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Significance 

 Our brains draw on memories to predict the future; when our predictions are incorrect, 1 

we must modify our memories to improve future predictions. Past studies have demonstrated that 2 

the hippocampus signals prediction error, or surprise, but have not linked this neural signal to 3 

memory updating. Here, we uncover this missing connection: We show that prediction errors 4 

change the role of the hippocampus, reversing the relationship between hippocampal activation 5 

and memory outcomes. We examine the mechanisms of this shift in neural processing, showing 6 

that prediction errors disrupt the temporal continuity of hippocampal patterns. We propose that 7 

prediction errors halt internal predictions and destabilize memories, enabling updating. Our 8 

findings bear implications for improving education, understanding eyewitness memory 9 

distortion, and treating pathological memories. 10 
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Abstract 1 

The brain supports adaptive behavior by generating predictions, learning from errors, and 2 

updating memories to accommodate new information. Prediction error, or surprise, triggers 3 

learning when reality contradicts expectations. Prior studies have shown that the hippocampus 4 

signals prediction errors, but have never linked this neural signal to memory updating. Here, we 5 

uncover new mechanisms that reveal this missing link. In a human fMRI study, we elicited 6 

mnemonic prediction errors by interrupting familiar narrative videos immediately before the 7 

expected endings. We found that the same amount of hippocampal activation could exert 8 

opposing effects on memory: hippocampal activation preserved memories after expected 9 

endings, but updated memories after prediction errors. In contrast to previous studies, we showed 10 

that univariate activation was insufficient for understanding hippocampal prediction error 11 

signals. We explained this surprising finding by tracking the evolution of hippocampal activation 12 

patterns, and connectivity between the hippocampus and neuromodulatory regions. We found 13 

that hippocampal activation patterns stabilized as each narrative episode unfolded, sustaining 14 

episodic representations. Prediction errors disrupted these sustained representations, and the 15 

degree of disruption predicted memory updating. The relationship between hippocampal 16 

activation and subsequent memory depended on concurrent basal forebrain activation, providing 17 

new evidence about how cholinergic modulation may regulate attention and memory. We 18 

conclude that prediction errors create conditions that favor memory updating, prompting the 19 

hippocampus to abandon ongoing predictions and render memories malleable. 20 
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Introduction 1 

In daily life, we continuously draw on past experiences to predict the future. Expectation 2 

and surprise shape learning across many situations, such as when we encounter misinformation 3 

in the news, receive feedback on an exam, or make decisions based on past outcomes. When our 4 

predictions are incorrect, we must update our mnemonic models of the world to support adaptive 5 

behavior. Prediction error is a measure of the discrepancy between expectation and reality; this 6 

surprise signal is both evident in brain activity and related to learning success (1–6). The brain 7 

dynamically constructs memories during recall, recreating and revising past experiences based 8 

on new information (7). The intuitive idea that surprise governs learning has long shaped our 9 

understanding of memory, reward learning, perception, action, and social behavior (2, 8–14). 10 

Yet, the neural mechanisms that allow prediction error to update memories remain unknown. 11 

Past research has implicated the hippocampus in the mnemonic functions required for 12 

learning from prediction errors: retrieving memories to make predictions, identifying 13 

discrepancies between past and present, and encoding new information (2, 15–20). Functional 14 

MRI (fMRI) studies have shown that hippocampal activation increases after predictions are 15 

violated; this surprise response has been termed mismatch detection (18, 19, 21, 22), or 16 

mnemonic prediction error (20). Several theoretical frameworks have hypothesized that this 17 

hippocampal prediction error signal could update memories (17, 20, 23–26). Although past 18 

studies have shown that the hippocampus detects prediction errors, the impact of this surprise 19 

signal on memory—a crucial link for understanding how we learn from error—has been implied, 20 

but not yet demonstrated.  21 

What mechanisms could link hippocampal prediction errors to memory outcomes? A 22 

leading hypothesis is that prediction errors shift the focus of attention and adjust cognitive 23 
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processing (20, 27–31). After episodes that align with expectations, we should continue 1 

generating predictions and shift attention internally, sustaining and reinforcing existing 2 

memories. However, after prediction errors, we should reset our expectations and shift attention 3 

externally, preparing to encode new information and update memories. Consistent with this idea, 4 

mnemonic prediction errors have been shown to enhance the hippocampal input pathway that 5 

supports encoding, but suppress the output pathway that supports retrieval (20). We propose that 6 

surprising events may change hippocampal processing, allowing a memory to be updated with 7 

new information. However, the idea that prediction errors change hippocampal processing and 8 

enable memory updating has yet to be tested. 9 

A separate body of research has demonstrated how memories can be updated. Animal and 10 

human research on reconsolidation has shown that recalling a memory can temporarily 11 

destabilize the memory trace in the brain, creating a window of opportunity for memory updating 12 

(32–35). Importantly, prediction error is crucial for destabilizing and updating memories (1, 3, 13 

36). Reconsolidation paradigms have elicited prediction errors by imperfectly replicating 14 

encoding experiences (e.g., presenting a conditioned stimulus without the expected outcome) (1, 15 

3, 37, 38). Yet, the mechanisms that permit prediction errors to destabilize memories remain 16 

unknown, and past reconsolidation studies have not measured neural prediction error signals, 17 

such as hippocampal responses.  18 

Neuromodulation may be a critical factor that regulates hippocampal processing and 19 

enables memory updating. Currently, there is mixed evidence supporting two hypotheses: 20 

acetylcholine and/or dopamine could act upon the hippocampus to regulate processing after 21 

surprising events (23–26, 28, 30, 39). Several models have proposed that acetylcholine from the 22 

medial septum (within the basal forebrain) regulates the balance between input and output 23 
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pathways in the hippocampus (26–28, 40–43), thus allowing stored memories to be compared 1 

with perceptual input (30, 43, 44). After prediction errors, acetylcholine release could change 2 

hippocampal processing and enhance encoding or memory updating (25, 28, 39, 42, 44). On the 3 

other hand, dopamine released from the ventral tegmental area (VTA), if transmitted to the 4 

hippocampus, could also modulate hippocampal plasticity after prediction errors. Past studies 5 

have shown that the hippocampus and VTA are co-activated after surprising events (45, 46), and 6 

this co-activation enhances memory encoding and integration (47–50). Similarly, reconsolidation 7 

studies have suggested that both dopamine and acetylcholine may contribute to destabilizing 8 

memories, especially hippocampally-dependent memories (36, 51, 52). Overall, the basal 9 

forebrain and the VTA are both candidate mechanisms for regulating hippocampal processing 10 

after prediction errors, but no past studies have directly tested these predictions. Understanding 11 

specific neuromodulatory mechanisms is important for developing interventions, such as for 12 

counteracting pathological fear memories. 13 

In the present study, we adapted methods from reconsolidation paradigms (which are 14 

optimized to update memories) to identify the missing link between hippocampal prediction error 15 

signals and memory updating. Using an fMRI task with human participants, we examined trial-16 

wise hippocampal responses to prediction errors during narrative videos. During the Day 1 17 

encoding session, participants viewed 70 full-length videos that featured narrative events with 18 

salient endings (e.g., a baseball batter hitting a home run) (Figure 1A). During the Day 2 19 

reactivation session, participants watched the videos again (Figure 1B). We elicited mnemonic 20 

prediction errors by interrupting half of the videos immediately before the expected narrative 21 

ending (e.g., the video ends while the baseball batter is mid-swing). These surprising 22 

interruptions were comparable to the prediction errors employed in reconsolidation studies (1). 23 
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Half of the videos were presented in Full-length form (identical to the encoding session), and 1 

half were presented in Interrupted form (eliciting prediction error). Reconsolidation group 2 

participants (n = 24) completed the Day 2 session while undergoing an fMRI scan, whereas 3 

