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Abstract1

Studying naturalistic behavior remains a prohibitively difficult objective. Recent machine learning advances have2

enabled limb localization. Extracting behaviors, however, requires ascertaining the spatiotemporal patterns of these3

positions. To provide the missing bridge from poses to actions and their kinematics, we developed B-SOiD - an4

open-source, unsupervised algorithm that identifies behavior without user bias. By training a machine classifier on5

pose pattern statistics clustered using new methods, our approach achieves greatly improved processing speed and6

the ability to generalize across subjects or labs. Using a frameshift alignment paradigm, B-SOiD overcomes previous7

temporal resolution barriers that prevent the use of other algorithms with electrophysiological recordings. Using only a8

single, off-the-shelf camera, B-SOiD provides categories of sub-action for trained behaviors and kinematic measures of9

individual limb trajectories in an animal model. These behavioral and kinematic measures are difficult but critical to10

obtain, particularly in the study of pain, OCD, and movement disorders.11

Keywords— computational neuroethology, naturalistic behavior, open source, unsupervised learning, pose estimation, kinematics,12

open-field, grooming, action selection13
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The brain has evolved to support the generation of individual limb movements strung together to create natural behavior.14

The selection, performance, and modification of these actions is key to an animal’s continued survival1. Establishing15

the neural underpinnings of this behavioral repertoire is one of the foundations of neuroscience2; however, research16

largely focuses on stereotyped, reductionist, and over-trained behaviors due to their ease of study. Beyond the potential17

confounds associated with artificial or over-trained tasks, this line of interrogation discards most of the behavioral18

repertoire and its intricate transition dynamics3–5. Comprehensive behavioral tracking requires accurate behavioral19

identification and quantification (e.g. kinematics and transitions at meaningful timescales).20

Typically, behavioral scientists have relied upon top-down methods in which pre-established criteria are applied to21

behavioral data6–9. These methods, which include laborious human rating, have benefited from advances in supervised22

machine learning methods for classification10, achieving accuracy on par with human labeling. Although these23

approaches can be useful, supervised machine learning classifiers are trained to replicate their user’s annotations. These24

human annotations, however, are prone to observer biases and are known to suffer from high inter-rater variability11–13
25

and typically possess low temporal resolution. Moreover, the experimental flexibility is typically quite limited. Because26

of their one-size fits all approach, the top-down rubric may have diminished sensitivity to the many perturbations that27

could not be encompassed in the training data set. However, these perturbations comprise the majority of use cases (see28

von Ziegler et al.14 and Sturman et al.13).29

To overcome these top-down limitations, Shaevitz, Berman, and colleagues began a new generation of unsupervised30

learning algorithms utilizing nonlinear dimensionality reduction of the complex behavioral space to identify stereotyped31

behaviors (MotionMapper 15–17). Specifically, movement is quantified by aligning the body the in each frame, then32

extracting the spectral energy of the protruding limbs. This time-frequency information is then reduced down to a two33

dimensional space (see Todd et al.18 for review of various algorithmic implementations). The spectral energy component34

of this approach is particularly well-suited to extract the movement of orthogonal limbs, such as fly appendages sticking35

out from their bodies19. In soft-bodied invertebrates like worms and fly larvae, similar methods using decomposed36

body shape dynamics have been used with success20–22. However, these studies require model organisms that generate37

primarily orthogonal movements that are optimal for the frequency domain information they rely upon. As such, these38

3

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 19, 2021. ; https://doi.org/10.1101/770271doi: bioRxiv preprint 

https://doi.org/10.1101/770271
http://creativecommons.org/licenses/by-nc/4.0/


methods have seen few applications in the study of vertebrate behavior. Additionally, to best extract this spectral39

information, these methods depend critically on a uniform background, commonplace in a fly dish, but more rare in40

vertebrate cages.41

More recently, a proprietary package, MoSeq23 advanced the field though the use of "spinograms" obtained from a42

specialized depth camera in conjunction with unsupervised hierarchical clustering methods to identify action groups.43

While MoSeq represents the first unsupervised segmentation in rodents, it highlights a greater issue concerning scales44

of behavioral extraction. First, both the action and its kinematics are critical, particularly to the study of several45

disease states24–26. Second, the low temporal resolution of most methods limits the applicability of any results with46

electrophysiological recordings. Third and perhaps most impactful, to maximize reproducibility and experimentatal47

efficiency, methods must be generalizable across sessions and across research groups. Current unsupervised methods48

are insufficient.49

Recent advances in computer vision and machine learning have enabled automatic tracking of body part positions12,27,28.50

Although limb position or pose can be informative, its behavioral interpretability is quite low. For instance, the location51

of a paw may be used to determine stride length, but it does not capture what the animal is doing with that paw.52

Moreover, the various top-down frameworks that each user may create are incredibly subjective and may not generalize53

between animals of different sizes or cameras with differing frame rates11.54

Taking inspiration from the converging lines of technology, we created a platform that extracts the spatiotemporal55

patterns of these identified body poses (e.g. behaviors), of any subject. An important feature of our algorithm, B-SOiD,56

is that pose relationships are used to train a multi-class classifier that then can be used to bypass the intermediate57

transformation and clustering stages. In doing so, B-SOiD performs more quickly (100,000 frames/minute on a typical58

laptop) and with higher fidelity - as it is no longer limited to a single session’s data set to define cluster boundaries.59

More importantly, once trained, the algorithm can generalize across animals, cameras, and setups, thus solving the issue60

of transference. With the utilized position information, B-SOiD provides a 2D readout of kinematics, and can provide61

temporal resolution in the single milliseconds, required for use with electrophysiological methods. We provide this62
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platform as an open-source, step-by-step GUI interface to enable autonomous behavior identification and classification63

based upon the discovered pose relationships.64

Here, we demonstrate B-SOiD’s use in a variety of experimental models (mouse open field behavior, rat reach to grasp65

task, and human kinesiology data) We also benchmark the tool across different camera angles and against the current66

state of the art. Demonstration of distinct neural signatures corresponding to the identified behaviors and the analytical67

utility of the improved temporal resolution are also provided. Finally, we reveal robust kinematic changes following a68

cell-type specific lesion that are otherwise unobservable with current methods.69

Results70

We provide here an open source tool to resolve distinct behaviors (1). To achieve this end, we sought to make use of pose71

estimation software, which uses computer vision and machine learning to identify the location of body parts from video.72

