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ABSTRACT  

Understanding the molecular principles that govern the composition of the mammalian MHC-I 

immunopeptidome (MHC-Ii) across different primary tissues is fundamentally important to predict 

how T cell respond in different contexts in vivo. Here, we performed a global analysis of the 

mammalian MHC-Ii from 29 and 19 primary human and mouse tissues, respectively. First, we 

observed that different HLA-A, -B and -C allotypes do not contribute evenly to the global 

composition of the MHC-Ii across multiple human tissues. Second, we found that peptides that are 

presented in a tissue-dependent and -independent manner share very distinct properties. Third, we 

discovered that proteins that are evolutionarily hyperconserved represent the primary source of the 

MHC-Ii at the organism-wide scale. Finally, we uncovered new components of the antigen 

processing and presentation network that may drive the high level of heterogeneity of the MHC-Ii 

across different tissues in mammals. This study opens up new avenues toward a system-wide 

understanding of antigen presentation in vivo and may serve as ground work to understand tissue-

dependent T cell responses in autoimmunity, infectious diseases and cancer.  
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INTRODUCTION 

In adaptive immunity, CD8+ T cells have the ability to eradicate abnormal cells through 

recognition of small peptide fragments presented by MHC (human leucocyte antigen (HLA) in 

humans) class I molecules. In this context, jawed vertebrates evolved an important antigen 

processing and presentation system capable of presenting thousands of different MHC class I 

peptides on the surface of virtually any nucleated cells (Neefjes et al., 2011). In mammals, around 

200 different cell types are decorated by large repertoires of self-MHC-I-associated peptides, 

collectively referred to as the mammalian MHC-I immunopeptidome (MHC-Ii) (Caron et al., 

2017; Vizcaíno et al., 2019).  

 

 The inter- and intra-individual complexity of the MHC-Ii account for its overall heterogeneity 

(Gfeller and Bassani-Sternberg, 2018; Maccari et al., 2017; Vizcaíno et al., 2019). In fact, each 

MHC-I allotype generally presents a distinct subset of peptide antigens, which are characterized 

by the presence of specific anchor residues that are necessary to bind MHC-I (Falk et al., 1991). 

In human, up to six different HLA-I allotypes are expressed at the individual level, and thousands, 

if not millions of different HLA-I allotypes are expressed across human populations, hence 

increasing enormously the inter-individual heterogeneity of the MHC-Ii (Robinson et al., 2017). 

In contrast, the mouse MHC-Ii is relatively simpler. For instance, in the C57BL/6 mouse strain, 

peptide antigens are presented by only two classical MHC-I molecules (H2Db and H2Kb), and a 

total of approximately 200 different MHC-I allotypes are expressed among the most commonly 

used mouse strains (http://www.imgt.org/IMGTrepertoireMH/Polymorphism/haplotypes/mouse/MHC/Mu_haplotypes.html). In 

addition to its allotype-dependent composition, the mammalian MHC-Ii is also complicated by its 

tissue-dependency. In fact, two pioneering mapping studies recently pointed toward large 
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variations in the repertoire of MHC-I-associated peptides across different tissues (Marcu et al., 

2021; Schuster et al., 2018). However, very little is known about the molecular principles that 

shape the tissue-dependent processing and presentation of peptide antigens at the organism level.  

 

Classical biochemistry approaches have established the blueprint of antigen processing and 

presentation (Neefjes et al., 2011; Yewdell et al., 2003). In a nutshell, the biogenesis of peptides 

presented by MHC-I molecules is initiated with the transcription and translation of the source 

genes, and the resulting proteins are typically degraded by the proteasome and/or 

immunoproteasome in the nucleus and cytosol (Kincaid et al., 2011). Cytosolic peptides are 

rapidly targeted by cytosolic aminopeptidases, such as thimet oligopeptidase (TOP) (York et al., 

2003), leucine aminopeptidase (LAP) (Towne et al., 2005), and tripeptidyl peptidase II (TPPII) 

(Reits et al., 2004), which trim and destroy most peptides. A fraction of peptides escapes 

destruction by translocation into the endoplasmic reticulum (ER) lumen via transporter associated 

with antigen presentation (TAP) (Reits et al., 2000; Yewdell et al., 2003). In the ER, peptides may 

be further trimmed by ER aminopeptidase associated with antigen processing (ERAAP) and then 

bind MHC-I molecules for stabilization by the peptide loading complex (Blees et al., 2017; 

Serwold et al., 2002). Once stable, MHC-I-peptide complexes are released from the ER and are 

transported to the cell surface for peptide presentation to CD8+ T cells.  

 

Modern immunopeptidomics is driven by high-resolution mass spectrometry (MS) and 

investigates the composition and dynamics of the MHC-Ii (Caron et al., 2015a, 2015b). 

Complementing classical biochemistry techniques, immunopeptidomic technology platforms have 

yielded important systematic insights into the biogenesis of the MHC-Ii (Granados et al., 2015). 
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For instance, they have refined binding motifs for a wide range of MHC-I alleles in human (Abelin 

et al., 2017; Gfeller and Bassani-Sternberg, 2018), they have indicated that large numbers of MHC-

I peptides derive from genomic ‘hotspots’ (Müller et al., 2017; Pearson et al., 2016; Marcu et al. 

2021) as well as non-coding genomic regions (Laumont et al., 2018), and they have demonstrated 

that abundant transcripts and proteins contribute preferentially to the composition of the MHC-Ii 

(Abelin et al., 2017; Bassani-Sternberg et al., 2015; Fortier et al., 2008; Granados et al., 2012; 

Pearson et al., 2016). Furthermore, immunopeptidomic approaches have validated that defective 

ribosomal products (DRiPs), immunoproteasome subunits as wells as other key players involved 

in the processing of peptide antigens (e.g. proteasome, ERAAP) markedly influence the repertoire 

of peptides presented by MHC-I molecules  (Bourdetsky et al., 2014; Milner et al., 2013; 

Nagarajan et al., 2016; Trentini et al., 2020; Verteuil et al., 2010).  

 

The understanding of how the MHC-Ii is generated in different primary tissues in vivo, in human 

as well as in animal models, is fundamentally important to rationalize and predict how T cells 

respond in various contexts (Tscharke et al., 2015). However, immunopeptidomics studies that 

focused on the systematic deciphering of the MHC-Ii biogenesis have been almost exclusively 

conducted in transformed cells. Therefore, the rules that govern the composition and tissue-

dependency of the mammalian MHC-Ii remains poorly understood and many fundamental 

questions remain unanswered to date. For instance, what is the relative contribution of individual 

HLA-I allotypes to the composition of the MHC-Ii within and across tissues? To what extent does 

the MHC-Ii conceal tissue-specific patterns/signatures that are conserved across species? What are 

the many transcription factors, proteases, amino- and carboxypeptidases involved in the generation 

and processing of MHC-I peptides in different tissues, and how does the expression and activity 
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of those proteins influence the tissue-dependency and overall heterogeneity of the MHC-Ii at the 

organism-wide scale? In this study, we applied a systems-level, cross-species approach to tackle 

these fundamental questions.  

 

RESULTS  

Two immunopeptidomic mapping studies have very recently drafted the first tissue-based atlases 

of the mouse and human MHC-Ii (Marcu et al., 2021; Schuster et al., 2018). These pioneering 

mapping efforts provide qualitative and semi-quantitative information about the currently 

detectable repertoire of MHC-I peptides in most organs, both in mouse and human. Specifically, 

the mouse atlas was generated from 19 normal primary tissues extracted from C57BL/6 mice 

expressing H2Kb and H2Db (Schuster et al., 2018). The human atlas was generated from 29 human 

benign tissues extracted from 21 different subjects expressing a total of 51 different HLA-I 

allotypes (Marcu et al., 2021) (Figure 1). Those HLA-I allotypes cover the most frequent HLA-

A, -B and -C alleles in the world. Below, we first focused on the analysis of the MHC-Ii in different 

mouse and human tissues to provide a general understanding of the heterogenicity, tissue-

dependency and conservation patterns of the MHC-Ii. Next, we connected tissue 

immunopeptidomes to RNA-seq and protein expression data found in various tissue-based atlases 

(Geiger et al., 2013; Söllner et al., 2017; Wang et al., 2019) to dissect how the mammalian MHC-

Ii is being shaped in different tissues (Figure 1).  

