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Abstract 26 

The flexible adjustment of ongoing behavior challenges the nervous system's dynamic control 27 

mechanisms and has shown to be specifically susceptible to age-related decline. Previous work links 28 

endogenous gamma-aminobutyric acid (GABA) with behavioral efficiency across perceptual and 29 

cognitive domains, with potentially the strongest impact on those behaviors that require a high level 30 

of dynamic control. Based on the integrated analyses of behavior and modulation of interhemispheric 31 

phase-based connectivity during dynamic motor state transitions and endogenous GABA 32 

concentration, we provide converging evidence for age-related differences in the behaviorally more 33 

beneficial state of endogenous GABA concentration. We suggest that the increased interhemispheric 34 

connectivity seen in the older adults represents a compensatory mechanism caused by rhythmic 35 

entrainment of neural populations in homotopic motor cortices. This mechanism appears to be most 36 

relevant in the presence of a less optimal tuning of the inhibitory tone to uphold the required 37 

flexibility of behavioral action. 38 

Abbreviations 39 

AP, anti-phase; DV, dependent variable; EEG, electroencephalography; GABA, �-aminobutyric acid; 40 

GLMM, generalized linear mixed effects model; IP, in-phase; ISPC, inter-site phase clustering; IV, 41 

independent variable; MRS, magnetic resonance spectroscopy; M1, primary motor cortex; NAA, N-42 

acetylaspartate; OCC, occipital cortex; SNR, signal-to-noise ratio. 43 
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Introduction 45 

Flexibly adjusting ongoing behavior poses a specific challenge to the neural control mechanisms and 46 

this becomes particularly visible with increasing age 1. Functional deficits in endogenous �-47 

aminobutyric acid (GABA)-mediated neural signaling represent one suspect mechanism among the 48 

many potential causes of age-related behavioral decline 2. GABAergic interneurons are suggested to 49 

have a major role in scaling and fine-tuning neural oscillations [reviewed in 3,4]. More specifically, 50 

GABAergic neurotransmission is believed to be an essential regulator of phase synchronization of 51 

neural oscillations [reviewed in 5], which has been proposed to constitute one of the brain’s main 52 

modes of communication 6,7. Thus, phase-based connectivity is indicative of the time-sensitive 53 

modulation of inter-site neural communication and therefore serves as a proxy for the responsiveness 54 

of the neural system. 55 

Previous work indicates that GABAergic synaptic mechanisms on the cortical level, evaluated at 56 

resting-state, predict the system’s capacity for dynamic event-related modulation of cortical 57 

inhibition, and that this is linked to efficient motor control 8. This work suggests that, once baseline 58 

GABAergic neurotransmission is imbalanced, the system’s responsiveness is impaired and this may 59 

have detrimental behavioral consequences. Such imbalance may occur at older age when disinhibition 60 

becomes more prominent. Experimental evidence for this association between age-related GABAergic 61 

dysfunction and declining behavior across perceptual and cognitive domains points towards a stronger 62 

impact on those types of behavior that require a high level of dynamic control [e.g. 9–11]. Yet, lowered 63 

motor cortical GABA levels are found to correlate with age-related changes in sensorimotor 64 

connectivity and diminished motor control 12. These recent findings suggest a broader link between 65 

GABA availability and connectivity as a read-out for neural communication with implications for 66 

behavioral efficiency. However, whether these phenomena are simply co-occurring or whether they 67 

can be attributed to underlying causal mechanisms still remains an open question. 68 

Here, we chose a behavioral paradigm involving the dynamic control of transitions between 69 

dynamical motor states of varying complexity, which has shown to engage widespread, and in 70 

particular interhemispheric, neural communication within the sensorimotor system 13,14. Our main 71 
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interest was to shed light on the nature of the interactions between task-related connectivity dynamics, 72 

behavior, and tuning of the motor-cortical inhibitory system in the course of healthy aging. Therefore, 73 

we employed a multimodal approach to fuse endogenous GABA levels with the dynamic modulation 74 

of interhemispheric motor-cortical phase synchronization in the context of motor-state transitions in 75 

neurotypical young and older volunteers. 76 

Results 77 

To investigate the impact of individual variations in baseline GABA levels for the association 78 

between interhemispheric motor-cortical connectivity and complex bimanual behavior, we used a 79 

cross-sectional multimodal approach. The participants underwent in total three sessions, including 80 

magnetic resonance spectroscopy (MRS) in the first session and the second session to familiarize 81 

themselves with the behavioral paradigm (motor state transitions). The third session followed 24 82 

hours after the familiarization and involved electroencephalography (EEG) during task performance. 83 

MRS data were used to extract the endogenous GABA concentration. EEG data served to compute the 84 

task-related functional connectivity metric based on the circular variance of frequency-specific phase 85 

angle differences alongside the behavioral parameters (Figure 1, see Materials and Methods section 86 

for details). While the unimodal analyses (neurochemical, neural, behavioral) served to verify 87 

expected age-differences, our primary interest was to integrate all three modalities to investigate the 88 

character of their interactions. 89 
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90 
Figure 1: Experimental procedures and parameters of interest. a) Study outline with MRI/MRS (session 1), task 91 
familiarization (session 2) preceding the main experiment (session 3) including EEG during task performance. Edited MRS 92 
and T1-weighted images were used to extract tissue-corrected GABA levels and additional macromolecules (GABA+) from 93 
left and right primary motor and occipital voxels. The behavioral paradigm involved transitions between a stable (mirror-94 
symmetric in-phase tapping, left) and a less stable (anti-phase tapping, right) motor state. Task familiarization included 95 
stimulus-response mapping and individual performance frequency adjustment. Performance in motor state transitions was 96 
described with transition latency and error rate. The EEG signal was projected into source space based on the centroid 97 
coordinates of the GABA voxels. Phase angles were computed based on spectrally decomposed (Morlet wavelet transform) 98 
source time series. Phase angle differences between source signal pairs were used to compute connectivity (inter-site phase 99 
clustering, ISPC) between cortical sources. Phase angle differences were associated with behavioral performance in a 100 
single trial-based analysis. Then parameters of interest from the individual modalities (neurochemical, neural, behavioral) 101 
were integrated with a Bayesian moderated mediation analysis estimated for interhemispheric motor-cortical connectivity as 102 
independent variable [IV]. In both cases, dependent variable [DV] behavior was either median transition latency or 103 
cumulative error rate. Details on formalization of model paths �, �, ��, � given in Methods. b) Flow of events within the 104 
behavioral paradigm. Phases of finger movement (‘start’, ‘continuation’, ‘switching’) were interleaved with rest phases 105 
(‘pause’). A randomly occurring reaction time task (‘tRT’), a fast key press with either left or right thumb in response to 106 
appearance of a circle on the side of the required response was interspersed with the other events with a 5% probability of 107 
occurrence. Inlay highlights the time zones relevant for the analysis of behavioral data and EEG/EMG data analysis (time of 108 
interest, yellow). Data collected in the within-trial pause (demarked in blue) was used as baseline for the EEG/EMG 109 
analysis of the data from the time of interest (yellow). A high-resolution version of this figure can be accessed under 110 
https://figshare.com/s/aae99a05f0fab30304f2  111 

GABA+ concentration 112 

To examine the endogenous motor-cortical GABA concentration, MRS data from left, right primary 113 

motor cortex (M1), and a control region, i.e. the occipital cortex (OCC) were acquired in 22 older and 114 

22 young adults. In two cases (one older, one young), the data of the right M1 were excluded from 115 
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further analysis due to motion artifacts and insufficient model fit. Consistency of the voxel placement 116 

across participants and individual traces of edited spectra for each voxel were visually inspected 117 

(Figure 2). Quantitative quality metrics were comparable to those published in recent studies from our 118 

and other groups 15–17 (for descriptive statistics see Supplementary Table 1). 119 

A gamma generalized linear mixed model (GLMM, identity link) was fitted to predict GABA+ with 120 

GROUP (young, older) and VOXEL (left M1, right M1, OCC) as factors of interest. All quality 121 

metrics (see Methods for details) and raw grey matter fraction (GM fraction) were added as covariates 122 

(after mean-centering) to identify their influence on GABA+ levels and their potential interaction with 123 

voxel or group through stepwise backward selection. This procedure revealed that of all quality 124 

metrics only GABA Fit error interacted with voxel and raw GM fraction interacted with group 125 

(Supplementary Table 2), all other interactions (all p>.2) were excluded from the final model. Of note, 126 

only interactions were removed during backward selection but all factors and covariates were kept in 127 

the final model to control for their influence. The final model (Supplementary Table 3) confirmed a 128 

significant effect of GABA signal-to-noise ratio (GABA SNR, Type II Wald X2(1) = 6.74, p <.01) 129 

and Frequency offset (Type II Wald X2(1) =17.20, p<.0001). Additionally, compared to the occipital 130 

voxel, both sensorimotor voxels tended to show higher GABA+ levels with increasing GABA Fit 131 

Error (VOXEL × GABA Fit Error (centered), Type II Wald X2(2) = 5.84, p=.05). Relative to the 132 

young, the older showed overall lower GABA+ levels with increasing GM fraction (β = -0.49±0.19, 133 

95%CI [-0.86, -0.12], X2=-2.61, p<.01, GROUP × raw GM fraction (centered), Type II Wald X2(1) = 134 

6.82, p<.01, Figure 2d) across all voxels. 135 

With reference categories young and occipital voxel, we found an overall average GABA+ level 136 

around 2.86 i.u. (intercept β = 2.86± 0.26, 95% CI [2.34, 3.37], X2 = 10.8, p < .0001). Based on the 137 

Type II Wald statistics, GABA+ was found to be significantly different between age groups and this 138 

was specific to the voxel (GROUP × VOXEL X2(2) = 9.57, p<.01, Figure 2c). Specifically, marginal 139 

means contrast estimated for the individual parameter levels of the GROUP × VOXEL interaction 140 

revealed lower GABA+ levels in both sensorimotor voxels compared to the occipital voxel in the 141 

older (OCC-LM1: ΔEMM=1.65±0.227, 95%CI [0.99, 2.32], z=7.29, pholm<.0001; OCC-RM1: 142 
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ΔEMM=1.564±0.2, 95%CI [0.93, 2.20], z=7.27, pholm <.0001) while the young showed no differences 143 

between the voxels (marginal means contrasts given in Supplementary Table 4). Furthermore, the 144 

older showed significantly lower GABA+ levels in both sensorimotor voxels compared to the young 145 