These techniques have made huge strides in recent years, but making sense of those data remains difficult. We begin73

with a summary of the behavioral classification/segmentation tool (Supp Fig S1), its computational underpinnings, and74

basic benchmarking. In addition to the extraction of behavior from poses, B-SOiD provides a signal processing method75

that provides temporal resolution matching the video frame rate. We then demonstrate the utility of this increased76

resolution - increased signal signal of the neural activity of behavior. In doing so we also provide neurophysiological77

verification of the mathematical-derived behavioral groups. We then quantify the algorithm’s performance across78

different camera angles and compare it to the current state of the art. These measures also serve to validate the external79

and internal consistency of the method, respectively. The manuscript concludes with a real-world example of B-SOiD’s80

potential, detecting several canonical grooming types and their kinematic composition, critical information that is not81

available via other methods.82

B-SOiD is an openly available tool to identify and extract behavioral classes at millisecond timescales - all with a83

single, off-the-shelf camera (Supp. Video S1). Because B-SOiD identifies spatiotemporal patterns in labeled body part84

positions, it has no a priori limit on camera angle or organism (see Fig. S2 and Supp. Video S2 for rat reaching task85

throughout training - including the same identified grasping behavior with and without a sugar pellet present, Fig. S386
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and Video S3 for human exercising with positions extracted using OpenPose29,30,and Supp. Video S4 for categorization87

of Drosophila behavior. Screenshots can be found in Fig. 1d for summary). For simplicity we focus here on a bottom-up88

view of six body part locations (snout, paws, tail-base, as identified by DeepLabCut) of a mouse in order to best resolve89

the animal’s limb kinematics. B-SOiD extracts the spatiotemporal relationships between all position inputs (speed,90

angular change, distance between tracked points - Fig. 1a). After embedding these high-dimensional measurements91

into a low-dimensional space UMAP, a state-of-the-art dimensionality reduction algorithm31, a hierarchical clustering92

method, HDBSCAN, is used to extract dense regions separated by sparse regions32. Although defining clusters in93

low-dimensional spaces is largely sufficient to achieve the desired behavioral identification15,16,18,33, doing so is a94

computationally expensive process. Additionally, behavioral transference in the low dimensional space is difficult95

to evaluate, owing partly due to the non-linearity in dimensionality reduction. To overcome both of these issues, we96

utilized a machine learning classifier that learns to predict behaviors based on the high dimensional measurements97

(Fig. 1a). This approach provides greatly improved computational speed (processing time for one hour of 60fps data98

containing six poses is under five minutes with a 128GB RAM CPU found on a Desktop) and a consistent model99

that enables generalization across data sets within or across labs. Because the classifier is trained to partition pose100

relationships, not their low-dimensional representations, the defined clusters are further apart from one another, greatly101

improving consistency over statistical embedding methods (for unsupervised behavioral metrics comparing high vs.102

low dimensional behavioral representation, see Todd et al.18. Finally, to improve functionality, we have increased103

accessibility - formatting the code into a downloadable app which provides an intuitive, step-by-step user interface (Fig.104

1b).105

B-SOiD extracts behavioral clusters in high-dimensional space.106

Behaviors can be parsed into a sequence of pose relationships that the brain has evolved to perform34,35. To reduce107

dimensions of those spatiotemporal pose relationships, B-SOiD implements Uniform Manifold Approximation and108

Projection (UMAP), next generation dimensionality reduction method31 to simplify computations without simplifying109

the complexity of the behavior space. This non-linear dimensionality reduction approach provides an improved ability to110

delineate high-dimensional data in low-dimensional space over linear methods31,36,37. In particular, UMAP is preferred111
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Figure 1: B-SOiD process flow and app interface
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Figure 1: (a) After extracting the pose relationships that define behaviors, B-SOiD performs a nonlinear transformation (UMAP)

to retain high-dimensional postural time-series data in a low-dimensional space and subsequently identifies clusters (HDBSCAN).

The clustered spatiotemporal features are fed as inputs to train a random forests machine classifier. This classifier can then be used

to quickly predict behavioral categories in any related data set. Once trained, the model will segment any dataset into the same

groupings. (b) Screen shots from B-SOiD app GUI, available freely for download. Examples of simple language progress from

loading data, to improving model, and quantifying performance are shown. (c) Bout durations for each of the identified behaviors

during one hour-long session. (d) Snapshot of state space aligned to animal freely moving in respective environments (top: mouse

from bottom-up using DeepLabCut tracking; bottom left: fruit fly from top-down using LEAP tracking; bottom right: first author

from cell phone camera using OpenPose tracking). Color of group number refers to colored distribution within UMAP space.

over t-SNE (t-Distributed Stochastic Neighbor Embedding) for its ability to preserve global pairwise distances in112

embedding. This feature is critical for users to manipulate behavioral delineation. More concretely, if the user considers113

segmented behaviors not critical for their research question, allowing preservation of global pairwise distances enables114

supervision in the number of behavioral groups.115

Although non-linear dimensionality reduction algorithms may be advantageous when the output is two-dimensional,116

systematic exploration of unsupervised algorithms for animal behavior suggests that embedding in high-dimensional117

space improves results across various metrics18. To that end, we allowed UMAP embeddings to exist in a high118

dimensional space. Similar to Todd et al., we projected our data down to the number of dimensions required to119

achieve ≥ 0.7 variance explained using PCA. In this dataset assembled across six animals, the criteria number of120

dimensions was 11. To segregate behavioral assignments in the 11-dimensional UMAP space, we employed a121

hierarchical clustering method - Hierarchical Density Based Spatial Clustering of Applications (HDBSCAN)32. Similar122

density-based clustering methods have been employed for unsupervised segmentation of behaviors in both vertebrates123

and invertebrates15,16,38–42. However, HDBSCAN is particularly well-suited to address the inevitable variability in124

pose estimations, even with with state-of-the-art software (see methods for specific HDBSCAN parameters), enabling125

B-SOiD to purify the training data to assign every frame.126
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Algorithmic benchmarking127