Immediate control group participants (n = 24) completed the study in a behavioral testing room 4 

and were not scanned. Our primary fMRI analyses examined the period immediately following 5 

the offset of Full and Interrupted videos (Post-Video fixation period) during the Day 2 session in 6 

the Reconsolidation group. Importantly, this design compares neural responses to surprising and 7 

expected video endings while controlling for visual and auditory input. 8 

Lastly, participants completed a memory test in the form of a structured interview (Figure 9 

1C). On each trial, participants were cued with the name of the video and recalled the narrative. 10 

The experimenter then probed for further details with pre-determined questions (e.g., “Can you 11 

describe the baseball batter’s ethnicity, age range, or clothing?”). Our critical measure of 12 

memory updating was false memories. Although it can be adaptive to update real-world 13 

memories by incorporating relevant new information, we expected that our laboratory paradigm 14 

would induce false memories because participants would integrate interfering details across 15 

similar episodes (1, 7). Because we were interested in false memories as a measure of memory 16 

updating, we instructed participants not to guess and permitted them to skip details they could 17 

not recall. In the Reconsolidation group, participants completed the memory test on Day 3, 24 18 

hours after the reactivation session. In the Immediate control group, participants completed the 19 

memory test on Day 2, immediately after the reactivation session (Figure 1D). Reconsolidation 20 

theory states that updating memories requires a delay, because re-stabilizing a memory trace 21 

involves hours of protein synthesis (35, 53). Therefore, the Immediate control group should not 22 

exhibit any memory effects that require protein synthesis-dependent reconsolidation.  23 
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Our approach in the current study diverged from past work in several important ways, 1 

allowing us to test previously unanswered questions. First, to link hippocampal prediction error 2 

signals to memory updating, we used a reconsolidation-inspired paradigm to transform 3 

naturalistic episodic memories. Second, we identified shifts in hippocampal processing by 4 

tracking how episodic representations were sustained or disrupted over time, going beyond the 5 

univariate activation measures used in previous studies. Third, we tested hypotheses about 6 

neuromodulatory mechanisms by relating activation in the basal forebrain and VTA to 7 

hippocampal processing and memory updating. 8 

Using these novel methods, we found the following: 1) Prediction errors selectively 9 

updated memories in the Reconsolidation group. 2) In contrast to past studies, we found that 10 

prediction errors reversed the effect of hippocampal activation on memory: After surprising 11 

endings, hippocampal activation was associated with memory updating, but after expected 12 

endings, hippocampal activation was associated with memory preservation. 3) Hippocampal 13 

activation patterns stabilized during and after videos, but prediction errors disrupted these 14 

sustained representations. 4) After prediction errors, disrupting hippocampal patterns led to 15 

memory updating. 5) The effect of prediction error on memory depended on co-activation of the 16 

hippocampus and basal forebrain, supporting the idea that acetylcholine regulates attention and 17 

memory. 18 
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Figure 1. Overview of experimental paradigm. A) During the Day 1 Encoding session, all videos 
were presented in Full-length form. Here we show frames from a stimulus video named 
“Baseball”, depicting a home run. B) During the Day 2 Reactivation session, participants viewed 
the videos again, but half were interrupted to elicit prediction error. Participants were cued with 
the video name, watched the video (Full or Interrupted), and then viewed a fixation screen. The 
“Baseball” video was interrupted when the batter was mid-swing. fMRI analyses focused on the 
Post-Video fixation periods after each video (highlighted box). Thus, visual and auditory 
stimulation were matched across Full and Interrupted conditions, allowing us to compare Post-
Video neural activation while controlling for perceptual input. C) During the Test session, 
participants answered structured interview questions about all 70 videos, and were instructed to 
answer based on their memory of the Full video originally shown during encoding. Here we 
show example text illustrating the memory test format and scoring of correct details and false 
memories. The void response (“I don’t remember”) is not counted as a false memory. D) 
Overview of the experiment. All participants completed Encoding, Reactivation, and Test Phases 
of the study. The Reconsolidation group did the Test Phase 24 hours after Reactivation, whereas 
the Immediate control group did the Test Phase immediately after Reactivation, in order to 
investigate whether memory modification required a delay. Only the Reconsolidation group was 
scanned. 

 

Results 1 

Behavioral Results 2 

We transcribed and scored memory tests for two key measures: number of unique correct 3 

details (Figure 2A) and false memories (Figure 2B). We also collected confidence ratings and 4 

scored the number of forgotten videos (Supplemental Material, Confidence and Forgetting) 5 

(Supplementary Figure 1). We defined false memories as distorted details that the participant 6 

recalled from the episode (e.g., “The pitcher wore a green hat”). Void responses (e.g., “I don’t 7 

remember”) were not counted as false memories, but were missed opportunities to earn points 8 

for correct details. We conducted linear mixed-effects regression to predict memory outcomes 9 

from the fixed factors group (Reconsolidation and Immediate) and reactivation type (Full and 10 

Interrupted). In all models, we included random effects to account for by-subject and by-video 11 

variability (Methods, Linear Mixed Effects Regression). 12 
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Correct Details 1 

We found that prediction errors during memory reactivation enhanced recall of correct 2 

details (Figure 2A), such that participants in both groups reported more correct details for 3 

Interrupted videos than Full videos, F(1,69) = 7.59, p = .007, 95% CI [-0.12, -0.02] 4 

(Supplementary Table 1). Even though the video endings were omitted, prediction errors 5 

strengthened and preserved existing memories. Participants in the Reconsolidation group 6 

recalled fewer correct details than participants in the Immediate group, F(1,46) = 4.69, p = .036, 7 

95% CI: [0.02, 0.31], likely because the Reconsolidation group completed the memory test after 8 

a 24-hour delay. There was no interaction between group and reactivation type, F(1,248) = 0.48, p 9 

= .488, 95% CI [-0.04, 0.02], indicating that the effect of prediction error enhancing correct 10 

details did not require a delay.  11 

False Memories 12 

We found that prediction errors selectively increased false memories after a 24-hour 13 

delay in the Reconsolidation group, replicating our past behavioral results (38) (significant 14 

interaction between reactivation type and group, F(1,1067) = 6.76, p = .009, 95% CI [0.01, 0.07], 15 

Figure 2B, Supplementary Table 1). In other words, Interrupted videos increased false memories 16 

in the Reconsolidation group (t(23) = -4.84, p < .001), but not the Immediate group (t(23) = -17 

0.88, p = .387). We also found main effects of group, F(1,46) = 105.07, p < .0001, 95% CI [-0.43, -18 

0.29], and reactivation type, F(1,341) = 10.80, p = .001, 95% CI [-0.08, -0.02], both driven by the 19 

effect of prediction error increasing false memories in the Reconsolidation group.  20 

In sum, our behavioral results showed a novel dissociation between reinforcing and 21 

updating memories: Prediction errors during memory reactivation strengthened memories 22 
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immediately, but updating memories to add new information required a delay, as predicted by 1 

reconsolidation theory. 2 

Item Analysis: Surprise Ratings and Semantic Similarity 3 

Expanding on the results reported above, we recruited an independent sample to watch 4 

the videos and rate (on a 5-point Likert scale) the degree of surprise elicited by the narrative 5 

interruptions (Methods, Online Video Ratings). We found that surprise ratings were unrelated to 6 

correct details (Supplementary Table 2), but there was a significant interaction between surprise 7 

ratings and group, such that more surprising videos were associated with more false memories 8 

selectively in the Reconsolidation group, F(1,2994) = 4.28, p = .039, 95% CI [-0.06, -0.01].  9 

Here, we use false memories as an index of memory updating; however, incorporating 

relevant new information into memory can be an adaptive function. We hypothesized that our 

paradigm would induce false memories because information would be integrated across 

semantically-related episodes. To test this hypothesis, we quantified semantic similarity among 

the 70 videos with a text-based analysis (Methods, Memory Tests) (Supplementary Figure 2). 

