w

O 0N O Ul

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

bioRxiv preprint doi: https://doi.org/10.1101/751933; this version posted March 15, 2021. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY 4.0 International license.

Multi-scale systems genomics analysis predicts pathways, cell
types and drug targetsinvolved in normative human cognition
variation

Authors:
Shraddha Pail?, Shirley Hui?, Philipp Weber?, Soumil Narayan?!, Owen Whitley'?3, Peipei Li*>, Viviane
Labrie*5, Jan Baumbach?26, Gary D Bader?3.7.8

Affiliations:

1.
2.

ur e

O ® N o

The Donnelly Centre, University of Toronto, Toronto, Canada

Department of Mathematics and Computer Science, University of Southern Denmark, Odense,
Denmark

Department of Molecular Genetics, University of Toronto, Toronto, Canada

Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
Division of Psychiatry and Behavioral Medicine, College of Human Medicine, Michigan State
University, Grand Rapids, MI, USA

TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
Department of Computer Science, University of Toronto, Toronto, Canada

The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada

Present address: Ontario Institute for Cancer Research, Toronto, Canada

* gary.bader@utoronto.ca



https://doi.org/10.1101/751933
http://creativecommons.org/licenses/by/4.0/

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

bioRxiv preprint doi: https://doi.org/10.1101/751933; this version posted March 15, 2021. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Abstract

An open challenge in human genetics is to better understand the link between genotype variation and
the various molecular, cellular, anatomical and physiological systems that it can affect. To address this
challenge, we performed genotype-phenotype-systems analysis for accuracy in nine cognitive tasks
from the Philadelphia Neurodevelopmental Cohort (3,319 individuals aged 8-21 years). We report a
region of genome-wide significance within the 3' end of the FBLN1 gene (p=4.6x10-8), associated with
nonverbal reasoning, a heritable form of complex reasoning ability. Integration of published brain-
specific 'omic maps reveals that FBLN1 shows greatest expression in the fetal brain, is a marker of
neural progenitor cells, is differentially expressed in schizophrenia and increases genetic risk for
bipolar disorder. These findings suggest that nonverbal reasoning and FBLNI variation warrant
further investigation in studies of neurodevelopmental disorders and psychosis. Using genotype-
pathway analysis, we identify pathways related to development and to autonomic nervous system
dysfunction associated with working memory accuracy. Top-ranking pathway genes include those
genetically associated with multiple diseases with working memory deficits, such as schizophrenia and
Parkinson's disease, and that are also markers for specific brain cell types. Our findings identify novel
molecular players involved in specific cognitive tasks and link variants to genes, pathways, cell types,
diseases and drugs. This work advances the "molecules-to-behaviour” view of cognition, and provides
a framework for using systems-level organization of data for other biomedical domains.
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| ntroduction

The growth in genomics and functional annotation resources over the past decade provides an
opportunity to build models of how changing genotype affects multiple levels of system organization
underlying a phenotype, from genes and molecules through to pathway, cell, cell circuit, anatomy and
physiology system levels (systems-genomics analysis). This opportunity complements a conceptual
shift to systems-level thinking in many biomedical fields. For example, a major drive in psychiatry is
the reconceptualization of mental illnesses as brain disorders treatable by neurobiological system-
grounded therapies, such as working memory deficits in schizophrenial. As a shared guide for the
field, the U.S. National Institute of Mental Health has developed a "genes-to-behaviour"” framework that
deconstructs human behaviour into neurobehavioural domains, such as cognition and social
processing?. Each of these constructs has subconstructs and these are linked to a variety of systems
level concepts. While the genetic architecture of overall cognitive ability (i.e., intelligence) has been
studied by large-scale GWAS3-, little is known about the molecular basis of more detailed
neurocognitive phenotypes.

