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Abstract 34 
Most age-related human diseases are accompanied by a decline in cellular organelle integrity, including 35 
impaired lysosomal proteostasis and defective mitochondrial oxidative phosphorylation. An open 36 
question, however, is the degree to which inherited variation impacting each organelle contributes to age-37 
related disease pathogenesis. Here, we evaluate if organelle-relevant loci confer greater-than-expected 38 
age-related disease risk. As mitochondrial dysfunction is a “hallmark” of aging, we begin by assessing 39 
nuclear and mitochondrial DNA loci relevant to mitochondria and surprisingly observe a lack of 40 
enrichment across 24 age-related traits. Within nine other organelles, we find no enrichment with one 41 
exception: the nucleus, where enrichment emanates from nuclear transcription factors. In agreement, we 42 
find that genes encoding several organelles tend to be “haplosufficient,” while we observe strong 43 
purifying selection against protein-truncating variants impacting the nucleus. Our work identifies common 44 
variation near transcription factors as having outsize influence on age-related trait risk, motivating future 45 
efforts to determine if and how this variation contributes to age-related organelle deterioration. 46 
  47 
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Introduction 48 
The global burden of age-related diseases such as type 2 diabetes (T2D), Parkinson’s disease (PD), and 49 
cardiovascular disease (CVD) has been steadily rising due in part to a progressively aging population. These 50 
diseases are often highly heritable1. Genome-wide association studies (GWAS) have led to the discovery 51 
of thousands of robust associations with common genetic variants2, implicating a complex genetic 52 
architecture as underlying much of the heritable risk. These loci hold the potential to reveal underlying 53 
mechanisms of disease and spotlight targetable pathways. 54 

Aging has been associated with dysfunction in many cellular organelles3. Dysregulation of autophagic 55 
proteostasis, for which the lysosome is central, has been implicated in myriad age-related disorders 56 
including neurodegeneration, heart disease, and aging itself4, and mouse models deficient for autophagy 57 
in the central nervous system show neurodegeneration5,6. Endoplasmic reticular (ER) stress has been 58 
invoked as central to metabolic syndrome and insulin resistance in type 2 diabetes7. Disruption in the 59 
nucleus through increased gene regulatory noise from epigenetic alterations3 and elevated nuclear 60 
envelope “leakiness”8 has been implicated in aging. Dysfunction in the mitochondria has even been 61 
invoked as a “hallmark” of aging3 and has been nominated as a driver of virtually all common age-62 
associated diseases. In particular, deficits in mitochondrial oxidative phosphorylation (OXPHOS) have 63 
been observed in aging and age-related diseases as evidenced by in vivo 31P-NMR measures9,10, enzymatic 64 
activity11–17 in biopsy material, accumulation of somatic mitochondrial DNA (mtDNA) mutations18–20, and 65 
a decline in mtDNA copy number (mtCN)21.  66 

Given that a decline in organelle function is observed in age-related disease, a natural question is whether 67 
inherited variation in loci relevant for organelles are enriched for age-related disease risk. In the present 68 
study, we use a human genetics approach to assess common variation in loci relevant to the function of 69 
10 cellular organelles. We begin with a deliberate focus on mitochondria given the depth of literature 70 
linking it to age-related disease. As mitochondria-localizing protein products from ~1100 nuclear DNA 71 
(nucDNA)-encoded genes22 and 13 mtDNA-encoded genes are critical for proper OXPHOS homeostasis23, 72 
we test both nucDNA and mtDNA loci relevant for mitochondrial function in 24 different age-related 73 
diseases and traits. We hypothesized that heritability for common, age-related traits would be 74 
overrepresented among mitochondria-relevant loci, namely variants near genes encoding the organelle’s 75 
proteome or loci associated with quantitative readouts of mitochondrial function.  76 

To our surprise, we find no evidence of enrichment for genome-wide association signal in mitochondria-77 
relevant loci across any of our analyses. Further, of ten tested organelles, only the nucleus shows 78 
enrichment among many age-associated traits, with the signal emanating from the transcription factors. 79 
Further analysis shows that genes encoding the mitochondrial proteome tend to be tolerant to 80 
heterozygous predicted loss-of-function (pLoF) variation and thus are surprisingly “haplosufficient,” 81 
whereas nuclear transcription factors are especially sensitive to gene dosage and are often 82 
“haploinsufficient”. Thus, we highlight variation influencing gene-regulatory pathways, rather than 83 
organelle physiology, in the inherited risk of common age-associated diseases. 84 

Results 85 
Age-related diseases and traits show diverse genetic architectures 86 
To systematically define age-related diseases, we turned to recently published epidemiological data from 87 
the United Kingdom (U.K.)24 in order to match the U.K. Biobank (UKB)25 cohort. We prioritized traits whose 88 
prevalence increased as a function of age (Methods) and were represented in UKB 89 
(https://github.com/Nealelab/UK_Biobank_GWAS) and/or had available published GWAS meta-90 
analyses26–35 (Figure 1A, Supplementary note). We used SNP heritability estimates from stratified linkage 91 
disequilibrium score regression (S-LDSC, https://github.com/bulik/ldsc)36 to ensure that our selected traits 92 
were sufficiently heritable (Methods, Supplementary note). We then computed pairwise genetic 93 
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correlations between the age-associated traits to compare their respective genetic architectures (Figure 94 
1B, Table S2, Methods). As expected we find a highly correlated module of primarily cardiometabolic 95 
traits with high density lipoprotein (HDL) showing anti-correlation37. Interestingly, several other traits 96 
(gastroesophageal reflux disease (GERD), osteoarthritis) showed moderate correlation to the 97 
cardiometabolic trait cluster while atrial fibrillation, for which T2D and CVD are risk factors38, did not. Our 98 
final set of prioritized, age-associated traits included 24 genetically diverse, heritable phenotypes (Table 99 
S1). Of these, 11 traits were sufficiently heritable only in UKB, 3 were sufficiently heritable only among 100 
non-UKB meta-analyses, and 10 were well-powered in both UKB and an independent cohort. 101 

