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Abstract
Gene regulatory and gene co-expression networks are powerful research

tools for identifying biological signal within high-dimensional gene expres-
sion data. In recent years, research has focused on addressing shortcomings
of these techniques with regard to the low signal-to-noise ratio, non-linear
interactions and dataset dependent biases of published methods. Further-
more, it has been shown that aggregating networks from multiple methods
provides improved results. Despite this, few usable and scalable software
tools have been implemented to perform such best-practice analyses. Here,
we present Seidr (stylized Seiðr), a software toolkit designed to assist sci-
entists in gene regulatory and gene co-expression network inference. Seidr
creates community networks to reduce algorithmic bias and utilizes noise
corrected network backboning to prune noisy edges in the networks.
Using benchmarks in real-world conditions across three eukaryotic model or-
ganisms, Saccharomyces cerevisiae, Drosophila melanogaster, and Arabidop-
sis thaliana, we show that individual algorithms are biased toward functional
evidence for certain gene-gene interactions. We further demonstrate that the
community network is less biased, providing robust performance across dif-
ferent standards and comparisons for the model organisms.
Finally, we apply Seidr to a network of drought stress in Norway spruce
(Picea abies (L.) H. Krast) as an example application in a non-model species.
We demonstrate the use of a network inferred using Seidr for identifying key
components, communities and suggesting gene function for non-annotated
genes.
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Introduction
The increasing accessibility of RNA sequencing in recent years has popularized
large scale applications of computational biology. Two such methods, gene reg-
ulatory network (GRN) and gene co-expression network (GCN) inference, derive
network structures of either transcription factor (TF) to target, or generic gene-
gene associations from gene expression data. The primary goal of a GRN studies is
the discovery of new regulatory interactions of known transcription factors, often
in specific conditions or during certain developmental stages, or the identification
of high-impact candidate genes for biotechnology applications and genome engi-
neering.1,2. Conversely, GCN analysis assists researchers in functional annotation
and gene-phenotype association studies3.
The area of computational inference of GRNs and GCNs receives considerable at-
tention from the scientific community with new software published regularly, but
the challenging nature of the problem makes progress in the field incremental.
Gene networks tend to suffer from two main issues: Firstly, the inference algo-
rithm is often biased toward (or against) some types of regulatory interactions4;
Secondly, the experimental limitations in the number of samples and precision of
sampling often lead to low signal-to-noise ratios. In order to combat bias, Marbach
et al. [4] proposed a voting-based scheme of a “crowd” of networks (hereinafter re-
ferred to as a community), which increased the robustness of the final aggregate
network both on simulated and real data. To combat the low signal-to-noise ratio
in real world networks, Coscia et al. [5] recently proposed a network “backboning”
strategy that employs a Bayesian framework to filter non-essential edges from a
dense network.
Despite the proposed methods to combat bias and noise, few studies in the field
make use of either of them, often relying on a single method and a naïve edge
threshold, where all edges below an often arbitrary cutoff are filtered. Some soft-
ware implementations have been previously published4,6,7, but their applicability
is narrow due to the integration of poorly optimized code. In most meta-network
applications the source code of the original algorithm publications is integrated
as-is, which is often coded as a proof-of-concept rather than optimized for high-
throughput analysis. This severely limits the scope of the inferred network, al-
lowing only the inference of interactions between known transcription factors and
putative target genes as opposed to comprehensive all-vs-all analyses, for example.
We have developed “Seidr” (stylized “Seiðr”), a feature rich software package that
currently implements ensemble network inference, aggregation, backboning as well
as numerous tools to interact with Seidr networks. Seidr is written in C++, can
scale to tens of thousands of genes and can be executed on high performance com-
pute clusters using message parsing interface (MPI) distributed computing, mak-
ing it applicable for high-dimensional analyses, including large single-cell datasets.
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We show that Seidr produces robust results in three networks produced from real-
world RNA sequencing data of three model eukaryotic species. We chose to utilize
real-world data as benchmarks for GRN and GCN inference software, as in silico
gold standards are not always reliable predictors for performance on real world
data, due to them being inherently subject to assumptions about the dynamics
between expression quantification and gene interaction, or relying only on evidence
from simpler prokaryotic species.
Finally, to demonstrate a typical use-case, we apply Seidr to a study of drought
stress in Norway spruce (Picea abies (L.) H. Krast).

