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Abstract 26 

  27 

An open challenge in human genetics is to better understand the link between genotype variation and 28 

the various molecular, cellular, anatomical and physiological systems that it can affect. To address this 29 

challenge, we performed genotype-phenotype-systems analysis for accuracy in nine cognitive tasks 30 

from the Philadelphia Neurodevelopmental Cohort (3,319 individuals aged 8-21 years). We report a 31 

region of genome-wide significance within the 3' end of the FBLN1 gene (p=4.6x10-8), associated with 32 

nonverbal reasoning, a heritable form of complex reasoning ability. Integration of published brain-33 

specific 'omic maps reveals that FBLN1 shows greatest expression in the fetal brain, is a marker of 34 

neural progenitor cells, is differentially expressed in schizophrenia and increases genetic risk for 35 

bipolar disorder. These findings suggest that nonverbal reasoning and FBLN1 variation warrant 36 

further investigation in studies of neurodevelopmental disorders and psychosis. Using genotype-37 

pathway analysis, we identify pathways related to development and to autonomic nervous system 38 

dysfunction associated with working memory accuracy. Top-ranking pathway genes include those 39 

genetically associated with multiple diseases with working memory deficits, such as schizophrenia and 40 

Parkinson's disease, and that are also markers for specific brain cell types. Our findings identify novel 41 

molecular players involved in specific cognitive tasks and link variants to genes, pathways, cell types, 42 

diseases and drugs. This work advances the "molecules-to-behaviour" view of cognition, and provides 43 

a framework for using systems-level organization of data for other biomedical domains. 44 

 45 
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Introduction 46 

The growth in genomics and functional annotation resources over the past decade provides an 47 

opportunity to build models of how changing genotype affects multiple levels of system organization 48 

underlying a phenotype, from genes and molecules through to pathway, cell, cell circuit, anatomy and 49 

physiology system levels (systems-genomics analysis). This opportunity complements a conceptual 50 

shift to systems-level thinking in many biomedical fields. For example, a major drive in psychiatry is 51 

the reconceptualization of mental illnesses as brain disorders treatable by neurobiological system-52 

grounded therapies, such as working memory deficits in schizophrenia1. As a shared guide for the 53 

field, the U.S. National Institute of Mental Health has developed a "genes-to-behaviour" framework that 54 

deconstructs human behaviour into neurobehavioural domains, such as cognition and social 55 

processing2. Each of these constructs has subconstructs and these are linked to a variety of systems 56 

level concepts. While the genetic architecture of overall cognitive ability (i.e., intelligence) has been 57 

studied by large-scale GWAS3-5, little is known about the molecular basis of more detailed 58 

neurocognitive phenotypes. 59 

 60 

In this work, we identify genetic variants associated with normative variation in nine cognitive 61 

phenotypes measured in the Philadelphia Neurodevelopmental Cohort (PNC). We selected this study 62 

for our systems-genomics analysis as the phenotypes measured were designed around systems-level 63 

neuroscience theory. For example, tasks requiring use of working memory, a type of short-term 64 

memory that recruits a cortical-subcortical network including the dorsolateral prefrontal cortex, 65 

shows a genetic component in twins, and is impaired in schizophrenia 6-8. Thus, we hypothesize that 66 

this data will yield systems-genomics signal, that is genetic variants linked to one or more system level 67 

scales of phenotype-related organization. To our knowledge, there have been no reports of genotype-68 

phenotype analyses on the PNC dataset. Using diverse functional genomics resources, we link variants 69 

to genes, pathways, brain cell types, brain systems, predicted drug targets, and diseases, providing a 70 

systems-level view of the genetics of the neurodevelopmental phenotypes under study. With 71 

standardized and well-controlled cognitive tests and genotyping on over 8,000 community youths 72 

aged 8-21 years, the PNC is the largest publicly-available dataset for genotype-phenotype analysis of 73 

developmental cognition9,10. All participants have computerized neurocognitive test battery scores, 74 

measuring speed and accuracy in multiple cognitive domains. These measures have neurobehavioural 75 

validity11, SNP-based heritability12, and disease relevance11,13. Multiple cognitive test scores in the PNC 76 

demonstrate significant SNP-based heritability12, and reduced test scores are correlated with 77 

increased genetic risk of psychiatric disease13. Moreover, the PNC captures the age range through 78 

which some cognitive abilities, such as working memory, mature to stable adult levels14,15. Despite the 79 

relatively small size of this dataset by GWAS standards, we reasoned that the PNC dataset provides a 80 

valuable opportunity to study the molecular and systems basis of cognitive tasks impaired in disease 81 

and evaluate how a systems-genomics approach can increase statistical and interpretive power 82 

compared to standard SNP and gene-based analysis approaches, both of which are performed here to 83 

enable us to compare these approaches. 84 

Methods 85 

 86 

Cognitive assessment was performed using the Penn Computerized Neurocognitive Battery (CNB), 87 

which was customized and shortened for a pediatric population. Performance is measured by a 88 

session of trials containing items with varying levels of difficulty, which allows the test to capture 89 

nuances in speed and accuracy measures. Tests were also developed through evaluation by 90 
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psychological investigators to ensure tasks could measure the phenotype of interest (i.e. had 91 