 102 
No evidence for enrichment of age-related trait heritability in mitochondria-relevant loci 103 
To test if age-related trait heritability was enriched among mitochondria-relevant loci, we began by simply 104 
asking if ~1100 nucDNA genes encoding the mitochondrial proteome from the MitoCarta2.0 inventory22 105 
were found near lead SNPs for our selected traits represented in the NHGRI-EBI GWAS Catalog 106 
(https://www.ebi.ac.uk/gwas/)39 more frequently than expectation (Methods, Supplementary note). To 107 
our surprise, no traits showed a statistically significant enrichment of mitochondrial genes (Figure S1A); 108 
in fact, six traits showed a statistically significant depletion. Even more strikingly, MitoCarta genes tended 109 
to be nominally enriched in fewer traits than the average randomly selected sample of protein-coding 110 
genes (Figure S1B, empirical p = 0.014). This lack of enrichment was observed more broadly across 111 
virtually all traits represented in the GWAS Catalog (Figure S1C). We also tested several transcriptional 112 
regulators of mitochondrial biogenesis and function – TFAM, GABPA, GABPB1, ESRRA, YY1, NRF1, 113 
PPARGC1A, PPARGC1B. We found little evidence supporting a role for these genes in modifying risk for 114 
the age-related GWAS Catalog phenotypes, observing only a single trait (heel bone mineral density) for 115 
which a mitochondrial transcriptional regulator (TFAM) was nearest an associated genome-wide 116 
significant variant (Supplementary note). 117 

To investigate further, we turned to U.K. Biobank (UKB). We compiled and tested three classes of 118 
“mitochondria-relevant loci” (Figure 2A) with which we interrogated the association between common 119 
mitochondrial variation and common disease. First, we curated literature-reported nucDNA quantitative 120 
trait loci (QTLs) associated with measures of mitochondrial function (Table S3): mtCN40,41, mtRNA 121 

Figure 1. Selection of genetically diverse age-related diseases and traits using epidemiological data. A. Period prevalence of 
age-associated diseases systematically selected for this study (Methods). Epidemiological data obtained from Kuan et al. 
2019. B: Genetic correlation between the selected age-related traits. All correlations were assessed between UK Biobank 
phenotypes with the exception of eGFR, Alzheimer’s Disease, and Parkinson’s Disease, for which the respective meta-
analyses were used (Methods). Point estimates and standard errors reported in Table S2. * represent genetic correlations 
that are significantly different from 0 at a Bonferroni-corrected threshold for p = 0.05 x 24 traits. 
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abundance and modification42,43, and plasma levels of OXPHOS dysfunction biomarkers including GDF15 122 
protein44,45, lactate, pyruvate, and lactate/pyruvate ratio46–48. Second, we considered all common variants 123 
in or near nucDNA MitoCarta genes, as well as two subsets of MitoCarta: mitochondrial Mendelian disease 124 
genes49 and nucDNA-encoded OXPHOS genes. Third, we obtained mtDNA genotypes at up to 213 loci after 125 
quality control (Methods) from 360,662 individuals. 126 

 127 

Figure 2. Assessment of the association of nucDNA and mtDNA mitochondria-relevant loci to age-related traits. A. Scheme 
outlining the aspects of mitochondrial function assessed in this study. nucDNA loci relevant to mitochondrial function are shown 
in teal, while mtDNA loci are shown in pink. B. Enrichment results for the overlap between loci associated with mtDNA copy 
number, mtRNA abundance/modification, and OXPHOS biomarkers and loci significantly associated with age-related disease 
in UKB. Inset number represents the number of tested SNPs, numbers adjacent to bars represent the absolute number of 
mitochondria-relevant loci overlapping the respective age-related disease. Dotted line represents Bonferroni cutoff for p = 0.1; 
BH FDR 0.1 threshold cannot be visualized as no tests pass the cutoff (Supplementary note). C. S-LDSC enrichment p-values 
on top of the baseline model in UKB. Inset labels represent gene-set size; dotted line represents BH FDR 0.1 threshold. D. 
Visualization of mtDNA variants and associations with age-related diseases. The outer-most track represents the genetic 
architecture of the circular mtDNA. The heatmap track represents the number of individuals with alternate genotype on log 
scale. The inner track represents mitochondrial genome-wide association p-values, with radial angle corresponding to position 
on the mtDNA and magnitude representing –log10 P-value. Dotted line represents Bonferroni cutoff for all tested trait-variant 
pairs. E. Replication of S-LDSC enrichment results in meta-analyses. Dotted line represents BH FDR 0.1 threshold. * represent 
traits for which sufficiently well powered cohorts from both UKB and meta-analyses were available. The trait color legend to the 
right of panel D applies to panels B, C, and D, representing UKB traits. 
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First, we tested if published QTLs for mtCN, mtRNA abundance, and OXPHOS biomarkers (Table S3, S4) 128 
were enriched for an overlap with genome-wide significant loci for each of our age-related traits in UKB 129 
(Methods, Figure S2). We observed no evidence of enrichment among QTLs available in the literature 130 
(Figure 2B, Supplementary note; all q > 0.1). 131 

Second, we used S-LDSC36,50 and MAGMA (https://ctg.cncr.nl/software/magma)51, two robust methods 132 
that can be used to assess gene-based heritability enrichment accounting for LD and several confounders, 133 
to test if there was any evidence of heritability enrichment among MitoCarta genes (Methods). We found 134 
no evidence of enrichment near nucDNA MitoCarta genes for any trait tested in UKB using S-LDSC (Figure 135 
2C, S8A), consistent with our results from the GWAS Catalog. We replicated this lack of enrichment using 136 
MAGMA at two different window sizes (Figure S8C, S8E; all q > 0.1). 137 

Given the lack of enrichment among the MitoCarta genes, we wanted to (1) verify that our selected 138 
methods could detect previously reported enrichments and (2) confirm that common variation in or near 139 
MitoCarta genes can lead to expression-level perturbations. We first successfully replicated previously 140 
reported enrichment among tissue-specific genes for key traits using both S-LDSC (Figure S3, S4) and 141 
MAGMA (Figure S5, S6, Supplementary note, Methods). We next confirmed that we had sufficient power 142 
using both S-LDSC and MAGMA to detect physiologically relevant enrichment effect sizes among 143 
MitoCarta genes (Figure S7, Methods, Supplementary note). We finally examined the landscape of cis-144 
expression QTLs (eQTLs) for these genes and found that almost all MitoCarta genes have cis-eQTLs in at 145 
least one tissue and often have cis-eQTLs in more tissues than most protein-coding genes (Figure S9, 146 
Methods, Supplementary note). Hence, our selected methods could detect physiologically relevant 147 
heritability enrichments among our selected traits at gene-set sizes comparable to that of MitoCarta, and 148 
common variants in or near MitoCarta genes exerted cis-control on gene expression.  149 

Third, we considered mtDNA loci genotyped in UKB, obtaining calls for up to 213 common variants passing 150 
quality control across 360,662 individuals (Methods, Supplementary note). We found no significant 151 
associations on the mtDNA for any of the 21 age-related traits available in UKB using linear or logistic 152 
regression (Methods, Figure 2E, S9). 153 

