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Sustained software development, not number of
citations or journal choice, is indicative of accurate
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Abstract
Computational biology provides widely used and powerful software tools for testing and making inferences about
biological data. In the face of rapidly increasing volumes of data, heuristic methods that trade software speed
for accuracy may be employed. We are have studied these trade-offs using the results of a large number of
independent software benchmarks, and evaluated whether external factors are indicative of accurate software.
We have extracted accuracy and speed ranks from independent benchmarks of different bioinformatic software
tools, and evaluated whether the speed, author reputation, journal impact, recency and developer efforts are
indicative of accuracy.
We found that software speed, author reputation, journal impact, number of citations and age are all unreliable
predictors of software accuracy. This is unfortunate because citations, author and journal reputation are frequently
cited reasons for selecting software tools. However, GitHub-derived records and high version numbers show that
the accurate bioinformatic software tools are generally the product of many improvements over time, often from
multiple developers.
We also find that the field of bioinformatics has a large excess of slow and inaccurate software tools, and this
is consistent across many sub-disciplines. Meanwhile, there are few tools that are middle-of-road in terms of
accuracy and speed trade-offs. We hypothesise that a form of publication-bias influences the publication and
development of bioinformatic software. In other words, software that is intermediate in terms of both speed
and accuracy may be difficult to publish - possibly due to author, editor and reviewer practices. This leaves an
unfortunate hole in the literature as the ideal tools may fall into this gap. For example, high accuracy tools are not
always useful if years of CPU time are required, while high speed is not useful if the results are also inaccurate.
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Background

Computational biology software is widely used and has pro-
duced some of the most cited publications in the entire scien-
tific corpus [1, 2, 3]. These highly-cited software tools include
implementations of methods for sequence alignment and ho-
mology inference [4, 5, 6, 7], phylogenetic analysis [8, 9, 10,
11, 12], biomolecular structure analysis [13, 14, 15, 16, 17],
and visualization and data collection [18, 19]. However, the
popularity of a software tool does not necessarily mean that
it is accurate or computationally efficient, instead usability,
ease of installation, operating system support or other indirect
factors may play a greater role in a software tool’s popularity.
Indeed, there have been several notable incidences where con-

venient, yet inaccurate software has caused considerable harm
[20, 21, 22].

Progress in the biological sciences is increasingly limited
by the ability to analyse large volumes of data, therefore the
dependence of biologists on software is also increasing [23].
There is an increasing reliance on technological solutions for
automating biological data generation (e.g. next-generation
sequencing, mass-spectroscopy, cell-tracking and species track-
ing), therefore the biological sciences have become increas-
ingly dependent upon software tools for processing large quan-
tities of data [23]. As a consequence, the computational ef-
ficiency of data processing and analysis software is of great
importance to decrease the energy, climate impact, and time
costs of research [24]. Furthermore, as datasets become larger
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even small error rates can have major impacts on the number
of false inferences [25].

The gold-standard for determining accuracy is for researchers
independent of individual tool development to conduct bench-
marking studies, these benchmarks can serve a useful role in
reducing the over-optimistic reporting of software accuracy
[26, 27, 28] and the self-assessment trap [29, 30]. Benchmark-
ing typically involves the use a number of positive and negative
control datasets, so that predictions from different software
tools can be partitioned into true or false groups, allowing a va-
riety of metrics to be used to evaluate performance [31, 32, 28].
The aim of these benchmarks is to robustly identify tools that
make acceptable compromises in terms of balancing speed
with discriminating true and false predictions, and are there-
fore suited for wide adoption by the community.

For common computational biology tasks, a proliferation
of software-based solutions often exists [33, 34, 35]. While
this is a good problem to have, and points to a diversity of
options from which practical solutions can be selected, having
many possible options creates a dilemma for users. In the
absence of any recent gold-standard benchmarks, how should
scientific software be selected? In the following we presume
that the “biological accuracy” of predictions is the most de-
sirable feature for a software tool. Biological accuracy is the
degree to which predictions or measurements reflect the bi-
ological truths based on expert-derived curated datasets (see
Methods for the mathematical definition used here).