In this work, we identify genetic variants associated with normative variation in nine cognitive
phenotypes measured in the Philadelphia Neurodevelopmental Cohort (PNC). We selected this study
for our systems-genomics analysis as the phenotypes measured were designed around systems-level
neuroscience theory. For example, tasks requiring use of working memory, a type of short-term
memory that recruits a cortical-subcortical network including the dorsolateral prefrontal cortex,
shows a genetic component in twins, and is impaired in schizophrenia ¢-8. Thus, we hypothesize that
this data will yield systems-genomics signal, that is genetic variants linked to one or more system level
scales of phenotype-related organization. To our knowledge, there have been no reports of genotype-
phenotype analyses on the PNC dataset. Using diverse functional genomics resources, we link variants
to genes, pathways, brain cell types, brain systems, predicted drug targets, and diseases, providing a
systems-level view of the genetics of the neurodevelopmental phenotypes under study. With
standardized and well-controlled cognitive tests and genotyping on over 8,000 community youths
aged 8-21 years, the PNC is the largest publicly-available dataset for genotype-phenotype analysis of
developmental cognition®10. All participants have computerized neurocognitive test battery scores,
measuring speed and accuracy in multiple cognitive domains. These measures have neurobehavioural
validityl, SNP-based heritability!?, and disease relevance!l13, Multiple cognitive test scores in the PNC
demonstrate significant SNP-based heritability'?, and reduced test scores are correlated with
increased genetic risk of psychiatric disease!?. Moreover, the PNC captures the age range through
which some cognitive abilities, such as working memory, mature to stable adult levels'415. Despite the
relatively small size of this dataset by GWAS standards, we reasoned that the PNC dataset provides a
valuable opportunity to study the molecular and systems basis of cognitive tasks impaired in disease
and evaluate how a systems-genomics approach can increase statistical and interpretive power
compared to standard SNP and gene-based analysis approaches, both of which are performed here to
enable us to compare these approaches.

M ethods

Cognitive assessment was performed using the Penn Computerized Neurocognitive Battery (CNB),
which was customized and shortened for a pediatric population. Performance is measured by a
session of trials containing items with varying levels of difficulty, which allows the test to capture
nuances in speed and accuracy measures. Tests were also developed through evaluation by
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psychological investigators to ensure tasks could measure the phenotype of interest (i.e. had
"construct validity") and reliability between test-takers and through retakes?1.

Genetic imputation

The samples (n=8,719) were all genotyped using Illumina or Affymetrix SNP-array platforms by the
Center for Applied Genomics at The Children's Hospital of Philadelphia.'® The workflow for genomic
imputation is shown in Supplementary Figure 1. Genotypes for the four most frequent microarray
genotyping platforms were downloaded from dbGaP (phs000607.vl1). We performed genetic
imputation for the Illumina Human610-Quad BeadChip, the Illumina HumanHap550 Genotyping
BeadChip v1.1, lllumina HumanHap550 Genotyping BeadChip v3, and the Affymetrix AxiomExpress
platform (Supplementary Table 1, total of 6,502 samples before imputation), using the protocol
recommended by the EMERGE consortium'?. Imputation was performed as follows:

Step 1: Platform-specific plink quality control: Quality control was first performed for each
microarray platform separately. Single nucleotide polymorphisms (SNPs) were limited to those on
chr1-22. SNPs in linkage disequilibrium (LD) were excluded (--indep-pairwise 50 5 0.2), and alleles
were recoded from numeric to letter (ACGT) coding. Samples were excluded if they demonstrated
heterozygosity > 3 standard deviations (SD) from the mean, or if they were missing >=5% genotypes.
Where samples had pairwise Identity by Descent (IBD) > 0.185, one of the pair was excluded. Variants
with minor allele frequency (MAF) < 0.05 were excluded, as were those failing Hardy-Weinberg
equilibrium with p < 1e-6 and those missing in >=5% samples.

Step 2: Convert coordinates to hg19. LiftOver!® was used to convert SNPs from human genome
assembly version hg18 to hgl19; Hap550K v1 data was in hgl17 and was converted from this build to
hg19.

Step 3: Strand-match check and prephasing: Shapelt v2.r7901° was used to confirm that the allelic
strand in the input data matched that in the reference panel; where it did not, allele strands were
flipped (shapeit “-check” flag). Shapelt was used to prephase the variants using the genetic_b37
reference panel (downloaded from the Shapeit website,
http://www.shapeit.fr/files/genetic_map_b37 .tar.gz)

Step 4: Imputation: Genotypes were imputed using Impute2 v2.3.22° and a reference panel from the
1,000 Genomes (phase 1, prephased with Shapeit2, no singletons, 16 June 2014 release, downloaded
from
https://mathgen.stats.ox.ac.uk/impute/data_download_1000G_phasel_integrated_SHAPEIT2_16-06-
14.html) was used for imputation, using the parameter settings “-use_prephased_g —-Ne 20000 -seed
367946". Average concordance for all chromosomes was ~95%, indicating successful imputation
(Supplementary Figure 2). Imputed genotypes were merged across all platforms using software from
the Ritchie lab” (impute2-group-join.py, from https://ritchielab.org/software /imputation-download)
and converted to plink format. Following previous PNC genotype analysis!2, only SNPs with info score
> 0.6 were retained, and deletions/insertions were excluded (plink “-snps-only just-acgt” flags). As
preliminary quality control, when merging across chromosomes, samples with missingness exceeding
99% were excluded, as were SNPs with MAF < 1% and with missingness exceeding 99%. This step
resulted in 10,845,339 SNPs and 6,327 individuals.

