












 

 

 331 
Figure S4. Gene tree for COG “OG0000461,” which includes activin and bmp4 genes. Genes considered 332 
differentially expressed are labeled red. Trees for the other COGs from Figure 5 are provided in Additional File 1, 333 
part 7. 334 
 335 
DISCUSSION 336 
In this study, we have found little evidence for a shared “core” network of orthologous genes 337 
across six RNA-Seq studies of animal regeneration. There are several ways to interpret our 338 
results. One possibility is that a shared genetic network underlies animal regeneration, but we 339 
failed to recover it because of the limitations of RNA-Seq. There are several arguments 340 
suggesting that this is unlikely. First, while it is true that the six datasets included in this study 341 
had markedly different sampling regimes (Figure 1), all of them capture the important early 342 
stages of regeneration (wound healing, blastema formation, and cell proliferation).  Second, 343 
removing any single taxon had minimal impact on our results. Finally, the fact that phylogenetic 344 
relatedness is more predictive of gene content than the RNA sampling regime (Figure 2) or the 345 
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type of regeneration that is occurring, suggests that sampling variation cannot explain the 346 
differences in gene expression. So although we cannot reject the hypothesis that deeper sampling 347 
could increase the number of shared genes, we feel confident that our results reflect a lack of a 348 
shared group of core “regeneration genes”. 349 
 350 
A second interpretation of our results is that the shared genes we did discover play currently 351 
under-appreciated roles in driving regeneration. The 160 deCOGs recovered across all six taxa 352 
are enriched in cellular processes such as adhesion and actin cytoskeleton regulation, rather than 353 
regulatory signaling pathways or transcription factors driving morphogenesis (Table 1). Cellular 354 
and tissue dynamics could be critically important to initiating and maintaining regeneration. For 355 
instance, the role of musculature in driving regeneration—perhaps by providing axial 356 
specification to blastema stem cells—is supported by several studies. For example, actin-driven 357 
mechanical forces are required for the regeneration of mammalian skin (32). A focus on these 358 
genes in regeneration models might reveal conserved mechanisms driven by cell dynamics.  359 
 360 
A third possibility is that regeneration is not a conserved process across animals at the 361 
transcriptional level. The regulatory mechanisms driving regeneration in vertebrates may not be 362 
the same as those in planarians, which in turn may be unique from those in sea anemones and 363 
other early-branching animal lineages. The conservation of cellular processes in our “core” gene 364 
list could simply be a byproduct of basic cellular necessities; for instance, actin movement being 365 
necessary for wound closure. Similarly, the presence of many Wnt signaling genes across our 366 
datasets (and across studies of regeneration more broadly) could simply reflect the fact that there 367 
are a limited number of cell signaling pathways that animals use to pattern tissues. The lack of 368 
conservation in Wnt paralog usage or downstream pathway targets supports this hypothesis. It is 369 
worth reiterating that our analysis was designed to err on the side of being overly inclusive; we 370 
treated all genes as “differentially expressed” regardless of when they were expressed, or 371 
whether the genes were up- or down-regulated. This further challenges the limited examples of 372 
conservation we recovered. As an example, one of the major conclusions from the original 373 
zebrafish RNA-seq study was that Wnt signaling is upregulated hours after the onset of stem cell 374 
proliferation, which is in contrast to expectations based off of other model systems where it is 375 
typically downregulated (21). Given our forgiving analysis design, combined with the fact that 376 
each dataset includes hundreds to thousands of differentially expressed genes, we find it 377 
remarkable that so few deCOGs were recovered, and moreover that these gene sets are 378 
predominantly cytoskeletal and structural, rather than those genes classically involved in 379 
patterning and morphogenesis. 380 
 381 
We therefore believe that our results add to a growing body of literature suggesting that the 382 
transcriptional components of regeneration are dissimilar across major animal clades. We note 383 
that the non-homology of animal regeneration at the transcriptional level does not negate the 384 
value of comparative studies across diverse taxa. Perhaps animal regeneration is homologous at 385 
another level of biological hierarchy (e.g. cell type regulation, tissue coordination), and the 386 
molecular logic coordinating this process evolved in an ad hoc manner across tissues and 387 
organisms. In this scenario, how conserved processes could be regulated by different molecular 388 
machinery would be the great challenge going forward. Alternatively, our results could signify 389 