A number of possible predictors of software quality are
used by the community of computational biology software
users [36, 37, 38]. Some accessible, quantifiable and fre-
quently used proxies for identifying high quality software
include: 1. Recency: recently published software tools may
have built upon the results of past work, or be an update to
an existing tool. Therefore these may be more accurate and
faster. 2. Wide adoption: a software tool may be widely used
because it is fast and accurate, or because it is well-supported
and user-friendly. In fact,“large user base”, “word-of-mouth”,
“wide-adoption”, “personal recommendation”, and “recom-
mendation from a close colleague”, were frequent responses to
surveys of “how do scientists select software?” [36, 37, 38]. 3.
Journal impact: high profile journals are run by editors and
reviewers who carefully select and curate the best manuscripts.
Therefore, high impact journals may be more likely to select
manuscripts describing good software [39]. 4. Author/Group
reputation: the key to any project is the skills of the people
involved, including maintaining a high collective intelligence
[37, 40, 41]. As a consequence, an argument could be made
that well respected and high-profile authors may write better
software [42, 43]. 5. Speed: software tools frequently trade
accuracy for speed. For example, heuristic software such as
the popular homology search tool, BLAST, compromises the
mathematical guarantee of optimal solutions for more speed
[4, 7]. Some researchers may naively interpret this fact as im-
plying that slower software is likely to be more accurate. But
speed may also be influenced by the programming language

[44], and the level of hardware optimisation [45, 46]; However,
the specific method of implementation generally has a greater
impact (e.g., brute-force approaches versus rapid and sensitive
pre-filtering [47, 48, 49]).

With the wide adoption of GitHub (47% of the 499 tools
included in this study could be linked to a GitHub repository),
and consequently quantifiable data on software development
time and intensity indicators, such as the number of contribu-
tors to code, number of code changes and versions is available
for these [50, 51, 52].

In the following study, we explore factors that may be
indicative of software accuracy. This, in our opinion, should be
one of the prime reasons for selecting a software tool. We have
mined the large and freely accessible PubMed database [53] for
benchmarks of computational biology software, and manually
extracted accuracy and speed rankings for 499 unique software
tools. For each tool, we have collected measures that may be
predictive of accuracy, and may be subjectively employed by
the research community as a proxy for software quality. These
include relative speed, relative age, the productivity and impact
of the corresponding authors, journal impact and the number
of citations.

Results
We have collected relative accuracy and speed ranks for 499
distinct software tools. This software has been developed for
solving a broad cross-section of computational biology tasks.
Each software tool was benchmarked in at least one of 69
publications that satisfy the Boulesteix criteria [54]. In brief,
the Boulesteix criteria are: 1. the main focus of the article is a
benchmark. 2. the authors are reasonably neutral. 3. the test
data and evaluation criteria are sensible.

For each of the publications describing these tools, we
have (where possible) collected the journal’s H5-index (Google
Scholar Metrics), the maximum H-index and corresponding
M-indices [42] for the corresponding authors for each tool, and
the number of times the publication(s) associated with a tool
has been cited using Google Scholar (data collected over a 6
month period in late 2020). Note that citation metrics are not
static and will change over time. In addition, where possible
we also extract the version number, the number of commits
and number of contributors from GitHub repositories.

We have computed the Spearman’s correlation coefficient
for each pairwise combination of the mean normalised accu-
racy and speed ranks, with the year published, mean relative
age (compared to software in the same benchmarks), journal
H5 metrics, the total number of citations, the relative number
of citations (compared to software in the same benchmarks)
and the maximum H- and corresponding M-indices for the cor-
responding authors, version number, and numbers of commits
and contributors. The results are presented in Figure 1A&B.
We find significant associations between most of the citation-
based metrics (journal H5, citations, relative citations, H-index
and M-index). There is also a negative correlation between the
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Figure 1. A. A heatmap indicating the relationships between different features of bioinformatic software tools. Spearman’s rho
is used to infer correlations between metrics such as citations based metrics, the year and relative age of publication, version
number, GitHub derived activity measures, and the mean relative speed and accuracy rankings. Red colours indicate a positive
correlation, blue colours indicate a negative correlation. Correlations with an P-value less than 0.05 (corrected for
multiple-testing using the Benjami-Hochberg method) are indicated with a ‘"’ symbol. The correlations with accuracy are
illustrated in more detail in B, the relationship between speed and accuracy is shown in more detail in Figure 2. B. Violin plots
of Spearman’s correlations between permuted accuracy ranks and different software tool features. The unpermuted correlations
are indicated with a red asterix. For each benchmark, 1,000 permuted sets of accuracy and speed ranks were generated, and the
ranks were normalised to lie between 0 and 1 (see Methods for details). Circled asterixs are significant (empirical P-value
< 0.05, corrected for multiple-testing using the Benjami-Hochberg method).

year of publication, the relative age and many of the citation-
based metrics.