When trained B-SOiD on video from six mice, in which it identified 11 classes in the 11-dimensional space (clearly128

distinguishable in pose relationship space, Fig. 1c, Fig. 2b, see https://github.com/runninghsus/bsoid_129

figs/blob/main/examples/README.md for spatiotemporal relationship distributions. Note, dimensionality130

count and group count are the same only be happenstance). Though not a given, the conserved kinematic131

motifs of the groups easily mapped onto established ethological names. For organizational purposes, we grouped132

these behaviors according to http://mousebehavior.org/ethogram-index/ (red=quiescence, gold=rear,133

blue=maintenance, green=move; to be used throughout this manuscript).134

As a first pass to verify that B-SOiD did not errantly merge behaviors, we randomly isolated videos based on135

behavioral class assignments, and found behavioral assignments to be internally consistent (See https://github.136

com/runninghsus/bsoid_figs/blob/main/examples/README.md for details). This visual consistency137

approximates the human rating that a supervised algorithm would be based upon. In addition, meta-analyses on physical138

features showed distinct multi-feature distributions (full parameter distributions for each group available at the same139

link).140

We observed that the clustered groups of spatiotemporal pose patterns did not change with animal color or size. The141

body length of the brown mouse in Fig. 2a is 50 percent greater than that of the black mouse (5.9cm vs 3.9cm), but both142

were clustered with the same B-SOiD model (and both contributed to the validation metrics shown here). We noted that143

in some instances B-SOiD ignored subtleties in body conformation, i.e. grooming at different places along the torso144

were all considered to be members of the same ’body lick’ group (Fig. 2a). In other instances, B-SOiD separated related145

but fundamentally distinct kinematic patterns. In particular, without instruction to do so, B-SOiD identified the three146

canonical grooming types. These actions, first described decades ago as the syntactic chain of self-grooming in rodents,147

are paw/face groom, head groom, and body lick34,43,44. Itching with the hind leg was also identified, distinguished148

from any groom type using the forelimbs. This ability to both generalize and differentiate is vital to accurate behavioral149

segmentation and is largely the due to utilizing machine learning to recognize the spatiotemporal patterns. The algorithm150
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seizes upon the conserved, repeated features and accepts the variability in others (see Supplementary Video S1 for151

summary definitions and video examples). Note that cluster size limits can be adjusted in the aforementioned GUI,152

providing the user additional control over the grouping detail (see parsing of reach-to-grasp into sub-actions in Fig. S2)153

To improve consistency, speed, and applicability in classifying behaviors, we equipped B-SOiD with a random forest154

classifier. The random forest classifier is well-suited for high-dimensional feature training and has been shown to predict155

low-dimensional representation of high-dimensional features well, particularly compared to potential alternatives like156

MLP or SVM36 (see Methods for classifier design). To test whether these pose relationships can be learned accurately,157

we tested the mapping on randomly selected 20% of the data. The predicted labels generated by our random forest158

classifier matched cluster assignments by HDBSCAN (’true labels’) over 90% of the time. Indeed, the confusion matrix159

and 10-fold validation indicate that high-dimensional features can be robustly assigned given low-dimensional group160

assignments (Fig. 2b,c).161

Frameshift paradigm enables behavioral segmentation at temporal resolution sufficient for electrophysiology.162

Accurate resolution of the timing of behavior transitions is a necessary feature of segmentation beyond identification.163

We present two example transitions (Fig. 2d), at 10 frames per second (fps) a temporal resolutions on par with many164

current methods. Although the group identification is correct, the large inter-frame interval misses the transition time,165

leading to much of the behavior being inaccurately categorized. Resolving transitions with adequate precision for use166

with electrophysiological measures requires considerably faster sampling rates, which are unavailable given current167

technology. However, a particular challenge in defining behaviors at a high sampling rate is that pose location jitter168

dominates the signal from any movement (Fig. 2e (left)). It is precisely this loss of frame-to frame difference at high169

sampling rates that makes 10fps sampling a popular temporal resolution.170

To enable the resolution of behavioral transitions at the scale of single milliseconds, we introduced a "frameshift"171

manipulation, borrowed from recent automatic speech recognition innovations45, (Fig. 2e (right)). Briefly, B-SOiD172

initially downsamples all video, regardless of framerate, to 10fps to achieve a high signal to noise ratio in the173

spatiotemporal dynamics of the markers. The process is then repeated, with each new set of predictions made174
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Figure 2: Performance quantification across multiple temporal resolutions with novel machine learning algorithms. (a)

Snapshots of a small(left) and large(right) mouse 300ms into the execution of example behaviors. (b) Confusion matrix on the 20%

held-out data. True positive predictions appear on the diagonal. (c) 10-fold cross-validation yield high accuracy on shuffled data

across behavioral groups (21600 data points/test). (d) Trajectory plots of right (orange) and left (teal) limbs of the fore paw (darker)

and hind paw (lighter) demonstrating example transitions from investigate to locomote (left), and head groom to itch (right). Vertical

lines denote transition time as identified by basic B-SOiD analysis (10fps). (e) Schematized example of the potential for prediction

noise in pose estimation to override the movement signal at high sampling rates (left). To overcome this, we executed a frameshift

computation to derive high resolution transition times from downsampled, high signal data (right). (f) Percent coherence between

low frequency and progressively higher resolution frameshift data. A major break occurs under for data under 50fps. (g) Same

trajectories as in (d), now incorporating frameshift algorithm to improve resolution of transitions.
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on downsampled data, each time offset by an additional frame (t1, t2, t3 in Fig. 2e (right)). In essence, we175

decompose the high-resolution signal and run a sliding threshold for fitting the high-SNR decomposition. By combining176

behavior assignments extracted from the shifted, downsampled data, we gain improved transition time resolution177

while overcoming the hurdle of decreased signal-to-noise (Fig. 2f,g). Note, improving transition resolution does not178

fundamentally change the distribution of action durations observed at 10fps. Thus frameshifting carries over the robust179

behavioral signal provided by lower sampling to the native resolution of the camera used.180

As an example, B-SOiD automatically downsampled the 200fps used here to 10fps, then segments the downsampled181

data 20 times; each iteration offset by a single, 5ms frame. We quantified the effect of different temporal resolutions182

by first subsampling a 200fps video, thus providing an internally consistent comparison across resolutions (e.g. to183

extract 20fps for analysis, we used every tenth frame of the 200fps video). B-SOiD was then run independently on each184

resolution of the video, using frameshifting on each version. With the original 200fps as a standard, we observed that the185

predictions across resolutions was highly coherent. Even at 10fps (which was not further downsampled/frameshifted),186

we observed a median coherence of ∼ 84% across behavioral groups, Fig. 2f). As sampling rate increased, coherence187

improved - although the added benefit of increased sampling rate plateaus after 50fps. These changes can be attributed188

to an increase in transition time accuracies, as seen in Fig. 2g and Supp. Fig 4. The frameshift paradigm allows B-SOiD189

to predict behaviors at a temporal resolution matching the sampling rate of the original video, enabling a notably190

deeper analysis of action kinematics (Fig. 2d, g). Given the excellent performance above 50fps and the impetus to use191

less-specialized cameras, the remainder of this manuscript focuses on easily attainable 60fps video.192