Step 5: Post-imputation quality control: The HapMap3 panel was used to assign genetic ancestry for
samples, using steps from 2! (Supplementary Figure 3). Individuals within 5 SD of the centroid of the
HapMap3 CEU (Utah residents with Northern or Western European ancestry) or TSI (Tuscans in Italy)
clusters were assigned to belong to the respective groups, and were classified as being of European
descent; 3,441 individuals pass this filter. Individuals with >5% missing data were excluded, as was
one of each pair of individuals with IBS > 0.185 (47 individuals); 3,394 individuals passed this filter.
Variants that were symmetric or in regions of high LD (Supplementary Table 2) were excluded
(9,631,316 SNPs passed). Variants with >5% missingness were excluded (1,569,407 SNPs excluded).
Finally, SNPs with MAF < 0.01 (3,168,339 SNPs) and failing Hardy-Weinberg equilibrium (HWE) with
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p value < 1e-6 (373 SNPs) were excluded, resulting in 4,893,197 SNPs. As only high-quality SNPs were
retained after imputation, post-processing steps were performed only once. In sum, the imputation
process resulted in 3,394 individuals and 4,893,197 SNPs available for downstream analysis.

Phenotype processing

Phenotype data was downloaded from dbGaP for 8,719 individuals. 637 individuals with severe
medical conditions (Medical rating=4) were excluded to avoid confounding the symptoms of their
conditions with performance on the cognitive tests!?. Linear regression was used to regress out the
effect of age at test time (variable name: “age at cnb”) and sex from sample-level phenotype scores,
and the residualized phenotype was used for downstream analysis.

The nine phenotypes selected for systems-genomics analysis are measures of overall performance
accuracy in the Penn Computerized Neurocognitive Test Battery (CNB; Supplementary Table 3) and
represent major cognitive domains. Tasks mapped to domains in the following manner: verbal
reasoning, nonverbal reasoning, and spatial reasoning measured complex cognition; attention
allocation and working memory measured executive function; recall tests for faces, words and objects
measured declarative memory, and emotion identification measured social processing. Following
regression, none of the phenotypes were significantly correlated with age after Bonferroni correction,
indicating that the age effect had been reduced (Supplementary Table 4). Following guidelines from
previous analyses on these datal3, individuals with scores more than four standard deviations from
the mean for a particular test, representing outliers, were excluded from the analysis of the
corresponding phenotype. For a given phenotype, only samples with a code indicating a valid test
score (codes "V" or "V2") were included; e.g. for pfmt_tp (Penn Face Memory Test), only samples with
pfmt_valid = “V” or “V2” were retained; the rest had scores set to NA. Finally, each phenotype was
dichotomized so that samples in the bottom 33rd percentile were relabeled as “poor” performers and
those in the top 33rd were set to be “good” performers; for a given phenotype, this process resulted in
~1,000 samples in each group (Supplementary Table 3). Where an individual had good or poor
performance in multiple phenotypes, they were included in the corresponding group for each of those
phenotypes.

Genetic association analysis

For each of nine CNB phenotypes, marginal SNP-level association was calculated using a mixed-effects

linear model (MLMA), using the leave-one-chromosome-out (LOCO) method of estimating polygenic

contribution (GCTA v1.97.7beta software?2). In this strategy, a mixed-effect model is fit for each SNP:
y=a+bx+g-+e

where y is the binarized label (good/poor performer on a particular task), x measures the effect of
genotype (indicator variable coded as 0, 1 or 2), g- represents the polygenic contribution of all the
SNPs in the genome (here, the ~4.89M imputed SNPs), and e represents a vector of residual effects. In
the LOCO variation, g- is calculated using a chromosome-specific genetic relatedness matrix, one that
excludes the chromosome on which the candidate SNP is located?2. SNPs and associated genes were
annotated as described in Supplementary Notes 1-4.

Hi-C Data Processing

We downloaded publicly-available Hi-C data from human prefrontal cortex tissue2324 (Illumina HiSeq
2000 paired-end raw sequence reads; n=1 sample; 746 Million reads; accession: GSM2322542
[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM2322542]). We used Trim Galore?>
(v0.4.3) for adapter trimming, HICUP2¢ (v0.5.9) for mapping and performing quality control, and
GOTHIC?? for identifying significant interactions (Bonferroni p <0.05), with a 40 kb resolution. Hi-C
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gene annotation involved identifying interactions with gene promoters, defined as + 2 kb of a gene
TSS. This analysis identified 303,464 DNA-DNA interactions used for our study.

SNP to gene mapping for annotation and enrichment analyses

SNPs were mapped to genes using a combination of genome position information (i.e. closest gene),
brain-specific expression Quantitative Trait Locus (eQTL) and higher-order chromatin interaction (Hi-
C) information.