(LM1: ΔEMM=0.64±0.15, 95%CI [0.21, 1.07], z=4.40, pholm <.0001; RM1: ΔEMM=0.55±0.12, 146 

95%CI [0.19, 0.91], z=4.48, pholm <.0001) but not the occipital voxel. 147 

In short, controlling for quality metrics and raw grey matter fraction, we identified a relative reduction 148 

of GABA+ levels in the older compared to the young, which was specific for both sensorimotor 149 

voxels but not the occipital voxel. 150 

151 
Figure 2 GABA MRS results. a) Sum of individual GABA voxels projected into MNI space overlaid on standard brain 152 
template. Color coding indicates overlay agreement in percentage of all available images within group. Neurological 153 
display, i.e. coronal and axial view with left side on the left and right side on the right of image. b) Individual edited spectra 154 
for LM1 (top), RM1 (middle), and OCC voxel (bottom) color coded for older (blue) and young (yellow) participants. Darker 155 
lines present average spectra per group (orange – young, dark blue – older). c) Boxplots (see Material and Methods for 156 
represented group statistics) and distributions shown for the interaction effect of group and voxel on GABA+, which is 157 
driven by the differences between the occipital voxel and both sensorimotor voxels within the older in addition to the 158 
between age group differences for both sensorimotor voxels. Asterisks indicate significant effects of model derived marginal 159 
mean contrasts corrected for multiple comparisons at ***pholm<.0001. d) Age-group specific effect of raw grey matter (GM) 160 
fraction on GABA+ levels. Scatterplot (regression lines for subgroups with shading representing 95% CI) showing a relative 161 
decrease in GABA+ levels with increasing raw GM fraction in the older across all voxels (pholm<.0001). A high-resolution 162 
version of this figure can be accessed under https://figshare.com/s/6ca09bf7c4185f3c3910  163 

Behavior 164 

The control of transitions between motor-states was tested with a variation of an established paradigm 165 

18–21, in which the participants had to rhythmically tap in individually adjusted pace with the index and 166 

middle fingers of both hands and to control transitions between two coordinative patterns of different 167 

complexity (Figure 1a). The behavioral data collected during the performance of the behavioral 168 

paradigm was analyzed in a time window of 2000ms following the ‘switching’ cue. The time window 169 
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of interest for these parameters was based on previous work 21 and pilot testing in older participants 170 

with the same task, which revealed that change in coordination mode is realized over an extended 171 

period. Furthermore, these previous results showed that a simple binarization of the precision (correct 172 

– wrong) does not reflect the ongoing adjustments made until the new coordination mode is mastered. 173 

Therefore, we aimed at quantifying performance with respect to (1) the precision (error rate) and (2) 174 

the speed (transition latency). Please see Methods for details about the behavioral paradigm and 175 

parametrization of outcome parameters. On average 119±20.5 trials of individual transitions per 176 

participant were subjected to the analysis including N= 21 young and N= 22 older participants 177 

(descriptive statistics given in Supplementary Table 5). 178 

179 
Figure 3 Predictors for behavioral outcome. a) Error rate. Boxplots and distributions for overall error rate given 180 
separately for transition modes (IP: in-phase, AP: anti-phase) and age groups (blue: older, yellow: young). b) Transition 181 
Latency. Color coding as in a). c) Effect of practice, i.e. number of trials (depicted as centered variable), are given for 182 
Failed transitions (top left), Fully correct transitions (top middle), and Cumulative error rate (top right), and transition 183 
latency (bottom, failed transitions excluded). Brown indicates transitions into IP mode, light pink depicting transitions into 184 
AP. Frames around graphs indicate relevant modulation of the outcome over number of trials, i.e., for failed transitions, 185 
cumulative error rate, and transition latency. Only in the case of failed transitions, older showed a significantly different 186 
modulation over time for transitions into AP compared to the young with initially higher rate of trials with 100% error rate. 187 
Cumulative error rate showed a comparable increase across trials while transition latency decreased comparably in the two 188 
age groups and for both transition modes. d) For both groups and transitions modes (into IP, into AP), the relationship 189 
between speed and precision of transitions (excluding failed transitions) is non-linear as shown by locally weighted 190 
smoothing fitted over subgroups. A high-resolution version of this figure can be accessed under 191 
https://figshare.com/s/4620a8ad6c5dad113bd1  192 
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Error rate 193 

An overview of the distribution of error rate across age groups and transition modes is depicted in 194 

Figure 3a. To capture a comprehensive picture of performance during the transition phase, we chose 195 

to split the precision measure into three distinct levels, namely, fully correct transitions representing 196 

transitions showing 100% correct tapping, failed transitions reflecting transitions with 100% of 197 

erroneous tapping, and cumulative error rate consisting of all remaining transitions not considered 198 

fully correct or failed. 199 
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Failed transitions [trials with 100% error rate]. A logistic GLMM was used to predict failed 200 

transitions using group [OLDER, YOUNG], transition mode [IP, AP], and number of trials as 201 

independent variables (full results in Supplementary Table 6). With around 0.3%, the overall odds of 202 

completely failing a transition were low (intercept for group = young, nTRIALc = 0, transition mode 203 

= IP: β = -5.66 ± 0.60 (odds ratio 0.003±0.002), 95% CI [-6.83, -4.49], X2 = -9.475, p < .0001). Based 204 

on the Type II Wald statistics, trial number significantly modulated the occurrence of failed 205 

transitions in a transition mode specific way and distinct for both age groups (GROUP × 206 

TRANSITION MODE × nTRIALc, X2(1) = 4.4, p=.04, Figure 3c left). Compared to the young, the 207 

older showed a higher number of failed trials early on and subsequently a steep decline of about 5% in 208 

likelihood of failed transitions from early to late trials for transitions into AP (odds ratio = -0.51±0.17, 209 

95% CI [0.27, 0.96], X2 = -2.09, p<.05). Independent of group, transitions into AP were twice as 210 

likely to fail than transitions into IP (odds ratio = 2.08±0.54, 95% CI [1.24, 3.46], X2 = 2.80, p<.01, 211 

TRANSITION MODE Type II Wald X2(1) = 34.99, p<.0001). Overall, with each additional trial, the 212 

odds of completely failing the transition tended to decline (odds ratio = 0.70±0.14, 95% CI [0.47, 213 

1.04], X2 = -1.78, p =.08, nTRIALc Type II Wald X2(1) = 9.86, p<.01) irrespective of group or 214 

transition mode. 215 

Fully correct transitions [trials with 0% error]. Similar to failed transitions, a logistic GLMM was 216 

fitted to predict fully correct transitions (full results in Supplementary Table 7). After removing failed 217 

transitions from the data, the overall odds for transitions to be fully correct were 4% (odds ratio = 218 

0.038 for intercept: β = -3.26± 0.28, 95% CI [-3.80, -2.72], X2 = -11.77, p < .0001). Following the 219 

Type II Wald statistics, the two main explanatory parameters were GROUP (X2(1) =15.43, p<.0001) 220 

and TRANSITION MODE (X2(1) =24.4, p<.0001) and this was stable over number of trials. 221 

Remarkably, older participants were three times more likely to show completely correct trials (odds 222 

ratio = 3.52±1.25, 95%CI [1.76, 7.045], X2 = 3.6, p<.001), irrespective of transition mode. Compared 223 

to transitions into IP, switching into AP was half as likely to result in fully correct transitions (odds 224 

ratio = 0.44±0.10, 95% CI [0.29, 0.69], X2 = -3.63, p < .001) independent of group. 225 
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Cumulative error rate [0<error rate/100 <1]. A beta GLMM (logit link) was fitted to predict 226 

cumulative error rate including the same parameters as described above (full results in Supplementary 227 

Table 8). After excluding fully correct and fully erroneous transitions [0<error rate/100 <1], 228 

transitions between transition modes in either direction involved around 20% of erroneous tapping, 229 

i.e., cumulative error rate (intercept: β = 0.21± 0.04, 95% CI [0.15 – 0.29], X2 = -9.07, p < .0001). 230 

Based on the Type II Wald statistics, the two main parameters influencing cumulative error rate were 231 

number of trials (nTRIALc, X2(1) = 6.692, p<.01) and TRANSITION MODE (X2(1) = 4.91, p<.05). 232 

Investigating the parameter estimates revealed that cumulative error increased about 7% over the 233 

number of trials irrespective of group or transition mode (β = 1.07 ± 0.02, 95%CI [1.02, 1.12], X2 = 234 

2.87, p < .01). In comparison to transitions into IP, switching into AP tended to yield around 6% 235 

higher cumulative error rate irrespective of group (β = 1.06 ± 0.03, 95% CI [0.99 – 1.13], X2 = 1.78, p 236 

= .08). 237 

Transition Latency 238 

The transition latency was defined as the time delay between cue onset and valid response, i.e. the 239 

first occurrence of the correct transition mode indicated by the cue. Accordingly, failed transitions 240 

were excluded from the trials for the calculation of the transition latency. An overview of the 241 

distribution of transition latency across age groups and transition modes is depicted in Figure 3b. A 242 

GLMM (Gamma family with a log link) was fitted to predict transition latency with the same 243 

independent variables described for error rate (full results in Supplementary Table 9). Given the 244 

model’s reference categories, the average transition latency was estimated around 569 ms (intercept β 245 

= 568.7±25.1, 95% CI [521.68, 620.03], X2 = 143.98, p < .0001). Based on the Type II Wald 246 

statistics, GROUP (X2(1) = 37.74, p<.0001), TRANSITION MODE (X2(1) = 8.92, p<.01), and 247 

number of trials (nTRIALc, X2(1) = 3.95, p<.05) were the parameters explaining most of the 248 

transition latency’s variance. The parameter estimates revealed, that older switched around 38% 249 

slower between transition modes compared to the young (β = 1.38±0.08, 95% CI [1.22, 1.55], X2 = 250 

5.22, p < .0001). Transitions into the AP pattern tended to be 7% slower than transitions into IP (β = 251 

1.07±0.04, 95% CI [0.99, 1.17], X2 = 1.73, p = 0.08). Independent of group or transition mode, 252 
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transitions tended to become around 4% faster over time (nTRIALc, β = 0.96±0.03, 95% CI [0.91, 253 

