.154(𝑠). The kinetic parameters for synaptic 601 
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activity were set to 𝑟 = 0.641 and 𝜏𝑠 = 0.1(𝑠). 𝑣𝑖(𝑡) is uncorrelated standard Gaussian 602 

noise and the noise amplitude is controlled by 𝜎.  603 

The simulated neural activities 𝑆𝑖 are fed to the Balloon-Windkessel hemodynamic 604 

model (Stephan et al., 2007; Heinzle et al., 2016) to simulate the fMRI BOLD signals for 605 

each ROI. The equations and parameters are exactly the same as our previous study (Wang et 606 

al., 2019). More specifically, the MFM and hemodynamic model were simulated using 607 

Euler’s integration with time step of 10ms. The starting values of 𝑆𝑖 in the MFM were 608 

randomly initialized. Simulation length for the fMRI signals was 16.4 min. The first 2 609 

minutes of the fMRI signals were discarded and the time series were downsampled to 0.72s 610 

to have the same temporal resolution as the empirical fMRI signals in the HCP. The 611 

simulated fMRI signals could then be used to generate simulated FC and FCD matrices. 612 

 613 

Parametric Mean Field Model (pMFM) 614 

In our previous study (Wang et al., 2019), the recurrent connection strength 𝑤,  615 

external input current 𝐼, global constant 𝐺 and noise amplitude 𝜎 were optimized by fitting 616 

to static FC. The recurrent connection strength 𝑤 and external input current 𝐼 were allowed 617 

to vary independently across cortical ROIs, while 𝐺 and 𝜎 were assumed to be constant. On 618 

the other hand, (Demirtas et al., 2019) parameterized the recurrent connection strengths with 619 

the T1w/T2w myelin map. 620 

In this study, recurrent connection strength 𝑤, external input current 𝐼 and noise 621 

amplitude 𝜎 were allowed to vary across brain regions, while 𝐺 was kept as a constant. 622 

Instead of allowing 𝑤, 𝐼 and 𝜎 to vary independently (Wang et al., 2019), we parameterized 623 

𝑤, 𝐼 and 𝜎 as linear combinations of group-level T1w/T2w myelin maps (Glasser and Van 624 

Essen, 2011) and the first principal gradient of functional connectivity (Margulies et al., 625 

2016): 626 

𝑤𝑖 = 𝑎𝑤Mye𝑖 + 𝑏𝑤Grad𝑖 + 𝑐𝑤 627 

𝐼𝑖 = 𝑎𝐼Mye𝑖 + 𝑏𝐼Grad𝑖 + 𝑐𝐼 628 

𝜎𝑖 = 𝑎𝜎Mye𝑖 + 𝑏𝜎Grad𝑖 + 𝑐𝜎, 629 
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where 𝑤𝑖, 𝐼𝑖 and 𝜎𝑖 denoted the recurrent connection strength, external input current and 630 

noise amplitude respectively of the 𝑖-th cortical region. Mye𝑖 and Grad𝑖 were the average 631 

values of the T1w/T2w myelin map and the first FC principal gradient within the 𝑖-th cortical 632 

ROI. Both T1w/T2w myelin maps and first principal gradient of functional connectivity were 633 

computed from the HCP training set. Therefore, there are a total of 10 unknown parameters: 634 

G and linear coefficients (𝑎𝑤, 𝑏𝑤, 𝑐𝑤, 𝑎𝐼 , 𝑏𝐼 , 𝑐𝐼 , 𝑎𝜎, 𝑏𝜎 , 𝑐𝜎). These unknown parameters were 635 

be estimated from the HCP training set (see next section).   636 

 637 

Cost function to minimize disagreement with empirical static FC and FCD 638 

The 10 unknown parameters in the pMFM were estimated by maximizing fit to static 639 

FC and FCD in the HCP training set. For a particular set of parameters, the pMFM could be 640 

used to generate simulated FC and FCD matrices. The agreement between the simulated and 641 

empirical static FC matrices was defined as the Pearson’s correlation (r) between the z-642 

transformed upper triangular entries of the two matrices. Larger r indicates more similar static 643 