Gene definitions were downloaded from Gencode
(ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode human/release 32/GRCh37 mapping/gencode.
v32lift37.basic.annotation.gtf.gz). Only genes with "protein_coding” biotype were included (20,076
unique gene symbols), to simplify interpretation of cellular mechanisms using pathway annotation
information, which almost completely include only protein coding genes. Using chromatin state maps
from the Roadmap Epigenomics project?8, we compiled a list of open chromatin and enhancer regions
in brain tissue. These comprised maps derived from 13 human brain samples, including:
neurospheres, angular gyrus, anterior caudate, germinal matrix, hippocampus, inferior temporal lobe,
dorsolateral prefrontal cortex, substantia nigra, and fetal brain of both sexes (samples E053, E054,
E067, E068, E069, E070, E071, E072, E073, E074, E081, E082, and E125), downloaded from
http://www.roadmapepigenomics.org/. Open chromatin states were defined as genomic regions with
epigenomic roadmap project’s core 15-state model values <=7. Enhancers were defined as those
labeled with states "Enh" and "EnhG".

For eQTL-based mapping, we searched for significant eQTLs in 12 types of brain tissue (GTEx v7:
Amygdala, Anterior cingulate cortex BA24, Caudate basal ganglia, Cerebellar Hemisphere, Cerebellum,
Cortex, Frontal Cortex BA9, Hippocampus, Hypothalamus, Nucleus accumbens basal ganglia, Putamen
basal ganglia, and Substantia nigra) downloaded from https://www.gtexportal.org; Supplementary
Note 129). Of these, only SNPs overlapping open chromatin regions of brain-related samples (see
previous paragraph) were included.

For 3D chromatin interaction mapping (Hi-C), we downloaded long-range chromatin interaction data
from the adult cortex?* and human developing brain3? (Interactions to TSS for cortical plate and
germinal zone, Tables S22 and S23 of Won et al3?). The enhancer region of these enhancer-promoter
interactions was intersected with brain enhancers (see above) to only keep enhancer-promoter
interactions overlapping known active brain enhancers. Then, the promoter region of these filtered
enhancer-promoter interactions was mapped to a gene if it intersected with the region 250bp
upstream and 500bp downstream of the corresponding gene transcription start site. SNPs were
mapped to a gene if they overlapped the promoter of the filtered enhancer-promoter sites.

Finally, SNPs were positionally mapped to the nearest gene if the shortest distance to either
transcription start site or end site was 60kb. This cutoff was selected because it maps the majority
(90%) of SNPs to their nearest gene, following a distance distribution analysis.

The order of SNP-gene mapping was as follows: SNPs that mapped to a gene via brain eQTL or Hi-C
interactions were prioritized and not also positionally mapped to a gene. A SNP was allowed to map to
genes using both eQTL and Hi-C. SNPs without eQTL or Hi-C mappings were positionally mapped to a
gene. Where a SNP positionally mapped to multiple genes, all associations were retained. These SNP-
gene mappings were used for the pathway and gene set enrichment analysis described below, as well
as to annotate SNPs from the GWAS analysis.
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Using these criteria, 7.7% of SNPs mapped to genes using non-positional information (246,357 by
eQTL and 16,923 by HiC, for a total of 263,280 SNPs); 2,917,948 SNPs mapped solely by positional
information (89.2%). In total, SNPs mapped to 18,782 genes. 1,711,969 SNPs did not map to any genes
(34.9%).

Gene set enrichment analysis

For each of the nine CNB phenotypes, gene set enrichment analysis was performed using an
implementation of GSEA for genetic variants332. GSEA was selected as it computes pathway
enrichment scores using all available SNP information, which improves sensitivity, rather than using a
hypergeometric model limited to SNPs passing a specific GWAS p-value cutoff. Moreover, pathway
significance is ascertained using sample permutation, which corrects false-positives arising due to
mapping of a few high-ranking SNPs to multiple nearby genes in the same pathway?33. All SNPs were
mapped to genes (as described in the "SNP-gene mapping for annotation and enrichment analyses”
section above) and the gene score was defined as the best GWAS marginal p-value of all mapped SNPs
for each gene. For each pathway, GSEA computes an enrichment score (ES) using the rank-sum of gene
scores. The set of genes that appear in the ranked list before the rank-sum reaches its maximum
deviation from zero, is called the "leading edge subset”, and is interpreted as the core set of genes
responsible for the pathway's enrichment signal. Following computation of the ES, we created a null
distribution for each pathway by repeating genome-wide association tests with randomly label-
permuted data and by computing ES from these permuted data; in this work, we use 100 permutations
to reduce computational burden. As a test of sensitivity to this parameter, we increased this value to
1000 for the working memory phenotype (Inb_tp2). Finally, the ES on the original data is normalized
to the score computed for the same gene set for label-permuted data (Z-score of real ES relative to
mean of ES in label-permuted data), resulting in a Normalized Enrichment Score (NES) per pathway.
The nominal p-value for the NES score is computed based on the null distribution and FDR correction
is used to generate a g-value.