Increased transition fidelity improves neural signature resolution.193

Improved temporal resolution is a critical advancement for analyzing neural correlates of spontaneous behaviors46.194

To assess the real-world benefit of increased temporal resolution, we simultaneously recorded 35 units from the left195

caudal forelimb area of motor cortex in a mouse as it navigated the open field arena (see Methods). We then aligned the196

activity to the onset of classified actions using non-frameshift (10fps) and frameshift (60fps) predictions.197

In this first demonstration of motor cortical activity aligned to the breadth of naturalistic behaviors observed, we noted198
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distinct neural signatures for the range of identified naturalistic behavior groups (Fig. 3a). Across behavioral groups,199

these population representations were quite robust and observable with both high and low resolution versions of B-SOiD200

(see Fig. S5 for detailed account of neural activity by group). More importantly, these clear population responses201

indicate the mathematically-established B-SOiD groupings reflect real distinctions at the level of neural representation.202

The strength of the aligned population responses largely coincided with actions involving the forelimbs, consistent203

with the recording location within motor cortex - although this simple descriptor cannot broadly summarize the diverse204

dynamics discovered (Supp. Fig. S5). We also noticed a trend for greater modulation for orientations in the direction205

contralateral to the recording (group 10) compared to ipslilateral (group 9), although some neurons were preferentially206

modulated for ipsilateral orienting (Supp. Fig S6). While in-depth future analyses will be required to understand these207

responses, these data strongly support the quality of B-SOiD’s clustering and its the potential for the study of the208

neurophysiology of unconstrained behaviors.209

In addition to these neural correlates of spontaneous behaviors, we observed that frameshifted data yielded a greater210

magnitude of neural modulation. The improved neural resolution was particularly pronounced just before and during211

the time of each action’s onset. To quantify these differences for each neuron, we subtracted the magnitude of the low212

resolution activity from the magnitude of the higher resolution activity (e.g. positive values = stronger signal with high213

resolution frameshift method). Differences in signal quality across neurons and groups for individual neurons can be214

found in Fig S5. We then summed these within-session signal differences across all neurons, without any assumption215

whether a neuron was tuned to that behavior (tuned neurons should contribute to the sum, while untuned should have216

zero net effect). Higher temporal resolution yielded improved signal preceeding behavioral onset across several actions217

groups (Fig. 3b) and on average across all segmented behaviors (Fig. 3c). Again, the largest differences were typically218

observed for actions involving forelimbs. This improvement is considerable taking into account the only difference219

between the data sets is a 50fps improvement in behavior onset resolution. The increase in signal strength yields an220

improved ability to detect more nuanced dynamics, and the duration of this improvement may be instructive as to the221

time course of motor planning in this population.222

Several of the plots of the differences between high minus low resolution demonstrate a biphasic dynamic in which the223
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Figure 3: Frameshifted high-temporal resolution improves identification of neural signatures at behavioral initiation. (a)

Z-scored neural activity aligned to the 11 B-SOiD identified behaviors using either low temporal resolution, non-frameshifted (left)

or high-resolution, frameshifted (right) alignment. Neurons and neuron order are the same for each pair of behavior panels. Detailed

plots can be found in Supp. Fig S5. (b) Total signal magnitude difference (high - low resolution) for each of the behaviors (1 on

bottom). Reference bar = 5 z-score difference. (c) Mean and SEM of signal magnitude difference across all behaviors (magenta

= p < 0.01, one sample t-test). Positive values indicate greater signal magnitude for high vs low temporal resolution. (d) Using

simulated data, we measured the average firing rate with zero (Actual), high resolution (60fps), or low-resolution (10fps) temporal

jitter introduced. 60fps produced a considerably more accurate account of the ground truth model. (e) Incorporating features from

our recording data, the model produces similar high-low resolution difference dynamics to (c), here in a spiking artificial neuron.
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quality of the high resolution signal is initially greater, then worse, than the low resolution signal. To better understand224

this dynamic, we modeled a simple neuron with a Poisson-distributed firing rate. This rate instantaneous increased225

from 5Hz to 15Hz. In our data and generally assumed for movement-related activity, we observed neural modulation226

occurring before movement onset and for relatively relatively short durations. Therefore the increase in synthetic227

activity was made 100ms long and began 130ms before onset. We then sampled the synthetic activity with 60fps228

and 10fps resolution onset jitter. Peri-event time histograms of the resulting signals demonstrate that 60fps behavior229

resolution yielded dramatically improved results that were quite close to the zero jitter ground truth (Fig. 3d). The230

resulting difference in observed signal between methods was similar to that observed in the population activity (Fig.231

3e). Specifically, we found the late improvement in low resolution signal to be the result of a delay in resolving the232

cessation of the activity increase. This rudimentary summary demonstrates that B-SOiD’s increased action alignment233

resolution prevents both signal degradation and temporal displacement of neural activity pattern.234

Comparison between top-down to bottom-up camera angles.235

To optimally extract limb 2D kinematics (e.g. stride length, horizontal limb speed), we have focused on a bottom-up236

camera setup. This arrangement also provides an ideal situation for tethered animals, eliminating problems caused by237

the cable tether. However, many research groups prefer to use or have existing data from top-down cameras placed238

above a cage or arena. Additionally, a transparent floor may alter behavior or induce anxiety47, and therefore may239

be suboptimal for some experiments. Using a session recorded simultaneously from above and below, we tested240

the performance of B-SOiD in different camera positions. For consistency, we used six points for the generation of241

both the bottom-up and top down B-SOiD prediction models (for top-down: top of snout, shoulders approximation,242

hips approximation, and tail-base were used). In this head-to-head comparison, B-SOiD extracted 8 behavior groups243

categories from top-down video. These groups largely mirrored with those identified with bottom-up video (sample244

ethogram Fig. 4a and category labels Fig. 4b; colors to group action types as in Figure 2). No new actions were245

found and some related action groups were combined (e.g. elevated and lower rearing were combined into one246

group). Unsurprisingly, we did observe some divergence in groups that relied upon precise paw localization (e.g.247

grooming-type behaviors), which is difficult to achieve when viewed from above. In these cases of misalignment,248
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Figure 4: Comparison of top-down to bottom-up camera angles. (a) Example ethograms of concurrent behavioral segmentation

from top-down view (top) and bottom-up view (bottom). The group definitions for the behavioral groups are as titled in b. (b)

Top: To quantify the relationship between approaches, we mapped top-down video reference groups onto bottom-up target groups.