 

HLA-I allotypes are unevenly represented across tissue immunopeptidomes 

A key open question regarding the heterogeneity of the human MHC-Ii is whether individual HLA-

I allotypes contribute evenly or unevenly to the composition of the MHC-Ii across different tissues. 
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In fact, every subject presents up to two HLA-A, two HLA-B and two HLA-C allotypes. If all 

allotypes were evenly represented at the cell surface across tissues, one would expect similar 

proportions of peptides assigned to each allotype in all tissues. To address this question, we first 

assessed the global tissue distribution of all detectable peptides that were assigned to HLA-A, -B 

and -C. Among 29 sampled benign tissues extracted from a total of 21 different subjects, we found 

HLA-A, -B and -C immunopeptidomes to be unevenly represented across tissues (Figure 2A). To 

increase the resolution of this analysis, we investigated the contribution of each HLA-A, -B and -

C allotypes expressed in the three subjects for which the most tissues had been sampled (i.e. AUT-

DN11, AUT-DN13 and AUT-DN12) (Figure 2 B-D). Consistently, we found differential peptide 

distributions across tissues for many HLA-I allotypes. For instance, ~55% of peptides in the Colon 

of subject AUT-DN12 were assigned to A*02:01 compared to ~22% on average in all other tissues, 

resulting in an enrichment of about 2.5-fold for A*02:01 (Figure 2D). The enrichment of A*02:01 

peptides in the Colon of subject AUT-DN12 was also further accompanied by an under-

representation of A*11:01, B*15:01 and B*35:01 in the Colon, and an enrichment of C*03:04 and 

C*04:01 alleles (Figure 2D). Similarly, we also noted that ~50% of peptides in the liver of subject 

AUT-DN13 were assigned to HLA-B40:02 compared to ~20% on average in all other tissues, 

resulting in an enrichment of about 2.5-fold for this specific HLA-B allotype in this particular 

subject (Figure 2C). To provide a global picture about enrichment values that are associated to 

individual HLA-I allotypes, we calculated the average enrichment of all HLA-I allotypes across 

the investigated subjects and highlighted alleles that were enriched by more than 1.5-fold in at 

least one tissue (Figure 2E). This analysis highlighted 37 enrichment values distributed across 27 

specific HLA-I allotypes and 18 different tissues (Figure 2E). Overall, those enrichment values 

ranged from 1.5 to 8.1-fold, and nine (out of 16) HLA-A, 9 (out of 21) HLA-B and 9 (out of 14) 
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HLA-C allotype were assigned in at least one tissue with an enrichment value above 1.5-fold. 

Thus, our results show that HLA-I allotypes do not contribute evenly to the composition of the 

MHC-Ii across different tissues and subjects, and therefore, considerably contribute to the overall 

heterogeneity of the human MHC-Ii.  

 

The high level of heterogeneity among immunopeptidomes of different tissues shows 

pronounced similarities between mouse and human 

Antigen processing and presentation is a conserved and ubiquitous biological process in mammals. 

Here, we hypothesized that the MHC-Ii of different tissues might conceal tissue-dependent 

immunopeptidomic patterns/signatures that are conserved between mouse and human. First, we 

looked at the distribution of MHC-I peptide counts that were detected by MS across different 

mouse (Figure 3A) and human (Figure 3B) tissues. Expectedly, we noted that specific mouse 

organs yielded high numbers of MHC-I peptides (e.g. Spleen) whereas immune privilege organs 

(e.g., Brain and Testis) yielded low numbers of MHC-I peptides (Figure 3A). Very similar 

observations were made in human (Figure 3B) (Marcu et al., 2021). In fact, direct comparison of 

MHC-I peptide counts between mouse and human tissues resulted in a positive correlation (R-

squared value = 0.44) (Figure 3C). Next, we performed principal component analyses (PCA) of 

tissue dependent intensities of mouse and human MHC-I peptides (Figure 3D,E). PCA were 

performed from highly heterogenous immunopeptidomic data integrating peptides and 

corresponding intensities presented by 2 mouse and 51 human MHC-I allotypes, respectively. 

Despite the high heterogeneity, our analysis revealed two main clusters in each species. Notably, 

immune-related organs clustered together in both species (see cluster 1 in Figure 3D,E). Immune 

clusters included Spleen, Bone Marrow, Lymph nodes and Thymus (mouse), as well as other types 
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of non-immune related organs such as Kidney, Lung, Liver and Colon. The described observations 

raised the following question: what are the MHC-I peptides that are either shared or unique across 

these tissues?  

 

To address the above question, we created connectivity matrices, which summarize the number of 

MHC-I peptides shared and uniquely observed between all possible pairs of tissues in mouse 

(Figure 3F) and human (Supplementary Figure 1). The number of uniquely observed/tissue-

specific peptides can be found along the diagonal of the connectivity matrices in Figure 3F and 

Supplementary Figure 1. In mouse, we observed that 13% (961 out of the 7665 unique peptides 

found in mouse) of the total H2Db/Kb immunopeptidome was shared across Spleen, Bone Marrow, 

Kidney, Lung, Liver and Colon (Figure 3F). As an example, 1881 peptides (25% of the total 

H2Db/Kb immunopeptidome) were shared between Spleen and Kidney, and 1381 peptides (18% 

of the total H2Db/Kb immunopeptidome) were shared between Bone marrow and Liver (Figure 

3A). In human, we observed that 4% of the total HLA-ABC immunopeptidome was shared across 

these six organs for all subjects. Once deconvolved by allotype or subject, we observed that, on 

average, 3% (range: 0.5% HLA-C*07:04 — 9% HLA-A*01:01 and B49:01) and 0.8% (range: 

0.4% AUT-DN08 — 1.3%, AUT-DN12) of HLA-I peptides were shared across these organs, 

respectively (Supplementary Figure 2). In contrast, larger fractions of MHC-I peptides were 

found to be uniquely observed in each species. Overall, 42% (3212 out of 7665 unique peptides) 

and 44% (32187 out of 73639 unique peptides) of the total H2Db/Kb- and HLA-ABC- 

immunopeptidome were uniquely observed in specific tissues, respectively. These peptides are 

further referred to as tissue-specific peptides. Thus, our data show, using the currently available 

technology, that a significant proportion of MHC-I peptides are tissue-specific whereas a relatively 
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smaller proportion of peptides are shared across various immune and non-immune organs, both in 

mouse and human. To our knowledge, this is the first time that estimates of tissue-specific and -

nonspecific MHC-I peptides are reported at the organism level. These two categories of MHC-I 

peptides may show distinct properties or trends, and were further investigated below. 

 

MHC-I peptides shared across multiple tissues are highly abundant and strong MHC-I 

binders.  

To investigate the properties of tissue-specific peptides versus those that are presented across a 

wide range of tissues, we sought to assess the influence of peptide abundance and MHC binding 

affinity on tissue distribution. Hence, we plotted the frequency of peptide measurements across 

mouse and human tissues against their average abundance or predicted MHC-I/HLA-I binding 

affinity (NetMHCpan4.0 rank score) (Supplementary Figure 3 for mouse and Supplementary 

Figures 4 and 5 for human). The human dataset has to be viewed in a subject-specific manner as 

each subject presents its own repertoire of HLA-I alleles.  In mouse, we found that increasing 

cross-tissue presentation of an MHC-I peptides strongly correlated with increasing peptide 

abundance and increasing affinity for the MHC-I molecules (decreasing NetMHCpan 4.0 rank 

score) (Supplementary Figure 3). The same behavior was generally observed in human, where 

peptides widely represented across tissues were highly abundant (Supplementary Figure 4) and 

predicted to be strong HLA-I binders in all subjects (Supplementary Figure 5). Together, these 

results show that peptide abundance and binding affinity for MHC-I molecules are key properties 

that contribute to the widespread or tissue-specific presentation of peptides in the mammalian 

MHC-Ii.  
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Tissue-specific MHC-I peptides arise from genes that are almost uniquely expressed in the 

peptide-producing tissue.  