FC.  644 

The disagreement between the simulated and empirical FCD matrices was defined as 645 

the Kolmogorov–Smirnov (KS) distance between the probability distribution functions (pdfs) 646 

constructed from the upper triangular entries of the two matrices (Hansen et al., 2015). A 647 

smaller KS distance indicated more similar FCD. To optimize fit to both static FC and FCD, 648 

an overall cost was defined as (1 - r) + KS. Thus lower cost implies better fit to static FC and 649 

FCD.  650 

To minimize the cost function in the training set, we seek to compute an “average” 651 

FCD matrix. We note that FCD matrices could not be directly averaged across rs-fMRI runs 652 

and participants because there was no temporal correspondence across runs during the 653 

resting-state. Because the goal here was to compute the KS distance, we simply averaged the 654 

pdfs from the FCD matrices all the runs of all participants within the training set, which we 655 

referred to as average FCD pdf. When evaluating KS distance in the validation and test sets, 656 

average FCD pdfs were also computed using the same approach. 657 

 658 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 15, 2021. ; https://doi.org/10.1101/2021.03.15.435361doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.15.435361
http://creativecommons.org/licenses/by/4.0/


 

Optimization procedure 659 

To optimize the cost function, we considered three algorithms: covariance matrix 660 

adaptation evolution strategy (CMA-ES; Hansen, 2006), self-organising migrating algorithm 661 

(SOMA; Davendra and Zelinka, 2016) and hyperparameter optimization using radial basis 662 

functions and dynamic coordinate search (HORD; Ilievski et al., 2017).  663 

Given a particular random initialization of the 10 unknown parameters, the three 664 

algorithms (CMA-ES, SOMA, HORD) were applied to the HCP training set. Each algorithm 665 

was iterated 500 times, generating 500 candidate parameter sets. This procedure was repeated 666 

10 times, yielding 5000 candidate parameter sets. For each algorithm, the 5000 candidate 667 

parameter sets were evaluated in the validation set to obtain top 10 candidate parameter sets. 668 

Across the three algorithms, CMA-ES performed the best in the validation set (Figure S1), so 669 

this study focused on CMA-ES. 670 

The top 10 candidate parameter sets from CMA-ES were then applied to the HCP test 671 

set SC. For each parameter set, 1000 simulations were performed, yielding 1000 simulated 672 

static FC and FCD matrices. The 1000 simulated FC and FCD pdfs were then averaged, 673 

yielding an average simulated FC and an average simulated FCD pdf. Pearson’s correlation 674 

was then computed between the average simulated FC and the average empirical FC from the 675 

HCP test set. Similarly, KS statistics was computed between the average simulated FCD pdf 676 

and the average empirical FCD pdf from the HCP test set.  677 

 678 

Statistical test of correlation between first derivatives of FCD mean and SW-STD 679 

To quantify the correspondence between FCD mean and SW-STD (Figure 5), 680 

correlation between the first derivative of the FCD mean time course and the first derivative 681 

of the SW-STD time course was computed for each cortical region (Figure 6). To compute 682 

the statistical significance of the correlations, fMRI runs were permuted across participants. 683 

For each ROI, the FCD-STD correlations were recomputed and averaged across runs and 684 

participants, yielding a single null correlation value. This permutation procedure was 685 

repeated 10000 times, so that a null distribution of correlations was obtained for each ROI. 686 

 687 
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Causal perturbations of pMFM 688 

To more directly link sensory-motor regions with FCD, we tested whether 689 

perturbation of sensory-motor regions can “kick” the system from an incoherent FCD state to 690 

a coherent FCD state. Among 1000 random simulations of the pMFM, time segments in the 691 

incoherent (low FCD mean) state lasting for at least 200 contiguous fMRI timepoints (TRs) 692 

were selected, yielding 300 time segments. Low FCD mean was defined as being less than 693 

0.6.  694 

Perturbation was applied to the neural signals (synaptic gating variable 𝑆𝑖) of the top 695 