We used enrichment analysis to perform pathway analysis using pathway information compiled from
HumanCyc34 (http://humancyc.org), NetPath (http://www.netpath.org)3s, Reactome
(http://www.reactome.org)?3¢, NCI Curated Pathways?37, mSigDB38
(http://software.broadinstitute.org/gsea/msigdb/), and Panther3? (http://pantherdb.org/) and Gene
Ontology* (Human_GOBP_AllPathways_no_GO_iea_May_01_2018_symbol.gmt, downloaded from
http://download.baderlab.org/EM Genesets/May 01 2018/Human/symbol/Human GOBP AllPathwa

ys no GO iea May 01 2018 symbol.gmt); only pathways with 20-500 genes were used.

We also used enrichment analysis to perform a brain system and disease analysis using brain-related
gene sets we compiled from various literature sources (see Supplementary Table 5 and
Supplementary Note 5). Brain system gene sets included those identified through transcriptomic or
proteomic assays in human brain tissue (i.e. direct measurement of expression), and genes associated
with brain function by indirect inference (e.g. genetic association of nervous system disorders); both
groups of gene sets were combined for this enrichment analysis. The transcriptomic/proteomic gene
sets included: genes identified as markers for adult and fetal brain cell types using single-cell
transcriptomic experiments*-43, genes enriched for brain-specific expression (Human Protein Atlas
project (https://www.proteinatlas.org*t); genes co-expressed with markers of various stages of
human brain development (BrainSpan#®); and genes encoding proteins altered in the schizophrenia
synaptosomal proteome?t. Brain disease gene sets included: genes associated with schizophrenia,
bipolar disorder, autism spectrum disorder and major depressive disorder through large-scale genetic
association studies by the Psychiatric Genomics Consortium (Supplementary Note 5); genes associated
with nervous system disorders by the Human Phenotype Ontology?’. Genes in the second group were
filtered to only include genes with detectable expression in the fetal8 or adult human brain#4. A total
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of 1,321 gene sets were collected across both system and disease categories (Table S14). Only gene
sets with 20-500 genes were included in the analysis; 421 gene sets met these criteria and were
included in the enrichment analysis.

L eading edge gene interaction networ k

Genes contributing to pathway enrichment results (leading edge genes) were obtained in our GSEA
analysis for genetic variants31l. A gene-gene interaction network was constructed from leading edge
genes of pathways with q < 0.05 using the online GeneMANIA service (v 3.6.0;
https://genemania.org#’) (human database, default settings); the resulting network and edge
attributes were downloaded. This network was imported into Cytoscape v3.7.1 for visualization.
Known drug associations were obtained from DGIdb>° and GWAS associations with nervous system
disorders were obtained from the NHGRI-EBI GWAS catalogue, via programmatic search using the
TargetValidation.org API5152, Cell type marker information was compiled from single cell RNA-seq
datasets, including those for adult and fetal human brain1-43,

Results

We developed a systems-genomics analysis workflow to identify genetic variants associated with
normal cognitive phenotypes (Figure 1). Briefly, genotypes were imputed using a reference panel from
the 1,000 Genomes Project>3, and samples were limited to those of European genetic ancestry
(Supplementary Figure 1-3, Supplementary Table 1). 3,394 individuals and ~4.9M SNPs passed the
quality control and imputation process. Following quality control of phenotype data, 3,116 European
samples passed both genotype and phenotype filters and were included in downstream analyses. We
selected nine phenotypes from the Penn Computerized Neurocognitive Test Battery (CNB)
representing overall accuracy in four cognitive domains: complex cognition, executive function,
declarative memory, and social processing (Supplementary Table 3). Measures included performance
for verbal reasoning, nonverbal reasoning, spatial reasoning, attention allocation, working memory,
recall tests for faces, words and objects, and emotion identification!!. In all instances, age and sex was
regressed out of the phenotype (Supplementary Table 4) and samples were thereafter binarized into
poor and good performers (bottom and top 33% percentile, respectively) resulting in ~1,000 samples
per group for each phenotype (Supplementary Figure 4,5, Supplementary Table 3).