Y-values indicate percentage of overlap greater than baseline distribution. Values < 0 not shown. Bottom: Same as top, but using

bottom-up as reference and top-down as target. Colored tick mark indicates correct target group.
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assignments typically defaulted to the most similar behavior type given the same amount of head movement but249

no information about paw position (see full kinematic properties for each group for direct comparison https:250

//github.com/runninghsus/bsoid_figs/blob/main/examples/README.md).251

While the ethograms provide an overall sense of the quality of each method, we sought to determine the relationship252

between behavior segmentations using the different views. We determined the percent overlap for each view’s action253

group, e.g. for frames identified as ’Orient Left’, what is the relative distribution of bottom-up groups? After mapping254

each segmentation onto the target frames, we discovered that action groups are largely conserved between the camera255

angles, with top-down and bottom up groups correctly mapping onto each other at a rate of several hundred percent256

more than would be expected given the baseline distributions, effectively removing the bias for behaviors that happen257

more often (Fig. 4b). Therefore, while identical segmentation between the two camera angles is impossible, we suggest258

that both approaches are valid and demonstrate high inter-method consistency.259

Comparison against alternative unsupervised pose estimation method260

To benchmark B-SOiD against the state-of-the art in unsupervised behavioral segmentation, we compared the261

performance of B-SOID to MotionMapper on identical, bottom-up video data sets. The family of open source262

MotionMapper methods are the leading unsupervised method for behavior segmentation18 and uses spectral information263

to discern behaviors. MotionMapper has a release that uses the same pose estimation input as B-SOiD (https:264

//github.com/DeepLabCut/DLCutils/tree/master/DLC_2_MotionMapper), providing the means265

for a direct comparison. We made no assumption of ground truth for comparison; rather we focused our evaluation on266

the quality of the segmented behavior. We extracted and aligned frames of identical dimensions around the animal.267

For each bout we measured the motion energy of each pixel in the frames comprising that bout (the bright, constant268

background did not significantly contribute to motion energy), then computed the mean motion energy (ME) per269

behavioral group. Movement conserved across bouts will yield sharp and clear mean ME values. While the input data270

were identical, differences in the quality of groups were apparent. Compared to MotionMapper, summary images of271

B-SOiD groupings were more distinct from each other. Additionally, in several within-group panels, the average ME272
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Figure 5: Quantification of unsupervised segmentation algorithms (a) Using the same pose estimation data, we selected up to

20 bouts from each behavioral group identified by either DLC_2_MotionMapper (left) or B-SOiD (right) to construct motion energy

images - capturing the average amount of movement across bouts. Brighter colors indicate greater consistency in movement over the

300-600ms bouts. (b) To quantify the quality of these groupings, we determined the difference (MSE) in motion energy across every

bout, normalizing every values along a row to that row’s in-group mean MSE. Darker orange indicates greater differences between

those pairs of bouts, e.g. 2 = twice the normalized MSE. (c) Cumulative histograms values in (b) for in-group (’same’, solid line) and

out-group (’diff’, dashed line), as well as B-SOiD bouts shuffled into 11 random groups (black) to demonstrate a distribution without

structure.
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signal was clear enough that both limbs and group identities are visually apparent (Fig. 5a).273

To quantify these differences, we computed the ME image mean sqaured error (MSE, see methods for details) for up274

to 20 randomly selected bouts per group. To reduce the effects of bout length, only bouts lasting 300-600ms were275

used; thus occasionally groups with only very short bouts were underrepresented. The unassigned noise group in276

MotionMapper was discarded for these analyses. The percent difference in MSE was then computed across in-group277

examples, providing an estimation of the in-group variability (Fig. 5b, in-group comparisons are contained within the278

diagonal, see Methods for details). Normalizing to the mean in-group values, percent differences in out-group values279

were also obtained. Darker colors indicate a greater difference in ME. Although some in-groups may exhibit greater280

differences in ME than others (e.g. locomotion vs inactivity), well-clustered bouts should be more different from out-281

than in-group bouts. We then summarized the differences across all groups (Fig. 5c). We also provide results from the282

same B-SOiD bouts, shuffled into randomly assigned groups, thus providing a baseline for structureless in-group and283

out-group variability to be expected.284

The extent of divergence of out-group MSE (dashed line, ’diff’) relative to in-group MSE (solid line, ’same’), is285

indicative of the quality of groupings - specifically how different a group is from the remaining population. Both286

algorithms demonstrated significant rightward shifts of their out-groups, but the effect was much more pronounced in287

the B-SOiD data (MotionMapper: p < 3e-12; B-SOiD: p < 7e-111; Shuffled: p = 0.60). MotionMapper has constituted288

a pivotal advance, opening the door to unbiased analysis of the richness of unconstrained behavior. We recognize289

that the strength of the method lies in the ability to process spectral data from organisms with body components290

moving orthogonally to its center of mass, such as fruit flies. Thus, this pose-adapted method may benefit from greatly291

increasing the number of body positions identified, effectively providing similar spectral information. Finally, in the292

comparison of methods, we note that aspects MotionMapper are memory-limited, leading to roughly a 100X difference293

in processing time compared to B-SOiD with only six points. More points will exaggerate these differences. Some of294

this two-order of magnitude differences can be attributed to our integration of the novel UMAP technology rather than295

t-SNE (https://umap-learn.readthedocs.io/en/latest/benchmarking.html)296
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Figure 6: Detection of robust, hard to detect kinematic changes in grooming behavior following cell-type specific lesion. (a,

c) Schematic of the two canonical groom types, (top) head and (bottom) face (image adapted from summary by Aldridge et al., 1990).

(b, d) Cumulative histograms of groom stroke trajectory distance (left), peak groom stroke speed (middle), and groom bout duration

(right), of the two corresponding groom types (control - blue; lesioned - red, N = 4 animals, one session each). * p< 0.05, ** p<

0.001, ***p < 0.0001.
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Robust but typically unmeasurable kinematic changes resolved with B-SOiD297