Data on the number of updates to software tools from
GitHub such as the number of versions, commits and con-
tributors was significantly correlated with software accuracy
(respective Spearman’s rhos = 0.15, 0.22, 0.21, and respec-
tive Benjamini & Hochberg corrected P-values = 0.029, 0.042,
0.063), Figure 1B. The significance if these features was fur-
ther confirmed with a permutation test (Figure 1B). These fea-
tures were not correlated with speed however (see Figure 1A
& Supplementary Figure ????). We also found that reputation
metrics such as citations, author and journal H-indices, and
the age of tools were generally not correlated with either tool
accuracy or speed (Figure 1A&B).

In order to gain a deeper understanding of the distribution
of available bioinformatic software tools on a speed versus
accuracy landscape, we ran a permutation test. The ranks ex-
tracted from each benchmark were randomly permuted, gener-
ating 1,000 randomized speed and accuracy ranks. In the cells
of a 3× 3 grid spanning the normalised speed and accuracy

ranks we computed a Z-score for the observed number of tools
in a cell, compared to the expected distributions generated by
1,000 randomized ranks. The results of this are shown in Fig-
ure 2. We identified 4 of 9 bins where there was a significant
excess or dearth of tools. For example, there was an excess of
“slow and inaccurate” software (Z=3.39, P-value=3.5×10−4),
with more moderate excess of “slow and accurate” and “fast
and accurate” software (Z=2.49 & 1.7, P=6.3×10−3 & 0.04
respectively). We find that only the “fast and inaccurate” ex-
treme class is at approximately the expected proportions based
upon the permutation test (Figure 2B).

The largest difference between the observed and expected
software ranks is the reduction in the number of software
tools that are classed as intermediate in terms of both speed
and accuracy based on permutation tests (see Methods for
details, Figure 2). The middle cell of Figure 2A and left-most
violin plot of Figure 2B highlight this extreme, (Z=-6.38, P-
value=9.0×10−11).
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Figure 2. A. A heatmap indicating the relative paucity or abundance of software in the range of possible accuracy and speed
rankings. Redder colours indicate an abundance of software tools in an accuracy and speed category, while bluer colours
indicate scarcity of software in an accuracy and speed category. The abundance is quantified using a Z-score computation for
each bin, this is derived from 1,000 random permutations of speed and accuracy ranks from each benchmark. Mean normalised
ranks of accuracy and speed have been binned into 9 classes (a 3×3 grid) that range from comparatively slow and inaccurate to
comparatively fast and accurate. Z-scores with a P-value less than 0.05 are indicated with a ‘"’. B. The z-score distributions
from the permutation tests (indicated with the wheat coloured violin plots) compared to the z-score for the observed values for
each of the corner and middle square of the heatmap.

Conclusion
We have gathered data on the relative speeds and accuracies
of 499 bioinformatic tools from 69 benchmarks published
between 2005 and 2020. Our results provide significant sup-
port for the suggestion that there are major benefits to the
long-term support of software development [55]. The finding
of a strong relationship between the number of commits and
code contributors to GitHub (i.e. software updates) and accu-
racy, highlights the benefits of long-term or at least intensive
development.

Our study finds little evidence to support that impact-based
metrics have any relationship with software quality, which is
unfortunate, as these are frequently cited reasons for selecting
software tools [38]. This implies that high citation rates for
bioinformatic software [1, 2, 3] is more a reflection of other
factors such as user-friendliness or the Matthew Effect [56, 57]
other than accuracy.

We found the lack of a correlation between software speed
and accuracy surprising. The slower software tools are over-
represented at both high and low levels of accuracy (Figure 2).
In addition, there is an large under-representation of software
that has intermediate levels of both accuracy and speed. A pos-
sible explanation for this is that bioinformatic software tools
are bound by a form of publication-bias [58, 59]. That is, the
probability that a study being published is influenced by the re-
sults it contains [60]. The community of developers, reviewers
and editors may be unwilling to publish software that is not
highly ranked on speed or accuracy. If correct, this may have

unfortunate consequences as these tools may never-the-less
have further uses.

While we have taken pains to mitigate many issues with
our analysis, nevertheless some limitations remain. For ex-
ample, it has proven difficult to verify if the gap in medium
accuracy and medium speed software is genuinely the result
of publication bias, or due to additional factors that we have
not taken in to account. In addition, all of the features we have
used here are moving targets. For example, as software tools
are refined, their relative accuracies and speeds will change,
the citation metrics, ages, and version control derived mea-
sures also change over time. Here we report a snapshot of
values from 2020. The benchmarks themselves may also intro-
duce biases into the study. For example, there are issues with
a potential lack of independence between benchmarks (e.g.,
shared datasets, metrics and tools), there are heterogeneous
measures of accuracy and speed and often unclear processes
for including different tools.