5 regions whose SW-STD correlated with FCD (Figure 6B). We note that during the 696 

incoherent state, the values of the synaptic gating variables could be low or high. To increase 697 

the amplitude of the neural signals, we would decrease (or increase) the synaptic gating 698 

variables if they were high (or low). More specifically, let 𝑆𝑚𝑎𝑥 and 𝑆𝑚𝑖𝑛 be the maximum 699 

and minimum synaptic gating variable values across all cortical regions. When neural signal 700 

was low, we set 𝑆𝑡+𝛿𝑡 = 𝑆𝑡 + 0.8 (𝑆𝑚𝑎𝑥 − 𝑆𝑡), where 𝛿𝑡 corresponded to the resolution of 701 

the simulations, which is 0.01 seconds in the current study. When neural signal was high, we 702 

set 𝑆𝑡+𝛿𝑡 = 𝑆𝑡 − 0.8 (𝑆𝑡 − 𝑆𝑚𝑖𝑛). The perturbations was applied for 72 iterations, 703 

corresponding to 1 TR in the simulated fMRI signal.  704 

 705 

Gene expression analysis  706 

Publicly available human gene expression data from six postmortem donors (1 female), 707 

aged 24–57 years (42.5 ± 13.4) were obtained from the Allen Institute (Hawrylycz et al., 2012).  708 

Processing followed the pipeline from Anderson and colleagues (Anderson et al., 2020a; 709 

https://github.com/HolmesLab/2020_NatComm_interneurons_cortical_function_schizophren710 

ia), yielding 17,448 brain-expressed genes and 1683 analyzable cortical samples. Our analyses 711 

in turn focused on 2413 brain-specific genes (Genovese et al., 2016; Burt et al., 2018). Z-712 

normalized gene expression values of parvalbumin (PVALB) and somatostatin (SST) were 713 

averaged within each cortical region and the difference was computed. The FCD-STD 714 

correlation maps (Figure 6) were correlated with the PVALB-SST spatial map (Figure 7). 715 

To establish statistical significance, we considered two approaches. First, we 716 

considered the spin test. The parcellations were randomly rotated. For each rotated 717 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 15, 2021. ; https://doi.org/10.1101/2021.03.15.435361doi: bioRxiv preprint 

https://github.com/HolmesLab/2020_NatComm_interneurons_cortical_function_schizophrenia
https://github.com/HolmesLab/2020_NatComm_interneurons_cortical_function_schizophrenia
https://doi.org/10.1101/2021.03.15.435361
http://creativecommons.org/licenses/by/4.0/


 

parcellation, we re-computed the PVALB-SST difference and correlated the resulting gene 718 

expression maps with the FCD-STD correlation maps, yielding a single null correlation 719 

value. This was repeated 1000 times yielding a complete null distribution.  720 

To test the specificity of PVALB-SST, we performed a random-gene-pair tests. A 721 

random pair of genes was selected from the 2413 brain-specific genes  (Burt et al., 2018). 722 

Gene expression difference between the random gene pairs was computed and correlated with 723 

the STD-FCD correlation maps generating a null correlation value. This was repeated 10,000 724 

times yielding a complete null distribution.   725 

 726 

Code and data availability 727 

This study followed the institutional review board guidelines of corresponding institutions. 728 

The HCP diffusion MRI, rs-fMRI and T1w/T2w data are publicly available 729 

(https://www.humanconnectome.org/). The code used in this paper is publicly available at 730 

https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/fMRI_dynamics/Kong2731 

021_pMFM. The code was reviewed by one of the co-authors (SZ) before merging into the 732 

GitHub repository to reduce the chance of coding errors. 733 

  734 
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Figure S1. Comparison of three different algorithms: covariance matrix adaptation evolution strategy 

(CMA-ES; Hansen, 2006), self-organising migrating algorithm (SOMA; Davendra and Zelinka, 2016) 

and hyperparameter optimization using radial basis functions and dynamic coordinate search (HORD; 

Ilievski et al., 2017) in the HCP validation set. Each algorithm was run on the training set generating 

5000 candidate sets of model parameters. The 5000 candidate sets were evaluated in the validation set. 

The top 10 candidate sets from each algorithm (based on the validation set) are shown in this plot. 

Thus, CMA-ES performs the best among the three algorithms in the validation set. Box plots utilized 

default Matlab parameters, i.e., box shows median and inter-quartile range (IQR). Whiskers indicate 

1.5 IQR. Red crosses represent outliers. 

Lower = Better
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(A)

(C)

(B)

(D)

Figure S2. Comparison between the original pMFM (main text) and (A) constraining recurrent 

connection strength 𝑤 to be constant across ROIs, (B) constraining external input 𝐼 to be constant 

across ROIs, (C) constraining noise amplitude 𝜎 to be the same across ROIs, and (D) allowing local 

circuit parameters to vary independent (i.e., not parameterized by anatomical and/or functional 

gradients). Across all panels, agreement between simulated and empirical static FC was measured 

using Pearson’s correlation, while disagreement between simulated and empirical FCD was measured 

using KS distance. Across all analyses, top ten model parameter sets were selected from the validation 

set and applied to the test set. The error bars correspond to standard error across the 10 parameter sets. 