1.02], X2 = -1.37, p = .17). 254 

In summary, the behavioral results for error rate and transition latency show an expected 255 

slowing of the older participants but both age groups showed a decrease in transition latency across 256 

the experiment. However, the results show no general age-group effect on the precision of transition 257 

performance. While older seemed to have a slightly higher rate of failing transitions into the more 258 

difficult AP mode early on, they showed an overall higher rate of completely correct transitions 259 

throughout the experiment compared to the young. The overall cumulative error rate, i.e. the 260 

percentage of erroneous taps in the course of a single transition, was comparable between the two age 261 

groups, showing an increase in errors as a function of practice (i.e., number of trials) and a trend of 262 

higher errors for transitions into the more challenging AP mode. Additional support for comparable 263 

transition performance in both age groups comes from the results of the thumb reaction task (methods 264 

and results in Supplementary Note 1, Supplementary Table 10), which neither show an effect of group 265 

nor interactions with transition mode or time across the experiment. 266 

Finally, estimating the association between transition latency and error rate revealed a non-267 

linear association of these two parameters for both age groups and transition modes (Figure 3d). For 268 

both groups and transition modes, the speed-precision association may roughly be approximated with 269 

an inverted-U shaped curve, potentially reflecting several underlying mechanisms beyond a linear 270 

speed-accuracy trade-off. Therefore, we argue that reducing the dimensionality of these two 271 

performance characteristics into one single measure appears not feasible. For subsequent analysis 272 

steps, trials of fully correct transitions and cumulative error rate were recombined into error rate, i.e. 273 

failed transitions were not considered for further analysis. 274 

Task-related modulation of phase-based connectivity (ISPC) 275 

Phase-related connectivity (inter-site phase clustering, ISPC) between motor-cortical source signals 276 

was analyzed in N=20 young and N=22 older participants (see Methods for details about participant 277 

inclusion). 278 
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Response-locked analysis of task and group related connectivity (ISPC) modulation. 279 

No significant clusters were found for the interaction of group and transition mode. Subsequently, 280 

separate contrast analyses were performed to evaluate the effects of age group [YOUNG - OLDER] 281 

and transition mode [IP – AP]. 282 

Group Contrast [YOUNG – OLDER] 283 

A cluster showing a significant relative decrease of connectivity between the homologue M1 sources 284 

was evident for the mu to high beta frequency ranges (12-38Hz) starting from -160ms and lasting 285 

until 220ms relative to the transition (Figure 4a). This effect was driven by a strong reduction in 286 

connectivity in the young while the older showed an increased connectivity overall but also when 287 

divided into separate time × frequency sub-clusters, reflecting pre-/post transition time zones and 288 

conventional frequency sub-bands. The sub-clusters spanned the ranges pre-transition high beta (-160 289 

- 0ms, >25Hz), peri-transition low beta (-140 - 220ms,15-25Hz), and post transition mu frequency 290 

range (>120ms, 12-15Hz, Figure 4a, clusters A-C). 291 

292 
Figure 4 Statistical results of ISPC between left and right M1 source a) for group contrast time-locked to the individual 293 
mean transition time. Cluster-corrected z maps for the test of GROUP contrast [YOUNG –OLDER, t-test against 0, p<.05 294 
2-tailed]. Color coding in the time-frequency resolved zISPC plot indicates t-values. Dashed vertical lines at 0 ms on the 295 
time axis indicate the individual median latency, i.e. the time of transition. Bar plots present group averages of zISPC for 296 
respective cluster ranges, which were partly overlapping in time and frequency range for both, group and transition mode 297 
contrasts (black capital letters in the time-frequency plot correspond to black letters over bar plots), scatter plot depicts 298 
individual participants’ data within group. b) Statistical results for transition mode contrast time-locked to the individual 299 
mean transition time. Cluster-corrected z maps for the test of TRANSITION MODE contrasts [into IP – into AP, t-test 300 
against 0, p<.05 2-tailed]. Bar plots show transition mode averages for respective cluster ranges. A high-resolution version 301 
of this figure can be accessed under https://figshare.com/s/11d01e6126cd7ba543de  302 
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Transition mode Contrast [into IP – into AP] 303 

For the cortico-cortical connection, a single cluster was visible, extending mostly in the pre-transition 304 

time window in the mu to high beta range (Figure 4b). Between -200 and 0ms, a relative decrease in 305 

the full beta range (20-35 Hz) was evident (cluster A). This effect was driven by a decoupling before 306 

transitions into IP, while transitions into AP were rather associated with an increase in M1-M1 307 

connectivity before the actual transition was accomplished. Around the time of the transition, -50 – 308 

60ms, a relative increase in connectivity expanded over mu to beta range (cluster B), which was 309 

caused by an increased coupling for transitions into IP compared to transitions into AP.  310 

Taken the results of both contrasts together, interhemispheric motor-cortical connectivity 311 

showed clear age group differences in its spectral features during transitions. Furthermore, a 312 

modulation by transition mode (into IP versus into AP) was also visible but we did not find evidence 313 

for altered connectivity in the older participants that was specific for transitions into one of the two 314 

transition modes but rather a general change in connectivity pattern in the older adults. 315 

Single-trial phase angle difference – behavior association 316 

Our next interest was to further investigate the association between interhemispheric interactions and 317 

behavior. Because inter-site phase clustering (ISPC) is calculated over trials, no inference can be 318 

made about the intra-individual variations of the inter-site phase relationship and its association with 319 

variations in behavior. Linking inter-site interactions and behavior on a trial-by-trial basis allows to 320 

interpret the signature of this association and draw conclusions about the behavioral relevance of the 321 

neural mechanisms. Therefore, frequency-specific phase angle differences between left and right M1 322 

were extracted for each trial at the respective trial-based time of transition for the low (15-22Hz) and 323 

high beta (25-30Hz) frequency ranges identified in the respective time × frequency clusters during the 324 

previous analysis step (Figure 4). 325 

In order to explore the role of the endogenous GABA+ concentration on this relationship, we 326 

dichotomized GABA+ concentration into below and above within group median concentration. Two-327 

way ANOVA results showed that the factor group was a major source of variance for the average 328 
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angle and that this was modulated by GABA+ level for both frequency ranges (15-22Hz: GROUP 329 

X2(2) = 99.22, p<.0001, GABA+ X2(2) = 4.14, p = .13, GROUP × GABA+ X2(1) = 4.10, p=.04; 25-330 

30Hz: GROUP X2(2) = 19.86, p = 4.9e-05, GABA+ X2(2) = 8.75, p=.013, GROUP × GABA+ X2(1) 331 

= 9.99, p = .0016 (see Figure 5, additional results are given in Supplementary Note 3, Supplementary 332 

Table 11). Whereas, transition mode alone did not account for the variance in the data (15-22Hz: 333 

TRANSITION MODE X2(2) = 0.57, p = .8, GABA+ X2(2) = 4.14, p = .13, TRANSITION MODE × 334 

GABA+ X2(1)= 5.38, p = .02; 25-30Hz: TRANSITION MODE X2(2) = 4.16, p = .13, GABA+ X2(2) 335 

= 8.75, p = .013, TRANSITION MODE × GABA+ X2(1) = 2.85, p = .09). For both frequency ranges, 336 

circular-linear correlation revealed a significant association between phase-angle differences and 337 

quality of performance (i.e. error rate) following the transition. This association pattern was distinct 338 

for the two age groups in dependence of the relative (lower versus higher) GABA+ concentration. 339 

Specifically, when pooled over transition modes, phase angle differences were significantly associated 340 

with subsequent performance in the older adults in the low GABA+ subgroup. In the young, in 341 

contrast, a significant association was found for the high GABA+ subgroup (15-22Hz: OLDERhigh 342 

GABA+ rho = 0.03, pFDR= .5, YOUNGhigh GABA+  rho = 0.08, pFDR= 5.45e-10; OLDERlow GABA+ rho = 0.07, 343 

pFDR= 5.45e-10, YOUNGlow GABA+  rho = 0.02, pFDR = .7; 25-30Hz: OLDERhigh GABA+ rho = 0.03, pFDR= 344 

.9, YOUNGhigh GABA+  rho = 0.07, pFDR= .0005; OLDERlow GABA+ rho = 0.06, pFDR= .007, YOUNGlow 345 

GABA+  rho = 0.04, pFDR= .2). Plotting error rate as a function of phase angle differences shows a 346 

variation in the trend of this association along the range from -360˚ to +360˚ phase lag, i.e. explaining 347 

the overall small correlation coefficient (Figure 5c, d). Specifically, for both subgroups (older with 348 

lower GABA+, young with higher GABA+), a behavioral advantage for phase angle differences 349 

around 0˚ and higher subsequent error rate with phase angle differences of -180˚ and 180˚ were found. 350 
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351 
Figure 5 Association between cortico-cortical phase angle differences at the time of transition and subsequent 352 
performance error a) in the low beta [15-22Hz] range b) in the high beta range [25-30Hz]. Data points represent single 353 
trial data for transitions into IP (brown) and into AP (light pink) mode, solid line indicates average phase angle difference – 354 
behavior association during transitions into IP mode, dashed line indicates average phase angle difference – behavior 355 
association for transitions into AP mode. c) Mean phase angle differences were significantly modulated by factors age group 356 
and relatively higher versus lower GABA+ concentration when binarized into above (dark red shading, solid lines for 357 
subsample mean) versus below group median (light pink shading, dashed lines for subsample mean) in the low and d) in the 358 
high beta frequency band. Rose plots show histogram of binned phase angle differences with mean direction (red line) and 359 
95% CI (black circumference) for significant non-uniformity of distribution. Phase angle differences for the low and high 360 
beta band were significantly associated with subsequent performance error in the young with relatively higher and in the 361 
older with relatively lower motor-cortical GABA+ concentration. In these subgroups, close to 0˚ phase lag was behaviorally 362 
beneficial (lower errors), while close to 180˚ phase lag was associated with higher performance errors. A high-resolution 363 
version of this figure can be accessed under https://figshare.com/s/7b43133df22f84496168  364 

To validate the specificity of the effects in terms of task-context and topography, the same analysis 365 

steps were run for two control conditions, namely the LM1-RM1 phase lag at a random time point 366 

during baseline [start cue – 300ms], i.e. during between-trial pauses (Figure 1b), and for phase angle 367 

differences for the OCC-L/RM1 connectivity at the time of transition. The analyses of the two control 368 

conditions revealed a significant GROUP x GABA+ modulation of the mean direction of phase angle 369 

differences between left and right motor cortical sources during the within-trial baseline [start cue -370 

300ms]. Furthermore, it showed a significant association between baseline phase lag and performance 371 

in the subsequent trial. While this association broadly resembled the pattern during transition 372 

described above, it was less specific for the within-age group GABA level in the low beta range 373 