Expression of tissue-specific source proteins contributes to shaping the tissue-specificity of the 

human MHC-Ii (Marcu et al., 2021). Pioneering work in mice also proposed that transcriptomic 

signatures of thymic cells can be conveyed to the cell surface in the MHC-Ii (Fortier et al., 2008). 

However, how gene expression shapes the composition of the mouse MHC-Ii across many 

different tissues in vivo has never been reported to date. To address this, we first assigned every 

mouse MHC-I peptide found in the tissue draft atlas of the MHC-Ii to its source gene. Using an 

RNA-Seq atlas of gene expression in mouse normal tissues (Söllner et al., 2017), we next assessed 

the transcript abundance of the MHC-I peptide source genes in nine tissues for which mRNA 

expression data were available (i.e. Brain, Colon, Heart, Kidney, Liver, Pancreas, Small intestine, 

Stomach and Thymus) (Figure 4). By doing so, we found that genes coding for any detectable 

MHC-I peptides as well as for tissue-specific MHC-I peptides were more actively transcribed 

compared to genes that were not coding for any detectable MHC-I peptides (Figure 4 A,B). 

 

Next, we reasoned that tissue-specific MHC-I peptides could derive from tissue-specific 

transcripts. To test this hypothesis, we averaged for every tissue the transcript abundance of genes 

coding for tissue-specific peptides and compared their expression across the nine tissues (Figure 

4C). As depicted, we observed that brain-specific MHC-I peptides derived from genes that were 

uniquely expressed in the brain. Interestingly, liver-specific MHC-I peptides derived from genes 

that were predominantly, but not exclusively expressed in the liver—an expression pattern that 

was observed for seven out of nine tissues (colon, kidney, liver, heart, small intestine, stomach and 

thymus; Figure 4C). Thus, we provide new evidence at the organism-scale that tissue-specific 
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MHC-I peptides are generally encoded from genes that are highly expressed in the same tissue of 

origin. Together, these results are in accordance with conclusions drawn in human (Marcu et al., 

2021) and enforce the notion that gene expression plays a fundamental role in shaping the tissue 

specificity of the MHC-Ii in mammals.  

 

MHC-I peptides that are broadly presented across many tissues are encoded by genes that 

are highly expressed and evolutionarily hyperconserved. 

Above, we provided evidence that the MHC-Ii is composed of tissue-specific peptides as well as 

peptides that are widely presented across many different tissues. While tissue-specific MHC-I 

peptides appear to stem from genes predominantly expressed in the original tissue, we asked 

whether MHC-I peptides that were presented across most tissues derived from highly transcribed 

genes across the entire human or mouse genome. To answer this question, we created a selection 

of MHC-I peptides that were widely represented among the sampled tissues, referred herein as 

‘housekeeping/universal MHC-I peptides’ (Supplementary Figure 6A). While this selection is 

straightforward for the mouse data where we considered peptides identified in all 19 of the 19 

tissues as housekeeping/universal peptides, a more complex approach was needed to select those 

peptides in the human dataset where several subjects, each representing a specific set of HLA-I 

alleles, were present. Details about the selection of those peptides in the human immunopeptidome 

tissue draft are described in the methods section ‘Selection of Housekeeping/Universal Peptides’ 

and are visualized in Supplementary Figure 6B-F and Supplementary Figure 7). First, we found 

that the selected MHC-I peptides originated from 38 and 251 source genes in mouse and human, 

respectively (Supplementary Tables 1 and 2, and Supplementary Figures 6 and 7). 

Importantly, we discovered that these genes were among the most transcriptionally expressed 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2020.09.28.317750doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.28.317750


 13 

genes across the entire mouse (Figure 5A) and human (Figure 5B) genome. This result is in line 

with the above observation that widely presented peptides across the organism are of high 

abundance (Supplementary Figures 3 and 4). Moreover, it is noteworthy that those 

housekeeping/universal MHC-I peptides did not preferentially originate from large (heavy) 

proteins, as it could have been expected due to the higher numbers of possible peptide antigen 

products from large proteins (Supplementary Figure 8).  

 

Genes expressed in the majority of tissues in an organism play vital functions, are evolutionarily 

hyperconserved and are widely referred to as housekeeping genes (She et al., 2009; Zeng et al., 

2016; Zhu et al., 2008). Akin to housekeeping genes, peptides that are represented in most tissues 

across an entire organism—referred above to as housekeeping/universal MHC-I peptides—could 

also originate from hyperconserved proteins as they may have co-evolved for millions of years 

with ancients and ubiquitous degradation systems to become the fundamental ground source of 

MHC-I peptides for most tissues. Hence, we hypothesized that universal MHC-I peptides are 

encoded by genes that are evolutionarily hyperconserved across evolution. To address this concept, 

we took advantage of the genome alignments between mouse and 59 vertebrates as well as between 

human and 99 vertebrates, made available by the UCSC Genome Browser (Lee et al., 2020) (see 

Materials and Methods section ‘Conservation of source genes from universal MHC-I peptides’). 

To assess evolutionarily conservation across species, PhastCons scores (Siepel et al., 2005), which 

predict the probability of conservation for every base-pair in the aligned genomes, were consulted 

for mouse and human genes of interest (see Materials and Methods for details). When comparing 

the conservation scores of tissue-specific MHC-I peptide source genes with those from 

housekeeping/universal MHC-I peptide source genes, the latter were significantly more conserved 
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at the Promoter and Exon level, both in Mouse (p-value = 2.8x10-11; p-value = 1.06x10-144) (Figure 

5C) and Human (p-value = 3.25x10-25; p-value = 2.32x10-87) (Figure 5D). For example, the 

conservation probability (PhastCons score) of 70% of the more conserved Exons (Cumulative 

Frequency > 0.3) of tissue-specific peptide source genes in mouse is greater than 20%, whereas 

the conservation probability of 70% of the more conserved Exons of housekeeping/universal 

peptide source genes in mouse is greater than 80%, making the latter set of genes preferentially 

hyperconserved. Thus, this analysis indicates that tissue-specific versus housekeeping/universal 

MHC-I peptide source genes do not share the same degree of conservation across evolution. 

Together, our results suggest, for the first time, that highly expressed and hyperconserved genes 

are preferential sources of MHC-I peptides at the organism-wide scale.  

 

Discovery of new components of the constitutive antigen processing and presentation 

network in mouse and human tissues. 

Differential expression and activity of antigen processing and presentation proteins across tissues 

may contribute to the observed variability in the composition of the MHC-Ii from one tissue to 

another (Rock et al., 2016). In this regard, transcript levels of HLA-I, TAP1/2 and 

immunoproteasome were very recently shown to correlate positively with the total number of 

MHC-I peptides detected across different human tissues (Marcu et al., 2021). To date, such 

correlative analysis has only been applied at the transcript level for a handful number of preselected 

immune-related genes and has never been performed at the protein level in a systematic fashion. 

Hence, we reasoned that an unbiased computational approach could be used to systematically 

identify any protein of the proteome for which their respective abundance across tissues correlates 

with the total number of MHC-I peptides across those same tissues. Therefore, we set out to apply 
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this correlative approach at the proteome-wide scale using protein abundances measured across 

different mouse and human tissues from two tissue-based proteomics atlases generated by MS 

(Figure 6A) (Geiger et al., 2013; Wang et al., 2019).  