To assess B-SOiD’s real-world utility, we quantified grooming-type behaviors in mice with and without cell-type298

specific lesions of the indirect pathway of the basal ganglia (A2A-cre, with or without cre-dependent caspase virus299

injected into striatum, N = 4 mice each; Supp Fig. S7). The basal ganglia is thought to be involved in action selection300

and sequencing34,46, the dysfunction of which may give rise to diseases like OCD and Huntington’s, in which unwanted301

actions occur, or occur too quickly48. Additionally, activation of the indirect pathway has been suggested to contribute302

to hypokinesis, or smaller and slower actions49. Importantly, methods for measuring these kinematic changes (e.g. limb303

speed and distance) across behaviors are largely absent, aside from locomotion. We first compared the individual strokes304

comprising bouts of head and face grooming. Consistent with a hypokinetic role, we found that across all animals305

lacking indirect pathway neurons there was a significant rightward shift in the speed and distance of face grooming,306

particularly pronounced for the smaller movements in the distribution (Fig. 6). However, these effects was not observed307

in the similar, but generally larger head grooming behavior. Current quantitative methods for grooming only provide308

bout duration and typically the canonical grooming types are combined because of technological limitations. Realizing309

these robust but hitherto indiscernible effects is made possible because of B-SOiD’s ability to dissociate groom types,310

measure kinematics, and accurately identify the start and stop of bouts. We were also able to uncover other kinematic311

effects (Fig. S8), including pronounced increases in itching speed. Locomotor stride length, but not stride speed was also312

significantly increased, providing a kinematic mechanism for previous seminal motor control work that observed gross313

locomotor hyperactivity following indirect pathway lesion50. The behavior-specific kinematic sensitivity demonstrated314

here may provide the means to uncover deeper understanding in the fields of motor control, OCD, and pain48,51,52.315

Discussion316

Naturalistic, unconstrained behavior provides a rich account of an animal’s motor decisions and repertoire. Until recently,317

capturing these movements with precision and accuracy was prohibitive, as evidenced in part by the relative lack of318

computational ethology studies (53). Still, position does not equal behavior. Rather, it is the stereotyped spatiotemporal319

patterns of these positions that yield behavior. Our unsupervised algorithm, B-SOiD, captures the inherent statistics of320
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limb and action dynamics with off-the-shelf technology and a simple user interface. This tool serves as the vital bridge321

between recent breakthroughs in establishing the position of body parts12,28 and the conserved patterns of positions we322

call behaviors. It also demonstrates the utility and potential of pairing unsupervised spatiotemporal pattern extraction323

with supervised machine learning classifier in behavioral assessment. It is the patterns in pose relationships that are324

discovered, extracted, and used to inform the ML classifier, thus mathematically tailoring the tool to the subject’s325

inherent behaviors and eliminating top-down user bias.326

In addition to providing a tool that can be used on any position data, we provide a glimpse into its potential. In part327

enabled by the improved temporal resolution, we were able to align action onsets with cortical activity, uncovering328

neural dynamcs that reflected the changing behaviors. The greater resolution also provides increased sensitivity to329

detect brief behaviors and the individual components of those movements. In particular, we resolved kinematic changes330

of individual limb strokes (grooming, itching, locomotion) in a lesion model. The ability to decompose behaviors331

into their constituent movements is a key feature. Because B-SOiD uses limb position, it extracts not only the action332

performed, but also kinematics (stride speed, paw trajectory, etc). While recent work has benefited from access to such333

performance parameters26,54, it stands to be an even more potent advantage in the study of disease models. Obsessive334

compulsive disorder research in particular has long sought improved identification and quantification of grooming335

behavior43,55,56. Pain and itch research has also sought to achieve similar ends52. These results point to the need for a336

deeper comprehension of the composite kinematics forming those actions, as many current methods are limited to only337

the duration of such actions.338

A unique advantage of the classifier built on these pose-relationships is computational ease. First, the open source339

package provides a platform that is accessible to biologists without extensive coding knowledge nor computational340

resources (e.g. expensive GPUs). Next, the classifier provides greater flexibility, allowing a single trained model to be341

generalized across subjects, labs, or frames with minor positioning errors. This ability is fundamental deliverable of the342

machine learning integration. The random forest classifier is trained on pose relationships, extracting the conserved,343

essential features while also recognizing those features with high variability. The classifier then predict the likeliest344

label given all of the features, eliminating the potential concerns that are inherent in non-linear transformations. Finally,345
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the speed afforded by using a classifier, rather than clustering, to segment behavior leaves open the door to perform346

closed-loop manipulations through real-time segmentation57.347

To discover the clusters on which the classifier is built, B-SOiD uses UMAP, which is both more computationally348

effective and faster than similar methods like t-SNE31. While both methods presetve tje local structure, UMAP preserves349

the "global structure", or long-distance embedding placement of the dimensionally reduced space. Said another way,350

UMAP can enables the determination of whether point 1 closer to point 2 or 3. These advances may be useful for future351

development and interpretability. The improved stability and speed of pose to re-embedding enables segmentation at352

speeds greater than most camera framerates. Additionally, B-SOiD needn’t be restricted to segmenting behaviors based353

only on pose-relationships. High-dimensional, unsupervised segmentation may also be able to integrate multi-model354

signals such as acoustics, environmental stimuli, or multi-animal social interactions.355

.356
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Methods368

Here we explain the in vivo behavioral and electrophysiological measurements, and then proceed to the computational369

techniques underlying the algorithm and further analyses. A processing diagram can be found in Supp. Fig. S1. For370

bout duration in Fig. 1c, model cross-validated accuracy in Fig. 2c, and frameshift coherence in Fig. 2f, box-plot371

elements carry the standard definitions(e.g. center line, median; box limits, upper and lower quartiles; whiskers, 1.5x372

interquartile range; points, outliers)373

Behavioral subjects and experimental set-up.374

For normal, non-lesion experiments (Figs. 2, 4, 5), subjects were six, adult C57BL/6 mice (3 females, Jackson375

Laboratory). The single brown mouse shown in Figure 2a, is one of those sixe mice, and is an example of the diversity376

of the C57BL/6 line, specifically the substrain 6N (NIH) lineage, which can produce brown fur. Individual animals377

were placed in a clear, 15 x 12 inch rectangular arena for one hour while a 1280x720p video-camera captured video at378

60Hz (cluster and ML) or 200Hz (frameshift). Following each data session, any feces were cleaned out and the arena379

was thoroughly sprayed and wiped down with Virkon S solution. The arena was then allowed to dry and air out for380

several minutes. This video was acquired from below, 19 inches under the center of the field. Offline analysis was381

performed in either Python or MATLAB (MathWorks). Unless otherwise mentioned, all statistical measures of behavior382

were non-parametric, two-tailed Kolmogorov-Smirnov tests and all error bars are the standard error of the mean. All383

animals were handled in accordance with guidelines approved by the Carnegie Mellon Institutional Animal Care and384

Use Committee (IACUC).385

Electrophysiology.386

To demonstrate differences in temporal resolution (Fig. 3), we recorded during one open field session from layer 5387

of forelimb area of motor cortex (0.50mm anterior, 1.75mm lateral of Bregma, z=950um) in one Drd1a-cre x ai32 on388

C57BL/6 background female mouse using a 64-channel silicon electrode chronically implanted in aseptic conditions389