true evolutionary convergence, in which case dozens—perhaps hundreds—of animal lineages 390 
have independently evolved solutions to bodily damage with varying degrees of success. Such a 391 
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scenario puts a greater emphasis on natural selection driving regenerative capabilities, as 392 
opposed to such abilities being lost to genetic drift or countervailing selective forces. Given the 393 
apparent advantages of regeneration, how and why natural selection drives this trait in specific 394 
lineages is an interesting problem to study. Future studies across diverse animals will help to 395 
shed light on this question, and distinguish between the competing paradigms explaining the 396 
molecular and cellular mechanisms underlying regeneration. 397 
 398 
MATERIALS AND METHODS 399 
Data accessibility: The core code used to collect and analyze the RNA-Seq datasets is available 400 
through GitHub at https://github.com/nsierra1/RNAseq_pValueAggregation. Additional Files 401 
necessary for downstream analyses are avaialbe through Harvard Dataverse at 402 
https://doi.org/10.7910/DVN/LZK9DR. 403 
 404 
Transcriptome Collection. For the axolotl (Ambystoma mexicanum), a transcriptome was 405 
downloaded from the Broad Institute’s Axolotl Transcriptome Project 406 
(https://portals.broadinstitute.org/axolotlomics/; File: 407 
“Axolotl.Trinity.CellReports2017.fasta.gz”). For the planarian (Schmidtea mediterranea), a 408 
transcriptome was obtained from SmedGD (http://smedgd.stowers.org/; File: “SmedSxl Genome 409 
Annotations version 4.0 Predicted Nucleotide FASTA”). For the sea anemone (Nematostella 410 
vectensis) a transcriptome was downloaded from NCBI (BioProjects: PRJNA19965, 411 
PRJNA12581; File: “GCF_000209225.1_ASM20922v1_rna.fna”). For the sea cucumber 412 
(Apostichopus japonicus), reference isotigs were downloaded from the relevant paper (20) 413 
(NCBI accession: GSE44995; File: “GSE44995_Reference_assembled_isotig_seq.fna.gz”). For 414 
the sea sponge (Halisarca caerulea) the transcriptome was downloaded from the Figshare link 415 
provided in the original paper (File: “Halisarca_REF_trinity.fasta.zip”) (17). For the zebrafish 416 
(Danio rerio), all predicted cDNAs were downloaded from ENSEMBL release-89 (file: 417 
“GRCz10.cdna.all.fa”). The genes from these transcriptomes were converted into proteins using 418 
Transdecoder v5.0.2 (33), and are provided in Additional File 2. 419 
 420 
Read Collection and Mapping. RNA-Seq reads were downloaded from the NCBI Sequence 421 
Read Archive (SRA) using the “fastq-dump” program in the SRA Toolkit 422 
(https://www.ncbi.nlm.nih.gov/sra). Table S3 provides a list of SRA IDs. The RNA-Seq reads 423 
were aligned to the relevant transcriptomes using HISAT-2 (34) and transcript abundances were 424 
quantified using RSEM v1.3.0 (35). The resulting RSEM quantifications are provided in Table 425 
S3, and the commands used to execute RSEM are reproduced in Additional File 1, part 0.1. 426 
 427 
Ortholog identification. The proteins determined by the transcripts from the six analyzed 428 
datasets were grouped into orthologous “gene sets” using the clustering algorithm OrthoFinder 429 
(23). The results of orthofinder analysis are provided in Table S1. All orthogroups are provided 430 
in Additional File 1, part 1. The resulting raw count matrices from RSEM were analyzed using 431 
EdgeR (36). We chose EdgeR because of its ability to accept a user-defined squareroot-432 
dispersion value for studies that lack biological replication. The axolotl, cucumber, and sponge 433 
datasets lack biological replicates, making it impossible to estimate gene variance within 434 
samples. To deal with this shortcoming, we used EdgeR to see how various values for the 435 
biological coefficient of variation (BCV) impacted the number of differentially expressed genes. 436 
According to the EdgeR manual, typical values for BCV range from 0.4 for human data to 0.1 437 
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for genetically identical model organisms. We therefore tested a variety of BCV values within 438 
this space; the results are shown in Figure S5. Multidimensional scaling plots of BCV distances 439 
for samples with biological replicates are shown in Figure S6. We chose the lowest value for the 440 
squareroot-dispersion (0.1), in part because this allowed for the largest number of differentially 441 
expressed genes, and also because the spread of differentially expressed genes at various fold-442 
change cutoffs behaved most similarly to datasets with biological replicates at this value (Figure 443 
S5). EdgeR was used to perform comparisons between adjacent time points. If a “wild-type” 444 
sample was included in the study, it was treated as equivalent to “time 0.” An example of the R 445 
code used to execute EdgeR is reproduced in the Additional File 1, parts 0.2-0.3. The resulting 446 
p-values and log count-per-million values were used for downstream aggregation of p-values and 447 
are also provided as Additional File 3. 448 
 449 