 

First, we computed a total of 4,175 (on 4,175 gene coding proteins) and 70,656 (on 11,776 gene 

coding proteins) correlations in mouse and human, respectively (see Materials and Methods). 

Importantly, we found a subset of 164 and 120 correlating proteins in mouse and human, 

respectively, whose abundance significantly correlated with the total number of MHCI peptide 

counts in a given tissue (p-value < 0.01 and R-squared > 0.4 in Mouse; p-value < 0.05 and R-

squared > 0.4 for at least two subjects in Human) (Supplementary Figure 9A and B, 

Supplementary Tables 3 and 4). From the 164 mouse proteins, 122 correlated positively (74%) 

and 42 correlated negatively (26%) with MHCI peptide counts. Out of the 120 significantly 

correlating human proteins, 74 correlated positively (62%) and 46 negatively (38%) 

(Supplementary Figure 10). 

 

To broadly assess biological processes in which these proteins are implicated, we performed gene 

ontology (GO) analysis on these significantly correlating proteins (Supplementary Table 5). 

From the top 50 most significantly enriched GO terms implicated in biological processes in mouse 

and human, 15 were shared across both species (Supplementary Figure 11). Remarkably, the 

shared GO terms were attributed to proteins implicated in the regulation of the proteolysis, antigen 

processing and immune response (Figure 6B,D). A prominent example protein, PSMB3 whose 

tissue dependent intensity very well correlates with the amount of MHCI peptides found in each 

tissue is shown in Figure 6C. Furthermore, manual curation of the literature allowed us to 
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associate those proteins to specific functional modules known to orchestrate transcription (e.g., 

STAT3, NFKB), TCR-MHC signaling (e.g., LCP1, VAV1) and antigen processing (e.g., 

PSMB3/5, PSME4, LAP3, ERAP1) (Figure 6D). Among the latter, many proteasome subunits, 

proteases, carboxy- and aminopeptidases were identified (Figure 6D). For example, PSMB3 is a 

component of the 20S core proteasome complex (Elenich et al., 1999; Huber et al., 2012); PSME4 

is a proteasome activator subunit, also known as PA200 (Rêgo and Fonseca, 2019), and ERAP1 

plays a central role in peptide trimming for the generation and presentation of MHC-I peptides 

(Serwold et al., 2002). For these three specific proteins, their abundance increased as a function of 

the number of MHC-I peptides (Figure 6C, Supplementary Figure 12 and Supplementary 

Tables 3, 4 and 5). In contrast, we found the opposite trend for other proteins. For instance, 

abundance of Uchl1, Ube2n and PSMB5 proteins decreased as a function of the number of MHC-

I peptides (Supplementary Figure 10B, C and D), the latter being known to be replaced by the 

immunoproteasome and thymoproteasome subunit PSMB8 and PSMB11 in immune and thymic 

cells, respectively (Murata et al., 2018). Most strikingly, we found four poorly characterized 

carboxypeptidases (CPE, CNDP1, CNDP2 and CPVL) showing significant correlations between 

protein abundance and number of MHC-I peptides across tissues (Figure 6D). This unexpected 

finding is interesting because very little is known about the role of carboxypeptidases in antigen 

processing. Further investigation is therefore required to determine the precise role of CPE, 

CNDP1, CNDP2 and CPVL in shaping the global composition of the mammalian MHC-Ii in health 

and diseases. Thus, our systems-level analysis allowed us to identify many known key players of 

the antigen processing network, thereby validating our computational approach, in addition to 

expand the network through identification of new components. Collectively, our study provides 

an unprecedented source of information regarding the biogenesis of the mammalian MHC-Ii and 
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opens up new avenues to further explore the role of new proteolytic enzymes in antigen processing 

in vivo.  

 

DISCUSSION 

The components of the antigen processing and presentation pathway shape how T cells respond to 

self and non-self (Rock et al., 2016). Those components have been traditionally discovered using 

hypothesis-driven approaches or genomic screening of cell lines presenting a phenotype of interest 

(Burr et al., 2019; Neefjes et al., 2011; Paul et al., 2011). MS-based immunopeptidomic approaches 

have also been used to validate the impact of those proteins on the global composition of the MHC-

Ii using in vitro or ex vivo model systems (Alvarez-Navarro et al., 2015; Nagarajan et al., 2016; 

Verteuil et al., 2010). To date, no study has taken advantage of the uncharted combination of 

immunopeptidomic, proteomic, transcriptomic and genomic data from a range of different primary 

tissues to infer the fundamental principles that form the mammalian MHC-Ii. In fact, akin to 

systems immunology methods (Villani et al., 2018), we deployed in this study an unbiased 

immunopeptidomic data-driven strategy using multiple tissue-based omics datasets, both in mouse 

and human, to i) reinforce the notion that the composition of the mammalian MHC-Ii is highly 

context-dependent, ii) provide fundamental information about the tissue-dependency, conservation 

and biogenesis of the MHC-Ii at the organism-wide scale, and iii) uncover new proteins that may 

collectively orchestrate the content and tissue-specificity of the MHC-Ii.  

 

In this study, we found that many proteins of the ubiquitin-proteasome degradation system as well 

as many proteases, amino- and carboxypeptidases were more abundant in organs presenting a large 

number of MHC-I-peptide complexes. In addition, proteins known to negatively regulate protein 
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degradation were found to be more abundant in organs presenting low numbers of MHC-I peptides. 

In fact, correlations between protein abundances and numbers of MHC-I peptides detected in 

tissues were found to be remarkably informative and could be used to systematically infer the role 

of new proteolytic enzymes in antigen processing. Proteolytic enzymes are critically important in 

antigen processing. Beside the proteasome, ~20 proteases act in the MHC-I presentation pathway 

and can alter presented peptides (Lázaro et al., 2015). ERAP1 is probably the most relevant 

example here since this aminopeptidase plays a major role in antigen processing through N-

terminal peptide trimming into the endoplasmic reticulum and is associated with a number of 

different autoimmune diseases (Hanson et al., 2018; Serwold et al., 2002). Other aminopeptidases 

such as leucine aminopeptidase 3 (LAP3) and peptidase D (PEPD) were showcased in this study. 

Most surprisingly, we identified four carboxypeptidases (CPE, CNDP1, CNDP2 and CPVL)—

none of them reported so far to influence the repertoire of MHC-I peptides. These 

carboxypeptidases might represent new players of the antigen processing and presentation 

pathway. If tested and validated, such findings would be particularly fascinating because 

angiotensin-converting enzyme (ACE) is the only ER-resident carboxypeptidase documented so 

far (Eiseniohr et al., 1992; Shen et al., 2011, 2008), and was shown to be immunologically relevant 

through production of minor histocompatibility antigens, polyoma virus epitopes and HIV gp160 

epitope (Neefjes et al., 2011). The use of chemical inhibitors and CRISPR technology, together 

with high-throughput immunopeptidomic experiments would be of great value in this context to 

systematically investigate the role of new proteolytic proteins in shaping the composition and 

heterogeneity of the MHC-Ii in different cell and tissue types.  
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Two distinct categories of self-peptides were investigated in this study: those that are tissue-

specific and those that are widely presented across most tissues, referred in this study as 

housekeeping/universal MHC-I peptides. Interestingly, our results show that these two categories 

of self-peptides share very distinct intrinsic features. The latter is composed of peptides that are 

highly abundant and strong MHC-I binders in addition to derive from highly expressed genes that 

are preferentially hyperconserved across evolution. In contrast, tissue-specific peptides are 

relatively less abundant and are encoded by genes that are strongly expressed in the tissue of origin, 

but weakly or not expressed in most tissues. Given the distinct properties of those self-peptides, 

their respective impact toward various immunological processes could be dramatically different, 

for triggering T cell tolerance in particular. In fact, tolerance mechanisms through recognition of 

self-peptides, both in the thymus and in the periphery, are critical to eliminate or control self-

reactive T cells that would otherwise lead to autoimmunity (Granados et al., 2015; Verteuil et al., 

2012; Xing and Hogquist, 2012). Failure to T cell tolerance against housekeeping/universal 

peptides would have devastating consequences as self-reactive T cells would destroy most organs 

across the entire organism. Fortunately, we observed that genes coding for those peptides are 

among the most expressed across entire genomes, hence, increasing the probability that those 

peptides will be abundantly presented in the thymus to trigger clonal deletion of immature self-

reactive T cells recognizing those peptides. Moreover, we made the fundamental observation that 

housekeeping/universal peptides originate from hyperconserved genes. Therefore, the adaptive 

immune system may have evolved for 500 million years a remarkable mechanism enabling the 

elimination of those T cells in a highly efficient manner. In contrast, controlling self-reactivity of 

T cells recognizing tissue-specific peptides might be more challenging, thereby rationalizing the 
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need for peripheral tolerance processes to avoid tissue-specific autoimmunity (Matsumoto et al., 

2019).  