(Cambridge Neurotechnology). Signals were sampled at 30kHz with Open Ephys hardware. Spikes were high-pass390

filtered and sorted offline using Kilosort2 (https://github.com/MouseLand/Kilosort2). Activity across391
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bouts aligned to onset of each behavior. To enable comparison across neurons, each neuron’s average activity was392

binned (10ms) and z-scored over the interval -1s to 2s relative to onset. Neural activity in Fig. 3 was z-scored across393

all instances of that action and are rank ordered according to the average low resolution activity during the 200 ms394

prior to alignment time. This rank order was used for both panels of a given behavior. The neurons in Fig. S5 are not395

rank sorted, but are consistent across panels so as to facilitate comparison across panels. Similarly, z-scoring across all396

panels incorporated all bouts identified with at the given resolution. A sliding boxcar with a semi-width of 3 bins was397

applied to activity visualizations. Randomly sampled data was achieved by taking the same number of instances of each398

action within the session and distributing this number of alignment times throughout the session. PSTHs were then399

generated with those alignements in the same manner (Fig. S4).400

Extraction of kinematics.401

Individual strides and grooms were identified, and the speed of the stroke quantified, by using the MATLAB function402

f ind peaks() on the speed of the right forepaw, with the troughs serving as the start/stop of each movement. Average403

groom distance was computed as the euclidean distance of right forepaw displacement per stroke averaged amongst all404

head groom bouts.405

Indirect pathway cell-type specific lesion experiment.406

Eight adult Adora2a-cre (often called A2A, Jackson Laboratory stock #036158, four females, C57BL/6 background)407

mice were used to study the effects of cell-type specific lesion of striatal indirect pathway neurons. Half of these animals408

(two females) were injected with AAV2-flex-taCasp3-TEVP58 4×1012 vg/mL from UNC Vector Core bilaterally into409

the dorsomedial striatum: AP +0.9, ML +/-1.5, DV -2.65. Animals were allowed to recover at least 14 days prior to410

open-field experiments. The virus is designed to kill only cells expressing cre recombinase. To help visualize virus411

spread, a non-Cre dependent GFP virus, AAV2-CAG-GFP 4× 1012 was co-injected. 1µL in each hemisphere was412

injected with a virus ratio of 2:1, Casp:GFP and a rate of 200nL/min. The GFP virus was added because the cre-positive413

cells will be killed as a result of the caspace virus injection, leaving the many cre-negative cells behind (Supp. Fig. S7).414

Thus the location of gross cell loss is difficult to quantify otherwise (GFP - green, foxpl1 counterstain - red, overlap -415
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green). Expression of GFP is restricted to the striatum. Quantifying decreased cell density by eye also produced similar416

lesion maps (not shown).417

DeepLabCut training and model availability418

For pose-estimation, we used the aforementioned six-body part model trained on a total of 7,881 frames (at least419

50 frames for all sessions, 69 total sessions, N=21 animals). The training regimen was set to the DeepLabCut420

default12 and trained for 1.03 million iterations, achieving a loss of ≈ 0.002. The weights of the neural421

network are open sourced and freely available https://github.com/YttriLab/B-SOID/tree/master/422

yttri-bottomup_dlc-model/dlc-models.423

Data processing feature extraction.424

With increasing sampling frequency, the intra-frame differences that are critical to determining the spatiotemporal425

features (e.g. speed) diminish. For instance, 60fps sampling provides an inter-frame interval of only 16.7 ms - relegating426

the changes in position to a similar magnitude to the jitter in the position signal itself. To improve the signal-to-noise427

ratio, B-SOiD downsamples all input to non-overlapping 10fps (100ms) windows, and then either sums (displacement,428

anglular change) or averages (distance) over all 10fps samples. Thus, for the six points used in our mouse data, the429

per-frame spatiotemporal features consisted of 15 displacement (D) and angular change (Θ) measures, and six distances430

(L)). This process is described in Algorithm 1 and the process pipeline diagram (Fig S1). In addition, these features are431

then smoothed over, or averaged across, a sliding window of size equivalent to ∼ 60 ms (30 ms prior to and after the432

frame of interest). This is important for distinguishing the pose estimate jitter from finer movements that the animal433

makes, such as the different groom types.434
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Algorithm 1: Feature extraction for N pose estimates

Initialize, for m = 1 to
(N

2

)
:

L(m)← 0

Θ(m)← 0

for m = 1,M do
m← any pair of pose n and 6= n

Store
∥∥∥(nm1,nm2)

∥∥∥2
in L(m)

for t = 1,T −1 do
Store arccos [(L(m)t+1×L(m)t)/(‖/L(m)t+1‖ • ‖L(m)t‖)] in Θ(m)

end for

Discard the first index of L(m)

end for

Initialize, for n = 1 to N:

D(n)← 0

for n = 1,N do
n← 2D pose estimate

for t = 1,T −1 do

Store
∥∥∥(nt+1,nt)

∥∥∥2
in D(n)

end for

end for

return L,Θ,D

435

Dimensionality reduction with UMAP.436

B-SOiD then projects the computed pose relationships (D, Θ, and L) into a low-dimensional space, which facilitates437

behavioral identification without simplifying the data complexity. In simpler terms, similar mouse multi-joint trajectory438

will retain its similarity visualized in the low-dimensional space. B-SOiD achieves this through UMAP, a state-of-the-art439

algorithm that utilizes Riemannian geometry to represent real world data with the underlying assumptions of the440

algebraic topology31. UMAP is chosen over the popular t-SNE for it’s advantage in compuational complexity,441
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outlier distinction, and most importantly, preservation of longer-range pairwise distance relationships31,36,59–61.442

Dimensionality reduction was implemented in the step in B-SOiD UI. Embedded in this step443

is a python implementation of umap-learn v.0.4.x (https://github.com/lmcinnes/umap). Since444

our goal is to use UMAP space for clustering, we enforced the following UMAP parameters: (n_neighbours445

= 60, min_dist = 0.0, euclidean distance metric). In terms of n_components, we call python446

implementation of decomposition.PCA() from scikit-learn v.0.23.x (https://github.com/447

scikit-learn/scikit-learn) and set n_components to explain ≥ 0.7 of total pose-estimation variance.448

Identify group assignments with HDBSCAN.449

UMAP embeddings were then clustered through HDBSCAN algorithm32. It is particularly useful for UMAP outlier450

detections as it recognizes subthreshold densities. HDBSCAN assignments was implemented in the451

step in B-SOiD UI. Embedded in this step is a python implementation of hdbscan v.0.8.x (https://github.452

com/scikit-learn-contrib/hdbscan). To enable maximum flexibility in determining the number of453

behavioral groups the method creates, we enabled user input for HDBSCAN parameter min_cluster_size.454