"construct validity") and reliability between test-takers and through retakes11. 92 

Genetic imputation 93 

The samples (n=8,719) were all genotyped using Illumina or Affymetrix SNP-array platforms by the 94 

Center for Applied Genomics at The Children's Hospital of Philadelphia.16 The workflow for genomic 95 

imputation is shown in Supplementary Figure 1. Genotypes for the four most frequent microarray 96 

genotyping platforms were downloaded from dbGaP (phs000607.v1). We performed genetic 97 

imputation for the Illumina Human610-Quad BeadChip, the Illumina HumanHap550 Genotyping 98 

BeadChip v1.1, Illumina HumanHap550 Genotyping BeadChip v3, and the Affymetrix AxiomExpress 99 

platform (Supplementary Table 1, total of 6,502 samples before imputation), using the protocol 100 

recommended by the EMERGE consortium17. Imputation was performed as follows: 101 

Step 1: Platform-specific plink quality control: Quality control was first performed for each 102 

microarray platform separately. Single nucleotide polymorphisms (SNPs) were limited to those on 103 

chr1-22. SNPs in linkage disequilibrium (LD) were excluded (--indep-pairwise 50 5 0.2), and alleles 104 

were recoded from numeric to letter (ACGT) coding. Samples were excluded if they demonstrated 105 

heterozygosity > 3 standard deviations (SD) from the mean, or if they were missing >=5% genotypes. 106 

Where samples had pairwise Identity by Descent (IBD) > 0.185, one of the pair was excluded. Variants 107 

with minor allele frequency (MAF) < 0.05 were excluded, as were those failing Hardy-Weinberg 108 

equilibrium with p < 1e-6 and those missing in >=5% samples.  109 

Step 2: Convert coordinates to hg19. LiftOver18 was used to convert SNPs from human genome 110 

assembly version hg18 to hg19; Hap550K v1 data was in hg17 and was converted from this build to 111 

hg19. 112 

Step 3: Strand-match check and prephasing: ShapeIt v2.r79019 was used to confirm that the allelic 113 

strand in the input data matched that in the reference panel; where it did not, allele strands were 114 

flipped (shapeit “–check” flag). ShapeIt was used to prephase the variants using the genetic_b37 115 

reference panel (downloaded from the Shapeit website, 116 

http://www.shapeit.fr/files/genetic_map_b37.tar.gz) 117 

Step 4: Imputation: Genotypes were imputed using Impute2 v2.3.220 and a reference panel from the 118 

1,000 Genomes (phase 1, prephased with Shapeit2, no singletons, 16 June 2014 release, downloaded 119 

from 120 

https://mathgen.stats.ox.ac.uk/impute/data_download_1000G_phase1_integrated_SHAPEIT2_16-06-121 

14.html) was used for imputation, using the parameter settings “–use_prephased_g –Ne 20000 –seed 122 

367946”. Average concordance for all chromosomes was ~95%, indicating successful imputation 123 

(Supplementary Figure 2). Imputed genotypes were merged across all platforms using software from 124 

the Ritchie lab17 (impute2-group-join.py, from https://ritchielab.org/software/imputation-download) 125 

and converted to plink format. Following previous PNC genotype analysis12, only SNPs with info score 126 

> 0.6 were retained, and deletions/insertions were excluded (plink “-snps-only just-acgt” flags). As 127 

preliminary quality control, when merging across chromosomes, samples with missingness exceeding 128 

99% were excluded, as were SNPs with MAF < 1% and with missingness exceeding 99%. This step 129 

resulted in 10,845,339 SNPs and 6,327 individuals. 130 

Step 5: Post-imputation quality control: The HapMap3 panel was used to assign genetic ancestry for 131 

samples, using steps from 21 (Supplementary Figure 3). Individuals within 5 SD of the centroid of the 132 

HapMap3 CEU (Utah residents with Northern or Western European ancestry) or TSI (Tuscans in Italy) 133 

clusters were assigned to belong to the respective groups, and were classified as being of European 134 

descent; 3,441 individuals pass this filter. Individuals with >5% missing data were excluded, as was 135 

one of each pair of individuals with IBS > 0.185 (47 individuals); 3,394 individuals passed this filter. 136 

Variants that were symmetric or in regions of high LD (Supplementary Table 2) were excluded 137 

(9,631,316 SNPs passed). Variants with >5% missingness were excluded (1,569,407 SNPs excluded).  138 