 

Another important observation in this study was that the multiple HLA-I allotypes expressed by a 

given individual may contribute unevenly to the composition of the MHC-Ii from one organ to 

another. For instance, HLA-B40:02-associated peptides were found to be particularly enriched in 

the liver of a given individual compared to all the other organs. Overall, 37 enrichment patterns 

were observed across 27 specific HLA-I allotypes and 18 different tissues. These are important 

basic observations because peptide antigens that are processed and presented in a tissue-dependent 

fashion may cause differential phenotypic consequences in response to the same signal. For 

instance, in infectious diseases, Plasmodium parasites (malaria) and SARS-CoV-2 (COVID-19) 

have the ability to reach and infect many host tissues (Coban et al., 2018; Wadman et al., 2020). 

In this context, CD8+ T cells may behave very differently from one tissue to another following 

tissue-dependent processing and presentation of pathogen-derived peptide antigens, thereby likely 

impacting the overall efficiency of viral clearance by T cells. Interestingly, tissue-dependent 

antigen presentation may also lead to a web of tissue-resident memory T cells that functionally 

adapt to their environment to stop viral spread across the organism (Kadoki et al., 2017). Hence, 

tissue-specific variations in the MHC-Ii likely play a role in controlling infections or determining 

the severity of a disease. One can anticipate that immunopeptidomics approaches will be 

increasingly powerful in the future to investigate the dynamics of the MHC class I antigen 

processing and presentation pathway in vivo and evaluate its impact on tissue-dependent T cell 

responses in the organism.  
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Systems understanding of MHC-I antigen presentation at the organism level is at an early stage. 

MS technologies are constantly evolving and we anticipate that the tissue-specificity of the MHC-

Ii will be further refined in the future. In fact, we envision that further improvement in proteomics 

and immunopeptidomics technologies will enable more robust, precise and comprehensive 

measurements of proteomes and immunopeptidomes in healthy tissues as well as in response to a 

wide range of immunological perturbations. Integration of those measurements over time, together 

with new high-throughput TCR-MHC peptide interaction studies (Dendrou et al., 2018; Moritz et 

al., 2019), will help understand how widespread and tissue-specific changes in peptide processing 

and presentation impact tissue-dependent T cell responses, and hence, help understand inter-organ 

communications between T cell networks to shape the organismal circuitry of immunity (Chevrier, 

2019; Kadoki et al., 2017). From a synthetic biology perspective, in-depth understanding of how 

MHC-I-associated peptides are generated in vivo will enable accurate prediction of their dynamics, 

and ultimately, will accelerate the engineering of new biological systems to control their 

presentation and function in immunity. 
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MATERIALS AND METHODS 

 

Retrieval and preparation of omics data from the literature 

Mouse immunopeptidome 

Raw data from the mouse immunopeptidome dataset (Schuster et al., 2018) were downloaded and 

re-analyzed using “PEAKS 9 (Bioinformatics Solutions Inc., Waterloo, Ontario, Canada)” (Tran 

et al., 2018). Peptides identified with an FDR<5% were further assessed for binding to the MHC-

I alleles H2Kb and H2Db using NetMHCpan4.0 (Jurtz et al., 2017). Peptides with a length of 

8,9,10,11 or 12 amino acids and a NetMHCpan-4.0 Rank score smaller than 2.0 (Rank <= 2.0) 

were selected as MHC-I peptides. A collection of all mouse MHC-I peptides is made available in 

Supplementary Table 1. All downstream data analysis is based on this set of MHC-I peptides.   

 

Mouse RNAseq data 

Mouse RNAseq data were obtained from (Söllner et al., 2017) supplementary materials and can 

be found in Supplementary Table 1. Data were used for further analysis in the form provided.  

 

Mouse proteomics data 

Mouse proteomic data were downloaded from (Geiger et al., 2013) supplementary materials and 

can be found in Supplementary Table 3. Protein intensities presented in Supplementary Table 3 

are the reported label free intensities normalized across tissues.  
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Human immunopeptidome 

Human immunopeptidome data were obtained from Marcu et al.,2021 and represent the 2020.06 

release of the dataset as can be accessed at https://hla-ligand-atlas.org/.  Peptides from this dataset 

were predicted for HLAI binding using NetMHCpan4.0. Only alleles present in the donor database 

[based on allele genotyping as described in Marcu et al.] were predicted. Out of six alleles 

genotyped to each donor, the allele with the lowest NetMHCpan-4.0 Rank score was assigned to 

a given peptide. For the analysis presented in this manuscript, peptides with a NetMHCpan-4.0 

rank smaller or equal than 2 (Rank<=2) were considered MHC-I peptides. The quantitative 

information, as reported by MHCquant (Bichmann et al., 2019), was also used in the current 

manuscript. Raw peptide intensities were used as approximative quantitative information and no 

normalization was performed due to the heterogeneous nature of pulldowns and primary tissue 

samples. A complete list of peptides including metadata can be found in Supplementary Table 2.  

 

Human RNAseq data 

Human RNAseq data were obtained from the GTEX repository https://www.gtexportal.org/home/  

(accessed January 10th 2020), the dataset used was: ‘GTEx_Analysis_2017-06-

05_v8_RNASeQCv1.1.9_gene_median_tpm.gct’. The subset of data used for this manuscript can 

be found in Supplementary Table 2. Data were used for further analysis in the form provided.  
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Human proteomics data 

Human proteomics data were obtained from (Wang et al., 2019). The subset of data used for this 

publication can be found in Supplementary Table 4. Data were used for further analysis in the form 

provided, unless stated differently.  

 

Principal component analysis 

Principal component analysis and visualization was performed in R using the FactoMineR package 

(Lê et al., 2008). Input variables consist of 19 mouse tissues and 28 human tissues for which 

immunopeptidomic data are available (note that human thymus tissues were sampled differently 

and were excluded from this analysis). For each tissue, a vector of individual peptide intensities 

(log10 transformed) was loaded. The first two dimensions accounting for most of the variability 

in the data were plotted (Figure 2 D and E).  

 

Tissue Connectivity Maps  

For every possible pair of tissues, the number of overlapping peptides was determined for the 

mouse and human immunopeptidomes, respectively. A peptide was considered overlapping if an 

intensity value had been reported in both tissues. A connectivity matrix was generated from the 

resulting data for mouse and human, respectively (Figure 2F and Supplementary Figure 1).  