As a control and to validate our approach, we also performed mtDNA-GWAS for specific traits with 154 
previously reported associations. A recent analysis of ~147,437 individuals in BioBank Japan revealed four 155 
distinct traits with significant mtDNA associations52. Of these, creatinine and aspartate aminotransferase 156 
(AST) had sufficiently large sample sizes in UKB. We observed a large number of associations throughout 157 
the mtDNA for both traits (p < 1.15 ∗ 10!", Figure S9E). Thus, our mtDNA association method was able to 158 
replicate robust mtDNA associations among well-powered traits. 159 

Finally, we sought to replicate our negative results in an independent cohort. We turned to published 160 
GWAS meta-analyses26–35 (Table S1) and successfully replicated the lack of enrichment for MitoCarta 161 
genes across all 10 traits with an available independent cohort GWAS using S-LDSC (Figure 2E, S8B) and 162 
MAGMA at two different window sizes (Figure S8D, Supplementary note; all q > 0.1). Importantly, while 163 
we were unable to pursue analyses for PD and Alzheimer’s disease in UKB due to limited case counts, we 164 
tested MitoCarta genes among well-powered meta-analyses for these disorders (Supplementary note) 165 
and observed no enrichment (Figure 2E; all q > 0.1). 166 

In summary, we tested (1) QTLs for mitochondrial physiology in UKB, (2) nucDNA loci near genes that 167 
encode the mitochondrial proteome in the GWAS Catalog, UKB, and GWAS meta-analyses, (3) mtDNA 168 
variants in UKB, and (4) known transcriptional regulators of mitochondrial biogenesis and function in the 169 
GWAS Catalog. We found no convincing evidence of heritability enrichment for common age-associated 170 
diseases among these mitochondria-relevant loci (Table S8). 171 

Enrichment of age-related trait heritability near genes encoding nuclear transcription factors  172 
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We next asked whether heritability for age-related diseases and traits clusters among loci associated with 173 
any cellular organelle. We used the COMPARTMENTS database (https://compartments.jensenlab.org) to 174 
define gene-sets corresponding to the proteomes of nine additional organelles53 besides mitochondria 175 
(Methods). We used S-LDSC to produce heritability estimates for these categories in the UKB age-related 176 
disease traits, finding evidence of heritability enrichment in many traits for genes comprising the nuclear 177 
proteome (Figure 3A, Methods). No other tested organelles showed evidence of heritability enrichment. 178 
Variation in or near genes comprising the nuclear proteome explained over 50% of disease heritability on 179 
average despite representing only ~35% of tested SNPs (Figure S10, Supplementary note). We 180 
successfully replicated this pattern of heritability enrichment among organelles using MAGMA in UKB at 181 
two window sizes (Figure S13A, S13B), again finding only enrichment among genes related to the nucleus. 182 

With over 6,000 genes comprising the nuclear proteome, we considered largely disjoint subsets of the 183 
organelle’s proteome to trace the source of the enrichment signal54–56 (Figure 3B, Methods, 184 
Supplementary note). We found significant heritability enrichment within the set of 1,804 genes whose 185 
protein products are annotated to localize to the chromosome itself (q < 0.1 for 9 traits, Figure 3C, S12). 186 
Further partitioning revealed that much of this signal is attributable to the subset classified as 187 
transcription factors56 (1,523 genes, q < 0.1 for 10 traits, Figure 3D, S12). We replicated these results using 188 
MAGMA in UKB at two window sizes (Figure S13), and also replicated enrichments among TFs in several 189 
(but not all) corresponding meta-analyses (Figure S14) despite reduced power (Figure S7H). We generated 190 
functional subdivisions of the TFs (Methods, Supplementary note), finding that the non-zinc finger TFs 191 

Figure 3. Heritability enrichment of organellar proteomes across age-related disease in UK Biobank. A. Quantile-quantile plot 
of heritability enrichment p-values atop the baseline model for gene-sets representing organellar proteomes, with black line 
representing expected null p-values following the uniform distribution and shaded ribbon representing 95% CI. B. Scheme of 
spatially distinct disjoint subsets of the nuclear proteome as a strategy to characterize observed enrichment of the nuclear 
proteome. Numbers represent gene-set size. C. S-LDSC enrichment p-values for spatial subsets of the nuclear proteome 
computed atop the baseline model. D. S-LDSC enrichment p-values for TFs and all other nucleus-localizing proteins. Inset 
numbers represent gene-set sizes, black lines represent cutoff at BH FDR < 10%. * represent traits for which sufficiently well 
powered cohorts from both UKB and meta-analyses were available. 
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showed enrichment for a highly similar set of traits to those enriched for the whole set of TFs (Figure 192 
S15D, S16B, S17B, S18B). Interestingly, the KRAB domain-containing zinc fingers (KRAB ZFs)57, which are 193 
recently evolved (Figure S15H), were largely devoid of enrichment even compared to non-KRAB ZFs 194 
(Figure S15E, S16C, S17C, S18C). Thus, we find that variation within or near non-KRAB domain-containing 195 
transcription factor genes has an outsize influence on age-associated disease heritability (Table S8).  196 

 197 
Mitochondrial genes tend to be more “haplosufficient” than genes encoding other organelles 198 
In light of observing heritability enrichment only among nuclear transcription factors, we wanted to 199 
determine if the fitness cost of pLoF variation in genes across cellular organelles mirrored our results. 200 
Mitochondria-localizing genes and TFs play a central role in numerous Mendelian diseases49,58–60, so we 201 
initially hypothesized that genes belonging to either category would be under significant purifying 202 
selection (i.e., constraint). We obtained constraint metrics from gnomAD 203 