Finally, SNPs with MAF < 0.01 (3,168,339 SNPs) and failing Hardy-Weinberg equilibrium (HWE) with 139 
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p value < 1e-6 (373 SNPs) were excluded, resulting in 4,893,197 SNPs. As only high-quality SNPs were 140 

retained after imputation, post-processing steps were performed only once. In sum, the imputation 141 

process resulted in 3,394 individuals and 4,893,197 SNPs available for downstream analysis. 142 

Phenotype processing 143 

Phenotype data was downloaded from dbGaP for 8,719 individuals. 637 individuals with severe 144 

medical conditions (Medical rating=4) were excluded to avoid confounding the symptoms of their 145 

conditions with performance on the cognitive tests12. Linear regression was used to regress out the 146 

effect of age at test time (variable name: “age at cnb”) and sex from sample-level phenotype scores, 147 

and the residualized phenotype was used for downstream analysis.  148 

The nine phenotypes selected for systems-genomics analysis are measures of overall performance 149 

accuracy in the Penn Computerized Neurocognitive Test Battery (CNB; Supplementary Table 3) and 150 

represent major cognitive domains. Tasks mapped to domains in the following manner: verbal 151 

reasoning, nonverbal reasoning, and spatial reasoning measured complex cognition; attention 152 

allocation and working memory measured executive function; recall tests for faces, words and objects 153 

measured declarative memory, and emotion identification measured social processing. Following 154 

regression, none of the phenotypes were significantly correlated with age after Bonferroni correction, 155 

indicating that the age effect had been reduced (Supplementary Table 4). Following guidelines from 156 

previous analyses on these data13, individuals with scores more than four standard deviations from 157 

the mean for a particular test, representing outliers, were excluded from the analysis of the 158 

corresponding phenotype. For a given phenotype, only samples with a code indicating a valid test 159 

score (codes "V" or "V2") were included; e.g. for pfmt_tp (Penn Face Memory Test), only samples with 160 

pfmt_valid = “V” or “V2” were retained; the rest had scores set to NA. Finally, each phenotype was 161 

dichotomized so that samples in the bottom 33rd percentile were relabeled as “poor” performers and 162 

those in the top 33rd were set to be “good” performers; for a given phenotype, this process resulted in 163 

~1,000 samples in each group (Supplementary Table 3). Where an individual had good or poor 164 

performance in multiple phenotypes, they were included in the corresponding group for each of those 165 

phenotypes. 166 

 167 

Genetic association analysis 168 

For each of nine CNB phenotypes, marginal SNP-level association was calculated using a mixed-effects 169 

linear model (MLMA), using the leave-one-chromosome-out (LOCO) method of estimating polygenic 170 

contribution (GCTA v1.97.7beta software22). In this strategy, a mixed-effect model is fit for each SNP: 171 

y = a + bx + g- + e 172 

 173 

where y is the binarized label (good/poor performer on a particular task), x measures the effect of 174 

genotype (indicator variable coded as 0, 1 or 2),  g- represents the polygenic contribution of all the 175 

SNPs in the genome (here, the ~4.89M imputed SNPs), and e represents a vector of residual effects. In 176 

the LOCO variation, g- is calculated using a chromosome-specific genetic relatedness matrix, one that 177 

excludes the chromosome on which the candidate SNP is located22. SNPs and associated genes were 178 

annotated as described in Supplementary Notes 1-4. 179 

 180 

Hi-C Data Processing 181 

We downloaded publicly-available Hi-C data from human prefrontal cortex tissue23,24 (Illumina HiSeq 182 

2000 paired-end raw sequence reads; n=1 sample; 746 Million reads; accession: GSM2322542 183 

[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM2322542]). We used Trim Galore25 184 

(v0.4.3) for adapter trimming, HICUP26 (v0.5.9) for mapping and performing quality control, and 185 

GOTHIC27 for identifying significant interactions (Bonferroni p <0.05), with a 40 kb resolution. Hi-C 186 
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gene annotation involved identifying interactions with gene promoters, defined as ± 2 kb of a gene 187 

TSS. This analysis identified 303,464 DNA-DNA interactions used for our study. 188 

 189 

SNP to gene mapping for annotation and enrichment analyses 190 

SNPs were mapped to genes using a combination of genome position information (i.e. closest gene), 191 

brain-specific expression Quantitative Trait Locus (eQTL) and higher-order chromatin interaction (Hi-192 

C) information. 193 

 194 

Gene definitions were downloaded from Gencode 195 

(ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_32/GRCh37_mapping/gencode.196 

v32lift37.basic.annotation.gtf.gz). Only genes with "protein_coding" biotype were included (20,076 197 

unique gene symbols), to simplify interpretation of cellular mechanisms using pathway annotation 198 

information, which almost completely include only protein coding genes. Using chromatin state maps 199 

from the Roadmap Epigenomics project28, we compiled a list of open chromatin and enhancer regions 200 

in brain tissue. These comprised maps derived from 13 human brain samples, including: 201 

neurospheres, angular gyrus, anterior caudate, germinal matrix, hippocampus, inferior temporal lobe, 202 

dorsolateral prefrontal cortex, substantia nigra, and fetal brain of both sexes (samples E053, E054, 203 