Noteworthily, the number of peptides unique to a given tissue is depicted along the diagonal of 

depicted heatmaps. 
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Tissue-dependent representation of HLA alleles 

The proportion of peptides represented by a specific allele in a given tissue was calculated for 

every subject. Similarly, the mean proportion of every allele across tissues was calculated for every 

subject. These values were then used to calculate the over- or under-representation of each allele 

in a tissue compared to the mean as follows: 

Subject dependent allele enrichment in tissues: 

•  
%[𝐴𝑙𝑙𝑒𝑙𝑒] 𝑖𝑛 𝑇𝑖𝑠𝑠𝑢𝑒 𝑘

(∑ %[𝐴𝑙𝑙𝑒𝑙𝑒] 𝑖𝑛 𝑇𝑖𝑠𝑠𝑢𝑒 𝑘𝑛
𝑘=1 )/𝑛

= 𝑇𝑖𝑠𝑠𝑢𝑒 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑎𝑙𝑙𝑒𝑙𝑒 𝑒𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 

Examples for subject specific allele representations can be found in Figure 2 B-D. In order to 

assess trends across all subjects, we calculated the mean of these over- and under-representation 

values for all alleles across all subjects. To find trends among the data, we focused only on alleles 

over-represented by, on average, at least 1.5-fold in a given tissue across all subjects. Results are 

depicted in Figure 2 E.  

 

Connecting mouse immunopeptidomic data with mouse RNAseq data 

Source genes of mouse MHC-I peptides available from the Peaks results were mapped to 

ENSEMBL identifiers using the mouse annotation package org.Mm.eg.db in R (DOI: 

10.18129/B9.bioc.org.Mm.eg.db). These source genes were then mapped to the genes in the 

RNAseq dataset (Söllner et al., 2017) to assess their tissue-dependent RNAseq expression 

(Supplementary Table 1). All mappings between different gene identifiers were performed using 

the R package AnnotationHub (DOI: 10.18129/B9.bioc.AnnotationHub).  
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Source genes from tissue-specific MHC-I peptides in mouse (Mouse source genes) 

Genes mapped to a peptide which is present in only one of the nineteen tissues analyzed in the 

mouse immunopeptidome are considered to be source genes of tissue specific MHC-I peptides. 

We have not assessed to what extend additional MHC-I peptides from such a gene are represented 

across tissues (for genes where more than one MHC-I peptide was identified). We found 2448 

source genes from tissue-specific MHC-I peptides in mouse. 

 

Tissue dependent expression of mouse source genes  

In order to visualize the expression of source genes originating from tissue-specific MHC-I 

peptides, we mapped the 2448 source genes we found in mouse to the mRNA expression atlas 

published by (Söllner et al., 2017). For the 9 tissues where transcriptomics and proteomics data 

were available, we extracted mRNA expression levels of the mouse source genes. Expression 

levels were then averaged across each tissue, grouped by the source tissue (Tissue in which gene 

represents immunopeptides). Within each source tissue group, a z-score for the average expression 

value of genes was calculated. The resulting matrix is visualized in Figure 4C.  

Note: Z-scores were calculated as follows: 

• 𝑧 − 𝑠𝑐𝑜𝑟𝑒 =
𝑆𝑜𝑢𝑟𝑐𝑒 𝑔𝑒𝑛𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑖𝑛 𝑔𝑖𝑣𝑒𝑛 𝑡𝑖𝑠𝑠𝑢𝑒 − 𝑀𝑒𝑎𝑛 𝑠𝑜𝑢𝑟𝑐𝑒 𝑔𝑒𝑛𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑎𝑐𝑟𝑜𝑠𝑠 𝑡𝑖𝑠𝑠𝑢𝑒𝑠

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑜𝑢𝑟𝑐𝑒 𝑔𝑒𝑛𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛
   

 

Conservation of source genes from universal MHC-I peptides (Mouse) 

Universal MHC-I peptides are defined as MHC-I peptides present in all of the 19 sampled mouse 

tissues (Supplementary Figure 6A). Peptides from 38 genes were found in the mouse dataset 

(Supplementary Table 1). We calculated the conservation of the exon and promoter regions of the 

corresponding source genes and compared their genetic conservation to those from source genes 
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of tissue specific MHC-I peptides. Conservation scores were extracted in form of PhastCons 

conservation probabilities (Siepel et al., 2005; Siepel and Haussler, 2004) from publicly available 

multiple alignments of the mouse genome and the genomes of 59 vertebrates 

(http://hgdownload.soe.ucsc.edu/goldenPath/mm10/multiz60way/) from the UCSC genome 

browser (https://genome.ucsc.edu/index.html) (accessed June 5th 2020). BigWig files containing 

PhastCons scores for the mouse genome were downloaded and queried for the genes of interest 

using the R package rtracklayer (Lawrence et al., 2009) together with gene positional information 

from the ‘TxDb.Mmusculus.UCSC.mm10.knownGene’ database provided by the UCSC genome 

browser (DOI: 10.18129/B9.bioc.TxDb.Mmusculus.UCSC.mm10.knownGene). PhastCons 

scores for nucleotides of the exon and promoter regions of housekeeping and tissue-specific source 

genes were extracted from the BigWig files. Promoter regions were defined as 200 bases 

downstream and 2000 bases upstream of the transcription start site. Conservation scores were then 

calculated using a 12-base pair sliding window along the extracted genetic regions and the 

maximum PhastCons value was used as the conservation score. The cumulative frequency of these 

PhastCons values for the exon and promoter regions of source genes from universal MHC-I 

peptides and source genes from tissue-specific MHC-I peptides were calculated and compared 

using the Wilcoxon rank sum test, respectively. This analysis and workflow were inspired by Zeng 

et al (Zeng et al., 2016) and Zhu et al (Zhu et al., 2008) who investigated the genomic conservation 

of housekeeping genes compared to tissue specific genes in mouse and human, respectively. 

Furthermore, ideas for the implication of PhastCons conservation rates were derived from Sun et 

al. (Sun et al., 2014). 
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Annotating the molecular weight of MHC-I peptide source genes (Mouse) 

Molecular weights of proteins were retrieved from www.uniprot.org (Complete Mus musculus 

proteome, reviewed + un-reviewed proteins, accessed June 17 2020). Uniprot identifiers were 

matched to ENSEMBL gene identifiers and used for analysis. 

 

Connecting human immunopeptidomic data with human RNAseq data 

Source genes of human MHC-I peptides were mapped to ENSEMBL identifiers using the human 

annotation package org.Hs.eg.db in R (org.Hs.eg.db: Genome wide annotation for Human. R 

package version 3.8.2). These source genes were then mapped to the genes in the RNAseq dataset 

(‘GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_median_tpm.gct’) to assess their 

tissue-dependent RNAseq expression (Supplementary Table 2). All mappings between different 

gene identifiers were performed using the R package AnnotationHub 

(DOI: 10.18129/B9.bioc.AnnotationHub). 

 

Source genes from tissue-specific MHC-I peptides (Human) 

Source genes representing one or more MHC-I peptides that were measured in only one tissue 

sample in the human immunopeptidome dataset were considered source genes from tissue-specific 

MHC-I peptides. In human we found 12,095 of such genes. Similar to the mouse analysis, we did 

not assess to what extendt these genes yield additional peptides present in more than one tissue 

sample.  
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Conservation of source genes from universal MHC-I peptides (Human) 

Defining source genes from universal MHC-I peptides in human is less straightforward compared 

to the mouse due to the heterogeneity of subjects from which tissues were sampled and HLA alleles 

representation. Hence, we defined a source gene from universal MHC-I peptides in the available 

human immunopeptidome as a gene for which one or more MHC-I peptides were either 1) present 

across all tissues in at least two patients or 2) present across all samples in which the assigned 

HLA allele was present or 3) among the top 100 peptides identified the most frequently across all 

measured samples, independent of allele or subject (Supplementary Figure 6B-F). In order to avoid 

a bias towars peptides from donors where only few tissues were sampled, we focused only on 

donors where 14 or more tissues were sampled. This analysis resulted in a total of 251 source 

genes from universal MHC-I peptides (Supplementary Figure 7 and Supplementary Table 2).  