(descriptive and inferential statistics in Supplementary Tables 12-14, Supplementary Figure 3). 374 
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While we also found a significant GROUP x GABA+ modulation of the mean direction of the phase 375 

angle differences between the occipital source and both motor cortical sources at the time of transition 376 

for both frequency ranges, the pattern of the mean direction clustering was clearly different from that 377 

of the interhemispheric motor-cortical interaction in that it was not involving the clustering around 0˚ 378 

and 180˚. Finally, no association between occipital – primary motor phase lag and behavioral 379 

performance was found (OCC-LM1 and OCC-RM1 all pFDR>.1, descriptive and inferential statistics in 380 

Supplementary Tables 15-18, Supplementary Figure 4). 381 

In summary, single trial phase angle differences at the time of transition showed to be 382 

different between the age groups and this effect was influenced by level of motor-cortical GABA+ 383 

concentration. While in the young, the association between phase angle difference at time of transition 384 

and subsequent performance error was stronger under the relatively higher GABA+ concentration 385 

subgroup, the older showed a stronger association in the relatively lower GABA+ concentration 386 

subgroup. In both cases, 0˚ phase lag represented a behaviorally more advantageous state whereas a 387 

180˚ phase lag was associated with more subsequent errors. This association was specific for the 388 

interaction between left and right primary motor sources and for the time of transition. 389 

Association between behavior and connectivity through GABA+ 390 

In order to test the impact of baseline GABA+ levels on the relationship between interhemispheric 391 

motor-cortical connectivity and behavior in addition to the effect of age on the associations among all 392 

three variables (see Methods for details, schematic model structure given in Figure 1a on the right), 393 

we employed a Bayesian moderated mediation analysis. For this purpose, we modelled the ISPC 394 

values extracted from the significant time × frequency sub-clusters of the response-locked analysis 395 

(independent variable), the median transition latency or error rate (dependent variable), the respective 396 

GABA+ (mediator), and age (moderator) and estimated their associations in separate models for each 397 

of the individual connectivity pairs. Because all input variables were centered prior to modelling, it is 398 

necessary to keep in mind that conditional effects consequently need to be interpreted relative to the 399 

respective age group mean. As shown in the results below, for all significant models (see Figure 6a 400 
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for an overview), age was a relevant effect moderator of all model paths in the case of error rate and 401 

transition latency (Figure 6b, c). Hence in the subsequent step, mediation results are shown 402 

conditional on the moderator age, highlighting predominantly opposing trends in the two age groups 403 

(regression coefficients for separate model paths given for all Bayesian moderated mediation models 404 

in Supplementary Table 19). 405 

406 
Figure 6 Results of Bayesian moderated mediation models. a) Overview over posterior directions (pd) for indirect 407 
(mediation) effects on error rate (upper matrix) and transition latency (lower matrix) conditional on upper/lower quintiles of 408 
moderator age (depicted as YOUNG and OLDER) for the models estimated with the independent variable (IV) based on the 409 
three time × frequency clusters derived in the response-locked ISPC analysis. Color coding of pd represents likelihood (in 410 
%) and direction of effect, i.e. red shading for positive effects and blue shading for negative effects. A pd of 95, 97.5, 99.5, 411 
and 99.95% corresponds to the frequentist 2-sided p-value at the thresholds 0.1˚, 0.05*, 0.01**, 0.001*** respectively. b) 412 
Probability density plots for effects of parameters in the outcome and the mediator models input to the mediation analysis. 413 
Depicted are the three models with significant mediation shown in a). Outcome model shown for error rate and peri 414 
transition low beta ISPC. c) Outcome models shown for dependent variable transition latency and peri-transition low beta 415 
ISPC (left) as well as post transition mu ISPC (right). For all three models shown in b) and c), the mediator model is related 416 
to right M1 GABA+. Highlighted in yellow are the significant effects of moderator age in all three models indicated by the 417 
posterior distributions of respective parameters falling with >99.5% on one side of the red dashed vertical line. Linewidth of 418 
black horizontal bars indicate 50, 89, and 95% highest density interval [HDI] of the parameters’ effect. A high-resolution 419 
version of this figure can be accessed under https://figshare.com/s/d6c5c42fa8395c4a779b  420 
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Connectivity significantly predicts behavior in a time and frequency specific manner and this 421 

relationship is moderated by age. The main results for the models estimating the association between 422 

connectivity and behavior are graphically summarized in Figure 6a for cumulative error rate and 423 

transition latency. Generally, models including right hemispheric GABA+ levels yielded stronger 424 

evidence for mediation effects than those including left hemispheric GABA+ for both age groups. 425 

Overall, the young group showed stronger evidence for mediation effects than the older. 426 

 427 

Figure 7 Results of Bayesian moderated mediation models. From left to right, total effect (pathτ) conditional on moderator 428 
age, association between connectivity and GABA+ (path α), association between GABA+ and transition latency (path β), 429 
simulation of the mediation effect on the connectivity – behavior association (direct effect, path τ’) for varying levels of 430 
GABA+ (low – light pink, medium – red, high – dark red), and probability density ploy for the mediation effect conditional 431 
on age including the difference of young versus older [Y-O] mediation effects. In all three models, right hemispheric GABA+ 432 
concentration is modelled as mediator. a) Model for peri-transition low beta connectivity – error rate association. As 433 
visible in the total effect, the young behaviorally benefit from stronger M1-M1 connectivity in the low beta range, while the 434 
older show higher errors with stronger connectivity. The association between connectivity and GABA+ (path α) shows 435 
opposing trends in the two age groups, a negative association in the young and a positive association in the older. The 436 
association between GABA+ and transition latency (path β) is positive in the young and negative in the older. Simulations 437 
for the full moderated mediation model show that for the young the positive behavioral effect of stronger connectivity is 438 
more pronounced in the presence of relatively lower GABA+, while for the older the negative effect of increased connectivity 439 
is ameliorated in the presence of higher GABA+. Probability density plots of the mediation effect conditional on age for this 440 
model show a negative indirect effect for both age groups, and no difference between the age groups. Grey shading of 441 
probability of direction (pd) indicates limits of 50, 89, and 98% CI. b) Model for peri-transition low beta connectivity – 442 
transition latency association. c) Model for post-transition high mu connectivity – transition latency association. A high-443 
resolution version of this figure can be accessed under https://figshare.com/s/e7c918da53dbc9d5ea3f  444 
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Stronger connectivity makes the young – but not the older – adults perform better. Simulating the 445 

total effect, i.e. the association between connectivity and behavior, conditional on moderator age 446 

reveals the opposing effects within the two groups (age group comparison depicted for one example 447 

model in Figure 7a). For all three time by frequency clusters, the young participants show strong 448 

evidence that relatively stronger connectivity is associated with better performance, i.e. lower (i.e. 449 

relatively faster) transition time (pd = 100%) and lower error rate (pd = 100%, except pre-transition 450 

beta). In contrast, within the older adults, relatively stronger connectivity is associated with a relative 451 

slowing in transition latency (pd 100%) but also with a trend for lower error rate (pd >89%, except 452 

post-transition mu). 453 

Older adults benefit in precision from higher non-dominant GABA+ levels. For the association 454 

between connectivity in the peri-transition low beta band and error rate, both young (pd >95%) and 455 

older (pd >98%) show a negative indirect effect of right M1 GABA+ levels. This negative mediating 456 

effect has diverging consequences on behavior for the two age groups (Figure 7a). In the young, the 457 

association between relatively stronger coupling and better performance, i.e. lower error rate, was 458 

more pronounced in the presence of lower non-dominant GABA+ concentration. In the older, on the 459 

other hand, connectivity variations had a stronger impact on behavior, i.e. stronger coupling led to 460 

relatively higher error rates, in the presence of lower GABA+ concentration. In contrast, the 461 

association between stronger coupling and worse performance, i.e. higher error rate, was ameliorated 462 

in the presence of higher right M1 GABA+ concentration in the older. 463 
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Young adults are faster with higher connectivity in the presence of lower non-dominant GABA+. 464 

Simulating the mediation effect conditional on the moderator age, revealed a negative indirect effect 465 

of right hemispheric GABA+ (pd >98-100%) on the association between connectivity on both 466 

behavioral outcomes, transition latency and, to a weaker extent (pd >89-95%), on error rate in the 467 

young. Specifically, in the presence of lower right M1 GABA+ levels, the negative association 468 

between peri-transition low beta and transition latency was steeper in the young, i.e. in the presence of 469 

low GABA+ levels, stronger connectivity was associated with generally faster transitions while this 470 

effect was less pronounced in the presence of high GABA+ levels (Figure 7b). This effect was 471 

comparable for connectivity in the high post-transition mu range and transition latency (Figure 7c). 472 

The mediation effect between connectivity and transition latency was absent in the older for all time 473 

by frequency clusters (Figure 7b, c). This absence of an indirect effect in the older can be explained 474 

by a weak association between the post-transition mu connectivity and GABA+ (path α) and in 475 

particular the absence of an association between right-hemispheric GABA+ and transition latency 476 

(path β) in both models. 477 

In summary, the multimodal data fusion analysis revealed four main findings with respect to 478 

the potential mediating role of baseline GABA+ on the association between connectivity and 479 

behavior. First, baseline GABA+ levels exert an indirect effect on the link between interhemispheric 480 

motor-cortical connectivity in the low beta and high mu frequency band, time-locked to the behavioral 481 

event, and behavior. Second, variations in non-dominant hemispheric (right M1) GABA+ 482 

concentration was more likely to exert an indirect effect as compared to dominant hemispheric 483 

sensorimotor GABA+ concentration. Third, individual variations in baseline GABA+ were found to 484 

exert an indirect effect in the young for models with speed and error rate, whereas an indirect effect 485 

for the older was only found in the model with error rate. Fourth, although the mediating effect of 486 

individual variations in baseline GABA+ is of the same direction in both age groups, it has diverging 487 

implications for the connectivity – behavior association in young and older adults. Importantly, the 488 

latter two points underline the overall expected finding of age being a strong effect moderator for 489 

mostly all bimodal relationships investigated here. 490 
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Discussion 491 

To flexibly adjust ongoing behavior and switch between different modes of action is an essential 492 

ability in the human behavioral repertoire. Unfortunately, this flexibility declines across cognitive 493 

domains with increasing age 1. Using a multimodal approach to investigate the interplay between 494 

endogenous GABA and the brain’s responsiveness during dynamic motor state transitions, a prototype 495 

of flexible behavior, we provide converging evidence to suggest age-related differences in the 496 

preferred state of endogenous GABA+ concentration to allow for interregional neural communication 497 

and benefit behavior. We are able to draw conclusions about the character of the neural and 498 

neurochemical findings with regard to age-related compensatory mechanisms versus deterioration. 499 

