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Abstract  30 

Genome-wide association studies (GWAS) have identified hundreds of thousands of genetic 31 

variants associated with complex diseases and traits. However, most variants are noncoding and 32 

not clearly linked to genes, making it challenging to interpret these GWAS signals. We present a 33 

systematic variant-to-function study, prioritizing the most likely functional elements of the 34 

genome for experimental follow-up, for >148,000 variants identified for hematological traits. 35 

Specifically, we developed VAMPIRE: Variant Annotation Method Pointing to Interesting 36 

Regulatory Effects, an interactive web application implemented in R Shiny 37 

(http://shiny.bios.unc.edu/vampire/). This tool efficiently integrates and displays information 38 

from multiple complementary sources, including epigenomic signatures from blood cell relevant 39 

tissues or cells, functional and conservation summary scores, variant impact on protein and gene 40 

expression, chromatin conformation information, as well as publicly available GWAS and 41 

phenome-wide association study (PheWAS) results. Leveraging data generated from 42 

independently performed functional validation experiments, we demonstrate that our prioritized 43 

variants, genes, or variant-gene links are significantly more likely to be experimentally validated. 44 

This study not only has important implications for systematic and efficient revelation of 45 

functional mechanisms underlying GWAS variants for hematological traits, but also provides a 46 

prototype that can be adapted to many other complex traits, paving the path for efficient variant 47 

to function (V2F) analyses. 48 

Keywords: Genome-wide association studies, variant to function, functional annotations, 49 

experimental validations, blood cell traits 50 

 51 
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Introduction 52 

Genome-wide association studies (GWAS) have identified thousands of genetic loci and 53 

hundreds of thousands of genetic variants associated with various complex human diseases and 54 

traits, but the underlying genetic mechanism for the vast majority of these GWAS signals 55 

remains elusive. With extensive sequencing and GWAS efforts, there is a pressing need to 56 

convert the large and ever growing number of significant GWAS variant-trait pairs into human-57 

interpretable functional or mechanistic knowledge1. Most variants identified through GWAS 58 

reside in the noncoding regions (e.g., >95% for blood cell traits2), and most signals include 59 

multiple highly correlated variants or variants in strong linkage disequilibrium (LD). Pinpointing 60 

the most likely causal variants within GWAS signals, and linking these variants to their target 61 

genes, is challenging, particularly as the number of GWAS loci and variants increases. For 62 

hematological traits, for instance, our recent GWAS meta-analyses3; 4 have revealed over seven 63 

thousand loci, with >148,000 variants associated with at least one blood cell index at stringent 64 

genome-wide significance threshold. Comprehensive and computationally efficient annotation 65 

and prioritization of such GWAS findings are of ever-increasing interest.  66 

Understanding how genetic variants contribute to a phenotype is often referred to as the variant-67 

to-function (V2F) problem. Responding to this problem requires us to determine causal genetic 68 

variants, relative cell types/states, their target genes and cellular/physiological functions5. 69 

Functional experiments are needed to fully reveal molecular mechanisms, but we cannot yet 70 

afford to perform time-, money- and labor-consuming experimental validations of thousands of 71 

loci involving hundreds of thousands of potentially functional variants or regulatory elements 72 

controlling their nearby genes, since each gene is likely regulated by multiple variants and each 73 
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variant may regulate multiple genes. Thus, computational methods are needed to screen potential 74 

variants and their effector genes for further experiments. 75 

In this study, we focus on hematological traits. Hematological phenotypes (red blood cell, white 76 

blood cell, and platelet counts and indices) are critical physiological intermediaries in oxygen 77 

transport, immunity, infection, thrombosis, and hemostasis and are associated with autoimmune, 78 

allergic, infectious, and cardiovascular diseases.  Hematological traits are highly heritable 6, and 79 

recent large GWAS for hematological traits (including nearly 750,000 participants) identified 80 

thousands of variant-trait associations 2; 4. In addition, there are multiple large-scale functional 81 

experiments already available2; 7; 8 for hematological traits, as well as fairly comprehensive 82 

functional annotation resources relevant to blood tissues. This makes hematological traits an 83 

ideal model for this type of V2F computational solution.  84 

We have developed VAMPIRE: Variant Annotation Method Pointing to Interesting Regulatory 85 