 

Conservation analysis was performed using PhastCons retrieved from an alignment of the hg38 

human genome with 99 vertebrates. Data were downloaded from the UCSC genome browser at 

http://hgdownload.soe.ucsc.edu/goldenPath/hg38/multiz100way/ (accessed June 5th 2020). 

Genetic positions of genes of interest (genes from universal and tissue-specific MHC-I peptides) 

were mapped using the ‘TxDb.Hsapiens.UCSC.hg38.knownGene’ database 

(DOI: 10.18129/B9.bioc.TxDb.Hsapiens.UCSC.hg38.knownGene) and conservation scores were 

calculated and compared the same way as the mouse conservation scores.  
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Annotating the molecular weight of MHC-I peptide source genes (Human) 

Molecular weights of proteins were retrieved from www.uniprot.org (Complete Homo sapiens 

proteome, reviewed + un-reviewed proteins, accessed June 17 2020). Uniprot identifiers were 

matched to ENSEMBL gene identifiers and used for analysis. 

 

Computing and analyzing protein wise correlation between tissue MHC-I peptide counts 

and protein abundances in mouse and human 

Protein expression data from mouse and human proteomic tissue drafts (Supplementary Tables 3 

and 4) were obtained from (Geiger et al., 2013) for mouse and (Wang et al., 2019) for human. Both 

datasets were chosen due to their recency and wide range of tissues sampled. Correlations between 

the expression pattern of a given protein across tissues and the overall number of MHC-I peptides 

sampled across tissues in mouse or human subjects were measured. Expression values (log10 

transformed) of each protein across tissues were plotted against the number of total MHC-I 

peptides identified in each tissue and R-squared and p-values were computed if more than 9 

measurement pairs (expression value and total number of MHC-I peptides) were available. For the 

human dataset, correlations were calculated for immunopeptidome data from every subject where 

above criteria were fulfilled. Expression values from jejunum and duodenum from the human 

proteomics dataset (Wang et al., 2019) were averaged and paired with total MHC-I peptide counts 

in the small intestine. P-values and R-squared values were reported. For the human data, we 

required p-values < 0.05 and R-squared values >0.4 in at least two patients to consider a correlation 

to be non-random (Supplementary Figure 9A). For the mouse data where only one donor is 

available, correlations with p-values < 0.01 and R-squared > 0.4 were considered to be non-random 
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observations (Supplementary Figure 9B). Correlation data for all proteins of the mouse and human 

datasets can be found in Supplementary Tables 3 and 4, respectively.  

 

Functional proteomic analysis 

Gene set enrichment analysis (GSEA; http://www.broad.mit.edu/gsea/) was performed using 

GSEA software and the Molecular Signature Database (MsigDB) on proteins from systematic 

cross-tissue analysis of MHC class I peptides and protein expression. Top 50 significant gene sets 

using the Gene Ontology  modules overlap analysis were considered significant with P value and 

FDR < 0.05. We acknowledge our use of the GSEA, GSEA software, and MSigDB (Subramanian 

et al., 2005). Results can be found in Supplementary Table 5. 

 

Code availability in form of the MHCIatlas R package 

In order to achieve reproducibility of the presented data analysis, to allow further and flexible data 

analysis by readers and to make the code used publicly available, we generated an R-package 

entitled ‘MHCIatlas’ accompanying this manuscript. The package can be accessed from the 

GitHub page of the ‘CaronLab’ at https://github.com/CaronLab/MHCIatlas. Download of the 

source code can be performed directly from the above link. Alternatively, the package can be 

installed in R using the ‘install_github’ function from the ‘devtools’ package as shown below: 

> devtools::install_github('CaronLab/MHCIatlas')  

The ‘MHCIatlas’ R package includes 30 functions to reproduce the data-analysis presented in this 

manuscript as well as the immunopeptidomic, proteomics and transcriptomics datasets used.  

A quick guide to install and use the R package ‘MHCIatlas’ is provided as supplementary material 

in form of the ‘MHCIatlas user guide’ pdf document.  
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FIGURE LEGEND 

 

Figure 1. Overview of immunopeptidomics, proteomics and transcriptomics datasets 

analyzed. (Left hand side) Graphic description of the Mouse B57BL/6 MHCI Ligand Atlas, 

which was connected with two published proteomics and mRNA expression atlases of mouse 

tissues. (Right hand side) Graphic description of the Human HLAI Ligand Atlas, which was 

connected with two published proteomics and mRNA expression atlases of human tissues. 

 

Figure 2. Distribution of HLA-A-, B- and C-specific immunopeptidomes across human 

tissues. (A) Relative proportion of individual HLA-A-, B- and C-specific immunopeptidomes per 

tissue among all subjects. (B-D) Relative proportion of individual HLA allele-specific 

immunopeptidomes per tissue for AUT-DN11 (B), AUT-DN13 (C) and AUT-DN12 (D). (E) 

Enrichment of HLAI allotypes across all tissues sampled. Average enrichment values are depicted 

where allotypes were sampled across several subjects. 

 

Figure 3. Comparison of tissue dependent MHCI- (Mouse) and HLAI (Human) -associated 

peptides. (A) MHCI peptide counts for each sampled mouse tissue, colors depict the MHCI alleles 

(H2Db and H2Kb). (B) HLAI peptide counts for all sampled human tissues. Boxplots are 

represented as several tissues were sampled across different individuals. (C) Comparison of MHCI 

peptide counts/tissue (Mouse) and HLAI peptide counts/tissue (Human). (D) Principal component 

analysis of the measured intensities (log10) of MHCI peptides (Mouse). (E) Principal component 

analysis of the measured intensities (log10) of HLAI peptides (Human). (F) Tissue connectivity 

map of the ‘B57BL/6 MHCI Ligand atlas. Heatmap depicts the number of shared MHCI peptides 
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across tissues (Mouse). Note: The number of uniquely observed/tissue-specific peptides can be 

found along the diagonal. 

 

Figure 4. mRNA expression of MHCI source genes in multiple mouse organs. (A) Violin plots 

depicting the distribution of mRNA expression of genes which generate MHCI peptides (0), genes 

which generate tissue specific MHC peptides (1) or does not generate MHCI peptides (2). (B) 

Donut plot depicting the number of tissue-specific MHCI peptides found in tissues for which 

mRNA expression data is available (9 of 19 tissues sampled in the ‘B57BL/6 MHCI Ligand Atlas’. 

(C) Heatmap representing the average mRNA expression of genes coding for tissue-specific 

MHCI peptides across tissues. Z-score is color coded.   

 

Figure 5. Expression and genetic conservation of genes coding for MHCI/HLAI peptides 

presented across most tissues (housekeeping/universal peptides). (A,B) mRNA expression of 

source genes of housekeeping/universal MHCI/HLAI peptides compared to all other mRNA 

transcripts in mouse (A) and human (B). (C,D) Exon and promoter conservation distributions of 

source genes of housekeeping/universal MHCI/HLAI peptides compared to source genes of tissue-

specific MHCI peptides in mouse (C) and human (D).  

 

Figure 6. Correlation of protein abundances at the proteome-wide scale with the total 

number of MHCI or HLAI peptides detected across tissues. (A) Protein expression data from 

protein expression maps of mouse and human tissues were correlated with the total number of 

MHCI or HLAI peptides detected per tissue. Correlations were simulated for every protein 

measured across nine or more tissues. Significantly correlating proteins were further investigated. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2020.09.28.317750doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.28.317750


 35 

(B) Gene Ontology terms enriched from 164 mouse and 120 human proteins whose abundance 

significantly correlates with the number of MHCI/HLAI peptides counted per tissue. (C) Example 

correlation of proteasome subunit Psmb3 in mouse with MHCI peptides counted across tissues. 