E067, E068, E069, E070, E071, E072, E073, E074, E081, E082, and E125), downloaded from 204 

http://www.roadmapepigenomics.org/. Open chromatin states were defined as genomic regions with 205 

epigenomic roadmap project’s core 15-state model values <=7. Enhancers were defined as those 206 

labeled with states "Enh" and "EnhG". 207 

 208 

For eQTL-based mapping, we searched for significant eQTLs in 12 types of brain tissue (GTEx v7: 209 

Amygdala, Anterior cingulate cortex BA24, Caudate basal ganglia, Cerebellar Hemisphere, Cerebellum, 210 

Cortex, Frontal Cortex BA9, Hippocampus, Hypothalamus, Nucleus accumbens basal ganglia, Putamen 211 

basal ganglia, and Substantia nigra) downloaded from https://www.gtexportal.org; Supplementary 212 

Note 129). Of these, only SNPs overlapping open chromatin regions of brain-related samples (see 213 

previous paragraph) were included.  214 

 215 

For 3D chromatin interaction mapping (Hi-C), we downloaded long-range chromatin interaction data 216 

from the adult cortex24 and human developing brain30 (Interactions to TSS for cortical plate and 217 

germinal zone, Tables S22 and S23 of Won et al.30).  The enhancer region of these enhancer-promoter 218 

interactions was intersected with brain enhancers (see above) to only keep enhancer-promoter 219 

interactions overlapping known active brain enhancers. Then, the promoter region of these filtered 220 

enhancer-promoter interactions was mapped to a gene if it intersected with the region 250bp 221 

upstream and 500bp downstream of the corresponding gene transcription start site. SNPs were 222 

mapped to a gene if they overlapped the promoter of the filtered enhancer-promoter sites. 223 

 224 

Finally, SNPs were positionally mapped to the nearest gene if the shortest distance to either 225 

transcription start site or end site was 60kb. This cutoff was selected because it maps the majority 226 

(90%) of SNPs to their nearest gene, following a distance distribution analysis.  227 

 228 

The order of SNP-gene mapping was as follows: SNPs that mapped to a gene via brain eQTL or Hi-C 229 

interactions were prioritized and not also positionally mapped to a gene. A SNP was allowed to map to 230 

genes using both eQTL and Hi-C. SNPs without eQTL or Hi-C mappings were positionally mapped to a 231 

gene. Where a SNP positionally mapped to multiple genes, all associations were retained. These SNP-232 

gene mappings were used for the pathway and gene set enrichment analysis described below, as well 233 

as to annotate SNPs from the GWAS analysis. 234 

 235 
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Using these criteria, 7.7% of SNPs mapped to genes using non-positional information (246,357 by 236 

eQTL and 16,923 by HiC, for a total of 263,280 SNPs); 2,917,948 SNPs mapped solely by positional 237 

information (89.2%). In total, SNPs mapped to 18,782 genes. 1,711,969 SNPs did not map to any genes 238 

(34.9%). 239 

Gene set enrichment analysis 240 

For each of the nine CNB phenotypes, gene set enrichment analysis was performed using an 241 

implementation of GSEA for genetic variants31,32. GSEA was selected as it computes pathway 242 

enrichment scores using all available SNP information, which improves sensitivity, rather than using a 243 

hypergeometric model limited to SNPs passing a specific GWAS p-value cutoff. Moreover, pathway 244 

significance is ascertained using sample permutation, which corrects false-positives arising due to 245 

mapping of a few high-ranking SNPs to multiple nearby genes in the same pathway33. All SNPs were 246 

mapped to genes (as described in the "SNP-gene mapping for annotation and enrichment analyses" 247 

section above) and the gene score was defined as the best GWAS marginal p-value of all mapped SNPs 248 

for each gene. For each pathway, GSEA computes an enrichment score (ES) using the rank-sum of gene 249 

scores. The set of genes that appear in the ranked list before the rank-sum reaches its maximum 250 

deviation from zero, is called the "leading edge subset", and is interpreted as the core set of genes 251 

responsible for the pathway's enrichment signal. Following computation of the ES, we created a null 252 

distribution for each pathway by repeating genome-wide association tests with randomly label-253 

permuted data and by computing ES from these permuted data; in this work, we use 100 permutations 254 

to reduce computational burden. As a test of sensitivity to this parameter, we increased this value to 255 

1000 for the working memory phenotype (lnb_tp2). Finally, the ES on the original data is normalized 256 

to the score computed for the same gene set for label-permuted data (Z-score of real ES relative to 257 

mean of ES in label-permuted data), resulting in a Normalized Enrichment Score (NES) per pathway. 258 