We propose that the full spectrum of software tool ac-
curacies and speeds serves a useful purpose to the research
community. Like negative results, if honestly reported this
information, illustrates to the research community that certain
approaches are not practical research avenues [61]. The cur-
rent practices of publishers, editors, reviewers and authors of
software tools therefore may be depriving our community of
tools for building effective and productive workflows.

The most reliable way to identify accurate software tools
is through neutral software benchmarks [54]. We are hopeful
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that this, along with steps to reduce the publication-bias we
have described, will reduce the over-optimistic and misleading
reporting of tool accuracy [26, 27, 29].

Methods
In order to evaluate predictors of computational biology soft-
ware accuracy, we mined the published literature, extracted
data from articles, connected these with bibliometric databases,
and tested for correlates with accuracy. We outline these steps
in further detail below.

Criteria for inclusion: We are interested in using compu-
tational biology benchmarks that satisfy Boulesteix’s (ALB)
three criteria for a “neutral comparison study” [54]. Firstly,
the main focus of the article is the comparison and not the
introduction of a new tool. Secondly, the authors should be
reasonably neutral, which means that the authors should not
generally have been involved in the development of the tools
included in the benchmark. Thirdly, the test data and evalua-
tion criteria should be sensible. This means that the test data
should be independent of data that tools have been trained
upon, and that the evaluation measures appropriately quantify
correct and incorrect predictions.

Literature mining: We identified an initial list of 10
benchmark articles that satisfy the ALB-criteria. These were
identified based upon previous knowledge of published arti-
cles and were supplemented with several literature searches
(e.g., [“benchmark” AND “cputime”] was used to query both
GoogleScholar and Pubmed [53, 62]). We used these articles
to seed a machine-learning approach for identifying further
candidate articles and to identify new search terms to include.

For our machine-learning-based literature screening, we
computed a score, s(a), for each article that tells us the like-
lihood that it is a benchmark. In brief, our approaches uses 3
stages:

1. Remove high frequency words from the title and abstract
of candidate articles (e.g. ‘the’, ‘and’, ‘of’, ‘to’, ‘a’, . . . )

2. Compute a log-odds score for the remaining words

3. Use a sum of log-odds scores to give a total score for
candidate articles

For stage 1, we identified a list of high frequency (e.g. f (word)
> 1/10,000) words by pooling the content of two control texts
[63, 64].

For stage 2, in order to compute a log-odds score for
bioinformatic words, we computed the frequency of words
that were not removed by our high frequency filter in two
different groups of articles: bioinformatics-background and
bioinformatics-benchmark articles. The text from bioinformatics-
background articles were drawn from the bioinformatics litera-
ture, but these were not necessarily associated with benchmark
studies. For background text we used Pubmed ([53, 62] to
select 8,908 articles that contained the word “bioinformatics”
in the title or abstract and were published between 2013 and

2015. We computed frequencies for each word by combining
text from titles and abstracts for the background and training
articles. A log-odds score was computed for each word using
the following formula:

lo(word) = log2
ftr(word)+δ

fbg(word)+δ

Where δ was a pseudo-count added for each word (δ =
10−5, by default), fbg(word) and ftr(word) were the frequen-
cies of a word in the background and training datasets re-
spectively. Word frequencies were computed by counting the
number of times a word appears in the pool of titles and ab-
stracts, the counts were normalised by the total number of
words in each set.

Thirdly, we also collected a group of candidate benchmark
articles by mining Pubmed for articles that were likely to
be benchmarks of bioinformatic software, these match the
terms: “((bioinformatics) AND (algorithms OR programs OR
software)) AND (accuracy OR assessment OR benchmark OR
comparison OR performance) AND (speed OR time)”. Further
terms used in this search were progressively added as relevant
enriched terms were identified in later iterations. The final
query is given in supplementary materials.

A score is computed for each candidate article by sum-
ming the log-odds scores for the words in title and abstract,
i.e. s(a) = ∑

N
i lo(wi). The high scoring candidate articles are

then manually evaluated against the ALB-criteria. Accuracy
and speed ranks were extracted from the articles that met the
criteria, and these were added to the set of training articles.
The evaluated candidate articles that did not meet the ALB-
criteria were incorporated into the set of background articles.
This process was iterated and resulted in the identification of
69 benchmark articles, containing 134 different benchmarks.
Together these ranked 499 distinct software packages.