Videos that were more semantically similar to other videos in the stimulus set yielded more false 

memories, F(1,68) = 7.03, p = .010, 95% CI [0.03, 0.17] (Supplementary Table 3). Semantic 

similarity did not predict correct details overall, F(1,67) = 0.09, p = .769, 95% CI [-0.05, 0.04], but 

showed a significant interaction with reactivation type, F(1,68) = 8.22, p = .006, 95% CI [0.02, 

0.11]. For Full videos, semantic similarity was positively associated with correct details, 

consistent with schema-based memory benefits (54). For Interrupted videos, semantic similarity 

was negatively related to correct details, suggesting a trade-off with false memories. Overall, 

these results suggest that memories were updated with relevant new information, exactly as 

required for adaptive behavior. 
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Figure 2. Prediction errors strengthened and updated memories over distinct time-courses. A) In 
both groups, average Correct Details were higher for videos that were Interrupted during 
memory reactivation, demonstrating that prediction error can strengthen memory recall both 
immediately and after a delay. B) Only in the Reconsolidation group (24-hour delay-to-test), 
average False Memories were higher for videos that were Interrupted during memory 
reactivation. This interaction demonstrates that prediction error enabled memory updating, but 
only after a delay that permitted reconsolidation. Dots indicate average scores by-participant, and 
lines connect within-subjects measures. Error bars depict 95% confidence intervals. * p < .05, ** 
p < .01, *** p < .001. 
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Univariate fMRI Results  1 

The primary aim of our univariate fMRI analyses was to test the following questions:  2 

1. Is hippocampal activation related to reactivation type (Full vs. Interrupted) and 3 

memory updating as indexed by subsequent false memories?  4 

2. If so, does activation in the basal forebrain or the VTA moderate the relationship 5 

between hippocampal activation and memory updating? 6 

We analyzed the blood oxygen level-dependent (BOLD) signal from the 24 subjects in 7 

the Reconsolidation group (the Immediate group was not scanned). Our analyses focused on the 8 

fixation screen presented during the Post-Video period immediately after each video offset. The 9 

narrative ending of each video was either as-expected (Full) or a surprising prediction error 10 

(Interrupted). We controlled for visual and auditory input across conditions by analyzing neural 11 

activation during the Post-Video fixation period (Figure 2B). Whole-brain mass univariate 12 

results are provided in the Supplemental Material (Whole-Brain Analysis, Supplementary Table 13 

4, Supplementary Figure 3).  14 

Some past studies have shown that prediction error signals are stronger in left 15 

hippocampus and anterior hippocampus (18, 20, 21, 55), whereas posterior hippocampus is more 16 

sensitive to video offsets (56). Other studies have shown that anterior and posterior hippocampus 17 

parse continuous experience at different timescales (57, 58). On the basis of these findings, we 18 

tested separate ROIs for left, right, anterior, and posterior hippocampus (Methods, ROI Masks), 19 

but found that our effects were generally very consistent across hippocampal ROIs 20 

(Supplemental Material, ROI Differences). Main text results are averaged across bilateral 21 

hippocampus, but results from individual ROIs are depicted in Supplementary Figures 4-9. 22 
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Relating Hippocampal Activation to Memory Updating 1 

We used single-trial modelling to relate post-video hippocampal activation to subsequent 2 

false memories. For our univariate analyses, we modelled a 2s impulse during the Post-Video 3 

period (fixation screen), convolved with the canonical double-gamma hemodynamic response 4 

function and phase-shifted 2s after video offset. This 2s shift targets the peak Post-Video 5 

hippocampal response identified in previous studies (59, 60). We isolated fMRI activation during 6 

the Post-Video period on each trial and averaged parameter estimates across all hippocampal 7 

voxels (Methods, fMRI Data Analysis). Using linear mixed-effects regression, we predicted trial-8 

wise hippocampal activation from the following variables: reactivation type (Full vs. 9 

Interrupted), false memories (continuous measure), and their interaction. 10 

 We found a significant interaction between reactivation type and subsequent false 11 

memories associated with hippocampal activation, F(1,1271) = 8.54, p = .004, 95% CI [-0.13, -12 

0.03] (Figure 3A) (Supplementary Table 5A). After Full videos, greater hippocampal activation 13 

was associated with fewer subsequent false memories, consistent with the idea that the 14 

hippocampus reinforces memory for episodes that just concluded (Figure 3A, blue) (59–61). 15 

After an episode that aligns with expectations, the hippocampus should continue to generate 16 

ongoing predictions and protect a memory from distortion. However, when the ending of the 17 

video was surprising, we observed exactly the opposite effect. After Interrupted videos, greater 18 

hippocampal activation was associated with more false memories, consistent with the idea that 19 

surprising reminders destabilize memories and enable updating (Figure 3A, orange) (1).  20 

Investigating the Role of the Basal Forebrain and Ventral Tegmental Area  21 

Next, we tested hypotheses about neuromodulatory mechanisms by examining activation 22 

in the basal forebrain (which contains the medial septal nucleus, the primary source of ACh in 23 
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the hippocampus) (28, 30, 42) and the VTA (which contains dopaminergic neurons that project 1 

to the hippocampus) (16, 23). We added two parameters to the model reported above to examine 2 

average basal forebrain and VTA activation during the Post-Video period (i.e., single-trial 3 

activation estimates in the basal forebrain and VTA for the 2-second target period of the fixation, 4 

consistent with modelling of hippocampal activation), as well as interactions with hippocampal 5 

activation, reactivation type, and subsequent false memories. All model parameters are listed in 6 

Supplementary Table 5B.  7 

 We found that basal forebrain activation was significantly positively related to 8 

hippocampal activation during the Post-Video period, F(1,1380) = 9.80, p = .002, 95% CI [0.03, 9 

0.14]. There was also a significant three-way interaction among basal forebrain activation, 10 

reactivation type, and false memories predicting hippocampal activation, F(1,1392) = 7.68, p = 11 

.006, 95% CI [-0.13, -0.02] (Figure 3B). This interaction demonstrated that the relationship 12 

between hippocampal activation and subsequent memory (Figure 3A) was only evident when the 13 

basal forebrain was also activated (Figure 3B, right). When basal forebrain activation was weak, 14 

hippocampal activation was unrelated to memory (Figure 3B, left). VTA activation was also 15 

positively related to hippocampal activation during the Post-Video period (F(1,1376) = 21.74, p < 16 

.001, 95% CI [0.07, 0.18]), but there was no interaction among VTA activation, reactivation 17 

type, and false memories (F(1,1375) = 0.02, p = .876, 95% CI [-0.06, 0.05]), demonstrating that the 18 

VTA did not moderate the effect of hippocampal activation on memory.  19 
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Figure 3. Prediction error reverses the relationship between hippocampal activation and 
subsequent memory, and this effect depends on concurrent basal forebrain activation. A) After 
Full-length videos, greater hippocampal activation had a protective effect, predicting fewer false 
memories (blue). After Interrupted videos, greater hippocampal activation predicted more false 
memories (orange). B) The effect of prediction error on hippocampal activation and memory was 
only observed when basal forebrain activation was strong (right). When basal forebrain 
activation was weak, hippocampal activation was unrelated to memory (left). Basal forebrain 
activation is binned (weak vs. strong) for visualization, but statistical models used a continuous 
variable. Lines depict model-predicted estimates, and shaded bands depict the 95% confidence 
interval. Model-predicted estimates are shown instead of individual data points in order to show 
within-subjects effects, while controlling for subject and stimulus variance.  
 