Results

Seidr workflow
Currently, thirteen gene network inference methods are implemented in Seidr,
in three broad inference groups: correlation, mututal information (MI), and re-
gression. Correlation based methods include Pearson correlation, Spearman cor-
relation, topological overlap8 and a shrinkage estimate to partial correlation as
implemented in Schäfer et al. [9]. In the MI group Seidr supports calculating raw
MI scores using B-splines10, which can be further post-processed using the CLR11,
or ARACNe12 algorithms. The fourth MI method implements Narromi13. In the
regression group, Seidr provides GENIE314, TIGRESS15, linear SVM and Elastic
Net ensembles16, PLSNET17, and the topological overlap metric from WGCNA8.
A typical Seidr workflow involves three steps (a representation can be seen in
Figure 1):

1. Inference: Construct any number of independent gene networks using any
combination of the above algorithms. This can be done for a full all-vs-all
gene network or in a targeted approach (e.g., only transcription factors).

2. Aggregation: The group of inferred networks is aggregated into a commu-
nity network using one of the supported aggregation methods.

3. Filtering: As aggregation usually outputs a fully-connected network, it is
desirable to cut low confidence edges. Seidr can be used to estimate a hard
threshold, using network scale-free fit and transitivity as lead statistics, or
by applying a dynamic cutoff as suggested in Coscia et al. [5].

4. Downstream analysis: A dense or pruned network can then be utilized in
a number of graph based analyses. Common choices include graph partition-
ing, centrality analysis or neighbourhood analyses in order to study genes
(or groups of genes) related to a function of interest.
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Benchmark data and gold standards
In order to assess the performance of algorithms on real-world data we selected
publicly available RNA-Seq data from the National Center for Biotechnology In-
formation (NCBI) Sequence Read Archive (SRA) for three model species: S.
cerevisiae (N=1399), D. melanogaster (N=859) and A. thaliana (N=1216). We
selected the Biological General Repository for Interaction Datasets (BioGRID)
interaction dataset for each species as a measure of ground truth for general con-
nectivity18. For functional proximity, we used the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database as a proxy, defining an edge between two genes
if they co-occur in a pathway19. For S. cerevisiae, we chose the Yeast Search for
Transcriptional Regulators And Consensus Tracking (YEASTRACT) database as
a measure of regulatory proximity20. In order to verify the predicted networks
we assessed whether individual or community methods predicted higher-scoring
edges for in-groups compared to out-groups. For KEGG, we tested the follow-
ing null hypothesis: Links between genes annotated to the same pathway do not
receive higher weights compared to genes annotated to different pathways. For
YEASTRACT and and BioGRID, we formulated the null hypothesis as follows:
links present in the gold standard - treated as undirected - do not receive higher
weights compared to links of the same genes to those outside of the gold standard.
One-sided Kruskal-Wallis tests showed strong associations for all single methods
as well as the community (supplementary data 2).

Network pruning improves sensitivity and specificity
Many gene network inference algorithms produce dense networks, meaning every
gene is connected to every other gene with a calculated edge weight. To prune
these networks, researchers often perform naïve pruning, which cuts all edges be-
low an arbitrary threshold. Coscia et al. [5] argued that this method fails to
properly take local edge distributions into account, and therefore fails to separate
signal from noise accurately. We implemented their algorithm in Seidr, and per-
formed backboning for all δ (the standard deviation of the expected variance of
edge weights connected to a single node) in range [0.1, 0.2, ..., 3.5] for all algorithms
implemented in Seidr and all benchmark networks. We further generated naïvely
pruned networks with approximately equal edge counts to their backbone filtered
counterparts. We then used all standards to generate receiver operator character-
istic (ROC) and precision-recall (PR) curves for all aforementioned combinations
and calculated the area under the ROC-curve (AUC) and under the PR-curve
(AUPR). Briefly, the AUC reports whether a predictor ranks true positives higher
than false positives and the AUPR shows how relevant the edges it ranks highly
are. An AUC = 1 indicates a perfect predictor and AUC = 0.5 indicates a random
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predictor. We only considered networks with greater than 0.1% edge density (i.e.
the fraction of edges left in the network compared to all theoretical edges if all
genes were connected to each other), as otherwise the number of gold standard
edges would be too sparse to generate ROC curves.
In general, all networks benefited from filtering edges using either method. Most
networks improved by lenient backboning, pruning edges below a δ of 2, at which
the benefit reached a plateau (see Supplementary data 2). Pruning stricter than
a δ of 2.32 - which represents an approximate P-value of 1% - often resulted in a
decrease in AUPR and a small increase in AUC, representing a trade off between
sensitivity and specificity.