The nominal p-value for the NES score is computed based on the null distribution and FDR correction 259 

is used to generate a q-value. 260 

 261 

We used enrichment analysis to perform pathway analysis using pathway information compiled from 262 

HumanCyc34 (http://humancyc.org), NetPath (http://www.netpath.org)35, Reactome 263 

(http://www.reactome.org)36, NCI Curated Pathways37, mSigDB38 264 

(http://software.broadinstitute.org/gsea/msigdb/), and Panther39 (http://pantherdb.org/) and Gene 265 

Ontology40 (Human_GOBP_AllPathways_no_GO_iea_May_01_2018_symbol.gmt, downloaded from 266 

http://download.baderlab.org/EM_Genesets/May_01_2018/Human/symbol/Human_GOBP_AllPathwa267 

ys_no_GO_iea_May_01_2018_symbol.gmt); only pathways with 20-500 genes were used. 268 

 269 

We also used enrichment analysis to perform a brain system and disease analysis using brain-related 270 

gene sets we compiled from various literature sources (see Supplementary Table 5 and 271 

Supplementary Note 5). Brain system gene sets included those identified through transcriptomic or 272 

proteomic assays in human brain tissue (i.e. direct measurement of expression), and genes associated 273 

with brain function by indirect inference (e.g. genetic association of nervous system disorders); both 274 

groups of gene sets were combined for this enrichment analysis. The transcriptomic/proteomic gene 275 

sets included: genes identified as markers for adult and fetal brain cell types using single-cell 276 

transcriptomic experiments41-43, genes enriched for brain-specific expression (Human Protein Atlas 277 

project (https://www.proteinatlas.org44); genes co-expressed with markers of various stages of 278 

human brain development (BrainSpan45); and genes encoding proteins altered in the schizophrenia 279 

synaptosomal proteome46. Brain disease gene sets included: genes associated with schizophrenia, 280 

bipolar disorder, autism spectrum disorder and major depressive disorder through large-scale genetic 281 

association studies by the Psychiatric Genomics Consortium (Supplementary Note 5); genes associated 282 

with nervous system disorders by the Human Phenotype Ontology47. Genes in the second group were 283 

filtered to only include genes with detectable expression in the fetal48 or adult human brain44. A total 284 
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of 1,321 gene sets were collected across both system and disease categories (Table S14). Only gene 285 

sets with 20-500 genes were included in the analysis; 421 gene sets met these criteria and were 286 

included in the enrichment analysis. 287 

Leading edge gene interaction network 288 

Genes contributing to pathway enrichment results (leading edge genes) were obtained in our GSEA 289 

analysis for genetic variants31. A gene-gene interaction network was constructed from leading edge 290 

genes of pathways with q < 0.05 using the online GeneMANIA service (v 3.6.0; 291 

https://genemania.org49) (human database, default settings); the resulting network and edge 292 

attributes were downloaded. This network was imported into Cytoscape v3.7.1 for visualization. 293 

Known drug associations were obtained from DGIdb50 and GWAS associations with nervous system 294 

disorders were obtained from the NHGRI-EBI GWAS catalogue, via programmatic search using the 295 

TargetValidation.org API51,52. Cell type marker information was compiled from single cell RNA-seq 296 

datasets, including those for adult and fetal human brain41-43. 297 

Results 298 

We developed a systems-genomics analysis workflow to identify genetic variants associated with 299 

normal cognitive phenotypes (Figure 1). Briefly, genotypes were imputed using a reference panel from 300 

the 1,000 Genomes Project53, and samples were limited to those of European genetic ancestry 301 

(Supplementary Figure 1-3, Supplementary Table 1). 3,394 individuals and ~4.9M SNPs passed the 302 

quality control and imputation process. Following quality control of phenotype data, 3,116 European 303 

samples passed both genotype and phenotype filters and were included in downstream analyses. We 304 

selected nine phenotypes from the Penn Computerized Neurocognitive Test Battery (CNB) 305 

representing overall accuracy in four cognitive domains: complex cognition, executive function, 306 

declarative memory, and social processing (Supplementary Table 3). Measures included performance 307 

for verbal reasoning, nonverbal reasoning, spatial reasoning, attention allocation, working memory, 308 

recall tests for faces, words and objects, and emotion identification11. In all instances, age and sex was 309 

regressed out of the phenotype (Supplementary Table 4) and samples were thereafter binarized into 310 

poor and good performers (bottom and top 33% percentile, respectively) resulting in ~1,000 samples 311 

per group for each phenotype (Supplementary Figure 4,5, Supplementary Table 3). 312 