 
Prediction Error Changes the Role of the Hippocampus 1 

Overall, our results suggest that prediction error altered hippocampal processing and thus 2 

determined the fate of episodic memories. Past studies only showed that hippocampal activation 3 

increased after prediction errors (18–21, 62), and did not examine the consequences for 4 

subsequent memory. Crucially, we found that the same amount of hippocampal activation could 5 
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predict opposing effects on memory depending on whether video endings aligned with 1 

expectations. We investigated the mechanisms underlying this surprising finding by examining 2 

functional connectivity with neuromodulatory regions; we found that the relationship between 3 

hippocampal activation and memory depended on concurrent basal forebrain activation, 4 

supporting the idea that acetylcholine regulates hippocampal processing.  5 

How does prediction error change hippocampal processing? We propose that during 6 

memory reactivation (i.e., video playback), the hippocampus retrieves a past memory, generates 7 

predictions, and checks for a mnemonic prediction error. If no prediction error is detected, then 8 

the hippocampus supports memory preservation, reinforcing details from within the episode and 9 

thus protecting a memory from change (i.e., preventing false memories). If a prediction error is 10 

detected, then the hippocampus supports memory updating, abandoning ongoing predictions and 11 

destabilizing a memory to incorporate new information (i.e., increasing false memories). 12 

Cholinergic modulation from the basal forebrain could regulate this shift in hippocampal 13 

processing, thus influencing memory. In the following section, we test mechanistic predictions of 14 

this account. 15 

Multivariate fMRI Results 

 On the basis of our univariate findings, we proposed that the hippocampus continually 16 

generates predictions and sustains representations during ongoing episodes (63, 64), but that 17 

prediction errors can trigger the hippocampus to abandon these sustained representations and  18 

update memories (27, 28). Therefore, we hypothesized that prediction errors would disrupt 19 

sustained representations in the hippocampus; that these effects would be specific to the 20 

hippocampus; and that disrupting hippocampal representations would lead to memory updating. 21 

Mechanistically, we predicted that activation in the basal forebrain and/or VTA would link 22 
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hippocampal representations to memory outcomes, via neuromodulation of hippocampal 1 

processing (23–28, 36, 51, 52).  2 

The goal of our multivariate analyses was to test the following questions: 3 

1. Are hippocampal representations sustained during and after narrative episodes? 4 

2. Do prediction errors disrupt sustained hippocampal representations? 5 

3. Does univariate activation in the basal forebrain or VTA link hippocampal 6 

representations to memory updating? 7 

Autocorrelation During and After Videos 8 

Past studies in rodents and humans have used autocorrelation measures, which quantify 9 

similarity across neural patterns, to investigate hippocampal representations during naturalistic 10 

tasks (57, 58). Temporal autocorrelation is an index of multivariate information that is preserved 11 

over time; this measures moment-to-moment overlap of activation patterns (57, 64, 65). 12 

Intracranial recordings in humans have shown that temporal autocorrelation in the hippocampus 13 

ramps up over the course of familiar episodes (64). Ramping autocorrelation reflects sustained 14 

neural representations, here consistent with the hippocampus generating predictions and 15 

anticipating upcoming stimuli (63, 64). To test whether hippocampal representations were 16 

sustained or disrupted over time, we calculated temporal autocorrelation by correlating the 17 

activation of all voxels within the hippocampus at timepoint T with the activation pattern at 18 

timepoint T+1 sec (Methods, Multivariate fMRI Analyses). We predicted that hippocampal 19 

representations would be sustained after Full videos (increasing autocorrelation), but disrupted 20 

after Interrupted videos. 21 

Using linear mixed effects regression, we found that hippocampal autocorrelation 22 

increased linearly as videos progressed, (F(1,7379) = 8.41, p = .004, 95% CI [0.01, 0.04], Figure 23 
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4A, Supplementary Table 6A), suggesting that episodic representations were sustained and 1 

stabilized during video playback (64). Plotting second-by-second autocorrelation values revealed 2 

that autocorrelation trajectories for Full and Interrupted videos diverged at the moment of video 3 

offset (Figure 4B): after Full videos, hippocampal representations were sustained during the 4 

Post-Video period, whereas after Interrupted videos, hippocampal representations were 5 

disrupted. To quantify this Post-Video shift in hippocampal representations, we analyzed the 6 

average change in autocorrelation from the factors segment (before or after video offset), 7 

reactivation type (Full or Interrupted), and their interaction term (Supplementary Table 6B). 8 

There was a significant interaction between segment and reactivation type predicting change in 9 

autocorrelation (F(1,2818) = 13.24, p < .001, 95% CI [0.03, 0.11]), such that autocorrelation 10 

increased more for Full than Interrupted videos during the Post-Video period (Figure 4C). In 11 

other words, prediction errors disrupted the continuity of hippocampal representations.  12 

 
Figure 4. Hippocampal representations are sustained or disrupted over time, depending on 
whether or not episodes align with expectations. A) Temporal autocorrelation in the 
hippocampus gradually increased over the course of a video, suggesting that episodic 
representations were sustained over time. Autocorrelation values were averaged over 5-second 
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bins of video playback. B) Autocorrelation trajectories for Full and Interrupted videos diverged 
during the Post-Video period. Plot visualizes second-by-second autocorrelation values in the 
hippocampus, time-locked to the moment of video offset (black dotted line). C) Average Post-
Video change in autocorrelation (average autocorrelation scores for the 5-sec bin immediately 
after video offset, minus average autocorrelation for the bin immediately before offset). 
Hippocampal representations were sustained after Full videos, but disrupted after Interrupted 
videos. Error bars depict SEM. 
 