Figure 4. Differences in constraint distribution across organelles. A. Constraint as measured by LOEUF from gnomAD v2.1.1 
for genes comprising organellar proteomes, book-ended by distributions for known haploinsufficient genes as well as olfactory 
receptors. Lower values indicate genes exacting a greater organismal fitness cost from a heterozygous LoF variant (greater 
constraint). B. Proportion of each gene-set found in the lowest LOEUF decile. Higher values indicate gene-sets containing 
more highly constrained genes. C. Constraint distributions for subsets of the nuclear-encoded mitochondrial proteome (red) 
and subsets of the nucleus (teal). Black points represent the mean with 95% CI. Inset numbers represent gene-set size. 
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(https://gnomad.broadinstitute.org)61 as the LoF observed/expected fraction (LOEUF). In agreement with 204 
our GWAS enrichment results, we observed that the mitochondrion on average is one of the least 205 
constrained organelles we tested, in stark contrast to the nucleus (Figure 4A). In fact, the nucleus was 206 
second only to the set of “haploinsufficient” genes (defined based on curated human clinical genetic 207 
data61, Methods) in the proportion of its genes in the most constrained decile, while the mitochondrion 208 
lay on the opposite end of the spectrum (Figure 4B). Interestingly, even the Mendelian mitochondrial 209 
disease genes had a high tolerance to pLoF variation on average in comparison to TFs (Figure 4C, S19A). 210 
Even across different categories of TFs, we observed that highly constrained TF subsets tend to show 211 
GWAS enrichment (Figure S19B, S15E) relative to unconstrained subsets for our tested traits. Indeed, 212 
explicit inclusion of LOEUF as a covariate in the enrichment analysis model (Methods) reduced the 213 
significance of (but did not eliminate) the enrichment seen for the TFs (Figure S20B, S21B, S20E, S20F). 214 
Thus, while disruption in both mitochondrial genes and TFs can produce rare disease, the fitness cost of 215 
heterozygous variation in mitochondrial genes appears to be far lower than that among the TFs. This 216 
dichotomy reflects the contrasting enrichment results between the mitochondrial genes and the TFs and 217 
supports the importance of gene regulation as it relates to evolutionary conservation. 218 
 219 
Discussion 220 
Pathology in cellular organelles has been widely documented in age-related diseases3,7,62–65.  Using a 221 
human genetics approach, here we report the unexpected discovery that except for the nucleus, cellular 222 
organelles tend not to be enriched in genetic associations for common, age-related diseases. We started 223 
with a focus on the mitochondria as a decline in mitochondrial abundance and activity has long been 224 
reported as one of the most consistent correlates of aging9,14,19,20 and age-associated diseases10–13,15–18,21. 225 
We tested mitochondria-relevant common variants on the nucDNA and mtDNA and found no convincing 226 
evidence of heritability enrichment in any tested trait, cohort, or method. We systematically expanded 227 
our analysis to survey 10 organelles and found that only the nucleus showed enrichment, with much of 228 
this signal originating from nuclear transcription factors. Constraint analysis showed a substantial fitness 229 
cost to heterozygous loss-of-function mutation in genes encoding the nuclear proteome, whereas genes 230 
encoding the mitochondrial proteome were “haplosufficient.” 231 

For highly polygenic and well-powered traits, any large fraction of the genome may explain a statistically 232 
significant amount of disease heritability66,67. Indeed, individual associations between mitochondria-233 
relevant loci and certain common diseases have been identified previously68,69. As associations have also 234 
been identified among loci relevant for other organelles, enrichment analyses can place these complex 235 
genetic architectures in a broader biological context and prioritize pathways for follow-up. Importantly, 236 
both MAGMA and S-LDSC are capable of detecting an enrichment even in a highly polygenic background. 237 
Both methods have been used in the past to identify biologically plausible disease-relevant tissues36,50 and 238 
pathway enrichments70,71 in traits across the spectrum of polygenicity, and we identify enrichments 239 
among disease-relevant tissues using both methods in several highly polygenic traits. 240 

While previous work has shown that common disease GWAS can be enriched for expression in specific 241 
disease-relevant organs50,72, our data suggest that this framework does not generally extend to organelles. 242 
This finding contrasts with our classical nosology of inborn errors of metabolism that tend to be mapped 243 
to “causal” organelles, e.g., lysosomal storage diseases, disorders of peroxisomal biogenesis, and 244 
mitochondrial OXPHOS disorders. The observed enrichment for transcription factors within the nucleus 245 
indicates that common variation influencing genome regulation impacts common disease risk more than 246 
variation influencing individual organelles. 247 

Our analysis of common inherited mitochondrial variation represents, to our knowledge, the most 248 
comprehensive assessment of mitochondria-relevant nucDNA and mtDNA variation in age-related 249 
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diseases. We replicated mtDNA associations with creatinine and AST observed previously in BioBank 250 
Japan52, further supporting our approach. While individual mtDNA variants have been previously 251 
associated with certain traits73–75, these associations appear to be conflicting in the literature, perhaps 252 
because of limited power and/or uncontrolled confounding biases such as population stratification76,77. 253 
Our negative results are surprising, but they are not inconsistent with a small number of isolated reports 254 
interrogating either mitochondria-relevant nucDNA78 or mtDNA52,79–81 loci in select diseases. 255 

To our knowledge, we are the first to systematically document heterogeneity in average pLoF across 256 
cellular organelles. That MitoCarta genes are “haplosufficient” and pLoF tolerant (Figure 4A) is consistent 257 
with the observation that most of the ~300 inborn mitochondrial disease genes produce disease with 258 
recessive inheritance49 and healthy parents. The few mitochondrial disorders that show dominant 259 
inheritance are nearly always due to dominant negativity rather than haploinsufficiency. The intolerance 260 
of TFs to pLoF variation (Figure 4A) provide a stark contrast to the results from the mitochondria that is 261 
borne out in their associated Mendelian disease syndromes: TFs are known to be haploinsufficient82 and 262 
even regulatory variants modulating their expression can produce severe Mendelian disease83. We 263 
observe heritability enrichment among TFs for 10 different diseases, consistent with observed elevated 264 
purifying selection against pLoF variants in these genes. Our enrichment results combined with pLoF 265 
intolerance suggest that variation among TFs may produce disease-associated variants with larger effect 266 
sizes than expectation, underscoring their importance as genetic “levers” for common disease heritability. 267 

Why are mitochondria so robust to variation in gene dosage and hence “haplosufficient?” We propose 268 
three possibilities. First, one possibility is pathway redundancy. For example, in cell culture, defective 269 
OXPHOS can be supported thanks to the action of non-mitochondrial pathways such as cytosolic glycolysis 270 
and nucleotide salvage as long as key environmental nutrients are provided84. Second, mitochondrial 271 
pathways tend to be highly interconnected, and it was already proposed by Wright85 and later by Kacser 272 
and Burns86 that haplosufficiency arises as a consequence of physiology, i.e., network organization of 273 
metabolic reactions. Kacser and Burns in fact explicitly mention that noncatalytic gene products fall 274 
outside their framework, and we believe that our finding that nucleus-localizing and cytoskeletal genes 275 
are the two most pLoF-intolerant compartments is consistent with their assessment. Third, mitochondria 276 
were formerly autonomous microbes and hence may have retained vestigial layers of “intra-organelle 277 
buffering” against genetic variation. Numerous feedback control mechanisms, including respiratory 278 
control87, help to ensure organelle robustness across physiological extremes88,89. In fact, a recent CRISPR 279 
screen showed that of the genes for which knock-out modified survival under a mitochondrial poison, 280 
there is a striking over-representation of genes that themselves encode mitochondrial proteins90. 281 