 313 

For each of the nine phenotypes, we first performed SNP-level genome-wide association analysis, as a 314 

comparative baseline following traditional methods. We used a mixed-effects linear model that 315 

included genome-wide genetic ancestry as a covariate (GCTA22). Among the nine phenotypes, 661 316 

SNPs had suggestive levels of significance at the genome-wide level (p < 10-5; Figure 1b,c, 317 

Supplementary Figure 6,7,8, Supplementary Table 6). Over half of these SNPs are associated with tasks 318 

related to complex cognition, i.e. verbal reasoning, non-verbal reasoning and spatial reasoning (377 319 

SNPs or 57%). 27% were associated with executive function (177 SNPs), which included attention 320 

allocation and working memory. 13% SNPs were associated with declarative memory tasks (83 SNPs), 321 

which included face recall, word recall and object recall. 4% of SNPs were associated with emotion 322 

identification (24 SNPs), a measure of social processing. More generally, SNPs associated with PNC 323 

cognitive phenotypes at suggestive significance levels (p<10-5) map to genes previously associated 324 

with diseases of the nervous system and/or mark cell-types in the fetal and newborn brain41,43 325 

(Supplementary Figure 8, Supplementary Table 7). We predict that one-sixth of suggestive peaks (112 326 

SNPs or 17%) are linked to a functional consequence in brain tissue, including non-synonymous 327 

changes to protein sequence (Supplementary Fig. 8), presence in brain-specific promoters and 328 

enhancers, or association with changes in gene expression (Supplementary Table 6). 329 

 330 
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Nonverbal reasoning was the only phenotype with SNPs passing the cutoff for genome-wide 331 

significance (rs77601382 and rs5765534, p = 4.6x10-8) (Figure 2). The peak is located in a ~33kb 332 

region (chr22:45,977,415-46,008,175) overlapping the 3' end of the Fibulin-1 (FBLN1) gene, including 333 

the last intron and exon (Figure 2b). To better understand the significance of this gene in brain 334 

function, we examined FBLN1 expression in published fetal and adult transcriptomes, and single-cell 335 

data29,43,45. FBLN1 transcription in the human brain is highest in the early stages of fetal brain 336 

development, with little to no expression in the adult (Figure 2c, Supplementary Figure 8); this is 337 

consistent with single-cell assays showing FBLN1 to be a marker for dividing progenitor cells in the 338 

fetal brain43. FBLN1 encodes a glycoprotein present in the extracellular matrix; this protein is a direct 339 

interactor of proteins involved in neuronal diseases, such as Amyloid Precursor Protein-154 340 

(Supplementary Figure 9 55). FBLN1 expression is upregulated in the brain in schizophrenia and has 341 

been previously associated with genetic risk for bipolar disorder (Figure 1d, 56,57). Therefore, we 342 

conclude that FBLN1, associated with nonverbal reasoning test performance, shows characteristics of 343 

a gene involved in neurodevelopment and the dysregulation of which could increase risk for psychotic 344 

disorders of neurodevelopmental origin.  345 

 346 

Pathway analysis is an established systems-genomics technique used to improve the statistical power 347 

of subthreshold univariate signal by aggregation of signal and reduction of multiple hypothesis testing 348 

burden, as well as to provide mechanistic insight into cellular processes that affect phenotypic 349 

outcome. Pathway analysis has been successfully used to link genetic disease risk to cellular processes 350 

for diseases in various domains, including schizophrenia58, breast cancer59 and type 2 diabetes60. We 351 

performed pathway analysis for the nine phenotypes using a rank-based pathway analysis strategy 352 

(GSEA31,38, 500 permutations; 4,102 pathways tested). SNPs were mapped to genes using brain-353 

specific eQTL, chromatin interaction and positional information, using the same method as described 354 

above. The working memory phenotype demonstrated significant enrichment of top-ranking genetic 355 

variants in a developmental pathway (q < 0.05; Supplementary Tables 8-10), showing biologically 356 

relevant signal where our univariate SNP-based baseline analysis did not. An advantage of the rank-357 

based pathway analysis over those based on hypergeometric or binomial tests, is that the former 358 

provides a list of “leading-edge” genes driving the pathway-level enrichment signal, which can be 359 

further interpreted. We annotated leading-edge genes with prior knowledge about genetic 360 

associations with nervous system disorders, transcription in brain cell types41-43,51 and known drug 361 

interactions50. Out of 53 leading edge genes of this gene set, roughly one-half are known brain cell 362 

markers (25 genes or 47%), roughly one-third have known drug interactions (17 genes or 36%), and 363 

~11% are associated with nervous system disease (6 genes) (pathway q < 0.05, Figure 3a, 364 

Supplementary Table 10, Supplementary Figure 11). Among disease-associated genes were those 365 

associated with autism (CSDE1) and Parkinson's disease (LHFPL2).  366 

 367 

To perform a brain system and disease analysis, we performed a second enrichment analysis using 368 

gene sets curated from the literature, including transcriptomic and proteomic profiles of the 369 

developing and adult healthy brain and brains affected by mental illness, brain-related genome-wide 370 

association studies, and terms from a phenotype ontology (421 gene sets tested, Supplementary Note 371 