 

Relating Autocorrelation to Subsequent Memory  1 

Next, we tested whether disruption of hippocampal representations predicted memory 2 

updating. Using linear mixed effects regression, we predicted false memories from the 3 

interaction between reactivation type and Post-Video change in autocorrelation, including 4 

univariate hippocampal activation as a continuous covariate (thus controlling for any 5 

autocorrelation effects that are a consequence of univariate activation). We found a significant 6 

interaction between reactivation type and change in autocorrelation predicting false memories, 7 

F(1,1349) = 5.84, p = .016, 95% CI [0.01, 0.11] (Figure 5A, Supplementary Table 7A). After 8 

Interrupted videos, disrupting hippocampal representations led to memory updating. Conversely, 9 

after Full videos, hippocampal autocorrelation was unrelated to memory. 10 

What determines whether hippocampal representations are sustained or disrupted? To 11 

investigate candidate neuromodulatory mechanisms, we extended the model described above 12 

(predicting false memories from reactivation type, change in autocorrelation, and univariate 13 

activation in the hippocampus) to include univariate activation in the basal forebrain and the 14 

VTA (continuous variables). The model included all relevant interaction terms, reported in full in 15 

Supplementary Table 7B. Paralleling our univariate findings, we found a significant three-way 16 

interaction among basal forebrain activation, reactivation type, and hippocampal autocorrelation 17 

that predicted subsequent false memories, F(1,1338) = 4.56, p = .033, 95% CI [0.01, 0.09] (Figure 18 
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5B). In other words, prediction errors disrupted hippocampal representations and led to memory 1 

updating, but only when the basal forebrain was also activated (Figure 5B, right). In contrast, the 2 

three-way interaction among VTA activation, reactivation type, and hippocampal autocorrelation 3 

was not significant, F(1,1352) = 0.02, p = .894, 95% CI [-0.04, 0.05]. Overall, we found that our 4 

autocorrelation results paralleled our univariate findings; basal forebrain activation was crucial 5 

for connecting hippocampal representations to memory outcomes. 6 

Lastly, to determine the anatomical specificity of our autocorrelation findings, we tested 7 

two control regions: inferior lateral occipital cortex (LOC) and white matter. We predicted that 8 

autocorrelation in LOC would be sensitive to all video offsets because of the change in visual 9 

input, but not sensitive to prediction error. In contrast, physiological noise from white matter 10 

should not be sensitive to either video offsets or prediction errors. Autocorrelation in LOC 11 

significantly increased after videos (t(23) = 9.47, p < .001, Cohen’s d = 1.37), but did not differ 12 

by reactivation type (t(23) = -0.05, p < .96, Cohen’s d = 0.01). Autocorrelation in white matter 13 

did not change post-offset (t(23) = 0.99, p = .329, Cohen’s d = 0.14) and did not differ by 14 

reactivation type (t(23) =  0.86, p = .40, Cohen’s d = 0.18). In summary, these control analyses 15 

indicated that our autocorrelation findings were not a brain-wide phenomenon; prediction error 16 

selectively disrupted sustained representations in the hippocampus. 17 
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Figure 5. Prediction errors elicited by Interrupted videos disrupt sustained hippocampal 
representations, and this disruption predicts memory updating. A) Estimated values from a linear 
regression model predicting subsequent false memories from the interaction of reactivation type 
and change in autocorrelation. After Interrupted videos, decreases in autocorrelation were related 
to increased memory updating. B) The effect of prediction error on hippocampal autocorrelation 
and subsequent memory depended on concurrent basal forebrain activation. Basal forebrain 
activation was binned (weak vs. strong) for visualization, but statistical models used a 
continuous variable. Shaded bands depict 95% confidence intervals around the regression line. In 
panels A and B, model-predicted estimates are depicted instead of individual data points in order 
to show within-subject effects, while controlling for subject and stimulus variability.  
C) Conceptual schematic depicting the effect of prediction error on hippocampal representations 
and subsequent memory. During a video, the hippocampus sustains episodic representations over 
time, consistent with generating ongoing predictions. After video offset, preservation or 
disruption of these representations indicates whether the hippocampus switches to an internal 
processing mode, whereby univariate activation preserves memories, or an external processing 
mode, whereby univariate activation updates memories. The link between prediction error and 
memory outcomes depended on co-activation of the hippocampus and basal forebrain during the 
post-video period. 
 

 

Discussion 

Here, we show that prediction errors modulate the function of the hippocampus and allow 1 

memories to be updated with relevant new information. In our fMRI paradigm, we elicited 2 

mnemonic prediction errors by interrupting familiar narrative videos immediately before the 3 

expected conclusions. Prediction errors reversed the relationship between univariate 4 

hippocampal activation and subsequent memory: After expected video endings, hippocampal 5 

activation was associated with memory preservation, but after prediction errors, hippocampal 6 

activation was associated with memory updating. Tracking the stability of hippocampal 7 

representations revealed that prediction errors disrupted activation patterns; this pattern 8 

disruption predicted memory updating. Crucially, the association between hippocampal 9 

activation (both univariate and multivariate) and memory outcomes depended on concurrent 10 

basal forebrain activation during the Post-Video period. We conclude that prediction error, 11 
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coupled with basal forebrain modulation, prompts the hippocampus to abandon ongoing 1 

predictions and prepare to update a memory with new information (Figure 5B). 2 

Prediction Errors Disrupt Hippocampal Representations and Update Memories 3 

Past studies of mnemonic prediction errors have reported an increase in univariate 4 

hippocampal activation, but have not examined whether this neural signal affects memory (17–5 

19, 62). For the first time, we show that after prediction errors, hippocampal activation leads to 6 

memory updating. Crucially, we demonstrate that univariate measures are insufficient for 7 

understanding the effect of prediction error on the hippocampus, because the same amount of 8 

hippocampal activation can exert opposing effects on memory. Prediction error reversed the 9 

relationship between hippocampal activation and subsequent memory, consistent with a shift in 10 

hippocampal processing (Figure 3). After expected endings (Full videos), hippocampal activation 11 

protected against false memories, consistent with the idea that the hippocampus reinforces 12 

memory after the conclusion of an episode (59, 60). After surprising endings (Interrupted 13 

videos), hippocampal activation predicted more false memories, consistent with the idea that 14 

prediction errors can destabilize memories and enable updating with new information (1–3).  15 

To test the idea that prediction errors influence hippocampal processing, we tracked 16 

hippocampal activation patterns to examine how episodic representations were sustained or 17 

disrupted over time. We used temporal autocorrelation (the moment-to-moment overlap of 18 

activation patterns) as a measure of continuity in hippocampal representations (57, 64, 65). As 19 

narratives progressed, autocorrelation increased, reflecting stability and continuity; this increase 20 

in autocorrelation suggested that the hippocampus generated predictions (63, 64) and sustained 21 

episodic representations over time (59, 66) (Figure 4A). Crucially, prediction errors disrupted the 22 

stability of hippocampal representations (Figure 4B, 4C), and this disruption predicted the degree 23 
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of memory updating (Figure 5A).  Overall, we propose that disruption of hippocampal patterns 1 

indicates a shift in processing: Prediction error prompts the hippocampus to abandon ongoing 2 

predictions and prepare to update a memory (Figure 5B). Our findings substantially advance past 3 

research (17, 18, 62): We link hippocampal prediction error signals to memory updating, show 4 

that prediction error reverses the relationship between hippocampal activation and memory 5 

outcomes, and uncover mechanisms of this shift in hippocampal processing. 6 

Basal Forebrain Activation Relates to Hippocampal Processing 7 

 Past studies have argued that either cholinergic (26–28, 40–42, 51) or dopaminergic (16, 8 

23, 52) modulation of the hippocampus could enhance plasticity after prediction error. However, 9 

mixed evidence supporting both hypotheses has left the question unresolved (24, 25, 30, 36, 39). 10 