Across all four panels, the original pMFM yielded the best results.
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(A) (B) FCD (Optimize FC Only)

Figure S3. Comparison between the original pMFM (optimized using both static FC and FCD) and 

pMFM optimized using only static FC. (A) Agreement (Pearson’s correlation r) between simulated and 

empirically observed static FC, as well as disagreement (KS distance) between simulated and 

empirically observed FCD. (B) Simulated FCD from the pMFM optimized only using static FC. The 

simulated FCD was a lot less realistic than the original pMFM (Figure 2B). In terms of KS distance, 

there is a large improvement when optimizing both static FC and FCD (KS = 0.12 versus 0.88). 

However, when optimizing only static FC, the resulting simulated static FC was only slightly better 

than the original pMFM (r = 0.74 versus 0.66). This suggests that the goals of generating realistic 

static FC and FCD were not necessarily contradictory. We note that across all analyses, top ten model 

parameter sets were selected from the validation set and applied to the test set. The error bars 

correspond to standard error across the 10 parameter sets. 
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(B) External Input 𝑰

(C) Noise Amplitude 𝝈

(A) Recurrent Connection 𝒘

𝝈

𝑰

𝒘

Figure S4. For one of the top ten parameter sets, recurrent connection strength exhibited the opposite 

direction from the remaining nine parameter sets. The layout of this figure is the same as Figure 4. (A) 

Strength of recurrent connection 𝑤 in 68 Desikan-Killiany cortical ROIs (left) and seven resting-state 

networks (right). (B) Strength of external input 𝐼 in 68 Desikan-Killiany cortical ROIs (left) and seven 

resting-state networks (right). (C) Strength of noise amplitude 𝜎 in 68 Desikan-Killiany cortical ROIs 

(left) and seven resting-state networks (right). The bars represent the mean values across regions 

within each network. The error bars show the standard error across regions within each network. Noise 

amplitude increased from sensory-motor to association (limbic, control and default) networks. On the 

other hand, external input current and recurrent connection strength decreased from sensory-motor to 

association networks. 
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(B)(A)

Figure S5. Sensory-motor regions drive sharp transitions in functional connectivity dynamics (FCD). 

(A) FCD-STD correlations obtained by correlating the first derivative of the FCD mean time course 

and the first derivative of the SW-STD time course of each cortical region. These correlations were 

performed for each HCP test participant and averaged across all runs and participants. Regions that 

survived a false positive rate of q<0.05 are shown in the brain map. (B) Same as panel A but simulated 

from pMFM using the best model parameters from the validation set and structural connectivity from 

the test set. Regions that survived a false positive rate of q<0.05 are shown in the brain map. 

FCD-STD Correlation 

Significant Regions (Empirical)

FCD-STD Correlation 

Significant Regions (Simulated)
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(A) (B)

Figure S6. Parametric mean field model (pMFM) generates more realistic static functional 

connectivity (FC) and functional connectivity dynamics (FCD) than the previous spatially 

heterogeneous MFM (Wang et al., 2019) in the 100-region Schaefer parcellation. This figure is similar 

to Figure 2 but utilizes the 100-region Schaefer parcellation. (A) Agreement (Pearson’s correlation) 

between empirically observed and pMFM-simulated static FC. (B) Agreement (Pearson’s correlation) 

between empirically observed and simulated static FC from Wang 2019. (C) Empirical FCD from a 

participant from the HCP test set. (D) Simulated FCD from the pMFM using the best model 

parameters from the validation set using structural connectivity (SC) from the test set. (E) Simulated 

FCD generated by the previous spatially heterogeneous MFM (Wang et al., 2019). 

(C) (D) (E)
FCD (Empirical) FCD (Wang2019) FCD (pMFM)
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(B) External Input 𝑰

(C) Noise Amplitude 𝝈

(A) Recurrent Connection 𝒘 𝒘

𝑰

𝝈

Figure S7. Spatial distribution of recurrent connection strength 𝑤, external input current 𝐼, and noise 

amplitude 𝜎, and their relationships with resting-state networks in the 100-region Schaefer parcellation. 