Interhemispheric interactions at time of transition predict subsequent 500 

performance precision 501 

While the unimodal results highlighted the specific sensitivity of GABA+ concentration and phase-502 

based interhemispheric motor-cortical connectivity to aging-related alterations, even in the absence of 503 

fundamental performance differences between the age groups, the evolving question became how the 504 

age-related changes may be expressed and reflect the underlying mechanisms of behavior. 505 

Consequently, we linked inter-site interactions in the beta frequency range, detected in the unimodal 506 

analysis of connectivity at the time of transition, and behavior on a trial-by-trial basis. This analysis 507 

revealed an age-group-specific modulation of the interhemispheric phase lag between primary motor 508 

sources at the time of transition in addition to its association with the subsequent performance error. 509 

In an exploratory analysis, we found a first indication that phase lag at the time of transition and its 510 

association with subsequent behavior varied in dependence on the GABAergic state. Specifically, 511 

while in the young adults, relatively lower (than median GABA in the young) motor-cortical GABA+ 512 

concentration generally co-occurred with better performance irrespective of phase lag, relatively 513 

higher (than median GABA in the older) motor-cortical GABA+ concentration co-occurred with 514 

overall better performance in the older. In the respective less advantageous GABAergic state (i.e., 515 
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relatively higher GABA+ in the young and relatively lower GABA+ in the older), 0˚ phase lag at the 516 

time of transition was followed by better performance, whereas a 180˚ phase lag was associated with 517 

more subsequent errors. These findings suggest a behavioral advantage through synchronization of 518 

interhemispheric primary motor sources with a phase lag of around 0˚. Even though we may not rule 519 

out effects of volume conduction and source leakage on the inter-site phase relationship 22, we were 520 

able to confirm our results’ temporal and regional specificity by comparing the interhemispheric 521 

motor-cortical phase lag during the transition with that at baseline and with the occipital-motor 522 

interaction. Previous work has suggested zero-phase lag for long-distance connectivity in the beta 523 

frequency range between sensors covering left and right motor cortices during resting-state, as studied 524 

with magnetoencephalography 23. Additional support for our findings' cogency comes from recent 525 

work that has proven the omnipresence of broadband zero-lag (i.e., 0˚ and 180˚ phase difference) 526 

functional connectivity, specifically for the homotopic brain regions based on intracranial recordings 527 

during varying vigilance levels in humans 24. Although both studies have investigated spontaneous 528 

oscillations during resting-state, the authors speculated that functional connectivity around 0˚ phase 529 

lag might serve as a fundamental mechanism for the instantaneous integration of information from 530 

across brain regions allowing for predictive coding of expected events. Precisely, through long-531 

distance synchronized oscillatory activity, the motor system might facilitate the anticipation of 532 

intrinsic or extrinsic cues allowing it to act with higher temporal precision. While our data support this 533 

hypothesis by showing a behavioral advantage of 0˚ phase lag at the time of transition, we also found 534 

an association between 0˚ phase lag during the within-trial baseline with performance of the 535 

subsequent trial, though less frequency-specific. During the within-trial baseline, the participants were 536 

required to remain attentive to the fixation cross and await the ‘start cue’. Therefore, this observation 537 

suggests that the interhemispheric zero-lag synchronization might represent a more global state to 538 

potentially support the preparedness of the motor system. A mechanism to better anticipate the 539 

required behavioral action may have been specifically relevant in a less-well tuned system, i.e., less 540 

beneficial GABAergic state, and may represent a compensatory mechanism to uphold behavior. 541 
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General age-gradient and hemispheric asymmetry of GABA+ concentration 542 

To further investigate the indirect effect of GABA+ concentration on the relationship between phase-543 

based connectivity and behavior, we used a Bayesian moderated mediation analysis integrating all 544 

three modalities. This analysis step confirmed on the one hand a steep age gradient for all bimodal 545 

interactions, i.e., all paths within the model, rendering the mediation analysis conditional on the 546 

moderator age highly meaningful. On the other hand, it revealed a hemispheric asymmetry of the 547 

mediator GABA+. Specifically, modelling the right hemispheric GABA+ concentration yielded 548 

higher evidence for an indirect effect on the connectivity-behavior relationship as compared to the 549 

GABA+ concentration of the left hemisphere. Given the non-directedness of the connectivity measure 550 

and the bimanual nature of the behavioral outcomes used here, the only variable differentiating 551 

hemispheric laterality is the mediator. While we did not find a hemispheric difference in sensorimotor 552 

GABA+ concentration in either group in the unimodal analysis, the Bayesian model was sensitive to 553 

the actual variance. Previous MRS data from our own group support a hemispheric asymmetry in 554 

sensorimotor GABA+ concentration with lower concentration in the non-dominant hemisphere 25,26. 555 

Electrophysiological data evidences an imbalance of phasic and tonic GABAergic inhibitory 556 

mechanisms within the motor system, also reflecting reduced fine-tuning of the non-dominant 557 

hemisphere across various age groups (e.g. 27–29). Therefore, it is conceivable that the less well-tuned 558 

non-dominant hemisphere is more susceptible to excitation-inhibition variations and hence has a more 559 

pronounced effect on time-sensitive neural communication relevant for behavior, as suggested by our 560 

mediation results, irrespective of age. In addition to these two general findings, the mediation analysis 561 

delivered converging evidence for the two diverging states of beneficial GABA concentration in the 562 

two age groups as already suggested by the single-trial analysis of the phase angle differences. 563 

Relatively lower endogenous GABA+ reflects the optimally tuned young neural 564 

system. 565 

We found an indirect effect of non-dominant GABA+ concentration on the connectivity – 566 

behavior association for both speed and precision in the young subgroup. In the presence of lower 567 
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GABA+ levels, relatively stronger peri-transition beta band and post-transition mu band coupling 568 

(i.e., less decoupling) was associated with better performance. This association weakened in the 569 

presence of higher GABA+ concentration in the young. Notably, the young showed overall higher 570 

GABA+ levels than the older for both motor cortex voxels. Hence, when interpreting the relative 571 

GABA+ concentration in the young, even lower levels are still comparably higher than the average 572 

seen in the older. 573 

Computational modeling supports that extra-cellular GABA levels, most likely primarily 574 

detected with MRS 30,31, are critically influencing the variability in cortical neural activity and thereby 575 

define adequate information processing and integration 32. Previous in vitro and in vivo work from 576 

animal models suggests that low extracellular GABA+ concentration represents the fine-tuned 577 

physiological environment with the optimal inhibitory tone for efficient and timely precise up- and 578 

down-regulation of phasic synaptic inhibition (reviewed in 33). In support of these findings, 579 

experimental elevation of GABA+ concentration has shown to cause disturbances of neural 580 

processing, perception, and behavior in young healthy volunteers. Hereof, pharmacologically 581 

increasing endogenous GABA beyond physiological levels has shown to lead to exaggerated 582 

amplitudes of early evoked responses in somatosensory cortical areas 34 and decreased amplitudes of 583 

medium-latency evoked responses in the visual cortex 35. Previous findings of elevated GABA 584 

concentration affecting both phasic and tonic inhibitory signaling of pyramidal and inter-neuronal cell 585 

populations in superficial and deep cortical layers may serve as a potential explanation 36–38. While it 586 

is worth noting that lowering GABAergic concentration below physiological levels also has shown to 587 

cause acute disturbance of spontaneous neural activity and perceptual processing in the primary visual 588 

cortex in young macaque monkeys 39,40, additional evidence for the detrimental functional effects of 589 

elevated GABA levels is available for sensorimotor processing. Strengthened movement-related 590 

desynchronization in the beta-frequency range detected over the primary motor cortex has been 591 

specifically linked to pharmacologically increased GABAergic drive 41. In this former work, local 592 

desynchronization in sensorimotor beta-band oscillations, instead of peri-movement gamma-band or 593 

post-movement beta-band synchronization, was critically susceptible to pharmacological 594 
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manipulation with benzodiazepines. In the present work, we found the indirect effect of GABA to be 595 

frequency-specific for response-locked modulation of long-distance synchronization in the mu and 596 

beta frequency range and its association with performance. 597 

We therefore argue that the relatively lower endogenous GABA levels in the young reflects 598 

their neural system’s preferred inhibitory state for effective neural communication, which assures the 599 

required responsiveness to modulate inhibition in the presence of dynamic task requirements. 600 

Higher GABA+ indicates neural system integrity and better functioning in the 601 

older adults. 602 

In older adults, evidence for an indirect effect of GABA+ was restricted to the association between 603 

peri-transition beta-band connectivity and error rate. While the indirect effect of baseline GABA+ was 604 

negative as in the young, the implications for the connectivity – behavior association were the 605 

opposite as compared to the young. The detrimental effect of higher beta band connectivity on 606 

performance error in the older was ameliorated in the presence of higher GABA+ levels. In contrast to 607 

the young, relatively higher endogenous GABA appeared to represent the behaviorally more 608 

beneficial state in the older adults. This finding is, at first sight, intriguing, and the question is why the 609 

older do not benefit from the relatively lower GABA+ levels in the same way the younger adults do? 610 

However, retaining relatively higher GABA+ levels, i.e. closer to the concentration found in the 611 

young, probably reflects less age-related decline and subsequently lower impact on time-sensitive 612 

modulation of neural communication. Along these lines, higher GABA+ concentration has been 613 

suggested to promote lower errors through optimal tuning of neural activity (reduced variability), 614 

promoting a better signal-to-noise ratio in the older. One effect of higher signal-to-noise is a more 615 

efficient perceptual filtering function from lower to higher level processing stages. A growing body of 616 

results from animal models (e.g. 39,40), computational modeling 32,42, as well as results from aging 617 

human volunteers (e.g. 43) supports this hypothesis. From this perspective, the mediating effect of 618 

GABA levels on the association between peri-transition beta-band connectivity and performance 619 

precision but not performance speed in older adults, as seen here, appears conceivable. 620 
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The interhemispheric connectivity in the present study was modulated on a level of overall 621 

increased coupling in the older, whereas in the young a relative decoupling was observed throughout 622 

the motor-state transitions, which can be interpreted within the hypothesis of age-related 623 

dedifferentiation (e.g. 44,45). Previous work has shown reduced endogenous GABA+ levels to be 624 

linked to decreased resting-state network segregation, i.e., increased connectivity, and lower 625 

sensorimotor performance in older adults 12. Although controversial findings exist, an increased 626 

interregional coupling has frequently been observed across imaging methods in older populations 627 

during task-free 46,47 and task-related conditions 48,49.  628 

The question as to whether alterations in GABAergic transmission reflect the cause or the 629 