Here, we investigated whether activation of the basal forebrain or the VTA could explain the 11 

relationship between hippocampal activation and subsequent memory. We found that the effect 12 

of prediction error on memory depended on co-activation of the hippocampus and basal 13 

forebrain, suggesting that cholinergic modulation is important for shifting hippocampal 14 

processing. Hippocampal activation was associated with memory updating after prediction 15 

errors, but only when the basal forebrain was also activated. Likewise, disrupting hippocampal 16 

representations led to memory updating after prediction errors, but only when the basal forebrain 17 

was also activated. Overall, our results support the idea that cholinergic modulation gates 18 

memory updating and influences hippocampal processing. 19 

Our findings also offer new insight into the functional connections between the VTA and 20 

hippocampus. Although we found a robust positive correlation between VTA and hippocampal 21 

activation during the Post-Video period, VTA activation was unrelated to prediction error and 22 

did not link hippocampal activation with memory updating. These findings are consistent with 23 
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our prior proposal that connectivity between the VTA and hippocampus reflects modulation of 1 

hippocampal learning states by sustained VTA activity (16, 69) rather than phasic VTA 2 

responses (25, 70–72). However, our paradigm was optimized for detecting memory updating 3 

instead of midbrain prediction error responses. It is also possible that prediction error signals 4 

could be transmitted to the hippocampus from the locus coeruleus (71, 72). Analyses of locus 5 

coeruleus in the current data did not reveal any relationships. Future research could disambiguate 6 

the roles of the basal forebrain, VTA, and locus coeruleus by examining both event-related and 7 

sustained connectivity with the hippocampus and their consequences for memory. 8 

Prediction Error Both Strengthens and Updates Memories 9 

Our behavioral results demonstrated a novel dissociation: prediction error both 10 

strengthened and updated memories, but over distinct timecourses (Figure 2). Prediction error 11 

increased the number of correct details recalled, both immediately and after a one-day delay. In 12 

contrast, prediction error increased false memories only after a delay, supporting that idea that 13 

reconsolidation enables memory updating (1, 53, 73). The finding that prediction error also 14 

increased correct details demonstrated that the false memories arose from an adaptive updating 15 

mechanism, not forgetting.  16 

In the present study, we used false memories as an index of memory updating; in the real 17 

world, it is adaptive to update memories with relevant new information. In our paradigm, 18 

interference from other stimulus videos likely produced false memories because information was 19 

integrated across videos. Previously, we found that prediction errors selectively updated 20 

memories with semantically-related information from interference videos (38). Here, we showed 21 

that videos that shared greater semantic similarity with the rest of the stimulus set produced more 22 

false memories (Supplementary Table 3). Memories could be updated with semantically-related 23 
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details that arise from reactivation of related memories, or visual input from subsequent videos 1 

during the task. This finding accords with reconsolidation research (1, 53, 74) and computational 2 

models of event segmentation (75, 76), which have both shown that interference among related 3 

episodes can produce false memories after prediction error. However, memory updating is 4 

beneficial in other situations that require integrating old and new knowledge, or correcting 5 

erroneous information. 6 

Limitations and Future Directions 7 

Our experimental design was inspired by reconsolidation theory, but evidence for cellular 8 

reconsolidation processes in humans is lacking. Numerous behavioral studies have used 9 

reconsolidation-like paradigms to demonstrate memory malleability (4, 38, 53, 74), but it 10 

remains unknown whether the synaptic mechanisms of reconsolidation are consistent across 11 

animals and humans (1). We found that the effect of prediction error on memory updating 12 

required a delay, consistent with reconsolidation processes that rely on protein synthesis. 13 

Overall, our findings are broadly relevant to research on prediction error and memory even 14 

though the synaptic mechanisms remain unknown; reconsolidation theory offers one plausible 15 

framework for our results. Another limitation is that the present data lacked the spatial resolution 16 

required to segment hippocampal subfields, because we prioritized temporal resolution over 17 

spatial resolution in order to track rapid changes in hippocampal representations during and after 18 

naturalistic episodes. 19 

We elicited prediction errors by interrupting videos before their expected narrative 20 

endings, comparable to the incomplete reminders (e.g., a conditioned stimulus without the 21 

expected outcome) that have been previously used in animal and human reconsolidation studies 22 

(1, 3, 74). However, it remains unknown whether a reminder must be incomplete in order to 23 
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initiate reconsolidation, or whether other surprising or novel stimuli (e.g., sounds, alternate 1 

endings) may also induce memory malleability. Incomplete reminders may be particularly 2 

effective because memory reactivation supports plasticity (77–79). Future studies could 3 

investigate memory reactivation by testing encoding-retrieval pattern similarity. 4 

Conclusion 5 

 The brain continually generates predictions based on past experiences. When 6 

expectations do not align with reality, memories should be updated with relevant new 7 

information. We propose that prediction errors prompt the hippocampus to abandon ongoing 8 

predictions and update memories with relevant new information. In this way, surprise modulates 9 

hippocampal processing and determines the fate of episodic memories. This theoretical 10 

framework of memory updating bears implications for eyewitness testimony, education, and 11 

conditions like Post-Traumatic Stress Disorder. Beyond memory research, our results offer new 12 

insights for theories on the whole-brain predictive processes that govern attention, perception, 13 

action, and decision-making.  14 
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Methods 1 

Data, Code, and Materials 2 

 Brief descriptions of the stimulus videos are provided in Supplementary Table 8. The full 3 

set of stimulus videos, along with derivative data and code necessary to reproduce results, are 4 

provided online in the project repository hosted by the Open Science Framework 5 

(https://osf.io/xb7sq/). 6 

Participants 7 

We recruited 55 participants from the University of Toronto community to participate in 8 

the study for monetary compensation (Reconsolidation group: $70, Immediate control group: 9 

$40). Of these participants, 7 were excluded (reasons stated below), leaving a final sample of 48 10 

participants. The sample size was determined a priori to satisfy the following conditions: (a) 11 

achieve at least 90% power to detect the interaction effect previously found with a variant of this 12 

paradigm (ηp
2 = 0.17) (80), (b) reproduce the sample size previously used with a variant of this 13 

paradigm (38), and (c) evenly allocate participants to 6 pseudorandomized trial order lists. 14 

Inclusion criteria were as follows: between the ages of 18-30, normal or corrected-to-normal 15 

vision and hearing, no history of neurological or psychiatric disorders, and fluency in English.  16 

All participants provided informed consent prior to beginning the study. The study was approved 17 

by the University of Toronto Institutional Review Board, Protocol #00035787. 18 

Participants were healthy young adults (age: M = 22.42, SD = 2.41, range [18, 30]; 19 

gender: 75% female, 25% male) with fluency in English, normal or corrected-to-normal vision 20 

and hearing, and no history of neurological or psychiatric disorders. fMRI participants were all 21 

right-handed. In consideration of the effects of sleep on consolidation, we also asked participants 22 

to report approximate hours of sleep over the course of the study. Participants slept an average of 23 
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7.28 hours (SD = 1.31) between the Day 1 and Day 2 sessions, and Reconsolidation group 1 

participants slept an average of 7.02 hours (SD = 1) between the Day 2 and Day 3 sessions. 2 

Stimuli 3 

Stimulus videos were sourced from movies, TV, and YouTube clips. We chose 70 videos 4 

that featured distinct narrative events (duration M = 30 sec, SD = 7 sec). Semantic similarity 5 

varied across videos (e.g., several videos featured sporting events), but there were no 6 

overlapping sources, settings, or characters. The stimulus set included 18 videos that were 7 

previously used in a behavioral version of the paradigm. During pilot testing, we ensured that the 8 

videos would be infrequently recognized by our participants. The 70 videos used in the 9 

experiment are described in Supplementary Table 8 and publicly available on the Open Science 10 