Ensembles of networks improve robustness
Marbach et al. [4] suggested that community networks are superior to any single
method due to their resilience against algorithmic bias. This idea was further
tested using phosphorylation data by Hill et al. [21], who showed that community
approaches can benefit causal networks. To understand whether different gene
network inference algorithms are biased toward certain types of interactions, we
created subsets of the full BioGRID standard. We split the dataset by the type
of evidence as a proxy for the interaction type. Next, we created a community
network for each benchmark dataset, using the inverse rank product (IRP; Zhong et
al. [22]) algorithm, and performed the same pruning steps as for all other networks.
We then recomputed the F1 scores (a measure of accuracy that combines precision
and sensitivity) from the AUC and AUPR solely based on each single evidence
group and compared the mean F1 of the evidence subset to the mean F1 of the
full dataset. We summarized general robustness as the relative variance of mean
differences to the baseline (Figure 2, top), which ranks the community network as
the best cumulative score, about even with raw MI.
In order to understand whether the community network performs better than any
single method, we aggregated all benchmark data and selected the highest scoring
pruned network for each method. The sum of performance evaluations over all
standards and species ranked Seidr as the highest scoring method, followed by raw
MI (Figure 2, bottom).

Applying Seidr to drought stress in Norway spruce
Drought and non-drought networks

In order to identify possible drought-specific actors in Norway spruce, we used
Seidr to create a network of drought stressed needles using previously published
RNA-Sequencing data23.
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Briefly, in this experiment the authors assayed physiological and transcriptional
changes in Norway spruce seedlings after inducing drought stress. Within the first
five days, soil moisture was reduced from 80% field capacity (FC) to 30% FC and
subsequently held at 30% for seven days. Severe drought stress was then induced
by withholding water until severe symptoms of dysfunction occurred. These con-
ditions were held for four days after which re-irrigation started. Four days after
re-irrigation started, soil moisture had returned to 80% FC. Needles were sampled
at control (day zero), mild (two, four, five and 13 days) and severe (18 and 21
days) drought and after re-irrigation (25 days).
After calculating a gene network from this data, we further performed edge prun-
ing via the backbone method, graph partitioning using InfoMap24 and calculated
node-based centrality statistics using convenience functions implemented in Seidr.
In parallel, we followed the same pipeline using a compendium of RNA-Seq data
from unstressed needles as a non-specific dataset.

Higher node centrality coincides with relevant biological
functions
To investigate drought-related gene functions within the gene networks, we first
used a curated list of Norway spruce orthologs of Arabidopsis thaliana genes with
confirmed roles in drought stress23 (N=150, see supplementary data 4) and used
Seidr-calculated node centrality metrics for each node in the stressed and un-
stressed networks. We then tested whether genes in our curated dataset had
significantly higher centrality values compared to all other genes or compared to a
random sample of genes of the same magnitude (one-sided Kruskal-Wallis, FDR:
α < 2.8 ∗ 10−4). The set of curated genes was significantly higher ranked in all six
centrality statistics only in the drought-specific network. While the same nodes
also showed a similar trend in the non-specific network, none of the associations
were statistically significant (supplementary figure 10-12). In addition, we used
gene set enrichment analysis (GSEA) to test if the set of curated genes was en-
riched for high-centrality nodes in either network. Within the stressed network,
all metrics showed a high degree of association between centrality and the set of
curated genes, whereas the unstressed network only had significant enrichment in
one out of six statistics (betweenness, supplementary figure 10-12).
To supplement the previous analysis with unbiased resources, we performed gene
set enrichment analysis of gene ontology (GO) categories for both networks using
the node centrality values as covariates (supplementary data 3). Nodes with high
centrality in the stressed network were enriched for numerous response processes to
biotic and abiotic stimuli, as well as metabolic processes such as nicotinamide ade-
nine dinucleotide phosphate (NADPH) regeneration (GO:0006740), lipid biosyn-
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thesis (GO:0008610) and the mitogen-activated protein kinase (MAPK) cascade
(GO:0000165). In contrast, nodes with high centrality in the unstressed network
were enriched for processes such as developmental growth (GO;0048589), cell cycle
(GO:0007049) and cytokinesis (GO:0000910).