 450 
Figure S5. Impact of BCV values (denoted as “d”) on the number of differentially expressed genes in datasets 451 
lacking biological replication. The 2-fold change is noted with a grey bar; this is the standard logfold change cutoff 452 
for defining differentially expressed genes in RNA-Seq studies. 453 
 454 
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 455 
 456 
Figure S6. Multidimensional scaling plots of BCV distances between gene expression profiles for datasets 457 
containing biological replicates. 458 
 459 
p-value Aggregation. Aggregation of the p-values produced by EdgeR was based on methods 460 
described in Yi et al. (16). The method treated each p-value generated from adjacent time points 461 
for a given gene as an independent significance test of the null hypothesis that the broader COG 462 
was not differentially expressed. A resulting test of the uniformity for the set of p-values determines 463 
whether there is evidence that the COGs were not all unperturbed. Mathematically, the appropriate 464 
test statistic for uniformity can be computed from the sum of inverse cumulative distribution 465 
function with p-values and raw read counts as inputs. The result of this process is a table with 466 
entries corresponding to taxon-ortholog group pairs, and an associated aggregated p-value. 467 
 468 
False Discovery Rate Correction. Because each taxon has hundreds to thousands of distinct 469 
COGs, individual significance testing will result in many false positives. To ameliorate this, we 470 
perform the Benjamini-Hochberg procedure to adjust p-values for false discovery rate. The p-471 
values were adjusted based on the total number of COGs such that no more than a constant fraction 472 
were likely to be false discoveries. These adjusted p-values were used for significance testing, and 473 
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result in a list of ortholog groups corresponding to genes that likely to be differentially expressed 474 
during regeneration. 475 
 476 
Intersection Analysis. The final step was to derive a list of deCOGs shared across datasets. We 477 
originally attempted to do this by significance testing but found that numerical issues stemming 478 
from small p-values biased our tests such that a single p-value very close to 0 would yield a positive 479 
result, even if only one taxon showed strong results for that ortholog group. To avoid this problem, 480 
we used instead intersection analysis, looking at the presence/absence of deCOGs across datasets.  481 
This intersection method is less statistically rigorous but has the advantage of being robust to bias 482 
from small p-values.   483 
 484 
Correlation Plots and Venn Diagram. Overlap of COGs across taxa was visualized using 485 
correlation matrices and an Edwards Venn Diagram. A binary presence/absence table for each 486 
COG was modified from the output of OrthoFinder (provided in Additional File 1, part 2.1). A 487 
second table focused on presence/absence of deCOGs (Additional File 1, part 2.2). These tables 488 
were used to generate the correlation plots in Figure 2 with the corrplot R library. Commands for 489 
generating the plots are provided in Additional File 1, part 2.3. The table of deCOGs was used to 490 
create an Edwards Venn Diagram using InteractiVenn34.  491 
 492 
Phylogenetic Assignment of Gene Families. Ideally, the evolutionary origin of each deCOG 493 
would be determined using a phylogenetically-informed clustering analysis such as OrthoFinder. 494 
Unfortunately taking such an approach at a eukaryote-wide scale is, for the time being, 495 
computationally prohibitive. Instead, we performed a series of BLAST queries and used 496 
sequence similarity of protein sequences to assign a phyletic origin for each COG. 497 
 498 
Firstly, Uniprot Swissprot datasets were downloaded from www.Uniprot.com using the 499 
following queries: 500 
 501 
1) Eukaryote (non-animal) dataset: “NOT taxonomy:"Metazoa [33208]" AND reviewed:yes” 502 
2) Early animal dataset: “taxonomy:"Metazoa [33208]" NOT taxonomy:"Bilateria [33213]" 503 
AND reviewed:yes” 504 