Framework (https://osf.io/xb7sq/). The Interrupted version of each video ended abruptly at the 11 

narrative climax, omitting the salient ending and violating expectations (duration M = 25 sec, SD 12 

= 4 sec).  13 

For the fMRI version of the task (Reconsolidation group), stimuli were presented with 14 

EyeLink Experiment Builder (SR-Research) on a BOLDscreen display monitor (32”, 15 

1920x1090, 100Hz refresh rate), viewed through a mirror attached to the head coil. Auditory 16 

stimulation was presented with in-ear MRI-compatible headphones (Sensimetrics, model S14). 17 

During the initial scout scan, we performed a sound test by playing the soundtrack of a movie 18 

trailer (not included in the stimulus videos) and adjusting the volume. For the behavioral version 19 

of the task (Immediate control group), videos were presented on a desktop computer and audio 20 

was presented with over-ear headphones. 21 

Procedure 22 
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During the Encoding session, participants viewed all 70 videos in full-length form 1 

(randomized order). Each video was presented twice in a row to ensure that participants had 2 

strong expectations about the narrative outcomes for each video, a prerequisite for eliciting 3 

prediction error later.  4 

During the Reactivation session, participants viewed each video again a single time. 5 

Half of the videos were Full and half of the videos were Interrupted. Videos were played in a 6 

pseudorandom order such that there were never more than two consecutive Interrupted videos. 7 

This pseudorandom presentation prevented participants from anticipating which videos would be 8 

interrupted. Participants were counterbalanced and sequentially assigned to one of six 9 

pseudorandom trial orders. We also performed eye-tracking during the Encoding and 10 

Reactivation sessions for participants in both the Reconsolidation and Immediate groups 11 

(EyeLink v.1000+, SR-Research). Eye-tracking was used to monitor alertness during the task, 12 

but these data are not discussed further.  13 

Lastly, the Test session involved a structured interview-style recall test about details 14 

from each of the videos. Participants were cued with the name of each video and prompted to 15 

recall the narrative. The experimenter then probed the participant for more information with a 16 

pre-determined list of open-ended questions (e.g., “Can you describe the setting or context of the 17 

video?”, “Can you describe what the character looked like? Do you remember gender, age range, 18 

hair color, or clothing?”). Participants were instructed to answer based on their memory of the 19 

full-length videos that had been originally presented during encoding. Because we were 20 

interested in false memories as a measure of memory modification, we instructed participants not 21 

to guess and permitted them to skip details they could not recall. 22 
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Overall, the experiment took place over three days for participants in the Reconsolidation 1 

group (24-hour delays between Encoding, Reactivation, and Test), or over two days for 2 

participants in the Immediate control group (24-hour delay between Encoding and Reactivation, 3 

no delay between Reactivation and Test). Only the Reconsolidation group underwent 4 

neuroimaging. 5 

Consistent with past reconsolidation studies (81–83), we maintained consistent contextual 6 

factors between Encoding, Reactivation, and Test sessions. Reconsolidation group participants 7 

completed the encoding session in a mock scanner (shell of a retired 1.5T Siemens Avanto 8 

scanner), while recorded MRI sounds were played in the background. Reconsolidation group 9 

participants completed the Reactivation session in the real fMRI scanner and the Test session at a 10 

desk in the mock scanner room. Participants in the Immediate control group completed all three 11 

sessions in the same behavioral testing room. In both groups, participants completed all three 12 

sessions with the same experimenter. 13 

fMRI Scanning 14 

Scanning was performed with a 3T Siemens Prisma MRI scanner located at the Toronto 15 

Neuroimaging Center, University of Toronto. High-resolution functional images were collected 16 

with a T2*-weighted multiband-accelerated echo-planar imaging (EPI) pulse sequence, and a 32-17 

channel head coil. Foam padding was used to minimize head motion. We acquired whole-brain 18 

BOLD activation estimates with a spatial resolution of 2.7mm isotropic voxels (TR: 1000 ms, 19 

TE: 29 ms, flip angle: 50°, 60 slices at transversal orientation, phase encoding: A>P, FoV: 20 

210mm, Partial Fourier: 0.875, multiband factor: 4). High resolution T1-weighted anatomical 21 

images were acquired with a magnetization-prepared rapid-acquisition gradient-echo (MP-22 
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RAGE) pulse sequence (voxel size: 1mm isotropic, TE: 24 ms, TR: 2000 ms, TI: 1100 ms, flip 1 

angle: 9°) to allow 3D reconstruction and volume-based statistical analysis. 2 

Scoring of Memory Tests 3 

We transcribed memory tests with Temi, an automated voice-to-text tool, then manually 4 

edited transcripts to verify accuracy (https://www.temi.com/). We coded videos as “forgotten” if 5 

the participant entirely failed to retrieve a memory when cued with the name of the video and a 6 

hint from a pre-determined list (brief descriptions of each video, provided in Supplementary 7 

Table 8). Scoring of details was conducted with NVivo 12, a program for qualitative analysis of 8 

transcripts. Research assistants manually labelled each detail as correct or false. Scorers were 9 

blinded to subject identity and reactivation type (Full vs. Interrupted) while scoring the memory 10 

tests. The number of false memories per-trial ranged from 0-6, but there were very few trials 11 

with 5 or 6 false memories. To account for these high outliers, we winsorized the false memories 12 

variable to the 95th percentile (4 false memories). Winsorizing improved model fits but did not 13 

affect the statistical significance of our results. 14 

Lastly, we quantified semantic similarity among the videos by using the Cluster Analysis 15 

function in NVivo. Across all transcripts, we pooled the phrases used to describe each video, 16 

excluding false memories and irrelevant words (e.g., the, um, and, maybe, confidence, 17 

remember).  We then calculated pairwise Pearson correlations on the basis of the most frequent 18 

100 words used to describe each video. For each video, we calculated an overall semantic 19 

similarity score by averaging the correlation values; this metric summarizes how much the 20 

content of a given video relates to the rest of the stimulus set. A heatmap displaying all pairwise 21 

correlation values is provided in Supplementary Figure 2. 22 

Online Ratings of Stimulus Videos 23 
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We recruited 3,913 participants online using Amazon’s Mechanical Turk. Participants 1 

were paid $0.50 to complete a Qualtrics survey that took approximately 3 minutes. Each 2 

participant was randomly assigned to view one stimulus video, first as the Full version and then 3 

as the Interrupted version. We included timing constraints to ensure that participants could not 4 

progress to the next page of the survey before the video had finished playing. Participants were 5 

excluded for the following reasons: (1) they failed the attention check question (“If you are 6 

paying attention, choose 4 below.”), (2) they failed the comprehension check question (“In 7 

general, not just in the video, is the emotion ‘happiness’ positive or negative?”), (3) they reported 8 

that they had experienced playback issues, or (4) they reported that they had seen the video clip 9 

prior to the survey. After exclusions, our sample size was 1,907 (20-41 raters per video). On 5-10 

point Likert scales, participants rated how surprising each video felt when the ending was 11 

interrupted, as well as video memorability and emotional valence/intensity (Supplementary 12 

Tables 9-11).   13 

Exclusions 14 

In the Immediate Control group, two participants were excluded due to technical issues. 15 