Partitioning and Enrichment

Using the edge-pruned drought network, we partitioned the graph via InfoMap24
(figure 3). For each top-level module in the graph partition with more than 10
member genes (N=16), we performed gene enrichment analysis using the GO25,26

(supplementary data 5) and MapMan27 (supplementary data 6) databases as an-
notation. Modules 2, 5 and 6 all were significantly enriched for stress response
terms (Padj < 0.01). Module 2 was enriched for “defense response” (GO:0006952,
Padj = 2.82e−11) and “response to stimulus” (GO:0050896, Padj = 2.87e−3). Mod-
ule 5 was enriched for “response to oxidative stress” (GO:0006979, Padj = 2.27e−6),
“response to chemical” (GO:0042221, Padj = 1.62e−4), and “response to redox
state” (GO:0051775, Padj = 5.2e−4). Finally, module 6 was enriched for “response
to karrikin” - a group of plant hormones found in the smoke of burning plant
material (GO:0080167, Padj = 1.28e−6).

High-centrality transcription factor analysis

In order to find possible targets for genetic modification, we calculated median-rank
centrality values for all annotated transcription factors (TFs) in the network and
selected the top 20 nodes. We then further narrowed down the list by only selecting
transcription factors in modules 2, 5 or 6 given the previous analysis related to GO
enrichment in these modules. None of the TFs were members of modules 5 and 6,
but a total of six (30%) were annotated to module 2. All of these show a character-
istic expression peak at 30% hydration, with “MA_103341g0010” (a NAC - NAM,
ATAF1/2 and CUC2 - domain-containing 35-like TF) and “MA_10426365g0010”
(an NAC domain-containing 86-like) peaking again during plant collapse. None of
the TFs in module 2 were present in the curated list of genes involved in drought
response.

Local Neighbourhood and Functional Annotation Inference

In order to assess functional inference power in the stressed network we selected
three non-annotated genes with high median-rank centrality. In their local neigh-
borhood we then selected nodes directly connected to the non-annotated gene.
GeneMA_10432675g0010 contains a cellulase (glycosyl hydrolase family 5) do-
main. Local neighborhood connects it to MA_10425958g0010 (Kinesin, mitochon-
drial isoform X1), MA_4391326g0010 (another cellulase) and MA_84105g0010, a
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glycoside hydrolase.
Gene MA_69177g0010 has two non-annotated neighbours - MA_136426g0010
and MA_894367g0010 - as well as MA_41206g0010 which is annotated as a
mitogen-activated kinase 3.
GeneMA_10192193g0010. This gene has two neighbours. MA_10192193g0020,
annotated as zinc finger CONSTANS-LIKE 16, and MA_10226519g0010, which
is a DNA photolyase.

Discussion
Gene network inference, be it regulatory or co-expression networks, is an impor-
tant and widely used bioinformatics tool for modern biological research, but best
practice information and implementations are lacking. This consideration is espe-
cially relevant now, as the single cell sequencing boom is generating increasingly
massive-scale expression datasets that synergize well with gene network analysis
given their high sample count28. However, care must be taken as to which meth-
ods are selected to perform the inference29, with several new methods proposed to
specifically address network inference in single cell experiments30–32.
As a software implementation to these ends we present Seidr, a software toolkit
that enables researchers to create community networks, perform backboning and
perform a variety of other tasks related to gene networks. Our toolkit is efficient
and follows evidence-based well performing workflows. Currently, Seidr performs
inference using thirteen distinct methods, but a high-level implementation based
around multi processing (OpenMP), message parsing (MPI), and the Armadillo
linear algebra framework makes the inclusion of new methods in a parallel, shared-
memory architecture a straightforward effort. Further, the modular design allows
users to import networks calculated with external tools into Seidr and add them
to communities, or post-process them in one of many ways.
We used Seidr to reaffirm that community networks and dynamic edge pruning
(backboning) both perform better than single methods, congruent with Marbach
et al. [4] and Coscia et al. [5]. We show that community networks are less biased
and perform very well compared to any single method in sensitivity, specificity and
precision. Precision and recall are especially important in imbalanced problems
such as gene regulatory networks, where true negatives far outweigh true positive
labels. In addition to network aggregation, we also show that edge pruning in
general, and backboning specifically, improved the characteristics of the generated
networks.