There is a potential for bias to have been introduced into
this dataset. Some possible forms of bias include converging
on a niche group of benchmark studies due to the literature
mining technique that we have used. A further possibility is
that benchmark studies themselves are biased, either including
very high performing or very low performing software tools.
To address each of these concerns we have attempted to be as
comprehensive as possible in terms of benchmark inclusion,
as well as including comprehensive benchmarks (i.e., studies
that include all available software tools that address a specific
biological problem).

Data extraction and processing: for each article that met
the ALB-criteria and contained data on both the accuracy and
speed from their tests, we extracted ranks for each tool. Many
articles contained multiple benchmarks, in these cases we
selected a range of these, the provenance of which is stored
with the accuracy metric and raw speed and accuracy rank
data for each tool. In line with rank-based statistics, the cases
where tools were tied were resolved by using a midpoint rank
(e.g., if tool 3 and 4 are tied, the rank 3.5 was used) [65]. Each
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rank extraction was independently verified by at least one other
co-author to ensure both the provenance of the data could be
established and that the ranks were correct. The ranks for
each benchmark were then normalised to lie between 0 and
1 using the formula 1− r−1

n−1 where ‘r’ is a tool’s rank and ‘n’
is the number of tools in the benchmark. For tools that were
benchmarked multiple times with multiple metrics (e.g., BWA
was evaluated in 6 different articles [66, 67, 68, 69, 70, 71])
a mean normalised rank was used to summarise the accuracy
and speed performance. Or, more formally:

accuracy = ∑
i=1..N

1−
raccuracy

i −1
ni −1

,

speed = ∑
i=1..N

1−
rspeed

i −1
ni −1

For each tool we identified the corresponding publications
in GoogleScholar; the total number of citations was recorded,
the corresponding authors were also identified, and if they
had public GoogleScholar profiles, we extracted their H-index
and calculated a M-index ( H−index

y ) where ‘y’ is the number
of years since their first publication. The journal quality was
estimated using the H5-index from GoogleScholar Metrics.

The year of publication was also recorded for each tool.
“Relative age” and “relative citations” were also computed
for each tool. For each benchmark, software was ranked by
year of first publication (or number of citations), ranks were
assigned and then normalised as described above. Tools ranked
in multiple evaluations were then assigned a mean value for
“relative age” and “relative citations”.

The papers describing tools were checked for information
on version numbers and links to GitHub. Google was also em-
ployed to identify GitHub repositories. When a repository was
matched with a tool, the number of “commits” and number of
“contributors” was collected, when details of version numbers
were provided, these were also harvested. Version numbers are
inconsistently used between groups, and may begin at either 0
or 1. To counter this issue we have added ‘1’ to all versions
less than ‘1’, for example, version 0.31 become 1.31. In addi-
tion, multiple point releases may be used e.g. ‘version 5.2.6’,
these have been mapped to the nearest decimal value ‘5.26’.

Statistical analysis: For each tool we manually collected
up to 12 different statistics from GoogleScholar, GitHub and
directly from literature describing tools (1. corresponding au-
thor’s H-index, 2. corresponding author’s M-index, 3. journal
H5 index, 4. normalised accuracy rank, 5. normalised speed
rank, 6. number of citations, 7. relative age, 8. relative number
of citations, 9. year first published, 10. version 11. number
of commits to GitHub, 12. number of contributors to GitHub).
These were evaluated in a pairwise fashion to produce Figure 1
A&B, the R code used to generate these is given in a GitHub
repository (linked below).

For each benchmark of three or more tools, we extracted
the published accuracy and speed ranks. In order to identify

whether there was an enrichment of certain accuracy and speed
pairings we constructed a permutation test. The individual
accuracy and speed ranks were reassigned to tools in a random
fashion and each new accuracy and speed rank pairing was
recorded. For each benchmark this procedure was repeated
1,000 times. These permuted rankings were normalised and
compared to the real rankings to produce the ‘"’ points in
Figure 1B and the heatmap and histograms in Figure 2. The
heatmap in Figure 2 is based upon Z-scores (Z = x−x̄

s ). For
each cell in a 3×3 grid a Z-score (and corresponding P-value
is computed, either with the ‘pnorm’ distribution function in
R (Figure 2A) or empirically (Figure 2B)) is computed to
illustrate the abundance or lack of tools in a cell relative to the
permuted data.

Data availability
Raw datasets, software and documents are available under a
CC-BY license:
https://github.com/Gardner-BinfLab/speed-
vs-accuracy-meta-analysis
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