Effects, a tool for the user to explore annotations encompassing epigenomic signatures, variant 86 

impact on protein and gene expression, chromatin conformation information from Hi-C and 87 

similar technologies, as well as publicly available GWAS and PheWAS results, creating a 88 

comprehensive annotation profile for variants from recent trans-ethnic blood cell trait 89 

publications3; 4 with a flexible interface for adding additional future GWAS results. This 90 

interactive web application implemented in R Shiny provides a model display mechanism for 91 

annotating GWAS variants from diverse complex traits, allowing selection of most likely causal 92 

variants and their effector genes for experimental follow-up. Importantly, we show the value of 93 

how variants and genes nominated by VAMPIRE can highlight key regulators of blood cell traits 94 

using independent functional assessment, confirming the value of this annotation tool. While 95 

blood cell traits are the focus for VAMPIRE, this framework (including our R Shiny application) 96 
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is adaptable for annotation of other complex trait GWAS results and will facilitate the connection 97 

between variant and function.  98 

 99 

Methods 100 

Variant Annotations 101 

The current version of VAMPIRE includes GWAS results from two studies (as detailed in 102 

Supplemental Methods), including all variants in 95% credible sets for fine-mapped 103 

hematological trait associated loci from Chen et al. (N=148,019 variants) 4 and lead variants 104 

(N=2) from a TOPMed imputed GWAS meta-analysis in African American and Hispanic/Latino 105 

populations3. We plan to extend VAMPIRE as new trans-ethnic blood cell trait genetic analyses 106 

are released.  107 

The sources of the annotation used are stated clearly in the VAMPIRE online application, with 108 

links or references to the original data sources. As a brief summary, the annotation categories are 109 

trivially split into six types ("variant level", "1D","2D","3D", "PheWAS","GWAS"). First, 110 

"variant level" contains data on phenotypic association from the original publication or preprint 111 

(such as the p-value for association with a given hematological trait, effect size, and posterior 112 

probability of inclusion for fine-mapping credible sets). Second, "1D" refers to epigenomic or 113 

sequence constraints features. This displays selected output from WGSA 9 including functional 114 

prediction scores, conservation scores, and epigenetic information gathered from GeneHancer 10, 115 

FANTOM5 11; 12, Roadmap 13, and ENCODE 14. ATAC-seq peaks from recent studies for blood 116 

cell traits 15; 16 and key histone ChIP-seq peaks such as H3K9me3, H3K36me3, H3K4me1, 117 
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H3K4me3, and H3K27Ac generated across blood cell related tissues from Roadmap 118 

Epigenomics are also included 13; 17. We further include information regarding whether each 119 

variant resides in any selective sweep region detected from multiple populations in the 1000 120 

Genomes Project 18 using the S/HIC method 19; 20. Information is displayed based on the tissue 121 

relevance to the blood cell phenotype (see Supplemental Methods). All variants have 1D 122 

annotation, but for prioritization purposes as described below in the five categories for 123 

noncoding variant annotation, we define 1D annotation as FANTOM5_enhancer_robust =Y 124 

(yes), or Genehancer_feature="Promoter" or "Enhancer" or "Promoter/Enhancer", or coreMarks 125 

(for any relevant roadmap epigenomic category) = "Enhancers" or "Active TSS." Users can then 126 

additionally filter by criteria such as functional prediction and conservation scores.  127 

For the "2D" annotations, we included impact on gene expression and splicing ratios (eQTL and 128 

sQTL information) and impact on protein abundance (pQTL information 21) from public sources 129 

relevant to blood cell traits. This includes both bulk and cell type specific sources from the 130 

public domain (eQTLGen 22, CAGE 23, BIOS 24 for whole blood, and Raj et al for purified CD4+ 131 