5, Supplementary Table 5, Supplementary Data 1). Two gene sets pertaining to general nervous 372 

system dysfunction were significantly enriched (q<0.05; GSEA, 500 permutations), again related to 373 

working memory  (Figure 3c, Supplementary Table 11). Roughly 17% of the 71 leading edge genes of 374 

these gene sets are associated with nervous system disorders (12 genes), roughly one-third have 375 

predicted drug targets (22 genes, 31%), and over half (43 genes or 61%) are markers of brain cell-376 

types (Figure 3b,c; Supplementary Table 12, 13). Two genes have all three attributes: SNCA and LRRK2 377 

(Figure 3c, Supplementary Table 13). Leading edge genes have genetic associations, including those 378 

with schizophrenia, autism spectrum disorder, Parkinson's disease, Alzheimer's disease, depression 379 

and mood disorders (Figure 3c, Supplementary Table 13). In summary, we identified many genetic 380 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 15, 2021. ; https://doi.org/10.1101/751933doi: bioRxiv preprint 

https://doi.org/10.1101/751933
http://creativecommons.org/licenses/by/4.0/


Page 10 of 18

variants associated with normative variation in a range of neurocognitive phenotypes enriched in 381 

pathways and gene sets related to development, nervous system dysfunction and mental disorders. 382 

Discussion 383 

To our knowledge, this is the first study to identify genetic variants that may contribute to normal 384 

human variation in multiple, diverse cognitive domains, and to link these to various levels of brain 385 

system organization, including genes, pathways, cell types, brain regions, diseases and known drug 386 

targets. These associations, particularly potential drug targets, represent hypotheses to be 387 

experimentally validated in model systems to improve the mechanistic understanding of the molecular 388 

substrates of the respective phenotypes.  389 

 390 

We found an enrichment of genetic variants associated with complex cognitive phenotypes (75-219 391 

suggestive peaks in a Manhattan plot), consistent with heritability estimates of up to 0.30-0.41 for 392 

these phenotypes12. We also found that many variants, genes and pathways associated with normal 393 

variation in neurocognitive phenotypes have known roles in neurodevelopment, modulating gene 394 

expression in the fetal and adult brain and increasing risk for psychiatric diseases of 395 

neurodevelopmental origin (Figure 1, Supplementary Table 6, 7, 10, 13). Multiple lines of evidence 396 

suggest that FBLN1, the gene we find associated with genome-wide significant SNPs for nonverbal 397 

reasoning, is dysregulated in brain-related disease. In addition to the evidence provided in our results 398 

(Figure 2c, Supplementary Figure 8,9), the FBLN1 gene has been associated with a rare genetic 399 

syndrome that includes various cognitive impairments, and protein levels of FBLN1 have been 400 

associated with altered risk for ischaemic stroke61,62. However, the mechanism by which FBLN1 401 

contributes to normal brain function is not known. We also do not exclude the possibility that 402 

suggestive peaks we identified within FBLN1 may affect the function of neighbouring or otherwise 403 

linked genes, which may instead or in combination affect the phenotype. One such gene is Ataxin-10 404 

(ATXN10), which is the next neighboring downstream gene to FBLN1, in which a pentanucleotide 405 

repeat expansion causes spinocerebellar atrophy and ataxia63.  The FBLN1 locus was not significantly 406 

enriched in a large GWAS study of general cognitive ability 64, suggesting that this locus may be 407 

influencing a specialized trait. 408 

 409 

A limitation of the current study is the relatively small size of the patient cohort – roughly 1,000 cases 410 

and controls each per phenotype – compared to contemporary GWAS studies which may include over 411 

100,000 individuals. The reduced sample size is partly because we chose to limit the analysis to 412 

individuals with European genetic ancestry, to maintain the largest number of samples while avoiding 413 

the confound with genetic ancestry. Furthermore, we dichotomized the phenotype into bottom and 414 

top performers, ignoring samples in the middle, as our goal was to work with a subset enriched for 415 

extremes within typical phenotypic variation, to strengthen signal. For all phenotypes tested in this 416 

work, we also performed genome-wide association tests using continuously-valued measures, instead 417 

of binarized phenotypes; none of the associations resulted in significant results (data not shown). This 418 

lack of association is consistent with the strategy to binarize outcomes for improved contrast; 419 

binarization includes only the top and bottom thirds of performance measures, and ignores the 420 

measures in between. 421 

 422 

This work contributes towards an understanding of the molecular and systems-level underpinnings of 423 

individual cognitive tasks. These associations will need to be validated in better-powered datasets, 424 

possibly using newer neurobehavioural measurement standards in the field65 but can currently be 425 