'cure' (i.e., compensation) for age-related neuronal functional decline reflected in behavioral 630 

performance deficits remains yet to be fully answered. In view of the limitations of the present work, 631 

it is necessary to point out that strictly speaking, a mediation implies the assumption of direct 632 

causality, which was not upheld in the present cross-sectional study. Considering the collision or 633 

confound of many other factors modifying age-related changes of the brain-behavior interaction 634 

neglected here, our findings highlight the importance to investigate the nature of the interactions as a 635 

function of age. Finally, our Bayesian moderated mediation analysis, though hypothesis-driven, 636 

followed an exploratory approach and we acknowledge the lack of a cross-validation. Nonetheless, 637 

based on the converging evidence from our multimodal analyses, we conclude by proposing the 638 

increased interhemispheric connectivity to represent a compensatory mechanism, which is brought 639 

about by rhythmic entrainment of neural populations in homotopic motor cortices. Through this 640 

increased (potentially zero-lag) synchronization, the motor system is in a better state to anticipate and 641 

dynamically control motor action. This mechanism appears to be readily available in the young and 642 

healthy brain but seems to be most relevant in the presence of a less optimal tuning of the inhibitory 643 

tone to uphold the required dynamics of behavioral action as seen here in the older. 644 
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Materials and Methods 645 

Ethics Statement 646 

The protocol and all procedures of this study complied with the ethical requirements in accordance 647 

with the Declaration of Helsinki in its revised version from 2008, as approved by the medical ethical 648 

committee of the KU Leuven (local protocol number S-58811, Belgian registration number 649 

B322201628182). All participants gave written informed consent to all of the study’s experimental 650 

procedures and were reimbursed with 15 € per hour. 651 

Participants 652 

44 volunteers (older group N = 22, age range 62-82 years of age; young group N = 22, age range 21 – 653 

27 years of age) were recruited through local advertisements and were screened for in- and exclusion 654 

criteria. No statistical method was performed for an a priori sample size calculation; rather, we based 655 

reasoning for the selected sample size on numbers chosen in previous multimodal work (eg. 12). One 656 

young participant dropped out after the MRI data acquisition for personal reasons unrelated to the 657 

study. MRI, EEG, and behavioral data were thus collected in 21 young (10 women) and 22 older (11 658 

women) participants. Due to technical problems, the EEG of one young participant had to be 659 

excluded, yielding different numbers of data sets included into the analysis for GABA, behavioral, 660 

and EEG analysis. All participants were right-handed, as evaluated with Edinburgh Handedness 661 

Inventory 50 (laterality quotient: older 92.50±0.20, young 85.00±0.15, median±95% CI). All 662 

participants were free from neurological impairments and musculoskeletal diseases affecting the 663 

unconstrained movement of the fingers, did not take neuroactive drugs, and had normal or corrected-664 

to-normal vision as evaluated with an in-house standardized questionnaire. 665 
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Magnetic Resonance Imaging (MRI) and Magnetic Resonance Spectroscopy 666 

(MRS) acquisition 667 

MRS data acquisition and reporting was done following the Magnetic Resonance Spectroscopy 668 

quality assessment tool (MRS-Q) 51. A 3D high-resolution T1-weighted structural image (repetition 669 

time = 9.5 ms; echo time = 4.6 ms; voxel size = 0.98 x 0.98 x 1.2 mm3; field of view = 250 x 250 x 670 

222 mm3; 185 coronal slices) was acquired for each participant using a Philips Achieva 3.0T MRI 671 

system and a 32-channel head coil. The 30x30x30mm3 MRS voxels were positioned based on the T1-672 

weighted image. For the left and right sensorimotor voxels, this was centered above the hand knob 673 

area 52 and rotated in the coronal and sagittal planes to align with the cortical surface of the brain. The 674 

occipital voxel was medially centered over the interhemispheric fissure, with the inferior boundary of 675 

the voxel aligned in parallel to the Tentorium cerebelli to cover left and right occipital lobes 676 

symmetrically 53.  677 

Data were acquired using the Mescher–Garwood point resolved spectroscopy (MEGA-PRESS) 678 

sequence 54, with parameters resembling those of previous work 15–17; 14ms sinc-Gaussian editing 679 

pulses applied at an offset of 1.9 ppm in the ON experiment and 7.46 ppm in the OFF experiment, TR 680 

= 2000ms, TE = 68ms, 2000 Hz spectral bandwidth, MOIST water suppression, 320 averages, scan 681 

duration of 11 minutes, 12 seconds]. Sixteen water-unsuppressed averages were acquired from the 682 

same voxel. These scan parameters were identical for all three voxels. 683 

MRS data were analyzed with the Gannet software 3.0 toolkit 55. Individual frequency domain spectra 684 

were frequency- and phase-corrected using spectral registration 56 and filtered with a 3Hz exponential 685 

line broadening. Individual ON and OFF spectra were averaged and subtracted, yielding an edited 686 

difference spectrum, which was modelled at 3ppm with a single Gaussian peak and a 5-parameter 687 

Gaussian model. The unsuppressed water signal serving as the reference compound 57, was fit with a 688 

Gaussian-Lorentzian model. The integrals of the modelled data were then used to quantify the 689 

uncorrected GABA levels. As discussed extensively, this method edits GABA as well as 690 

macromolecules at 3 ppm 58,59, therefore GABA levels reported are referred to as GABA+ (i.e., 691 

GABA+ macromolecules). To adjust GABA+ levels for heterogeneity in voxel tissue composition, 692 
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MRS voxels co-registered to the high-resolution anatomical image were segmented into three 693 

different tissue classes, namely gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF), 694 

with SPM 12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/). The resulting voxel compositions 695 

were used to extract tissue-corrected GABA+ following the assumptions that GABA+ levels are 696 

negligible in CSF and twice as high in GM relative to WM 60, accounting for tissue-specific relaxation 697 

and water visibility values 60. GABA+ levels were normalized to the average voxel composition 698 

within each age group after outlier removal 60. Quality of the MRS data was assessed using the 699 

quantitative metrics GABA and the N-acetylaspartate signal-to-noise ratio (GABA SNR, NAA SNR), 700 

fit error of the GABA peak (GABA Fit Error), the drift (Drift) and the standard deviation of the water 701 

frequency offset (Frequency Offset), as well as linewidth, quantified as the full-width half-maximum 702 

of the modelled and N-acetylaspartate (NAA FWHM) signal. 703 

Behavioral Paradigm  704 

The behavioral task involved two transition modes representing the two motor states, i.e. a mirror-705 

symmetric synchronous tapping of homologue fingers (in-phase, IP, the more stable motor state) and 706 

a synchronous tapping of the index and middle finger of opposite hands (anti-phase, AP, the less 707 

stable motor state). Since the AP transition mode has been shown to represent the coordinatively more 708 

challenging pattern 13,18,61, tapping frequency was individually adjusted to 80% of the frequency with 709 

which the AP pattern was comfortably performed without involuntary spontaneous transitions into the 710 

IP transition mode. This individual tapping frequency was auditory paced throughout the complete 711 

experiment. During the EEG session, the auditory pacing stimulus was provided through insert 712 

etymotic earphones with flat frequency response (Cortech Solutions, Wilmington, NC, USA). 713 

Tapping was performed on a custom-made keyboard with six input keys (1000Hz sampling rate). 714 

Visual target cues were presented on a standard 19” computer screen (refresh rate 60Hz) and indicated 715 

which movement pattern to perform. Visual and auditory stimuli of the behavioral paradigm were 716 

programmed in LabVIEW 2016 (National Instruments, Austin/TX, USA). One complete trial 717 

consisted of a start cue subsequently followed by a cue to either continue with the same transition 718 
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mode (‘continuation’) or transition into the respective other pattern (‘switching’ from IP to AP, or 719 

vice versa, Figure 1a). In this study, we focused on the switching transitions and thus the ratio of 720 

occurrence of continuation versus switching transitions was set to approximately 1:5 to yield enough 721 

trials for further analysis and keep participants from automatically switching. Trials were interleaved 722 

with pauses (‘pause’), which were always of the same length (3000ms); the other events had a jittered 723 

inter-stimulus interval (5000-8000ms). In order to preserve attention at a high level throughout the 724 

experiment, an additional thumb reaction time task (tRT) was included, which could occur instead of 725 

any other event type with a chance of 5%. The instruction was to respond as fast as possible upon cue 726 

occurrence (a magenta circle on left or right side of fixation cross) indicating either the left or right 727 

thumb to press the respective key. The tRT task was always followed by a pause with a latency of 728 

1000ms to avoid interference with transition performance. In order to minimize eye movements, 729 

participants were instructed to fixate a small cross in the center of the screen, which was visible at all 730 

times, during and in-between all cue presentations. For the within-trial pauses (‘pause’), the 731 

instruction was to further attend to the fixation cross with minimal movement of the fingers or other 732 

body parts because these phases served as baseline for the EEG data analysis. Stimulus-response 733 

mapping was acquired during a training session held one day prior to the experiment. In this training 734 

session, a general familiarization with the keyboard was followed by the standardized frequency 735 

adjustment procedure. Subsequently, the visual cues were introduced with a visual presentation after 736 

which on average 44±21 minutes (young: 36±16min., older: 51±23min.) of training were performed 737 

in the individual tapping frequency until the participants were able to successfully perform one block 738 

of 14 trials. In the main experiment, the individual tapping frequency was re-adjusted and the 739 

participants performed in total 12 blocks of on average 14 trials each. Each block had a duration of 740 

approximately 4 minutes. Participants were given short breaks of individual length between each 741 

block in order to rest the eyes and make small movements. 742 
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EEG recording and pre-processing 743 

Continuous EEG was recorded from 127 cephalic active surface electrodes (actiCAP, BrainProducts 744 

GmbH, Gilching/Germany) arranged according to the 10-10 system and referenced to the FCz 745 

electrode (implicit reference). Scalp-electrode impedance was kept below 20kΩ. Data were acquired 746 

with a sampling rate of 1kHz (BrainVision Recorder, version 1.21.0004, BrainProducts GmbH, 747 