This figure is similar to Figure 4 but utilizes the 100-region Schaefer parcellation. (A) Strength of 

recurrent connection 𝑤 in 100 Schaefer cortical ROIs (left) and seven resting-state networks (right). (B) 

Strength of external input 𝐼 in 100 Schaefer cortical ROIs (left) and seven resting-state networks 

(right). (C) Strength of noise amplitude 𝜎 in 100 Schaefer cortical ROIs (left) and seven resting-state 

networks (right). The bars represent the mean values across regions within each network. The error 

bars show the standard error across regions within each network. Recurrent connection strength and 

noise amplitude increased from sensory-motor to association (limbic, control and default) networks. 

On the other hand, external input current was the highest in sensory-motor networks and decreased 

towards the default network.
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Empirical FCD & 

Sliding Window (SW) STD

Simulated FCD & 

Sliding Window (SW) STD

(A) (B)

(C) (D)

Figure S8. Correspondence between functional connectivity dynamics (FCD) and time-varying 

amplitude of regional fMRI time courses using the 100-region Schaefer parcellation. This figure is 

similar to Figure 5 but utilizes the 100-region Schaefer parcellation. (A) Top panel shows empirical 

FCD matrix of a HCP test participant. The middle panel shows the FCD mean time course obtained by 

averaging the rows of the FCD matrix from the top panel. The bottom panel shows the standard 

deviation of each regional fMRI time course within each sliding window (SW-STD). The color of the 

lines corresponds to the correlation between the first derivative of the FCD mean time course and the 

first derivative of the SW-STD time courses. Sharp transitions in SW-STD corresponded to sharp FCD 

transitions (red dashed lines). (B) Same as panel A, but simulated from pMFM using the best model 

parameters from the validation set and structural connectivity from the test set. (C) SW-STD during 

coherent (high FCD mean) and incoherent (low FCD mean) states. Boxplots illustrate variation across 

HCP test participants. Coherent states were characterized by large amplitude (STD) in fMRI signals (p 

= 4.4e-115). (D) Same as panel C but simulated from pMFM. 
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Figure S9. Sensory-motor regions drive sharp transitions in functional connectivity dynamics (FCD) in 

the 100-region Schaefer parcellation. This figure is similar to Figure 6 but utilizes the 100-region 

Schaefer parcellation (A) FCD-STD correlations obtained by correlating the first derivative of the 

FCD mean time course and the first derivative of the SW-STD time course of each cortical region. (B) 

Same as panel A but simulated from pMFM (C) Correlation between empirical and simulated FCD-

STD correlation spatial maps from panels B and C, showing strong correspondence between empirical 

and simulated results. (D) Casual perturbation of top 5 FCD-STD correlated regions (panel B) during 

the incoherent state (low FCD mean) led to transition into the coherent state (high FCD mean). As a 

control analysis, perturbation of the bottom 5 FCD-STD correlated regions (panel B) during the 

incoherent state (low FCD mean) did not lead to a state change (FCD mean remains low). (E) 

Example FCD from the perturbation experiments. (Left) original incoherent state. (Middle) 

perturbation of top 5 FCD-STD correlated regions (sensory-motor drivers). (Right) perturbation of 

bottom 5 FCD-STD correlated regions.
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PVALB-SST
p-value 

(spin test)

p-value

(random gene pair)
Gene PC1

p-value 

(spin test)

FCD-STD

Empirical
0.433±0.010 0.026 0.027 0.405±0.011 0.058

FCD-STD 

Simulated
0.544±0.007 0.006 0.021 0.556±0.007 0.005

𝒘 -0.508 0.005 0.060 -0.550 0.004

𝑰 0.320 0.042 0.118 0.330 0.037

𝝈 -0.479 0.005 0.067 -0.514 0.004

Table S1. Table of correlations between FCD-STD correlational spatial maps and two gene expression 

maps: PVALB-SST and first principal component of gene expression (Burt et al., 2018; Anderson et 

al., 2020b). P values that survived the false discovery rate (q < 0.05) are bolded. Standard deviations 

reported in the table were obtained by bootstrapping. 
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