Random forest classifier for accurate and fast prediction.455

Random forest classifier design was chosen for high-dimensional pose relationships mapping to discrete456

multi-class behaviors. In addition, it has been suggested that Random forest has the ability to accurately457

learn the low-dimensional embedding from the high-dimensional features36. Random forest was implemented458

in the step in B-SOiD UI. Embedded in this step is a python459

implementation of ensemble.RandomForestClassifier() from scikit-learn v.0.23.x (https:460

//github.com/scikit-learn/scikit-learn). We set the parameters to default, as it was sufficient for461

learning the mapping.462
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Frameshift prediction paradigm.463

Many end users may wish to apply the algorithm to higher frame-rate video. Because B-SOiD applies a temporal464

constraint of ∼10fps to maintain an optimal signal-to-noise ratio (which can be adjusted by tricking the UI in input465

frame-rate), we designed B-SOiD to predict along a sliding window. This is mathematically implemented using offsets,466

pseudocode in Algorithm 2.467

Algorithm 2: Frameshift implementation for F times higher sampling rate than 10fps
Initialize behavioral array:

G← 0

Initialize downsampled behavioral array, for f = 1 to F :

g( f )← 0

for f = 1,F do
Start at f , sample pose-relationships s at 10fps

for s = 1,S do
Store the prediction (g | s) in g( f )

end for

Insert g( f ) at every F th position in G starting at f

end for

return G

468

In Fig. 2f, to accurately quantify the consistency between predicted frameshifted G and the non-frameshifted g( f )469

(annotation described in Algorithm 2, we upsampled g( f ) with the same values prior. To demonstrate the input470

flexibility of B-SOiD with a high speed camera, our frameshift example in Fig. 2f was 200fps. Given no evidence for471

improvement beyond 50fps, all other analyses were 60fps at resolution.472

We recognize that spurious labeling could arise due to jitter. Although segmentation is applied independently to each473

frame, we assume some level of continuity of actions. As such, we discarded any frameshifted bout that was not at474

least three samples (> 50ms) in duration where applicable (Fig. 3 and 4; Fig. 5 used a 300ms lower bound and when475

set lower, the inclusion of shorter durations only improved B-SOiD relative to MotionMapper; the data in Fig. 6 was476
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devoid of < 50ms bouts). In Fig. 3, non-frameshift was comprised of 10,433 bouts with a mean of 948 bouts/group;477

frameshift was comprised of 17,129 bouts with a mean of 1,557 bouts/group. Given 11 groups, the probability of the478

random jitter event occurring and being repeated three times is less than one percent. We note that the addition of479

this conservative approach did not qualitatively change any findings, and that each datapoint itself is the summary of480

several segmentations across the 100ms frameshift window. Although this duration cutoff is in line with other mouse481

behavioral work, our motivation was more mathematical and less a statement on any psychophysical assumptions. As482

demonstrated in the 300fps rat reach-to-grasp data, B-SOiD as a tool can be titered to preferentially segment whole483

actions or their sub-actions. Additionally, some actions (e.g. saccades during reading) have durations as low as 20ms. A484

human can deliver as many as 20 punches in a single second. As such, B-SOiD does not enforce any limits on duration,485

allowing the user to determine the pertinent timescales and appropriate interpretations.486

Integration of low-confidence pose estimates487

The occlusion of a point from view can be informative (e.g during a rear, the snout is often occluded by the body when488

viewed from below), but a missing point can be the result of poor pose estimation on a given frame. The certainty of each489

frame’s pose estimation is provided by most pose estimation software in the form of prediction confidence/likelihood490

values. In all data sets, we observed a bimodal distribution comprised of either very high or low confidence values.491

To bisect the two distributions with each session, B-SOiD designates all points with a confidence score below the492

elbow point (difference (high - low) between adjacent likelihood becomes positive) of the probability. We remove these493

low-confidence points and substitute that position with last high-confidence position. Thus, the displacement between494

frames for a low-confidence point is zero. It should be noted that even when stationary, pose estimation programs do495

not output identical positions in consecutive frames.496

Low confidence estimations can occur from a missing body part (e.g. from being behind another body part) or poor497

prediction (e.g. blurry video or inconsistent lighting). In the latter case, the aberrations which led to the low-confidence498

points are typically short lived, often only a single frame, and are fully mitigated by averaging over the 100ms499

frameshifting interval. Prolonged low-confidence points contribute a spatiotempotal signature, and if repeated as a500
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behavior, may be part of an identified spatiotemporal pattern (either in training or prediction). The occlusion of the snout501

during rear(+) is one example. Importantly, occasional prolonged aberrations do not adversely affect the algorithm.502

During training, spurious omissions will be too variable to constitute a conserved pattern - and the added variability503

may make the random forest even more robust. During prediction, the trained model utilizes 36 spatiotemporal features,504

minimizing the effect of a pose estimation error. This ability to incorporate patterned omissions and overcome spurious505

errors is another benefit of adding the trained classifier following the clustering.506

Motion energy image mean-squared-error507

The term "motion energy" that we had mentioned was introduced by Stringer et al., where "Motion energy, computed as508

the absolute value of the difference of consecutive frames"62. Since the animal is freely moving in the environment,509

starting pose alignment is necessary. Following image registration using estimated outline of animal at the start of each510

identified behavior, we compute the motion energy (ME, absolute value of the difference of all consecutive frames)511

using MATLAB command imshowpair, capped at 600ms for conciseness. We then performed weighted averaging512

for each bout to reconstruct a single ME image. In other words, each pixel in such reconstructed ME image represents513

the average absolute difference between consecutive frames at a given pixel location. Since there are multiple instances514

of each action, we want to see if such animal-centric average absolute difference is conserved between instances.515

To quantify consistency, we performed all pair-wise image mean-squared-error using MATLAB command immse.516

Essentially, the pixel difference between instances (ME images) will be coalesced into a single value (MSE). MSE is517

inversely proportional to consistency of animal movement for each identified action.518

Data availability.519

All data used in this manuscript can be found at https://github.com/ YttriLab/openfield_data .520

Code availability.521

Our DeepLabCut network, analysis code, as well as the data used to create these figures, are all open sourced and freely522

available from GitHub https://github.com/YttriLab/B-SOID, including a similar version of the code for523
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MATLAB, though this version is simpler and uses t-SNE for dimensionality reduction.524
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