In the Reconsolidation group, three participants were excluded due to a counterbalancing error 16 

and audio playback problems, and two participants were excluded because they had previously 17 

completed a pilot version of the study. Additionally, one full run of fMRI data (14 trials) was 18 

excluded for one participant due to audio playback failure and excessive motion. On a trial-by-19 

trial basis, videos were excluded if technical issues arose (e.g., audio issues) (10 trials), the 20 

participant was falling asleep (as determined by eyetracking) (20 trials), or the participant 21 

reported having seen the video prior to the experiment (103 trials). In total, there were 147 trials 22 

that were excluded for the above reasons (out of all 48 participants in both the Reconsolidation 23 
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and Immediate groups). The total number of excluded trials for Full and Interrupted videos was 1 

approximately equal (Full: 70; Interrupted: 77). Additionally, subsequently forgotten videos were 2 

excluded from single-trial brain-to-behavior analyses (63 trials across the 24 participants in the 3 

Reconsolidation group). Overall, only 4.4% of all trials were excluded. 4 

Linear Mixed-Effects Regression 5 

All linear mixed-effects regression models reported in the main text included random 6 

intercepts for subject (identity of each participant) and video (identity of each stimulus item), 7 

along with random slopes for reactivation type. In accordance with current best practices (84), 8 

the random effects structure was determined by the maximal amount of complexity that was 9 

supported by the data (allowing model convergence and optimizing model fits as determined by 10 

the Akaike Information Criterion). All models converged successfully; we used the BOBYQA 11 

controller with 10,000 maximum iterations. We used restricted maximum likelihood estimation 12 

and assessed significance of predictors with a Type III ANOVA and Satterthwaite 13 

approximations of degrees of freedom. In R (v3.6), we constructed models with the lme4 14 

package (85) and evaluated significance with the lmerTest package (86). Variables for 15 

reactivation type and group were treated as factors, and all continuous variables were 16 

standardized/mean-centered. These model parameters applied to analysis of behavioral data, 17 

single-trial univariate neural activation, and temporal autocorrelation. Parameter estimates from 18 

all models are reported in the Supplementary Tables. Plots were generated with the packages 19 

ggplot2 and sjPlot (87, 88). 20 

fMRI Preprocessing 21 

All data were preprocessed and analyzed using FSL v6.0, in conjunction with in-house R 22 

code (v3.6). Initial volumes were discarded by the scanner to allow for signal saturation. 23 
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Preprocessing steps included fieldmap distortion correction, spatial realignment, removal of 1 

head-motion artifacts (six regressors), nuisance regression of average white matter and CSF 2 

timeseries, slice-timing correction for an interleaved multiband acquisition, and high-pass 3 

frequency filtering (120s). For native-space ROI analyses (single-trial univariate and 4 

autocorrelation analyses), data were minimally smoothed with a 2-mm kernel to preserve spatial 5 

specificity and multivariate information.  6 

Region of Interest Masks 7 

We used FreeSurfer (v6.0) to automatically create binarized hippocampal masks in each 8 

subject’s native space. After FreeSurfer segmentation, hippocampal masks were manually 9 

inspected and segmented into ROIs for left anterior, left posterior, right anterior, and right 10 

posterior hippocampus. Anterior and posterior regions were split along the long-axis at the uncal 11 

apex. We found that our effects were very consistent among the four hippocampal ROIs 12 

(Supplemental Material, ROI Differences). Therefore, results reported in the main text (single-13 

trial univariate and autocorrelation analyses) are averaged across the entire hippocampus 14 

bilaterally. White matter masks were obtained with FSL segmentation utilities. Inferior Lateral 15 

Occipital Cortex (LOC) masks were taken from the Harvard-Oxford Cortical Atlas. VTA masks 16 

were taken from a probabilistic midbrain atlas developed by the Adcock lab (89). Basal forebrain 17 

masks were taken from the probabilistic cytoarchitectonic Julich-Brain atlas. We used ROIs for 18 

bilateral cholinergic nuclei Ch123, including the medial septal nucleus. This region (in contrast 19 

to Ch4) exhibits resting-state functional connectivity with the hippocampus (90). We 20 

investigated temporal signal-to-noise in the basal forebrain to ensure that results were not driven 21 

by noise (Supplemental Material, Basal Forebrain SNR). All standard space masks were 22 
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transformed into native space for each functional run, using the inverse deformation field from 1 

preprocessing and registration. 2 

Univariate fMRI Analyses 3 

Whole-brain mass univariate results are reported in the Supplemental Material (Whole-4 

Brain Analysis, Supplementary Figure 3, Supplementary Table 4). The primary findings reported 5 

in the main text reflect a single-trial modelling approach that estimated hippocampal responses to 6 

each video during the task. In order to isolate responses on each trial, we employed the Least 7 

Squares-Single approach and constructed a separate GLM for each trial (91, 92). We modelled 8 

each trial as a 2s impulse in the post-video period, convolved with the canonical double-gamma 9 

hemodynamic response function and phase-shifted 2s after video offset. This 2s shift targets the 10 

peak hippocampal response previously identified in studies of post-video processing (59, 60). 11 

Within each GLM, the target trial (2s event) was isolated as one regressor, and all other events 12 

were modelled with a separate regressor for each type of event (e.g., video playback, video name 13 

cues, other fixation periods). This approach yielded whole-brain parameter estimates for each 14 

trial, in native space. For each trial, we masked the processed data and averaged across voxels 15 

within each ROI. Average activation values within each ROI were then submitted to linear 16 

mixed-effects regression, thus linking trial-wise ROI activation to reactivation type and 17 

subsequent memory.  18 

Multivariate fMRI Analyses 19 

Multivariate temporal autocorrelation analyses (57, 64) were conducted on the same 20 

preprocessed data described above. We extracted the whole-run timeseries from every voxel 21 

within each ROI using the fslmeants utility. For control analyses (white matter and LOC ROIs), 22 

autocorrelation was calculated on 200 contiguous voxels, approximately matching the size of the 23 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 23, 2021. ; https://doi.org/10.1101/2020.09.29.319418doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.29.319418
http://creativecommons.org/licenses/by-nc-nd/4.0/


PREDICTION ERRORS DISRUPT HIPPOCAMPAL REPRESENTATIONS 40 
 

40 
 

hippocampal ROIs. Comparable to past research, we phase-shifted the timeseries by 4 seconds in 1 

order to account for HRF lag (93). Temporal autocorrelation was defined as the Pearson product-2 

moment correlation between all voxel activation values at timepoint T and timepoint T+1s. This 3 

method yielded an autocorrelation value for every second of each functional run, excluding the 4 

final TR. Autocorrelation values were standardized (Fisher’s z) prior to statistical analysis. 5 

Next, we aligned multivariate timeseries data with event onset and duration markers. 6 

After alignment, we calculated average autocorrelation values that were time-locked to events. 7 

For statistical analyses, autocorrelation values were averaged across 5-second bins during and 8 

after each video. To analyze signal history over the course of video playback, we related the 9 

video segment number (5s bins) to average autocorrelation values. For each video, we included 10 

the first five seconds (timepoints 0-4), the next four middle segments (timepoints 5-9, 10-14, 15-11 

19, and 20-24), and the last five seconds (variable depending on the length of the video). This 12 

binning scheme spans the average video length of 30 seconds; additional middle segments from 13 

videos that were longer than 30 seconds were omitted. Lastly, to compare post-offset changes in 14 

autocorrelation, we calculated difference scores between the 5-second bins immediately before 15 

and after video offset. Autocorrelation values and difference scores for each trial were then 16 

submitted to linear mixed effects regression.  17 
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