For each of the nine phenotypes, we first performed SNP-level genome-wide association analysis, as a
comparative baseline following traditional methods. We used a mixed-effects linear model that
included genome-wide genetic ancestry as a covariate (GCTA?2). Among the nine phenotypes, 661
SNPs had suggestive levels of significance at the genome-wide level (p < 1075; Figure 1b,c,
Supplementary Figure 6,7,8, Supplementary Table 6). Over half of these SNPs are associated with tasks
related to complex cognition, i.e. verbal reasoning, non-verbal reasoning and spatial reasoning (377
SNPs or 57%). 27% were associated with executive function (177 SNPs), which included attention
allocation and working memory. 13% SNPs were associated with declarative memory tasks (83 SNPs),
which included face recall, word recall and object recall. 4% of SNPs were associated with emotion
identification (24 SNPs), a measure of social processing. More generally, SNPs associated with PNC
cognitive phenotypes at suggestive significance levels (p<10->) map to genes previously associated
with diseases of the nervous system and/or mark cell-types in the fetal and newborn brain*43
(Supplementary Figure 8, Supplementary Table 7). We predict that one-sixth of suggestive peaks (112
SNPs or 17%) are linked to a functional consequence in brain tissue, including non-synonymous
changes to protein sequence (Supplementary Fig. 8), presence in brain-specific promoters and
enhancers, or association with changes in gene expression (Supplementary Table 6).
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Nonverbal reasoning was the only phenotype with SNPs passing the cutoff for genome-wide
significance (rs77601382 and rs5765534, p = 4.6x10-8) (Figure 2). The peak is located in a ~33kb
region (chr22:45,977,415-46,008,175) overlapping the 3’ end of the Fibulin-1 (FBLN1) gene, including
the last intron and exon (Figure 2b). To better understand the significance of this gene in brain
function, we examined FBLN1 expression in published fetal and adult transcriptomes, and single-cell
dataz?4345, FBLN1 transcription in the human brain is highest in the early stages of fetal brain
development, with little to no expression in the adult (Figure 2c, Supplementary Figure 8); this is
consistent with single-cell assays showing FBLN1 to be a marker for dividing progenitor cells in the
fetal brain®3. FBLN1 encodes a glycoprotein present in the extracellular matrix; this protein is a direct
interactor of proteins involved in neuronal diseases, such as Amyloid Precursor Protein-154
(Supplementary Figure 9 >3°). FBLN1 expression is upregulated in the brain in schizophrenia and has
been previously associated with genetic risk for bipolar disorder (Figure 1d, °657). Therefore, we
conclude that FBLN1, associated with nonverbal reasoning test performance, shows characteristics of
a gene involved in neurodevelopment and the dysregulation of which could increase risk for psychotic
disorders of neurodevelopmental origin.

Pathway analysis is an established systems-genomics technique used to improve the statistical power
of subthreshold univariate signal by aggregation of signal and reduction of multiple hypothesis testing
burden, as well as to provide mechanistic insight into cellular processes that affect phenotypic
outcome. Pathway analysis has been successfully used to link genetic disease risk to cellular processes
for diseases in various domains, including schizophrenia®8, breast cancer>® and type 2 diabetes®. We
performed pathway analysis for the nine phenotypes using a rank-based pathway analysis strategy
(GSEA3138, 500 permutations; 4,102 pathways tested). SNPs were mapped to genes using brain-
specific eQTL, chromatin interaction and positional information, using the same method as described
above. The working memory phenotype demonstrated significant enrichment of top-ranking genetic
variants in a developmental pathway (q < 0.05; Supplementary Tables 8-10), showing biologically
relevant signal where our univariate SNP-based baseline analysis did not. An advantage of the rank-
based pathway analysis over those based on hypergeometric or binomial tests, is that the former
provides a list of “leading-edge” genes driving the pathway-level enrichment signal, which can be
further interpreted. We annotated leading-edge genes with prior knowledge about genetic
associations with nervous system disorders, transcription in brain cell types*-4351 and known drug
interactions®%. Out of 53 leading edge genes of this gene set, roughly one-half are known brain cell
markers (25 genes or 47%), roughly one-third have known drug interactions (17 genes or 36%), and
~11% are associated with nervous system disease (6 genes) (pathway q < 0.05, Figure 3a,
Supplementary Table 10, Supplementary Figure 11). Among disease-associated genes were those
associated with autism (CSDE1) and Parkinson's disease (LHFPLZ2).