used as hypotheses to plan biological experiments, or as support for orthogonal methods studying the 426 

relevance of genes and pathways we identify for brain biology. Studying the overlap in genetic 427 
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architecture between these phenotypes, similar to cross-disorder genetic studies66, may also inform 428 

disease classification67,68. Our analysis is limited to univariate genetic effects, and future work should 429 

explore the contribution of interactions between individual SNPs69, though this will require many more 430 

samples per phenotype. We propose that research frameworks for linking genotype to phenotype for 431 

brain-related traits include systems genomics analysis, considering pathways, cells, anatomical 432 

structures, and physiological processes as organizational layers to improve the amount of genetic 433 

signal that can be extracted from available genetic data, which otherwise would be missed if just 434 

considering SNPs and genes. For example, the working memory phenotype had no significant SNPs 435 

that met the genome-wide significance cutoff. However, gene sets related to development and 436 

autonomic nervous system dysfunction demonstrated significant clustering of high-ranking variants, 437 

including those in SLIT3 (rs62376937) and ROBO2 (rs12497629), which mediate axon guidance in the 438 

developing nervous system. The conceptual strategy we outline in this work, of organizing variant-439 

related annotation into a systems-level view is generalizable across biomedical domains and to human 440 

disease (Figure 1,4). Integration of such evidence across studies can identify common themes or 441 

discrepancies to encourage thinking of a systems-level view of genotype-phenotype association for 442 

disease. 443 
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Figures 622 

  623 

  624 

625 
Figure 1. Framework for multi-scale systems-genomics analysis for neurocognitive phenotypes626 

the Philadelphia Neurodevelopmental Cohort. a. Workflow for genome-wide association an627 

(GWAS). Genotypes were imputed (1KGP reference), and limited to European samples. Samples628 

severe medical conditions were removed and invalid test scores excluded. Nine neurocognitiv629 

scores were binarized after regressing out age and sex. GWAS was performed using the acc630 

measure as a phenotype for each of these nine phenotypes. b. Framework to organize variant631 

associations into a multi-scale systems view in health (blue) and disease (red). Existing func632 

genomic resources used for annotation shown in brown.   633 
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634 
 635 

Figure 2. Genome-wide significance of FBLN1 region for binarized performance in nonv636 

reasoning 637 

a. Manhattan plot of univariate SNP association with binarized performance in nonverbal reas638 

(N=1,024 poor vs. 1,023 good performers; 4,893,197 SNPs). Plot generated using FU639 

b. Detailed view of hit region at chr22q13. Two SNPs pass genome-wide significance thre640 

rs77601382 and rs74825248 (p=4.64e-8). View using Integrated Genome Viewer (v2.3.9371,72641 

red bar indicates the region with increased SNP-level associ642 

c. FBLN1 transcription in the human brain through the lifespan. Data from BrainSpan45.643 

transformed normalized expression is shown for cerebellar cortex (CBC), central ganglionic emi644 

(CGE) and lateral ganglionic eminence (LGE), dorsal frontal cortex (DFC), and hippocampus (HIP)645 
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  646 

 647 
Figure 3. Pathway and brain system and disease analysis for the working memory perform648 

phenotype 649 

a. Attributes of leading edge genes in pathway gene sets associated (q < 0.05) with working me650 

Colours indicate transcription in brain cell types (blue), genetic associations with nervous s651 

disorders (yellow), or those with known drug targets (pink) (N=53 genes in total; 47652 

annotations).  653 

b. Leading edge genes in brain-related gene sets associated with disease, drugs or brain cell 654 

(N=71 genes total; 50 with annotations). Details in Supplementary Table. Legend as in a. 655 

c. Gene-gene interaction network for working memory leading edge genes from enriched (q <656 

brain-related gene sets. Only genes with top SNP p < 5x10-3 are shown (26 genes). Nodes show 657 

and fill colour indicates genes associated with brain cell types, drugs or genetic associations658 

nervous system disorders (colours as in panel a, white indicates absence of association). 659 

indicate known interactions (from GeneMANIA49). Genes from the network with disease associ660 

are highlighted with grey description bubbles. 661 
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 665 
Figure 4. Summary of evidence linking genetic variants associated with cognitive test performa666 

multiple levels of brain organization. Each column shows data for an individual phenotype, group667 

phenotype domain; rows show associations at increasingly more general scales (from top to bot668 

evidence linking variants to healthy system and disease system shown in blue and red, respec669 

Circles indicate relative number of suggestive variant peaks (p < 10-5) from GWAS). Pathways an670 

systems are those identified by gene set enrichment analyses (q<0.05).  Cell types are those for 671 

FBLN1 is found to be a marker from single-cell transcriptome data43. Gene-disease association672 

identified for significant SNPs, using gene-disease mappings from the NHGRI-EBI catalo673 
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