T cells and monocytes  25). Information available in these sources varies, but generally we at a 132 

minimum display the effect size estimate, p-value, the allele assessed, and the gene or protein 133 

involved. Variants were matched across sources based on chromosome, position, and alleles of 134 

each variant. Only significant results (based on FDR or other publication specific thresholds) 135 

from the respective sources are displayed in VAMPIRE; we do note that formal co-localization 136 

analyses would still need to be performed to determine if blood cell related and gene/protein 137 

expression QTL signals truly coincide.  138 

For the "3D" annotations, we include information on 3D genome conformation, linking blood 139 

lineage specific regulatory elements to target genes from various sources. More specifically, 140 
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using Hi-C data we incorporated statistically significant long-range chromatin interactions 141 

(LRCI) 17; 26; 27 calculated from Fit-Hi-C 28, loops using the HiCCUPs methodology 26, and super-142 

FIREs for related tissues 17. Two Promoter-Capture Hi-C (PCHi-C) data sources 29; 30 were also 143 

incorporated and matched with the 2D results to highlight consistent evidence regarding the 144 

affected gene(s) across "2D" and "3D" annotations. VAMPIRE displays information on the 145 

number of loops, LRCI, PCHi-C interactions, FIREs, or super-FIREs, as well as significance 146 

measures such as p-values, FDR, or CHICAGO scores where applicable. This "3D" annotation 147 

information can also be visualized via our HUGIn browser 31.  148 

The last two data groups present results from two PheWAS sources 4; 32 and GWAS results of 149 

blood cell traits from GWAS catalog 33, allowing the user to evaluate if hematological trait 150 

associated variants may also influence other complex traits. 151 

To visualize and leverage these multiple annotation categories for further analysis or 152 

prioritization of experimental validations, VAMPIRE efficiently displays and integrates relevant 153 

variant information, allowing the user to investigate either all the variants annotated or subsets 154 

based on annotation category groupings, searching either by variant or by gene name. The 155 

comprehensive annotation for the variants is summarized using a five category grouping created 156 

for highlighting the most promising variants as they have various types of annotation. 157 

Specifically, the five categories for noncoding variants are (1) the most restrictive category, 158 

containing variants that have 1D, 2D, and 3D annotation and the genes implicated by 2D and 3D 159 

evidence are consistent; (2) containing variants with 1D, 2D, and 3D evidence, but the genes 160 

implicated from different resources are not consistent; (3) 2D and 3D with consistent gene 161 

evidence between the 2D and 3D annotations; (4) variants with 2D and 3D information and no 162 

consistent gene implied; (5) variants with 1D and 3D evidence. We also have a predicted high 163 
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impact coding variant category displayed, including high confidence loss of function (LoF) 164 

variants and likely influential missense, in frame indels, and synonymous variants. Variants 165 

without strongly compelling variant annotation are still displayed, but are not listed in these high 166 

priority categories. The user can further subset results by hematological trait, hematological trait 167 

category, or (for the Chen et al paper 4) the ancestry specific grouping in which a given credible 168 

set was derived (trans-ethnic, European, East Asian, South Asian, Hispanic/Latino, or African 169 

ancestry). In addition, the user can restrict the amount of information presented by selecting 170 

which tables to be displayed. All tables can be exported in a csv or tab delimited format. 171 

Enrichment analysis 172 

To assess whether the variants prioritized by VAMPIRE are more likely to be functionally 173 

impactful, we performed enrichment analysis at three different levels: variant level, gene level, 174 

and variant-gene pair level, leveraging data generated from previously published functional 175 

experiments 2; 7; 8. For each set of analysis, we conducted Fisher’s exact test and calculated odds 176 

ratios (OR) and one-sided p-values.  177 

At the variant level, we assessed the enrichment of variants that modify transcription factor (TF) 178 

binding motif2 among our annotation category 1 variants. Recently, Vuckovic et al. 2 179 

characterized variants that affect erythropoiesis or hematopoiesis by modifying related TF 180 

motifs, such as for KLF1, KLF6, MAFB, and GATA1. We chose these four erythroid TFs as 181 

positive control TFs and two non-erythroid TFs (IRF1 and IRF8) as negative controls.  182 