3) Bilaterian invertebrate dataset: “taxonomy:"Bilateria [33213]" NOT 505 
taxonomy:"Vertebrata [7742]" AND reviewed:yes” 506 
 507 
Each of these datasets was turned into a BLAST database using the makeblastdb command. Our 508 
query COGs were the 2,770 deCOGs present in both the zebrafish and axolotl (see Figure 3 of the 509 
main text), which also encompassed all deCOGs at broader evolutionary scales (i.e. the deCOGs 510 
shared by all vertebrates necessarily includes all deCOGs shared by deuterostomes, and so on). 511 
All protein sequences from these 2,770 deCOGs were collected and formatted into a query fasta 512 
file. 513 
 514 
With the production of our query and database files, we proceeded with an iterative process of 515 
BLAST analyses. All proteins from the 2,770 deCOGs were queried against the “Eukaryote” 516 
database using BLASTp (command: blastp -query Query_Proteins.fasta -db Eukaryote_Dataset -517 
outfmt 6 -evalue 10e-5 -max_target_seqs 1 -num_threads 4 -out Results.txt). If one or more queries 518 
had a hit, the entire deCOG was considered a “eukaryote novelty”. Proteins in the deCOGs that 519 
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did not match anything in the “Eukaryote” database were used as the query sequences for the next 520 
BLASTp analysis against the “Early animal” database. Since sponges and other early-branching 521 
animals are poorly represented in Uniprot, any deCOG that had no match in the “Eukaryote” 522 
database and included at least one sponge protein was automatically designated as an “animal 523 
novelty,” regardless of whether or not it had a BLAST hit in the “Early animal” database. This 524 
process was repeated until all deCOGs were assigned a phyletic origin. A summary of these results 525 
is provided in Additional File 1, part 6. 526 
 527 
Enrichment analysis of deCOGs. Our comparison between all six taxa resulted in 160 deCOGs. 528 
We also examined the impact of individual taxa on the deCOG list by re-running the analysis with 529 
one organism excluded. Zebrafish (Danio) gene IDs from the resulting deCOGs were collected 530 
from each analysis, and are provided in Additional File 1, part 3. We restricted enrichment 531 
analysis to zebrafish genes that had at least one uncorrected (raw) p-value less than 0.01 from the 532 
original EdgeR analysis (Additional File 1, part 0.2-0.3).  533 
 534 
DAVID enrichment analysis was performed on the server (https://david.ncifcrf.gov). Zebrafish 535 
gene IDs were submitted using the “ENSEMBL_TRANSCRIPT_ID” identifier and a 536 
“Background” list type. STRING enrichment analysis requires a list of protein IDs, so the zebrafish 537 
transcripts were converted into protein identifiers using UniProt’s “Retrieve/ID mapping” function 538 
(https://www.uniprot.org/uploadlists/). The resulting IDs are provided in Additional File 1, part 3. 539 
These IDs were submitted to the STRING server for enrichment analysis (https://string-db.org). 540 
For both analyses, we restricted our study to conserved KEGG pathways. The full results of these 541 
analyses are provided in Additional File 1, part 4. 542 
 543 
Analysis of gene trees. In this paper, we examined the coverage of deCOGs in the KEGG stem 544 
cell pluripotency network (Figure 5). For genes present in all 6 datasets, we went back to the 545 
Orthofinder data to determine how gene families were organized into COGs, and which genes 546 
within those COGs were differentially expressed. Species-tree corrected gene trees were collected 547 
from the Orthofinder output. These trees were manually annotated to include gene names (based 548 
on zebrafish IDs) and whether or not genes were differentially expressed (smallest uncorrected p-549 
value < 0.01 from EdgeR output). Figure S4 shows the gene tree for activin and bmp4 constructed 550 
using this method. The other trees were too large to illustrate as legible figures, but the tree in 551 
Figure S4 and all additional, annotated trees are provided in newick format in Additional File 1, 552 
part 7. 553 
 554 
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SUPPLEMENTAL TABLES 676 
 677 
Table S1. Basic statistics of OrthoFinder analysis 678 
 679 