To illustrate a number of applications, we used Seidr to infer a network based
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on a real-world study of drought response in Picea abies. In addition, we calcu-
lated another network for a compendium of unstressed needles.
Firstly, we calculated centrality statistics of all nodes in the drought and unstressed
networks. The drought network showed more relevant associations between cen-
trality and GO terms in our GSEA analysis. In addition, genes with putative
involvement in drought stress were significantly associated with centrality values
in the drought-specific network only, highlighting the importance of creating ex-
periment specific networks.
In order to further gather context about local relationships of genes we partitioned
the graph using InfoMap, which resulted in 16 distinct modules. We chose param-
eters that would result in more modules so as to cluster smaller, more specific
groups of genes even if the expression profiles between modules were similar. Of
the three modules which were enriched to stress-related GO terms (modules 2, 5
and 6), module 2 was of particular interest as the expression profile corresponded
well to the abscisic acid measurements in Haas et al. [23]. Additionally, we iden-
tified six highly central transcription factors within that module, which present
high interest targets for future genetic modification experiments.
Another application of gene networks is inference of possible gene function of non-
annotated genes. Functional analysis of the neighbourhood of non-annotated genes
revealed three diverse candidates, which were selected due to their high centrality
values in the drought network. The first candidate MA_10432675g0010, is an-
notated as a cellulase. Genes in its neighborhood are similarly enzymes involved
in cell wall modification. Sasidharan et al. [33] review various mechanisms of cell
wall reorganization as a response to stresses, suggesting MA_10432675g0010 acts
also in response to abiotic stresses to reorganize cell wall structure. The second
candidate, MA_69177g0010, has no domain annotation. Only one of its neigh-
bours has been annotated as a mitogen-activated kinase (MAPK). Sinha et al. [34]
discuss the role of MAPKs in plants in cellular signaling as a response to abiotic
stress, which would place MA_69177g0010 as part of this signaling chain. Finally,
MA_10192193g0010 has a neighbour annotated as a photolyase and another as
CONSTANS-like. Photolyases are known to deal with DNA-repair in response to
light damage35. Drought stress can lead plants to have reduced ability to man-
age light and therefore generate reactive oxygen species (ROS), which can lead to
DNA damage similar to excess UV-light36,37. The other neighbour is annotated to
CONSTANS-like 16 (a gene typically associated with flowering), which has recently
been shown to lead to chlorophyll accumulation when over-expressed in Petunia37.
Further, a similar gene has recently been shown to improve drought tolerance in
sugarcane when over-expressed38 via maintenance of photosynthesis and by en-
hancing the antioxidant and osmotic capabilities of the plant. We therefore infer
MA_10192193g0010 to play a role in similar processes i.e. ROS detoxification and
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photosynthesis upkeep.

Supplementary data
1. Dataset accessions

2. Supplementary S1

3. Gene set enrichment results for stressed and unstressed networks

4. Curated and random gene lists for GSEA analyses

5. GO enrichment results for clusters 1-16

6. MapMan enrichment results for clusters 1-16
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Methods

Count data
For A. thaliana, 1227 accessions were collected from the NCBI SRA and quanti-
fied against the TAIR10 assembly using salmon/0.13.1 with default options. For
S. cerevisiae 2129 accessions from the SRA were quantified using salmon/0.11.2
against the EnsEMBL (r93) assembly. For D. melanogaster, 1316 accessions were
quantified using salmon/0.11.2 against the FlyBase 6.25 assembly. Each dataset
was filtered to have at least 75% aligned reads, resulting in 1216, 1399 and 859
accessions post-filtering respectively. The count data was imported into R39 using
the tximport package40, transcript counts were summarized to genes, and the vari-
ance stabilizing transformation was applied using DESeq241. Genes with constant
expression (zero variance) were removed. Finally, the median expression of all
genes in a sample was subtracted from each gene in that sample, median-centering
it. Detailed lists of all accessions can be found in supplementary data 1.

Seidr benchmark networks
All network inference was done using seidr/0.13.1, with default options unless
otherwise specified. In the el-ensemble, llr-ensemble, tigress, pearson, plsnet, and
pcor subprograms, the “–scale” option was used to transform data to z-scores prior
to inference. The networks were aggregated using the inverse rank product method.
Each network backbone was then calculated (for all individual and the community
networks) and the edges were filtered for all values of δ in range [0.1, 0.2, ..., 3.5],
creating 35 increasingly stringent subsets of the network. Hard cutoffs were then
used to create another 35 networks that match the backboned ones in density, i.e.
have the same number of edges. Finally, only networks with at least 0.1% edge
density were considered for benchmarking. Briefly, edge density is the fraction of
edges in a network compared to all theoretical edges, where all genes are connected
to all genes. As we only allow one edge between any two genes, this is the triangular
matrix without a diagonal: Ngenes(Ngenes−1)

2 . An edge density of 0.1% equates 22167
edges in S. cerevisiae, 94222 in D. melanogaster, and 485862 in A. thaliana.