At the gene level, we evaluated the genes interrogated by Nandakumar et al. 8 with a pooled 183 

short hairpin RNA (shRNA) based loss-of-function approach. Specifically, Nandakumar et al. 184 

studied 389 candidate genes in the neighborhood of 75 loci associated with red blood cell traits 185 
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34, to identify potential causal genes underlying these GWAS signals. We assessed the 186 

enrichment of genes validated by shRNA experiments among those prioritized in VAMPIRE’s 187 

category 1. Note that the categories were previously defined at variant level. Here we extent 188 

variant category to gene category as the strongest category where a genome-wide significant 189 

variant linked to this gene falls in.  190 

At the variant-gene pair level, we employed the enhancer-gene connections validated via 191 

CRISPRi-FlowFISH experiments by Fulco et al. 7 in their activity-by-contact (ABC) paper. 192 

Specifically, Fulco et al. tested pairs of candidate cis regulatory elements (CREs, ~500bp regions) 193 

and their potential effector genes via CRISPRi perturbations of the CREs, in multiple cell lines 194 

including the K562 cells. Fulco et al.  tested 4,124 CRE-gene pairs in total, of which 175 were 195 

significant from their experiments. We overlapped their tested CREs with variants in our 196 

VAMPIRE annotation database. We define a VAMPIRE variant-gene pair confirmed if the 197 

variant overlaps an ABC validated CRE and the linked genes in VAMPIRE (from QTL and 198 

chromatin capture conformation evidence) overlaps the corresponding effector gene for that CRE 199 

via ABC’s CRISPRi-FlowFISH experiment. We focused on ABC experiments performed on the 200 

K562 cells (instead of GM12878 cells, where a very small number of CREs were tested) as the 201 

number of tested CRE-gene pairs was not too small for robust statistical inference. Matching the 202 

K562 cell line, we focused only on variants associated with red blood cell traits. Similar to the 203 

above two sets of enrichment analyses, we focused on annotations in VAMPIRE’s prioritization 204 

category 1. Specifically, we tested whether variant-gene pairs prioritized in VAMPIRE’s 205 

category 1 are enriched within ABC’s validated enhancer-gene connections. Given the CREs 206 

tested in the ABC paper are rather short (~500bp), we also performed sensitivity analysis by first 207 
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extending the CRE regions by +/- 1kb and +/- 5kb and then overlapping variants with these 208 

extended CREs, to ensure robust conclusions. 209 

 210 

Results 211 

Overview of VAMPIRE annotations 212 

The overall framework of VAMPIRE is illustrated in Figure 1. We started with all variants in 213 

95% credible sets from our recent trans-ethnic study for hematological traits (total 148,019 214 

variants) 4 and lead variants (2 variants) from Kowalski et al.3. We incorporated six types of 215 

annotations (detailed in Methods): GWAS summary statistics and posterior probability of 216 

inclusion from our previous fine-mapping analyses 4; epigenomic or sequence constraints 217 

features (1D); eQTL, sQTL and pQTL information (2D); information on 3D genome 218 

conformation (3D); results from two PheWAS sources 4; 32 (PheWAS); and GWAS results from 219 

blood cell traits from GWAS catalog 33 (GWAS).   220 

To visualize and prioritize variants, their corresponding candidate regulatory regions, and their 221 

potential effector genes, we leverage the aforementioned six types of annotation to group these 222 

~148,000 variants into various prioritization categories.  Specifically, for non-coding variants, 223 

we classified them into five categories (detailed in Methods). Among them, category 1 is the 224 

most restrictive category, containing variants that have 1D, 2D, and 3D annotation and the genes 225 

implicated by 2D and 3D evidence are consistent. Variants not falling into any of the five 226 

categories are classified as uncategorized. In addition, each gene is categorized according to the 227 
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prioritization categories of its linked variant(s). When its linked variants fall in multiple 228 

categories, the gene is assigned to the most highly prioritized category. 229 

Enrichment analysis 230 

Our enrichment analyses employing multiple previously published functional validation 231 

experiments encompassing variant-level, gene-level, and variant-gene pair levels all showed 232 