Throughout this study, we have tested inherited common variant associations via an additive genetic 282 
model. We acknowledge the limitations of focusing on a specific genetic model and variant frequency 283 
regime, though note that common variation is the largest documented source of narrow-sense 284 
heritability, which typically accounts for a majority of disease heritability91,92. First, we consider only 285 
common variants. While rare variants may prove to be instructive, it is notable that a previous rare variant 286 
analysis in T2D93 failed to show enrichment among OXPHOS genes. Second, we consider only additive 287 
genetic models. A recessive model may be particularly fruitful for mitochondria-relevant loci given their 288 
tolerance to pLoF variation, however these models are frequently power-limited and may not explain 289 
much more phenotypic variance than additive models94,95. Third, we have not considered epistasis. The 290 
effects of mtDNA-nucDNA interactions96 in common diseases have yet to be assessed. While there is 291 
debate about whether biologically-relevant epistasis can be simply captured by main effects92,94,97,98 at 292 
individual loci, it is possible that modeling mtDNA-nucDNA interactions will reveal new contributions. 293 
Finally, it is crucial not to confuse our results with previously reported associations between somatic 294 
mtDNA mutations and age-associated disease18–20 – the present work is focused on germline variation. 295 
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We emphasize that our study does not formally address the causality of mitochondrial dysfunction in 296 
common age-related disease. Rather, we have tested if common variants in mitochondrial pathways tend 297 
to explain a disproportionate amount of age-related disease heritability. The observed lack of heritability 298 
enrichment in mitochondrial pathways does not preclude the possibility of a therapeutic benefit in 299 
targeting the mitochondrion for age-related disease. For example, mitochondrial dysfunction is 300 
documented in brain or heart infarcts following blood vessel occlusion in laboratory-based models99,100. 301 
Though mitochondrial variants do not influence infarct risk in this laboratory model, pharmacological 302 
blockade of the mitochondrial permeability transition pore can mitigate reperfusion injury and infarct 303 
size101. Future studies will be required to determine if and how the mitochondrial dysfunction associated 304 
with common age-associated diseases can be targeted for therapeutic benefit. 305 

Our finding that the nucleus is the only organelle that shows enrichment for common age-associated trait 306 
heritability builds on prior work implicating nuclear processes in aging. Most human progeroid syndromes 307 
result from monogenic defects in nuclear components102 (e.g., LMNA in Hutchinson-Gilford progeria 308 
syndrome, TERC in dyskeratosis congenita), and telomere length has long been observed as a marker of 309 
aging103. Heritability enrichment of age-related traits among gene regulators is consistent with the 310 
epigenetic dysregulation104 and elevated transcriptional noise3,105 observed in aging (e.g., SIRT6 311 
modulation influences mouse longevity106 and metabolic syndrome63). An important role for gene 312 
regulation in common age-related disease is in agreement with both the observation that a very large 313 
fraction of common disease-associated loci corresponds to the non-coding genome and the enrichment 314 
of disease heritability in histone marks and transcription factor binding sites36,107. Given that a 315 
deterioration in several other cellular organelles has been linked to age-related traits, a future challenge 316 
lies in elucidating the connection between variation influencing transcription factors and organelle 317 
dysfunction in age-related disease. 318 
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Materials and Methods 366 
Trait selection:  367 
Sex-standardized period prevalence of over 300 diseases was obtained from an extensive survey of the 368 
National Health Service in the UK as reported previously24. To select high prevalence late-onset diseases, 369 
we ranked diseases with a median onset over 50 years of age by the sum of the period prevalence of all 370 
age categories above 50. We selected the top 30 diseases using this metric and manually mapped these 371 
traits to similar or equivalent phenotypes with publicly available summary statistics from UKB and/or well-372 
powered meta-analyses (e.g., Parkinson’s Disease and Alzheimer’s Disease for dementia) resulting in 24 373 
traits with data available in UKB, meta-analyses, or both (Table S1). 374 
 375 
Criteria for inclusion of summary statistics:  376 
We manually mapped selected age-related diseases and traits to corresponding phenotypes in UKB. In 377 
parallel, we searched the literature to identify well-powered EUR-predominant GWAS (referred to as 378 
meta-analyses) that (1) used primarily non-targeted arrays, (2) had publicly available full summary 379 
statistics, and (3) did not enroll individuals from UKB to serve as independent replication (Supplementary 380 
note). For UKB, we obtained heritability estimates (https://github.com/Nealelab/UKBB_ldsc) previously 381 
computed using stratified linkage-disequilibrium score regression (S-LDSC, 382 
https://github.com/bulik/ldsc)36 atop the BaselineLD v1.1 model using reference LD scores computed 383 
from 1000G EUR. For meta-analyses, we computed heritability estimates with S-LDSC atop the updated 384 
BaselineLD v2.2 model using reference LD scores computed from 1000G EUR 385 
(https://alkesgroup.broadinstitute.org/LDSCORE/). We computed the heritability Z-score, a statistic that 386 
captures sample size, polygenicity, and heritability36, and included only traits with heritability Z-score > 4 387 
(Supplementary note) for further analysis. 388 
 389 
Genetic correlations in UKB:  390 
Pairwise genetic correlations, &#, were computed using linkage-disequilibrium score correlation37 on all 391 
selected age-related traits with heritability Z-score > 4. We used UKB summary statistics 392 
(https://github.com/Nealelab/UK_Biobank_GWAS) for all sufficiently powered traits; summary statistics 393 
from meta-analyses were used for eGFR33, Alzheimer’s Disease35, and Parkinson’s Disease34 as these traits 394 
showed heritability Z-score > 4 within meta-analyses but not in UKB (Table S1). P-values for genetic 395 
correlation represented deviation from the null hypothesis &# = 0. Traits were ordered by their 396 
contribution to the first eigenvector of the absolute value of the correlation matrix, with point estimates 397 
and standard errors available in Table S2. Bonferroni correction was applied producing a p-value cutoff of 398 
0.05 ($%$ ) =⁄ 1.81 ∗ 10!%. 399 
 400 
Assessment of mitochondria-localizing genes in the GWAS Catalog:  401 
We mapped variants in the GWAS Catalog (obtained on September 5th, 2019, 402 
https://www.ebi.ac.uk/gwas/) meeting genome-wide significance (p < 5e-8) to genes using provided 403 
annotations, producing a set of trait-associated genes for each trait. We manually selected phenotypes 404 
represented in the GWAS Catalog matching our set of age-associated traits with over annotated 30 trait-405 
associated genes. For each trait, we computed the proportion of trait associated genes that were 406 
mitochondria-localizing (defined via MitoCarta2.022) and tested for enrichment or depletion relative to 407 
overall genome background using two-sided Fisher’s exact tests correcting for multiple hypothesis tests 408 
with the Benjamini-Hochberg (BH) procedure at FDR q-value < 0.1.  409 