Gilching/Germany).  748 

Electrooculogram (EOG) was recorded using bipolar channels. For the EOG, silver/silver-chloride 749 

cup electrodes were placed on the left and right zygomatic processes (horizontal EOG) and on the left 750 

supraorbital process as well as on the sphenoid bone below the eye (vertical EOG).  751 

All EEG data (pre-) processing and analyses were performed using functions from the 752 

EEGLAB toolbox version 2019.0 62, the Fieldtrip toolbox version 20190419 63, and customised 753 

Matlab functions (Matlab 2018b, MathWorks, Natick, MA, USA). 754 

Off-line, data from EEG channels were high-pass filtered with a 1Hz cut-off to remove 755 

baseline drift and down-sampled to 250Hz. Line noise at 50 and 100Hz was removed based on a 756 

frequency-domain (multi-taper) regression with the ‘pop_cleanline’ function of EEGLAB. 757 

Subsequently, continuous data were segmented into epochs of 5 seconds length, ±2.5 seconds around 758 

the “start” (baseline) and the “transition” (time of interest) events in order to limit the effect of edge 759 

artifacts (Figure 1b).  760 

Thereafter, a rigorous artefact removal pipeline was employed to minimize the effect of high 761 

muscle-related artefact while ensuring sufficient data for subsequent analyses. This procedure 762 

included a combination of semi-automatic and visual inspection steps. First, bad channels were 763 

identified and removed (EEGLAB trimOutlier plugin with 2µV as lower and 100µV as higher cut-off 764 

for identification of bad channels). Then canonical correlation analysis (implemented in the EEGLAB 765 

AAR plugin) 64 was used to identify and remove excessive EMG activity present in the data due to the 766 

motor task (288 seconds window length and shift between correlative analysis windows, 106 767 

eigenratio, 15Hz, ratio of 10, based on the welch algorithm). Thereafter, independent component 768 

analysis (runica/Infomax algorithm as implemented in EEGLAB) and SASICA was used as a semi-769 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2021. ; https://doi.org/10.1101/2020.10.08.331637doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.08.331637
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

32

automatic procedure to inform removal of eye-movement -related and residual muscle artefacts 65. For 770 

the identification of ICs representing relevant artifacts, MARA, FASTER, and ADJUST algorithms 771 

were used, and components were rejected if they contributed ≥4% of the total data variance. Epochs 772 

with remaining muscle artefacts were removed based on trial-by-trial visual inspection. On average 50 773 

trials per condition/participant went into further analysis. As a final step, available EEG channels 774 

were re-referenced to a common average reference. 775 

Localization of neuronal sources 776 

For the forward solution, an individual head model was created for each participant based on the same 777 

high-resolution structural MR image as used for the MRS analysis and 3D locations of the electrodes, 778 

registered with an optical infrared-camera based (NDI, Ontario, Canada) neuronavigation system 779 

(xensor™, ANT Neuro, Enschede, Netherlands). For the individual geometrical description of the 780 

head (mesh), the anatomical image was segmented into 12 tissue classes (skin, eyes, muscle, fat, 781 

spongy bone, compact bone, cortical gray matter, cerebellar gray matter, cortical white matter, 782 

cerebellar white matter, cerebrospinal fluid and brain stem), based on the MIMA model 66 using 783 

SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) as described previously 67–69. The EEG 784 

electrode positions were rigidly co-registered to the individual head surface (skin contour) by 785 

projecting the electrode coordinates in the native space through a rigid-body transformation, based on: 786 

(i) the estimation of anatomical landmarks (nasion, left/right peri-auricular points), (ii) the alignment 787 

of the electrode positions on the head surface through Iterative-Closest Point registration, and (iii) the 788 

projection of the electrodes onto the surface choosing the smallest Euclidean distance 70. Conductivity 789 

values for each tissue class were grounded on previous findings 71,72. Dipole sources were constrained 790 

by a regularly spaced 6mm three-dimensional grid spanning both the cortical/subcortical and the 791 

cerebellar gray matter. The volume conductor model was constructed based on a whole-head finite 792 

element model 73 using the SimBio toolbox (https://www.mrt.uni-jena.de/simbio) implemented in 793 

FieldTrip. In order to solve the inverse problem of describing the source activity, we made use of 794 
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exact low-resolution brain electromagnetic tomography (eLoreta) algorithm 74, using a regularization 795 

factor λ = .05. 796 

Source space time series were reconstructed using the precomputed filter for three regions of interest, 797 

the left and right primary motor cortex and the occipital cortex. Coordinates for these regions of 798 

interest were extracted from the group (OLDER vs. YOUNG) averages of the individual centroid 799 

coordinates of the MRS voxels in MNI space and transformed into native space. We used a sphere 800 

with a 6mm radius around the coordinates as a search grid to retrieve the gray matter grid voxel with 801 

the shortest distance to the coordinates of interest. Subsequently, singular value decomposition was 802 

used to reduce the dimensionality of the source activity time series in the target voxel from the x-, y- 803 

and z-components of the equivalent current dipole source to the projection that carried the maximal 804 

signal variance, i.e. the largest (temporal) eigenvector. 805 

Cortico-cortical connectivity 806 

In order to study the connectivity between cortical sources as a function of time, wavelet-based inter-807 

site phase clustering, ISPC 75 was used. This phase-based connectivity measure depends on the 808 

distribution of the phase angle differences of two signals in polar space. The underlying assumption is 809 

that two neural sources are functionally coupled when their oscillations show temporal 810 

synchronization evidenced by angular differences. ISPC is a non-directional measure and has been 811 

shown to be less sensitive to time lags, non-stationarity of frequencies, and varying levels of noise 76. 812 

In order to extract the phase angles, spectral decomposition was computed by convolving the 813 

ROI source signal with a set of complex Morlet wavelets, defined as complex sine waves tapered by a 814 

Gaussian 77. The frequencies of the wavelets were chosen from 2 Hz to 40 Hz in 50 logarithmically 815 

spaced steps in order to retrieve the full theta to beta frequency range. The full-width half-maximum 816 

(FWHM) ranged from 400 to 104ms with increasing wavelet peak frequency, corresponding to a 817 

spectral FWHM varying between 1.5 Hz and 12 Hz 78. Subsequently, ISPC was computed for 35 818 

frequency steps from 5:40 Hz. 819 
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The phase angle differences were computed between ROI source signals over time and averaged over 820 

transition modes 75,79 on the down-sampled data (50Hz) following  821 

Eq.1 ����� � ����∑ 
�����������
	
� � 822 

where �  is the number of time points, and ��  and �� are phase angles from signals �  and 
  at 823 

frequency �. Temporal modulation of ISPC change was evaluated in the time of interest (0 to +2000 824 

post-cue, Figure 1b) relative to the baseline period (-500 to -200ms) computed by subtracting the 825 

baseline ISPC values from the ISPC values in the time of interest. 826 

 827 

Additionally, instantaneous power was calculated by squaring the complex convolution results. Power 828 

spectra were normalized by converting the values to dB change relative to the fused within-trial 829 

baseline period, which was generated by averaging the time window between -500 and -200ms before 830 

the cue over all start trials 80. 831 

Statistical analysis 832 

The statistical analysis involved in a first step the analysis of the individual outcome modalities 833 

(MRS, behavior, and EEG) and in a second step the joined analysis of all three outcome modalities.  834 

Generally, for all generalized linear mixed effects models (GLMM) described hereafter, the goodness 835 

of fit was visually inspected based on the distribution of residuals. Models were fitted with a random 836 

intercept on subject level after validating that this improved model fit compared to the fixed effects 837 

model. Model comparison was performed based on Akaike Information Criterion (AIC) and Bayesian 838 

Information Criterion (BIC). Parameter estimates for fixed effects and their interactions as well as 839 

95% Confidence Intervals (CIs) and p-values were computed using Wald approximation. Parameter 840 

estimates for logistic models are reported as logits, i.e. log odds, as well as odds ratios. In the case of 841 

the beta model with logit link, parameter estimates are reported as proportions and change in rate of 842 

proportion. Standardized parameters were obtained by fitting the model on a standardized version of 843 

the dataset. Relevant interactions were followed up with contrasts for model estimated marginal 844 

means of parameter levels and reported as standardized differences (ΔEMM±standard error, 95% CI, 845 
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z-value, p-value adjusted for multiple comparisons with Holm’s method). Effect sizes are reported for 846 

the models’ total explanatory power with conditional R2 and for the fixed effects part alone with 847 

marginal R2 81 82. Forest plots are used to given an overview over the models’ parameter estimates 848 

with CI, direction, and significance of their effects. Distribution and boxplots are used to represent 849 

summary statistics of group data. Computed variables for boxplots: lower/upper whiskers represent 850 

smallest/largest observation greater than or equal to lower hinge ± 1.5 * inter- quartile range (IQR), 851 

lower/upper hinge reflects 25%/75% quantile, lower edge of notch = median − 1.58 * IQR/ sqrt(n), 852 

middle of notch reflects group median. 853 

Analysis of the MRS data 854 

GABA+ data were best estimated with a GLMM showing optimized fit modelling a gamma 855 

distribution and identity link function. Factors GROUP, VOXEL, and their interaction were modelled 856 

as fixed effects based on the study design variables. Random intercepts were fit on subject level. In 857 

order to identify the influence of the quality metrics and raw grey matter fraction (GM fraction) and 858 

their potential interaction with group or voxel, a stepwise backwards selection approach was taken 859 

starting from a beyond optimal model with all covariates and their interaction with voxel or group. 860 

Based on the significance of parameters in the analysis of deviance (Type II Wald statistics), non-861 

significant interactions were eliminated. 862 

Analysis of the behavioral data 863 

Error rate. To analyze the occurrence of errors within the behavioral task, we chose to code and 864 

analyze three different aspects of the error information in the data in order to account for the skewed 865 

distribution of percentage data and the inherently zero-inflated data. 866 

First, the data was transformed in a binary outcome coding failed transitions, i.e. trials with an error 867 

rate of 100%. Binarization of the data was achieved by coding fully erroneous trials as “1” and all 868 

other trials as “0”. This step was done based on the full set of available trials. A GLMM was used as a 869 

hurdle model and fit to the data with a Poisson distribution and logit link. 870 
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Second, after removing the fully erroneous trials, the remaining data was transformed in a binary 871 

outcome coding fully correct transitions, i.e. an error rate of 0 coded as “1”, versus erroneous trials, 872 

i.e. and error rate >0 coded as “0”. As described in the first step, a GLMM was used as a hurdle model 873 

and fit to the data with a Poisson distribution and logit link. 874 

Third, cumulative error rate in the trials not considered fully correct or fully erroneous, i.e. non-zero-875 

inflated trials, were transformed into the range of the beta distribution [0<error rate/100<1] and 876 

modelled as such using a GLMM with a “logit” link function. For all three error-rate-based outcomes, 877 

factors GROUP (old, young), TRANSITION MODE (into IP, intoAP), and covariate nTRIALc (trial 878 

number, centered) were entered into the model as fixed effects including all possible interactions. To 879 

account for intra-individual variability, random intercepts were modelled on subject level. 880 