promising results. Specifically, at the variant level, we found significant enrichment of variants 233 

affecting TF binding motifs among variants prioritized in category 1 of VAMPIRE (Figure 2), 234 

for all the erythroid TFs (p < 8.1E-4) but GATA1 (p = 0.18) (Table 1), likely due a smaller 235 

sample size of variants. In contrast, neither of the two negative control TFs (IRF1 and IRF8) 236 

showed any significant enrichment (p = 0.22 and 0.62). At the gene level, we focused on two 237 

statistics: (1) number of genes selected for shRNA experiments, since genes were more likely to 238 

be selected for experiments when they demonstrated some prior evidence of potential causality, 239 

and (2) number of genes validated (p < 0.05) by shRNA experiments. We compared the number 240 

of genes in our annotation category 1 and all other categories, and found that both shRNA 241 

candidate genes (p = 3.5E-13) and significant genes (p = 3.1E-8) show strong enrichment among 242 

those in our annotation category 1 (Table 2), and the estimated enrichment score for significant 243 

genes (OR = 4.65) is almost double of that for candidate genes (OR = 2.37). These results 244 

suggest the genes prioritized by VAMPIRE’s category 1 annotations are more likely to be 245 

functional. 246 

Finally, at the variant-gene pair level, we also observed enrichment among variants selected into 247 

VAMPIRE’s category 1 (Table 3). When restricting only to variants in category 1 and associated 248 

with red blood cell traits and without extending the CRE regions, only 7 of VAMPIRE’s variant-249 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2021. ; https://doi.org/10.1101/2021.02.16.431409doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.16.431409
http://creativecommons.org/licenses/by/4.0/


gene pairs can be found in ABC’s CRISPRi-FlowFISH experiments, of which 6 are not 250 

significant and 1 is significant. While not significant (p = 0.26), the direction of enrichment is 251 

nevertheless encouraging (one of seven, or 14.3%, confirmed by CRISPRi-FlowFISH 252 

experiments) and 3-fold greater than that among all/background pairs from Fulco et al. 7, where 253 

175 out of 4124 variant-gene pairs (4.2%) were confirmed. Note that all the confirmed pairs 254 

were linked with variants associated with red blood cell traits. Further generalizing to all 255 

VAMPIRE annotation categories and to variants associated with any blood cell trait, the 256 

enrichment OR increases to 8.30 with p-value 9.0E-5, indicating that variant-gene pairs 257 

prioritized by VAMPIRE’s five categories have much higher odds of being functional. To further 258 

accommodate causal variants tagged by GWAS variants not falling into the short 500bp CREs, 259 

we extended the CREs by +/- 1kb or +/- 5kb, and performed similar enrichment analysis. Our 260 

conclusions remained qualitatively similar (Table 3), but the enrichments increased in 261 

significance, thanks to larger sample size (in this context, the larger number of variant-gene pairs 262 

contributing to the analysis) and suggesting that more liberal windows of cis-regulatory regions 263 

can capture a higher rate of functional variant-gene pairs. For example, the enrichment for 264 

category 1 variants associated with red blood cell (RBC) traits reached an OR of 15.77 (p=3.8E-265 

6) and 16.68 (p=3.1E-15) for 1kb and 5kb extension, respectively. We thus conclude that such 266 

enrichment is significant and robust to the extension of CREs.  267 

Application example 268 

Figure 3 shows one example at the CALR locus associated with red blood cell traits. Fulco et al. 269 

confirmed by CRISPRi-FlowFISH experiment that CRE chr19:12,996,905-12,998,745 (hg19) 270 

regulates gene CALR (adjusted p-value 1.9E-7)7. Annotations compiled by VAMPIRE suggest, 271 

consistently, that CALR is linked to rs8110787 (chr19:12,999,458, hg19) in category 1. 272 
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rs8110787 is associated with several RBC traits 4, including hematocrit (HCT), mean corpuscular 273 

hemoglobin (MCH), mean corpuscular volume (MCV) and red blood cell counts (RBC). Based 274 

on genomic distance alone, CALR is not the nearest gene to rs8110787, with several other closer 275 

genes. However, based on H3K27ac HiChIP data in K562 cells 35, rs8110787 significantly 276 

interacts with CALR promoter region (p < 1E-120), suggesting that CALR is a potential target 277 

gene regulated by the CRE around rs8110787. This variant is also an eQTL of CALR from 278 