We also computed the test statistic ,#&'()*+, defined as the number of age-associated traits showing a 410 
nominal (not necessarily statistically significant) enrichment for a given gene-set -, for the MitoCarta 411 
genes. We then generated an empirical null distribution for ,#&'()*+. We drew 1,000 random samples of 412 
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protein-coding genes, where each sample contained the same number of genes as the set of 413 
mitochondria-localizing genes and computed ,#&'()*+ for each of these gene-sets (Figure S1B). The one-414 
sided p-value, defined as Pr(,#&'()*+ ≤ 1) under the null, was subsequently obtained. 415 

We expanded our enrichment/depletion analysis to all 332 traits in the GWAS Catalog with over 30 trait-416 
associated genes; for enrichment or depletion testing, we used two-sided Fisher’s exact tests and 417 
corrected for multiple hypothesis testing with the BH procedure at FDR q-value < 0.1. 418 
 419 
Enrichment analysis of literature-curated mitochondria-associated phenotypes:  420 
We reviewed the literature for quantitative trait loci (QTLs) for mtDNA copy number (mtCN)40,41, mtRNA 421 
abundance/modification42,43, and biomarkers of OXPHOS dysfunction (namely lactate, pyruvate, 422 
lactate/pyruvate ratio46–48, and GDF15 abundance44,45) (Supplementary note). We subsequently used 423 
PLINK v1.07 (https://zzz.bwh.harvard.edu/plink/)108 to identify independent variants for each phenotype 424 
based on the 1000G EUR reference panel (Supplementary note). To test for overlap with UKB age-425 
associated disease traits, we divided curated variants into three classes: mtCN-related (21 variants), 426 
mtRNA-related (78 variants), and OXPHOS biomarkers (62 variants). For each of the 21 UKB age-related 427 
disease traits, we computed the number of genome-wide significant (p < 5e-8) variants that overlapped 428 

the curated variants for each class, termed ,*
,-&(./0 where c is the class. We only considered variants 429 

with INFO > 0.8 and MAF > 0.001 or expected case MAC > 25. For significance testing, we generated an 430 

empirical null distribution around ,*
,-&(./0 including only variants with INFO > 0.8. For each class, we 431 

drew variants at random 2500 times matching on LD score, in-sample MAF, and distance to transcription 432 
start site (where the distance metric was set to 0 if the variant was located within a gene boundary). LD 433 
scores per variant were generated per-chromosome with a 1 cm window using the 1000G EUR reference 434 

panel. The ,*
,-&(./0 was then computed for each category for each set of randomly selected variants, 435 

generating a category specific empirical null distribution for the statistic (Figure S2). The one-sided p-436 

value, defined as Pr(,*
,-&(./0 ≥ 1) under the null, was subsequently obtained. To correct for multiple 437 

hypothesis testing, we applied the BH procedure with FDR < 0.1 and also applied a Bonferroni threshold 438 

of 3 = 1.3
$3∗5 ≈ 0.0016. 439 

 440 
Harmonization and filtering of summary statistics for LDSC and MAGMA: 441 
UKB summary statistics previously formatted for use with LDSC and filtered to HapMap3 (HM3) SNPs 442 
(https://github.com/Nealelab/UKBB_ldsc) were used for analysis with S-LDSC. For analysis with MAGMA 443 
v1.07b51, we included variants from the full Neale Lab UKB Round 2 GWAS summary statistics 444 
(https://github.com/Nealelab/UK_Biobank_GWAS) with INFO > 0.8 and MAF > 0.01, and excluded any 445 
variants flagged as low confidence (a heuristic defined by MAF < 0.001 or expected case MAC < 25).  446 