Transition Latency. Transition latency did not follow a normal distribution and was therefore 881 

analyzed with a GLMM showing optimized fit assuming a gamma distribution and log link function. 882 

In analogy to the models for error rate, factors GROUP (old, young), TRANSITION MODE (into IP, 883 

into AP), and covariate nTRIALc (trial number, centered) were modeled as fixed effects including all 884 

possible interactions. Random intercepts were modelled on subject level. 885 

The association between transition latency and error rate (excluding failed transitions) was estimated 886 

for transition modes within age groups separately using a non-linear locally-weighted smoothing 887 

fitted over subgroups. 888 

The additional thumb reaction time task (tRT) was analyzed separately; methods and results are 889 

reported Supplementary Note 1 and Supplementary Table 10. 890 

Analysis of the EEG data 891 

EEG data were analyzed with the main focus on phase-related connectivity (ISPC) between motor-892 

cortical source and the signal from intrinsic hand muscles. The statistical analysis of the task-related 893 

modulation of the spectral signature followed the pipeline described for ISPC below. Additional 894 

methods and results are presented in Supplementary Note 2 and Supplementary Figure 1 to allow the 895 

interpretation of the association/independence of ISPC and spectral power changes. 896 
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The effect of transition mode and age group on the frequency-band specific modulation of 897 

connectivity (inter-site phase clustering, ISPC) was analyzed in three steps. First, ISPC change from 898 

baseline was analyzed within subject using a cluster corrected permutation (1000 permutations, 2-899 

tailed t-test, p<.05) to extract the effect size of change from baseline irrespective of transition mode. 900 

This step was used to extract the z-transformed ISPC changes (zISPC) per condition within subject. In 901 

this and the subsequent steps, clusters were corrected for multiple comparisons and considered 902 

significant if they contained more time × frequency data points than expected under the null 903 

hypothesis at p<.05 83. 904 

Second, group-level cluster-based permutation analysis (1000 permutations, 2-tailed t-test, p<.05) of 905 

change in baseline-subtracted zISPC pooled over transition modes (stimulus-locked analysis) was 906 

used to confirm the relevance of connectivity modulation within the selected time and frequency 907 

windows. The results of this second step containing the stimulus-locked analysis of connectivity 908 

modulation are presented in Supplementary Figure 2. 909 

Third, in order to test the effect transition mode and its modulation by age group, differences of the z 910 

matrices were calculated for the transition mode contrast (IP – AP) for the age groups separately and 911 

subsequently subtracted from each other ([IP-AP]YOUNG – [IP-AP]OLDER). A two-sided t-test 912 

(p<.05) was then run with permuting the age group allocation (1000 permutations).  913 

The third step was performed relative to the response, i.e. ±260ms around the individual median 914 

transition latency specific for IP and AP transitions, respectively (response-locked analysis). As task-915 

related connectivity was not modulated by an interaction of condition and age group; therefore, both 916 

factors were tested subsequently in separate t-tests permuting the respective factor level allocation 917 

(1000 permutations, p<.05). 918 

Analysis of the association between phase-angle differences and behavior 919 

Frequency-specific phase angle differences between left and right M1 were extracted for each trial at 920 

the respective trial-based time of transition for the low (15-22Hz) and high beta (25-30Hz) frequency 921 

ranges identified in the respective time × frequency clusters during the previous analysis step. To rule 922 

out randomness of phase angle differences, non-uniformity of their distribution was tested using the 923 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2021. ; https://doi.org/10.1101/2020.10.08.331637doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.08.331637
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

38

Rayleigh test. A two-way ANOVA for circular data was used to test between-group differences and 924 

their interaction with GABA+ concentration. For this analysis step, artificial dichotomization of 925 

GABA+ concentration (into below and above within group median concentration) was necessary 84. 926 

Phase angle differences were then correlated with the single trial error rate following the transition 927 

using circular-linear correlation. To validate the specificity of the effects in terms of task-context and 928 

topography, the same analyses steps were run for two control conditions, namely the LM1-RM1 phase 929 

lag at a random time point during baseline [start cue – 300ms], i.e. during between trial pauses (Figure 930 

1b), and for phase angle differences for the OCC-L/RM1 connectivity at the time of transition. All 931 

circular statistics and visual representations were performed with CircStat 85 and CircHist 932 

(https://github.com/zifredder/CircHist) Toolboxes implemented for Matlab 2018b and R package 933 

circular (version 0.4-93) 86. All results are reported with FDR-corrected 87 p-values (pFDR)to account 934 

for multiple comparisons across all subgroups. 935 

Analysis of the association between connectivity and behavior through GABA+ 936 

The next goal was to get further insight into the relationship between EEG-derived connectivity 937 

metrics and behavior and the potential impact of endogenous GABA+ levels on this relationship in the 938 

presence of the effect of age. Therefore, we made use of Bayesian moderated mediation analysis 939 

modelling GABA+ as mediator and age as moderator variable and their impact on the relationship 940 

between cortico-cortical and cortico-spinal connectivity and behavior, i.e. transition latency and error 941 

rate (including cumulative error rate and fully correct transitions but excluding failed transitions). 942 

This approach allowed us to further dissect the connectivity – behavior relationship given the 943 

individual variations of background GABA+ levels in the context of assumed aging-related changes 944 

of the associations between all variables. The Bayesian approach permits accounting for the non-945 

gaussian data structure of the present sample and its size 88. Conceptually, a moderated mediation 946 

model is built based on two regression models, in this case two generalized linear models, one that 947 

estimates the effect of the independent variables and relevant covariates (here the moderator) on the 948 

dependent variable (the outcome model, Eq. 2), and the second, which estimates the effect of the 949 

independent variable and relevant covariates on the mediator (the mediator model, Eq. 3): 950 
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Eq. 2 � � �� � ��� � �
� � ���� � ���� �
�� � 
� 951 

Eq. 3 � � �
 � ��� � �
�� ���� � 

. 952 

In these models, ��and �
 are intercepts, � is the dependent variable, � is the independent variable, � 953 

is the mediator, and � is the moderator W interacting with each variable. In the outcome model (Eq. 954 

2), �1  is the coefficient relating the independent variable and the dependent variable, ��  is the 955 

coefficient relating the moderator to the dependent variable,�
  identifies the coefficient relating 956 

moderator and independent variable, the coefficients for the interactions with the moderator are �� and 957 

�
. In the mediator model (E. 3.), �� is the coefficient relating the independent variable with the 958 

mediator, �
 is the coefficient relating the moderator with the mediator, and �� is the coefficient for 959 

the interaction of the independent variable and the moderator. The residuals are identified by 
� and 960 



. These two models are combined within one multilevel model and estimated simultaneously for the 961 

moderated mediation analysis.  962 

Here, a series of individual moderated mediation models was run for left M1- right M1conncectivity, 963 

using the respective zISPC pooled over the significant time × frequency clusters in addition to the 964 

GABA+ values of the corresponding voxel (e.g. model 1: predictor variable left M1 – right M1 965 

zISPC, outcome variable transition latency, mediator variable left M1 GABA+, model 2: predictor 966 

variable left M1 – right M1 zISPC, outcome variable transition latency, mediator variable right M1 967 

GABA+). Coordination pattern (IP vs. AP) was included in the outcome model to account for its 968 

significant impact on both behavior and connectivity. Within each moderated mediation model, 969 

different associations (model paths) moderated by age were jointly estimated: i) the association 970 

between independent and dependent variable in the absence of mediation (path τ, total effect); ii) the 971 

association between independent variable and mediator (path α); iii) the association between mediator 972 

and dependent variable (path β); iii) the mediation effect (α*β, indirect effect); and iv) the association 973 

between independent and dependent variable after adjusting for mediation (path τ’, direct effect) 88. A 974 

schematic of the moderated mediation model framework is given in the inlay in Figure 1a on the top 975 

right. 976 
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All input variables were centered prior to fitting the GLMMs for outcome and mediator models using 977 

an exgaussian distribution, identity link functions (for mu, sigma, and beta), and uniform priors. 978 

Posterior distributions for multivariate models were obtained using Hamiltonian Monte-Carlo 979 

algorithm using Stan 89 implemented for R with brms 90,91 and rstanarm 92 packages. Four random 980 

walk chains each with 10.000 iterations discarding the first 1000 iterations (burn-in) were used for 981 

inference. Model convergence was examined using pareto-k diagnostics, approximate leave-one-out 982 

criterium (LOO), R-hat, and effective sample size (bulk-/tail-ESS); Bayesian R2 served as indicator 983 

for quality of model fit. Median estimates and non-equi-tailed 89% credible intervals, i.e. Highest 984 

Density Intervals (89% HDI), are used to describe centrality and quantify uncertainties of the 985 

regression coefficients for the individual model paths accounting for their assumed skewness. In order 986 

to disentangle the influence of the mediator depending on variations of the moderator, a conditional 987 

process analysis was employed. Specifically, conditional estimates were simulated based on posterior 988 

draws for lowest versus highest sample quintiles of mediator and moderator. To allow for inferences 989 

about the relevance of the effects, probability of direction is reported (pd) for posterior probabilities, 990 

which can be interpreted as the probability (expressed in percentage) that a parameter (described by 991 

its posterior distribution) is strictly positive or negative. The pd can take values between 50 (one half 992 

on each side) and 100 (fully on either side) and is approximated to a frequentist 2-sided p-value with 993 

the formula p-value = 2*(1-pd/100) 93,94. Hence, a pd of 95, 97.5, 99.5, and 99.95% corresponds to p-994 

value at the thresholds 0.1, 0.05, 0.01, 0.001. 995 

Data availability 996 

General source data are not publicly available due to European legal restrictions compromising the 997 

research participants’ privacy and consent. Source data to reproduce results given in figures 2-7 are 998 

provided under [https://figshare.com/s/c2df37a0f7f68b9d208c]. Code to reproduce the results is 999 

available from the corresponding author [KFH].  1000 
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