CAGE 23 (p = 9.4E-16) and BIOS 24 (p = 1.0E-25), and is an enhancer in K562 Leukemia cells 279 

(E123) from Roadmap 13, adding additional evidence. Our VAMPIRE successfully highlights 280 

this rs8110787-CALR pair in its category 1. 281 

As a further example of the utility of the VAMPIRE application, we present the annotation 282 

results for one of the lead genome-wide significant variants from recent trans-ethnic GWAS 283 

analyses from Chen et al. 4 For our analysis, we were particularly interested in exploring low 284 

frequency variants, and those more common in those of non-European ancestry. We were able to 285 

quickly rank and prioritize variants for further examination using the annotation categories 286 

described above, including the low frequency variant rs112097551 associated with mean 287 

corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and red blood cell count.  288 

This low frequency intergenic variant rs112097551 (GATA2-RPN1 locus, 0.15% minor allele 289 

frequency in Chen et al. trans-ethnic analysis 4) has no close linkage disequilibrium proxies in 290 

African or European populations, and thus was not compared to other highly correlated variants. 291 

Based on variant frequency, particularly in European ancestry populations, we had no 292 

expectation this variant would have eQTL or pQTL evidence (2D annotation), given currently 293 

available sample sizes for eQTL and pQTL analysis. For low frequency variants, 1D and 3D 294 

annotation would be the highest annotation category likely for a variant of interest like 295 
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rs112097551. The variant is ~5x more common among African versus non-African samples in 296 

gnomAD version 2.1.1. It is the only variant in the credible set in fine-mapping analyses from 297 

Chen et al.  1D annotation suggests this variant is highly conserved (CADD Phred score of 20.4, 298 

meaning the variant is amongst the top 1% of deleterious variants in the human genome), and it 299 

is rated as deleterious by FATHMM-XF (rank score 0.99169, close to the maximum score of 1). 300 

It is also in open chromatin in megakaryocyte–erythroid progenitor cells, based on hematopoietic 301 

ATAC-seq data 36. 3D annotation from PCHi-C data in erythroblasts from Javierre et al. 29 links 302 

this variant to the gene RUVBL1 ~500Kb away, as well as noncoding transcripts RNU2-37P and 303 

RUVBL1-AS1. Based on this data, which can be quickly displayed using the VAMPIRE 304 

application, we are currently working on in vitro follow-up of this candidate functional enhancer 305 

variant 37.   306 

Discussion 307 

As genotyped sample sizes increase and meta-analysis efforts grow ever larger, more variant-308 

trait pairs are identified for complex traits than can be easily annotated on a variant by variant 309 

basis. New, user-friendly applications are needed for rapid display of functional annotation 310 

information and prioritization of variants for further functional follow-up to pave the V2F path. 311 

Our VAMPIRE tool provides an example of how the publicly available code can be adapted to 312 

accommodate other sources of annotation specific to other complex trait GWAS results or to 313 

accommodate future blood cell trait GWAS and annotation resources. In addition to a priori 314 

providing one category of coding variants and 5 categories of non-coding variants that warrant 315 

prioritization consideration, VAMPIRE allows users to decide their own categories based on 316 

arbitrary combinations of the annotations at adjustable thresholds (for example, prioritizing high 317 

CADD score variants, or variants in open chromatin in blood cells based on ATAC-seq). Along 318 
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with the addition of more blood cell trait genetics papers published in the future, VAMPIRE 319 

could also be used as written to annotate GWAS results for other blood related phenotypes, such 320 

as recent GWAS of risk of myeloproliferative neoplasm or clonal hematopoiesis 38; 39.  321 