Norway spruce network inference
The drought network was inferred using raw data from Haas et al. [23], whereas
the unstressed network was inferred using a collection of needles from diverse
experiments at the Umeå Plant Science Center (Schneider et al. [42] and Nystedt et
al. [43] as well as two unpublished datasets) and other public data (SRA accessions
SRP014311, SRP093366 and SRP116733). Both networks were inferred analogous
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to the benchmark networks. The raw inferred networks are available at ftp:
//130.239.72.87/Facility/Manuscript/seidr/.

Norway spruce network post-processing
The aggregated network was pruned at δ = 1.28 (approx. P-value of 0.1) using the
backboning method. The resulting graph was partitioned using InfoMap24 version
1.2.1 with parameters:

InfoMap --clu --ftree -N 1 -M 50 --prefer-modular-solution

Finally, we calculated centrality metrics for nodes via PageRank44, Strength (weighted
degree), Eigenvector centrality, Laplacian centrality45, Betweenness centrality and
Closeness centrality using the default settings in seidr/0.14. In order to summa-
rize all centrality values to a single value per node, we ranked nodes within each
algorithm and calculated the median per-node rank across algorithms.

Statistical analysis
Unless otherwise noted, all statistical analysis was performed in R (version 4.0.2).
Gene set enrichment analysis was performed using the fgsea package (version
1.16.0)46. All GO enrichment was performed using in-house software implementing
the parent child adjusted test from Grossmann et al. [47], while MapMan enrich-
ment uses Fisher’s exact test. Both use all connected nodes in the network as the
test background.

Gold standards
All gold standard datasets were retrieved in February 2020 from their respective
sources (BioGRID18, KEGG19, YEASTRACT20). For BioGRID, subsets of the
full dataset were created based on the evidence type noted for each interaction.
For KEGG, the pathway annotations were taken from the R “AnnotationDbi”48
package. A positive edge in the KEGG standard was defined by two genes sharing
at least one pathway, a negative edge between two genes that share no pathways.
The “seidr roc” subprogram was then used to calculate true positive rate, false
positive rate and precision for all networks and standards. For BioGRID and
YEASTRACT where there are no true negatives, we labeled any non-positive edge
a negative edge. All plots were then created in R using the “ggplot2” package49.
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Preprocessed expression data

Correlation

RegressionMutual

Create subnetworks Rank and aggregate scores
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Figure 1: Typical Seidr pipeline. Pre-processed expression data is input into any
number of network inference programs, e. g., those that are implemented in Seidr
itself. These networks are then rank-aggregated into a community network using
a supported aggregation scheme. Networks can optionally be pruned via noise-
corrected dynamic backboning or naïvely by a score cutoff. Finally, numerous
downstream procedures can be used to analyse the resulting networks.
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Figure 2: Top: Estimate of method bias, lower is better. Networks were evaluated
on standards derived from single BioGRID evidence types and compared to the all
edges from BioGRID. Increased or decreased evaluation scores (F1) suggests bias of
the method toward a specific type of evidence. This plot shows the relative variance
of F1 scores from subsets compared to the full dataset. Bottom: Cumulative
method performance across all evaluations, F1 scores. For all three species as well
as KEGG, BioGRID and YEASTRACT standard, the highest performing pruned
network was selected for each method. The bar plot shows the sum of maximal
F1 scores, shaded by species.
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Figure 3: Network connectivity plot of network modules in an experiment tracking
drought stress in Picea abies. The module number and eigengene (defined as
the first principal component of the variance stabilized expression) are shown as
each node, connections between nodes are represented as edges, where edge width
highlights the strength of the information flow.
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Figure 4: Mean expression of high-centrality transcription factors identified in
module 2. Expression values are variance stabilized counts, biological replicates
were summarized by their mean value. The x-axis represents the soil hydration.
Data points “30%7d”, “Collapse”, “C2d” and “Rehydrate” represent seven days of
continuous drought at 30% hydration, collapse in function of photosynthesis and
transpiration (indicating severe dysfunction), continued collapse after two days
and finally re-hydration to 80%.
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