(D) Protein modules identified from the global correlative analysis are associated to antigen 

generation, processing and recognition. Mouse and human proteins annotated to enriched GO 

terms were manually curated from the literature and were classified based on their respective 

biological function: proteasome, aminopeptidase, carboxypeptidase, protease, ubiquitin protein, 

guanine nucleotide–exchange factor (GEF), actin binding protein and transcriptional regulator and 

NFKB related. Proteins depicted in grey are uncharacterized enzymes of the antigen processing 

network. 
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MAIN FIGURES 

 

 
Figure 1. Overview of immunopeptidomics, proteomics and transcriptomics datasets analyzed. (Left hand side) 

Graphic description of the Mouse B57BL/6 MHCI Ligand Atlas, which was connected with two published proteomics 

and mRNA expression atlases of mouse tissues. (Right hand side) Graphic description of the Human HLAI Ligand 

Atlas, which was connected with two published proteomics and mRNA expression atlases of human tissues. 
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Figure 2. Distribution of HLA-A-, B- and C-specific immunopeptidomes across human tissues. (A) Relative 

proportion of individual HLA-A-, B- and C-specific immunopeptidomes per tissue among all subjects. (B-D) 

Relative proportion of individual HLA allele-specific immunopeptidomes per tissue for AUT-DN11 (B), AUT-

DN13 (C) and AUT-DN12 (D). (E) Enrichment of HLAI allotypes across all tissues sampled. Average enrichment 

values are depicted where allotypes were sampled across several subjects. 
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Figure 3. Comparison of tissue dependent MHCI- (Mouse) and HLAI (Human) -associated peptides. (A) MHCI 

peptide counts for each sampled mouse tissue, colors depict the MHCI alleles (H2Db and H2Kb). (B) HLAI peptide 

counts for all sampled human tissues. Boxplots are represented as several tissues were sampled across different 

individuals. (C) Comparison of MHCI peptide counts/tissue (Mouse) and HLAI peptide counts/tissue (Human). (D) 

Principal component analysis of the measured intensities (log10) of MHCI peptides (Mouse). (E) Principal component 

analysis of the measured intensities (log10) of HLAI peptides (Human). (F) Tissue connectivity map of the ‘B57BL/6 

MHCI Ligand atlas. Heatmap depicts the number of shared MHCI peptides across tissues (Mouse). Note: The number 

of uniquely observed/tissue-specific peptides can be found along the diagonal. 
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Figure 4. mRNA expression of MHCI source genes in multiple mouse organs. (A) Violin plots depicting the 

distribution of mRNA expression of genes which generate MHCI peptides (0), genes which generate tissue specific 

MHC peptides (1) or does not generate MHCI peptides (2). (B) Donut plot depicting the number of tissue-specific 

MHCI peptides found in tissues for which mRNA expression data is available (9 of 19 tissues sampled in the ‘B57BL/6 

MHCI Ligand atlas’. (C) Heatmap representing the average mRNA expression of genes coding for tissue-specific 

MHCI peptides across tissues. Z-score is color coded.   
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Figure 5. Expression and genetic conservation of genes coding for MHCI/HLAI peptides presented across most 

tissues (housekeeping/universal peptides). (A,B) mRNA expression of source genes of housekeeping/universal 

MHCI/HLAI peptides compared to all other mRNA transcripts in mouse (A) and human (B). (C,D) Exon and promoter 

conservation distributions of source genes of housekeeping/universal MHCI/HLAI peptides compared to source genes 

of tissue-specific MHCI peptides in mouse (C) and human (D).  
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Figure 6. Correlation of protein abundances at the proteome-wide scale with the total number of MHCI or 

HLAI peptides detected across tissues. (A) Protein expression data from protein expression maps of mouse and 

human tissues were correlated with the total number of MHCI or HLAI peptides detected per tissue. Correlations were 

simulated for every protein measured across nine or more tissues. Significantly correlating proteins were further 

investigated. (B) Gene Ontology terms enriched from 164 mouse and 120 human proteins whose abundance 

significantly correlates with the number of MHCI/HLAI peptides counted per tissue. (C) Example correlation of 

proteasome subunit Psmb3 in mouse with MHCI peptides counted across tissues. (D) Protein modules identified from 

the global correlative analysis are associated to antigen generation, processing and recognition. Mouse and human 

proteins annotated to enriched GO terms were manually curated from the literature and were classified based on their 

respective biological function: proteasome, aminopeptidase, carboxypeptidase, protease, ubiquitin protein, guanine 

nucleotide–exchange factor (GEF), actin binding protein and transcriptional regulator and NFKB related. Proteins 

depicted in grey are uncharacterized enzymes of the antigen processing network.  
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SUPPLEMENTARY FIGURES 

 

 
Supplementary Figure: 1: Connectivity map human immunopeptidome. This human heat map integrates 

immunopeptidomic data from 38 HLAI allotypes and 13 different subjects. The human heat map is not deconvoluted 

by HLA allotype nor subject and therefore provide a bird’s eye view of the human class I immunopeptidome. Note: 

The number of uniquely observed/tissue-specific peptides can be found along the diagonal. 
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Supplementary Figure 2: Proportion of peptides shared across Colon, Spleen, Liver, Lung, Bone marrow and 

Kidney. (A) Deconvoluted by best allele for which all 6 tissues were sampled. (B) Deconvoluted by subjects for which 

all six tissues were sampled.  
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Supplementary Figure 3: NetMHCpan4.0 rank and MHCI peptide intensities plotted against the number of 

measurements across tissues in the mouse dataset. 
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Supplementary Figure 4: MHC I peptide intensities plotted against the number of measurements across tissues 

in the human dataset. Each panel represents one subject. 
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Supplementary Figure 5: NetMHCpan4.0 rank (best allele) plotted against the number of measurements across 

tissues in the human dataset. Each panel represents one subject. 
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Supplementary Figure 6: Identification of the mouse and human tissue-independent MHCI peptides and their 

corresponding source genes. (A) Histogram showing the number of MHCI peptides presented in one or more tissues. 

1 measurement are MHCI peptides identified in only one tissue whereas 19 measurements are MHCI peptides 

identified in all the 19 tissues. Mouse source genes coding for MHCI peptides that were measured across more than 

17 tissues were considered for further analysis. (B) Source genes of the top 100 peptides from the human dataset 

measured the most frequently across tissues were considered ‘source genes of universal peptides’ . (C) In addition to 

B, source genes that present peptides across all tissues in at least two patients are also considered as ‘source genes of 

universal peptides’. (D) In addition to B and C, source genes that present peptides across all tissues for at least one 

allele are considered ‘source genes of universal peptides’. (E) Example of the distribution of peptide counts across 

tissues in AUT-DN14. (F) Example distribution of peptide counts across all samples containing allele A01:01. 
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Supplementary Figure 7: Venn diagram of human universal-peptide source genes originating from the three 

selection criteria specified in Supplementary Figure 6 B-D. 
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Supplementary Figure 8: Molecular weight of universal-peptide and tissue-specific-peptide source proteins. 

(A) Mouse and (B) Human. 
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Supplementary Figure 9: Large scale correlation of protein intensities with the total count of MHCI peptides 

per tissue in human and mouse datasets. (A) R-squared of linear fits plotted against the corresponding p-values for 

the human data. Proteins whose fits show R-squared values> 0.4 (p-value<0.05) in at least two subjects are considered 

significant. (B) R-squared of linear fits plotted against the corresponding p-values for the mouse data. Proteins whose 

fits show R-squared values> 0.4 (p-value<0.01) are considered significant.  
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Supplementary Figure 10: Negative correlations between total MHC-I peptide counts and protein intensities.  

(A) Proportion of direction of slopes of significant proteins in human and mouse. (B-D) Example fits of proteins in 

human and mouse with negative correlation. 
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Supplementary Figure 11: Overlap of enriched gene ontology (GO) terms between Mouse and Human for 

genes significantly correlating with total MHCI/HLAI counts.  
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Supplementary Figure 12: Example fit curves of prominent proteins. (A) Example fit of the protein Psme4 in 

mouse. (B) Example fit of the protein Erap1 in mouse. 
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