As we accumulate additional functional validation data, including high-throughput massively 322 

parallel reporter assays (MPRA), medium-throughput CRISPRi/CRISPRa and low throughput 323 

mouse xenotransplant experiments, we will provide statistics summarizing experimental 324 

validation results (e.g., number of variants in the category followed-up, proportion that show 325 

evidence of functional impact in their experiments) for each of the 6 VAMPIRE categories and 326 

for user defined categories. Importantly, we illustrate the value of VAMPIRE using existing 327 

independent functional validation and therefore illuminate the value of this type of annotation 328 

tool in enabling one to go from variant to function for blood cell traits and other complex 329 

phenotypes.  330 

We also note that there are some limitations of VAMPIRE. First, comprehensive annotations 331 

specific to various cell types and cell states would further enhance classification and 332 

prioritization accuracy of functional variants or regulatory elements and their target genes. 333 

Although data is increasingly being generated by us 15; 16 and others 29; 35, and has been 334 

incorporated into VAMPIRE where available,  interrogations in a cell-type- or state- specific 335 

manner are still much needed. For instance, our recent work has demonstrated cell-type or tissue 336 

specific FIREs 17; 40 and super interactive promoters (SIP)41 play key regulatory role and aid the 337 

identification and prioritization of functional regulatory elements and their corresponding genes. 338 

As more experimental data are generated, we will update VAMPIRE accordingly.  Second, our 339 

list of 148,019 variants derives primarily from fine-mapping studies, which may be inaccurate in 340 

loci where more than one independent or partially independent signals exist. However, this 341 
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limitation cannot be resolved before more powerful methods are developed for fine-mapping 342 

analysis for trans-ethnic GWAS. Finally, most of the annotations are based on analyses in 343 

European ancestry individuals (e.g. eQTL, pQTL, chromatin conformation etc.).  Many ongoing 344 

efforts including ours are generating resources for non-European ancestry samples. For example, 345 

we are involved in several recently funded efforts to generate RNA-sequencing data in non-346 

European ancestry individuals in hematopoietic cell types and anticipate relevant eQTL and 347 

sQTL annotations being added to VAMPIRE in upcoming years.  348 

In conclusion, we have built a comprehensive annotation tool, VAMPIRE, which provides 349 

characterization and prioritization of blood cell trait related GWAS signals. Our results using 350 

existing functional experiments demonstrate that variants and genes prioritized by VAMPIRE 351 

are significantly more likely to be functionally validated at either the variant, gene, or variant-352 

gene pair level. Annotation tools like VAMPIRE, which could be easily modified to apply to 353 

additional complex traits and diseases, are necessary to translate knowledge of GWAS 354 

significant variants to target genes and biological insights, and to guide our decisions to prioritize 355 

experimental validations of most likely functional regulatory variants/elements and their effector 356 

genes. 357 

Appendix 358 

A1. Supplementary methods. 359 
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 382 

Figures 383 

384 

Figure 1. Overall framework of this study. VAMPIRE starts with GWAS variants in the 95% 385 

credible sets, integrates different annotations and assigns them into different prioritization 386 

categories. We further demonstrated that our top prioritized category is enriched with variants 387 

that were experimentally validated. VAMPIRE provides a prototype that can be adapted to many 388 

other complex traits, paving the path for efficient variant to function (V2F) analyses. 389 

 

y 
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 390 

 391 

 392 

Figure 2. Variant level TF motif enrichment analysis. Each dot represents an enrichment 393 

score with the line depicting 95% confidence interval (CI). All the upper bounds of these CIs are 394 

infinity. The p-values of the enrichment are reflected by the dot size at the OR point estimate 395 

with a larger dot indicating more significant the enrichment.  396 

 397 
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 399 

 400 

 401 

 402 

Figure 3. Variant-gene pair example (rs8110787-CALR) visualization from HUGIn2 31. 403 

Fulco et al. confirmed via CRISPRi experiments that chr19:12996905-12998745 (hg19) 404 

regulates gene CALR (adjusted p-value 1.9E-7) which is highly expressed in Erythroblasts7. 405 