Summary statistics obtained from publicly available GWAS meta-analyses26–35 were reported in varied 447 
formats. We manually verified the genome build upon which each meta-analysis reported results and 448 
ensured that all sets of summary statistics contained columns listing P-value, variant rsID, genome-build 449 
specific coordinates, and if available, variant-specific sample size (Table S1). If variant coordinates or rsID 450 
were not provided, the relevant columns were obtained from dbSNP database version 130 (for hg18) or 451 
146 (for hg19). We used the summary statistic munging script provided with S-LDSC 452 
(https://github.com/bulik/ldsc) to generate summary statistics compatible with S-LDSC, restricting to 453 
HM3 SNPs as these tend to be best behaved for analysis with LDSC. For use of meta-analyses with 454 
MAGMA51, we restricted analysis to variants with INFO > 0.8 and MAF > 0.01 if such information was 455 
provided. 456 
 457 
Multiple testing correction for gene-set enrichment analysis:  458 
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To account for the multiple hypothesis tests performed throughout this study, we obtained p-value 459 
thresholds via the BH procedure at FDR < 0.1 for all gene-sets assessed for a given method and cohort 460 
type (where the two cohort types were UKB and meta-analysis). 461 
 462 
Gene-set based enrichment analysis: 463 
We extensively use S-LDSC and MAGMA to perform gene-set enrichment analyses among GWAS summary 464 
statistics. To test enrichment with S-LDSC, SNPs were mapped to each gene with a 100kb symmetric 465 
window as recommended50 and LD scores were computed using the 1000G EUR reference panel 466 
(https://alkesgroup.broadinstitute.org/LDSCORE/) and subsequently restricted to the HM3 SNPs. We 467 
used S-LDSC to test for heritability enrichment controlling for 53 annotations including coding regions, 468 
enhancer regions, 5’ and 3’ UTRs, and others as previously described36 (baseline v1.1, referred to as 469 
baseline model hereafter). We also used MAGMA with both 5kb up, 1.5kb down and 100kb symmetric 470 
windows to test for enrichment. MAGMA gene-level analysis was performed with the 1000G EUR LD 471 
reference panel to account for LD structure, and gene-set analysis was performed including covariates for 472 
gene length, variant density, inverse minor allele count (MAC), as well as log-transformed versions of 473 
these covariates. Statistical tests for both S-LDSC and MAGMA were one-sided, considering enrichment 474 
only. For both methods, we included the relevant superset of genes as a control to ensure that our analysis 475 
was competitive (Supplementary note). We refer to this approach as the ‘usual approach’. All enrichment 476 
effect size estimates and p-values are available in Table S8. 477 
 478 
Enrichment analysis of genes comprising the mitochondrial proteome: 479 
We obtained the set of nuclear-encoded mitochondria-localizing genes using MitoCarta2.022 and used the 480 
literature to obtain the subset of MitoCarta genes involved in inherited mitochondrial disease49 as well as 481 
those producing components of oxidative phosphorylation (OXPHOS) complexes. We used both S-LDSC 482 
and MAGMA to test for enrichment in the usual way (Methods) controlling for the set of protein-coding 483 
genes to ensure a competitive analysis (Supplementary note). We also tested mitochondria-localizing 484 
genes for enrichment in meta-analyses using S-LDSC and MAGMA with the same parameters as for UKB 485 
traits (Supplementary note). 486 
 487 
Tissue-expressed gene-set enrichment analysis:  488 
To obtain the set of genes most expressed in a given tissue versus others, we obtained t-statistics 489 
computed from GTEx v6 gene-level transcript-per-million (TPM) data corrected for age and sex as 490 
published previously50. For each tissue, we selected the top 2485 genes (10%) with the highest t-statistics 491 
for tissue-specific expression, producing tissue-expressed gene-sets. We selected nine tissues based on 492 
expectation of enrichment for our tested traits in UKB (e.g., liver for LDL levels, esophageal mucosa for 493 
GERD). We used both S-LDSC and MAGMA to test for enrichment in the usual way (Methods) controlling 494 
for the set of tissue-expressed genes to ensure a competitive analysis (Supplementary note). Tissue-495 
expressed gene-set analyses were performed on meta-analyses with S-LDSC and MAGMA on the same 496 
tissues using the same parameters as used in UKB. 497 
 498 
Power analysis:  499 
To test for the effects of gene-set size on power, we selected ten positive control tissue-trait pairs based 500 
on (1) the presence of tissue enrichment in UKB with S-LDSC and MAGMA and (2) if the observed 501 
enrichment was biologically plausible. The pairs tested were liver-HDL, liver-LDL, liver-TG, liver-502 
cholesterol, pancreas-glucose, pancreas-type 2 diabetes, atrial appendage-atrial fibrillation, sigmoid 503 
colon-diverticular disease, coronary artery-myocardial infarction, and visceral adipose-HDL. We then, in 504 
brief, used an empirical sampling-based approach, generating random subsamples of a selected set of 505 
tissue-expressed gene-sets at four different gene-set sizes (1523, 1105, 800, and 350 genes), defining 506 
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power as the proportion of trials showing a significant enrichment (Supplementary note). We used the 507 
same sub-sampled gene-sets for enrichment analysis using both S-LDSC and MAGMA in the usual way 508 
(Methods) controlling for the set of tissue-expressed genes to ensure a competitive analysis 509 
(Supplementary note). We used the same gene-sets among the subset of the positive control traits that 510 
showed enrichment in the corresponding meta-analysis to verify power for the meta-analyses 511 
(Supplementary note). 512 
 513 
Cross-tissue eQTL analysis 514 
We obtained the set of eGenes from GTEx v8 across 49 tissues (https://www.gtexportal.org), filtering to 515 
only include cis-eQTLs with q-value < 0.05. To determine how the landscape of cis-eQTLs for MitoCarta 516 
genes compared to other protein-coding genes, we regressed the number of tissues with a detected cis-517 

eQTL for a given gene x, ,6
&789 , onto an indicator for membership in a given organellar proteome 518 

(76
,(#/'&..&), controlling for gene length, log gene length, breadth of expression (86), and the number of 519 

tissues with detected expression > 5 TPM (,6
&60(&::, Supplementary note). To quantify breadth of 520 

expression, we obtained median-per-tissue GTEx v8 TPM expression values and computed 8109 after 521 
removing lowly-expressed genes with maximal cross-tissue TPM < 1, defined as: 522 
 523 

86 =	
∑ (1 − 1=)'
);3 )
? − 1

	@ℎB&B	1=) =
1)

max
3<)<'

1)
 524 

 525 
where 1)  is the expression of gene 1 in tissue F with ? tissues. 8 ranges from 0 to 1, with lower 8 indicating 526 
broadly expressed gene and higher 8 indicating more tissue specific expression patterns. Because GTEx 527 
sampled multiple tissue subtypes (e.g., brain sub-regions) that show correlated expression profiles110 528 

which bias 86, ,6
&789, and ,6

&60(&::	upward, for each broader tissue class (brain, heart, artery, esophagus, 529 
skin, cervix, colon, adipose) we selected a single representative tissue when computing these quantities 530 
(Figure S14B, Supplementary note). We used LD scores computed from the 1000G EUR reference panel. 531 
The model, fit via OLS for each tested organelle, was: 532 
 533 

,6
&789	~	76

,(#/'&..& +,6
&60(&:: + 86 + log(-B?B	LB?-Mℎ) + -B?B	LB?-Mℎ 534 

 535 
mtDNA-wide association study: 536 
We obtained mtDNA genotype data on 265 variants as obtained on the UK Biobank Axiom array and the 537 
UK BiLEVE array from the full UKB release25. To perform variant QC, we used evoker-lite111 to generate 538 
fluorescence cluster plots per-variant and per-batch and manually inspected the results, removing 19 539 
variants due to cluster plot abnormalities (Table S5, Supplementary note). We additionally removed any 540 
variants with heterozygous calls, within-array-type call rate < 0.95, and with less than 20 individuals with 541 
an alternate genotype. For case-control traits, we removed any phenotype-variant pair with an expected 542 
case count of alternate genotype individuals of less than 20, resulting in a maximum of 213 variants tested 543 
per trait (Supplementary note). To perform sample QC, we restricted samples to the same samples from 544 
which UKB summary statistics were generated (https://github.com/Nealelab/UK_Biobank_GWAS), 545 
namely unrelated individuals 7 standard deviations away from the first 6 European sample selection PCs 546 
with self-reported white-British, Irish, or White ethnicity and no evidence of sex chromosome aneuploidy. 547 
We additionally removed any samples with within-array-type mitochondrial variant call rate < 0.95, 548 
resulting in 360,662 unrelated samples of EUR ancestry. We generated the LD matrix for mitochondrial 549 
DNA variants using Hail v0.2.51 (https://hail.is) pairwise for all 213 variants tested across all post-QC 550 
samples. 551 
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We ran mtDNA-GWAS for all 21 UKB age-related phenotypes as well as creatinine and AST using Hail 552 
v0.2.51 via linear regression controlling for the first 20 PCs of the nuclear genotype matrix, sex, age, age2, 553 
sex*age, and sex*age2 as performed for the UKB GWAS 554 
(https://github.com/Nealelab/UK_Biobank_GWAS). We also used Hail to run Firth logistic regression with 555 
the same covariates for case/control traits (Table S1). As we observed that some mitochondrial DNA 556 
variants were specific to array type, we also ran linear regression including array type as a covariate; we 557 
did not perform logistic regression with array type as a covariate due to convergence issues secondary to 558 
complete separation of variants assessed only on only array type. We defined mtDNA-wide significance 559 