To perform a brain system and disease analysis, we performed a second enrichment analysis using
gene sets curated from the literature, including transcriptomic and proteomic profiles of the
developing and adult healthy brain and brains affected by mental illness, brain-related genome-wide
association studies, and terms from a phenotype ontology (421 gene sets tested, Supplementary Note
5, Supplementary Table 5, Supplementary Data 1). Two gene sets pertaining to general nervous
system dysfunction were significantly enriched (q<0.05; GSEA, 500 permutations), again related to
working memory (Figure 3c, Supplementary Table 11). Roughly 17% of the 71 leading edge genes of
these gene sets are associated with nervous system disorders (12 genes), roughly one-third have
predicted drug targets (22 genes, 31%), and over half (43 genes or 61%) are markers of brain cell-
types (Figure 3b,c; Supplementary Table 12, 13). Two genes have all three attributes: SNCA and LRRKZ2
(Figure 3c, Supplementary Table 13). Leading edge genes have genetic associations, including those
with schizophrenia, autism spectrum disorder, Parkinson's disease, Alzheimer's disease, depression
and mood disorders (Figure 3c, Supplementary Table 13). In summary, we identified many genetic
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variants associated with normative variation in a range of neurocognitive phenotypes enriched in
pathways and gene sets related to development, nervous system dysfunction and mental disorders.

Discussion

To our knowledge, this is the first study to identify genetic variants that may contribute to normal
human variation in multiple, diverse cognitive domains, and to link these to various levels of brain
system organization, including genes, pathways, cell types, brain regions, diseases and known drug
targets. These associations, particularly potential drug targets, represent hypotheses to be
experimentally validated in model systems to improve the mechanistic understanding of the molecular
substrates of the respective phenotypes.

We found an enrichment of genetic variants associated with complex cognitive phenotypes (75-219
suggestive peaks in a Manhattan plot), consistent with heritability estimates of up to 0.30-0.41 for
these phenotypes'2. We also found that many variants, genes and pathways associated with normal
variation in neurocognitive phenotypes have known roles in neurodevelopment, modulating gene
expression in the fetal and adult brain and increasing risk for psychiatric diseases of
neurodevelopmental origin (Figure 1, Supplementary Table 6, 7, 10, 13). Multiple lines of evidence
suggest that FBLN1, the gene we find associated with genome-wide significant SNPs for nonverbal
reasoning, is dysregulated in brain-related disease. In addition to the evidence provided in our results
(Figure 2c, Supplementary Figure 8,9), the FBLN1 gene has been associated with a rare genetic
syndrome that includes various cognitive impairments, and protein levels of FBLN1 have been
associated with altered risk for ischaemic stroke®.%2, However, the mechanism by which FBLN1
contributes to normal brain function is not known. We also do not exclude the possibility that
suggestive peaks we identified within FBLN1 may affect the function of neighbouring or otherwise
linked genes, which may instead or in combination affect the phenotype. One such gene is Ataxin-10
(ATXN10), which is the next neighboring downstream gene to FBLN1, in which a pentanucleotide
repeat expansion causes spinocerebellar atrophy and ataxia®. The FBLNT locus was not significantly
enriched in a large GWAS study of general cognitive ability ¢4, suggesting that this locus may be
influencing a specialized trait.

A limitation of the current study is the relatively small size of the patient cohort - roughly 1,000 cases
and controls each per phenotype - compared to contemporary GWAS studies which may include over
100,000 individuals. The reduced sample size is partly because we chose to limit the analysis to
individuals with European genetic ancestry, to maintain the largest number of samples while avoiding
the confound with genetic ancestry. Furthermore, we dichotomized the phenotype into bottom and
top performers, ignoring samples in the middle, as our goal was to work with a subset enriched for
extremes within typical phenotypic variation, to strengthen signal. For all phenotypes tested in this
work, we also performed genome-wide association tests using continuously-valued measures, instead
of binarized phenotypes; none of the associations resulted in significant results (data not shown). This
lack of association is consistent with the strategy to binarize outcomes for improved contrast;
binarization includes only the top and bottom thirds of performance measures, and ignores the
measures in between.