Based on annotations in VAMPIRE, CALR is linked to rs8110787 (chr19:12999458, hg19) in 406 

prioritization category 1, including higher than expected physical interactions with the CALR 407 

locus from erythroblasts pcHiC data29, eQTL of CALR in CAGE23 and BIOS24, erythroid ATAC-408 

seq peak16 and H3K27ac peak in K562 leukemia cell13. rs8110787 is associated with several 409 

RBC traits (namely hematocrit, mean corpuscular hemoglobin, mean corpuscular volume, and 410 

red blood cell count) as reported in Chen et al. 4. 411 

 412 

 413 
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 414 

Tables 415 

 416 

  Category 1 Uncategorized p-value Odds ratio 

All RBCT variants 5,687 21,947 
  

KLF1 34 34 7.10E-08 3.86 

KLF6 21 14 4.30E-07 5.79 

MAFB 13 13 8.10E-04 3.86 

GATA1 8 19 0.18 1.63 

IRF1 12 49 0.62 0.95 

IRF8 19 58 0.22 1.26 

 417 

Table 1. Variant level transcription factor (TF) motif enrichment analysis. Four erythroid 418 

TFs and two non-erythroid TFs were selected. Fisher’s exact test was applied to test for 419 

enrichment. Three erythroid TFs show enrichment for our VAMPIRE annotation category 1 420 

(MAFB, KLF6, KLF1, p<0.05). GATA1 motif variants also have some evidence of enrichment 421 

(odds ratio = 1.625) but this enrichment is not significant (p=0.18), likely due to smaller sample 422 

size of variants. Two non-hematopoiesis transcription factors selected as controls don’t show 423 

significant enrichment with VAMPIRE functional annotation category 1.  RBCT, red blood cell 424 

trait associated. 425 

 426 
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  Category 1 Other categories p-value Odds ratio 

All category genes 9,857 7,408     

shRNA Candidate genes 262 83 3.50E-13 2.37 

shRNA Validated genes 68 11 3.10E-08 4.65 

Table 2. Gene level enrichment analysis. Fisher’s exact test was applied to test for enrichment. 427 

Both shRNA experiment candidate genes and validated genes show significant enrichment in our 428 

most restrictive VAMPIRE annotation category (category 1).  429 

 430 

 431 

 432 

 433 

  
Not 

significant 
Significant  Significant % p-value Odds ratio 

All pairs from Fulco 

et al. 
3,949 175 4.24 

  

Confirmed pairs in 

category 1 for RBC 

traits 

6 1 14.29 0.26 3.76 

Confirmed pairs in 

category 1 for all 

traits 

6 1 14.29 0.26 3.76 

Confirmed pairs in 19 7 26.92 9.00E-05 8.3 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2021. ; https://doi.org/10.1101/2021.02.16.431409doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.16.431409
http://creativecommons.org/licenses/by/4.0/


all categories for all 

traits 

Confirmed pairs in 

category 1 for RBC 

traits (+/- 1kb) 

10 7 41.18 3.80E-06 15.77 

Confirmed pairs in 

category 1 for all 

traits (+/- 1kb) 

21 9 30 3.50E-06 9.66 

Confirmed pairs in 

all categories for all 

traits (+/- 1kb) 

70 21 23.08 4.60E-10 6.76 

Confirmed pairs in 

category 1 for RBC 

traits (+/- 5kb) 

27 20 42.55 3.10E-15 16.68 

Confirmed pairs in 

category 1 for all 

traits (+/- 5kb) 

64 23 26.44 3.80E-12 8.1 

Confirmed pairs in 

all categories for all 

traits (+/- 5kb) 

160 37 18.78 3.10E-13 5.21 

Table 3. Variant-Gene pair level enrichment analysis. We performed analysis for three 434 

variant annotation pools (category 1, red blood cell (RBC) trait associated; category 1, any blood 435 

cell trait associated; any annotation priority category (1-5), any blood cell trait associated) and 436 

three CRE lengths. Fisher’s exact test was applied to test for enrichment. We found enrichment 437 
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for all three variant annotation pools. These enrichments are also robust to the extension of 438 

CREs.  439 

 440 

 441 
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