using a Bonferroni correction by N = 1.1"
%55= ≈ 1.15B − 5. 560 

 561 
Enrichment analysis of components of organellar proteomes: 562 
COMPARTMENTS (https://compartments.jensenlab.org)53 is a resource integrating several lines of 563 
evidence for protein localization predictions including annotations, text-mining, sequence predictions, 564 
and experimental data from the Human Protein Atlas. We used this resource to obtain the degree of 565 
evidence (a number ranging from 0 to 5) linking each gene to localization to one of 12 organelles: nucleus, 566 
cytosol, cytoskeleton, peroxisome, lysosome, endoplasmic reticulum, Golgi apparatus, plasma 567 
membrane, endosome, extracellular space, mitochondrion, and proteasome. To avoid noisy localization 568 
assignments due to weak text mining and prediction evidence, we only considered localization 569 
assignments with a score > 2 as described previously53. We subsequently assigned compartment(s) to each 570 
gene by selecting the compartment(s) with the maximal score within each gene. We only included 571 
compartments containing over 240 genes due to limited power at these smaller gene-set sizes and used 572 
MitoCarta2.022 to obtain a higher confidence set of genes localizing to the mitochondrion, resulting in 573 
gene-sets representing the proteomes of 10 organelles. S-LDSC and MAGMA were used to test for 574 
enrichment across the UKB age-related traits for these gene-sets in the usual way, controlling for the set 575 
of protein-coding genes. S-LDSC was also used to obtain estimates of the percentage of heritability 576 
explained by each organelle gene-set. 577 
 578 
Enrichment analysis of spatial components of the nucleus: 579 
To produce interpretable sub-divisions of the nucleus, we used Gene Ontology (GO)54,55 to identify terms 580 
listed as children of the nucleus cellular component (GO:0005634). We used Ensembl version 99112 to 581 
obtain a first pass set of genes annotated to each sub-compartment of the nucleus (or its children). After 582 
manual review of sub-compartments with > 90 genes, we selected nucleoplasm (GO:0005654), nuclear 583 
chromosome (GO:0000228), nucleolus (GO:0005730), nuclear envelope (GO:0005635), splicosomal 584 
complex (GO:0005681), nuclear DNA-directed RNA polymerase complex (GO:0055029), and nuclear pore 585 
(GO:0005643). We excluded terms listed as ‘part’ due to poor interpretability and manually excluded 586 
similar terms (e.g., nuclear lumen vs nucleoplasm). To generate a high confidence set of genes localizing 587 
to each of these selected sub-compartments, we then turned to the COMPARTMENTS resource which 588 
assigns localization confidence scores for each protein to GO cellular component terms. We assigned 589 
members of the nuclear proteome to these selected nuclear sub-compartments using same the approach 590 
outlined for the organelle analysis (Methods). After filtering our selected sub-compartments to those 591 
containing > 240 genes, we obtained four categories: nucleoplasm, nuclear chromosome, nucleolus, and 592 
nuclear envelope. The nuclear chromosome annotation was largely overlapping with a manually curated 593 
high-quality list of transcription factors56 however was not exhaustive; as such, we merged these lists to 594 
generate the chromosome and TF category. To improve interpretability, we removed genes from 595 
nucleoplasm that were also assigned to another nuclear sub-compartment, constructed a list of other 596 
nucleus-localizing proteins not captured in these four sub-compartments, and included only genes 597 
annotated as localizing to the nucleus (Methods). S-LDSC and MAGMA were used to test for enrichment 598 
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across the UKB age-related traits for these gene-sets in the usual way while controlling for the set of 599 
protein-coding genes (Methods). 600 
 601 
Enrichment analysis of functionally distinct TF subsets: 602 
We used a published curated high-quality list of TFs56 to partition the Chromosome and TF category into 603 
transcription factors and other chromosomal proteins. To determine which TFs are broadly expressed 604 
versus tissue specific, we computed 8 per TF across all selected tissues after removing lowly-expressed 605 
genes with maximal cross-tissue TPM < 1 (Methods, Supplementary note). The threshold for tissue-606 
specific genes was set at 8 ≥ 0.76 based on the location of the central nadir of the resultant bimodal 607 
distribution (Figure S14A). To identify terciles of TFs by age, we obtained relative gene age assignments 608 
for each gene previously generated by obtaining the modal earliest ortholog level across several databases 609 
mapped to 19 ordered phylostrata113. DNA binding domain (DBD) annotations for the TFs were obtained 610 
from previous manual curation efforts56. S-LDSC and MAGMA were used to test for enrichment across the 611 
UKB age-related traits for these gene-sets in the usual way while controlling for the set of protein-coding 612 
genes (Methods). We also tested TFs for enrichment in meta-analyses using S-LDSC and MAGMA with the 613 
same parameters as for UKB traits (Supplementary note). 614 
 615 
Analysis of constraint across organelles and sub-organellar gene-sets: 616 
We obtained gene-level gnomAD v2.1.1 constraint tables (https://gnomad.broadinstitute.org), 617 
haploinsufficient genes, and olfactory receptors61 (https://github.com/macarthur-lab/gene_lists). 618 
Constraint values as loss-of-function observed/expected fraction (LOEUF) were mapped to genes within 619 
organelle, sub-mitochondrial, sub-nuclear, and TF binding domain gene-sets. 620 
 621 
Enrichment analysis across age-related disease holding constraint as a covariate: 622 
To test for enrichment with constraint as a covariate, we used MAGMA with UKB age-related traits. We 623 
mapped variants to genes and performed the gene-level analysis as done previously for the mitochondria-624 
localizing gene and organelle analysis. We included LOEUF and log LOEUF as covariates for the gene-set 625 
analysis in addition to the default covariates (gene length, SNP density, inverse MAC, as well as the 626 
respective log-transformed versions) via the –condition-residualize flag.  627 
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