This work contributes towards an understanding of the molecular and systems-level underpinnings of
individual cognitive tasks. These associations will need to be validated in better-powered datasets,
possibly using newer neurobehavioural measurement standards in the field®> but can currently be
used as hypotheses to plan biological experiments, or as support for orthogonal methods studying the
relevance of genes and pathways we identify for brain biology. Studying the overlap in genetic
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architecture between these phenotypes, similar to cross-disorder genetic studies®®, may also inform
disease classification®”.8. Qur analysis is limited to univariate genetic effects, and future work should
explore the contribution of interactions between individual SNPss, though this will require many more
samples per phenotype. We propose that research frameworks for linking genotype to phenotype for
brain-related traits include systems genomics analysis, considering pathways, cells, anatomical
structures, and physiological processes as organizational layers to improve the amount of genetic
signal that can be extracted from available genetic data, which otherwise would be missed if just
considering SNPs and genes. For example, the working memory phenotype had no significant SNPs
that met the genome-wide significance cutoff. However, gene sets related to development and
autonomic nervous system dysfunction demonstrated significant clustering of high-ranking variants,
including those in SLIT3 (rs62376937) and ROBOZ2 (rs12497629), which mediate axon guidance in the
developing nervous system. The conceptual strategy we outline in this work, of organizing variant-
related annotation into a systems-level view is generalizable across biomedical domains and to human
disease (Figure 1,4). Integration of such evidence across studies can identify common themes or
discrepancies to encourage thinking of a systems-level view of genotype-phenotype association for
disease.
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Figure 1. Framework for multi-scale systems-genomics analysis for neurocognitive phenotypes from
the Philadelphia Neurodevelopmental Cohort. a. Workflow for genome-wide association analysis
(GWAS). Genotypes were imputed (1KGP reference), and limited to European samples. Samples with
severe medical conditions were removed and invalid test scores excluded. Nine neurocognitive test
scores were binarized after regressing out age and sex. GWAS was performed using the accuracy
measure as a phenotype for each of these nine phenotypes. b. Framework to organize variant-level
associations into a multi-scale systems view in health (blue) and disease (red). Existing functional
genomic resources used for annotation shown in brown.
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Figure 2. Genome-wide significance of FBLNI1 region for binarized performance in nonverbal
reasoning

a. Manhattan plot of univariate SNP association with binarized performance in nonverbal reasoning
(N=1,024 poor vs. 1,023 good performers; 4,893,197 SNPs). Plot generated using FUMA?
b. Detailed view of hit region at chr22q13. Two SNPs pass genome-wide significance threshold,
rs77601382 and rs74825248 (p=4.64e-8). View using Integrated Genome Viewer (v2.3.937172), The
red bar indicates the region with increased SNP-level association.
c. FBLN1 transcription in the human brain through the lifespan. Data from BrainSpan. Log-
transformed normalized expression is shown for cerebellar cortex (CBC), central ganglionic eminence
(CGE) and lateral ganglionic eminence (LGE), dorsal frontal cortex (DFC), and hippocampus (HIP).


https://doi.org/10.1101/751933
http://creativecommons.org/licenses/by/4.0/

46

47
48

349
350
351
352
353
354
355
356
357
58
359
60
61
62
63
64

bioRxiv preprint doi: https://doi.org/10.1101/751933; this version posted March 15, 2021. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

a. Curated pathways b. Brain-related gene sets
Fetal brain
cell marker
23
24
6 1 Druggable
8 3 gene
3
1"
h 7 6

C. GN@ Alpha-synuclein
- ; RET 5 - Parkinson's Disease
BIIBO54
Excitatory neuron
"“’j Myosin IH
O schizophrenia
autism. mood disorder
bipolar disorder
unipolar depression
IF1B YOt (_)
LRRK2 - - -
Leucine rich kinase 2
@ @1 ~ O Parkinson's Disease

\ Tamoxifen
@@ @ 6) Oligodendrocyte

precursor

@ @ ranscnptlon factor 4
@ @ {} schlzophrema

autism, mood disorders,
@ unipolar depression
O Leading-edge Excitatory neuron
gene (p < 0.005) .
Interaction
(various)

Figure 3. Pathway and brain system and disease analysis for the working memory performance
phenotype

a. Attributes of leading edge genes in pathway gene sets associated (q < 0.05) with working memory.
Colours indicate transcription in brain cell types (blue), genetic associations with nervous system
disorders (yellow), or those with known drug targets (pink) (N=53 genes in total; 47 with
annotations).

b. Leading edge genes in brain-related gene sets associated with disease, drugs or brain cell types
(N=71 genes total; 50 with annotations). Details in Supplementary Table. Legend as in a.

c. Gene-gene interaction network for working memory leading edge genes from enriched (q < 0.05)
brain-related gene sets. Only genes with top SNP p < 5x10-3 are shown (26 genes). Nodes show genes
and fill colour indicates genes associated with brain cell types, drugs or genetic associations with
nervous system disorders (colours as in panel a, white indicates absence of association). Edges
indicate known interactions (from GeneMANIA%°). Genes from the network with disease associations
are highlighted with grey description bubbles.
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Figure 4. Summary of evidence linking genetic variants associated with cognitive test performance to
multiple levels of brain organization. Each column shows data for an individual phenotype, grouped by
phenotype domain; rows show associations at increasingly more general scales (from top to bottom);
evidence linking variants to healthy system and disease system shown in blue and red, respectively.
Circles indicate relative number of suggestive variant peaks (p < 10-°) from GWAS). Pathways and cell
systems are those identified by gene set enrichment analyses (q<0.05). Cell types are those for which
FBLN1 is found to be a marker from single-cell transcriptome data*?. Gene-disease associations are
identified for significant SNPs, using gene-disease mappings from the NHGRI-EBI catalogue®!.
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