Number of genes 538,991 

Number of genes in orthogroups 266,324 

Number of unassigned genes 272,667 

Percentage of genes in orthogroups 49.4 

Number of orthogroups 16,116 

Number of species-specific orthogroups 1,447 

Number of genes in species-specific orthogroups 18,356 

Percentage of genes in species-specific orthogroups 3.4 

Mean orthogroup size 16.5 

Median orthogroup size 8 

Number of orthogroups with all species present 2,287 

Number of single-copy orthogroups 15 
 680 
 681 
 682 
 683 
 684 
 685 
 686 
 687 
 688 
 689 
 690 
 691 
 692 
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Table S2: Paralogous zebrafish genes included in each conserved deCOG from Figure 5 of 702 
the main text.  703 
 704 
Protein 
Name KEGG ID COG ID 

All Proteins in COG (zebrafish UNIPROT Gene 
IDs) 

Activin HSA:3624 OG0000461 

admp; bmp15; bmp16; bmp2a; bmp2b; bmp4; 
bmp5; bmp6; bmp7a; bmp7b; bmp8a; dvr1; 
gdf10b; gdf2; gdf3; gdf5; gdf6a; gdf6b; gdf7; gdf9; 
inhbaa; LOC100329520; LOC100332902; ndr2 

BMP4 HSA:652 OG0000461 

admp; bmp15; bmp16; bmp2a; bmp2b; bmp4; 
bmp5; bmp6; bmp7a; bmp7b; bmp8a; dvr1; 
gdf10b; gdf2; gdf3; gdf5; gdf6a; gdf6b; gdf7; gdf9; 
inhbaa; LOC100329520; LOC100332902; ndr2 

WNT HSA:747- OG0000138 

wnt2; wnt2ba; wnt2bb; wnt3; wnt4a; wnt4b; 
wnt5b; wnt6a; wnt6b; wnt7aa; wnt7ab; wnt7ba; 
wnt7bb; wnt7bb; wnt8b; wnt9a; wnt9b; wnt10a; 
wnt10b; wnt11; wnt11r; wnt16 

Frizzled HSA:11211 OG0000440 
fzd10; fzd2; fzd3a; fzd3b; fzd4; fzd5; fzd6; fzd7a; 
fzd7b; fzd8a; fzd8b; fzd9a; fzd9b 

FGFR HSA:2260 OG0000016 

ddr2a; ddr2b; ddr2l; fes; fgfr1a; fgfr1b; fgfr1bl; 
fgfr2; fgfr3; igf1ra; igf1rb; insra; insrb; musk; 
ntrk2b; ntrk3a; ntrk3b; ptk2aa; ptk2ab; ptk2ba; 
ptk2bb; ret; si.ch73-383l1.1; si.ch73-40a2.1; 
styk1b 

IGF-1R HSA:3480 OG0000016 

ddr2a; ddr2b; ddr2l; fes; fgfr1a; fgfr1b; fgfr1bl; 
fgfr2; fgfr3; igf1ra; igf1rb; insra; insrb; musk; 
ntrk2b; ntrk3a; ntrk3b; ptk2aa; ptk2ab; ptk2ba; 
ptk2bb; ret; si.ch73-383l1.1; si.ch73-40a2.1; 
styk1b 

PIK3 HSA:5290 OG0000214 
pik3c2a; pik3c2b; pik3c2g; pik3ca; pik3cb; pik3cd; 
si.rp71-17i16.5; zgc.158659 

TBX3 HSA:6926 OG0000284 

eomesb; tbr1b; tbx1; tbx15; tbx16; tbx16l; tbx18; 
tbx19; tbx20; tbx22; tbx2a; tbx2b; tbx3a; tbx3b; 
tbx4; tbx5a; tbx5b; tbx6; tbxta; tbxtb 

SOX2 HSA:6657 OG0002543 sox14; sox19a; sox19b; sox1a; sox1b; sox2; sox3 
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Table S3: Alignment Statistics for RNA-Seq Data 715 
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Taxon Dataset 
Reads 
Processed 

Aligned 
Reads 

Unaligned 
Reads 

Suppressed  
Reads 

Axolotl 100309-lane1 16974066 77.02% 18.69% 4.29% 

 100309-lane2 18631612 82.92% 13.88% 3.21% 

 100309-lane3 18865464 87.02% 11.31% 1.68% 

 100309-lane4 19355559 83.64% 13.31% 3.05% 

 100309-lane5 19275194 85.61% 12.68% 1.71% 

 100309-lane6 19450380 85.05% 13.48% 1.47% 

 100309-lane7 18682600 78.67% 17.89% 3.44% 

Planarian ERR032066_1 24250265 43.21% 56.79% 0% 

 ERR032066_2 10333407 42.61% 57.39% 0% 

 ERR032067_1 24874216 44.63% 55.37% 0% 

 ERR032067_2 24874216 44.00% 56.00% 0% 

 ERR032068_1 20600012 44.04% 55.96% 0% 

 ERR032068_2 20600012 43.08% 56.92% 0% 

 ERR032069_1 24298493 29.36% 70.64% 0% 

 ERR032069_2 24298493 28.95% 71.05% 0% 

 ERR032070_1 28837238 28.66% 71.33% 0% 

 ERR032070_2 28837238 27.91% 72.09% 0% 

 ERR032071_1 23720712 45.89% 54.11% 0% 

 ERR032071_2 23720712 45.15% 54.85% 0% 

Sea anemone SRR3938202 34014046 65.25% 34.75% 0% 

 SRR3938203 28964964 63.49% 36.51% 0% 

 SRR3938286 21414087 63.05% 36.95% 0% 

 SRR3938287 13136751 63.29% 36.71% 0% 

 SRR3938288 40894772 59.95% 40.05% 0% 

 SRR3938289 32209584 62.39% 37.61% 0% 
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 SRR3938290 11753545 59.86% 40.14% 0% 

 SRR3938291 19568370 64.77% 35.23% 0% 

 SRR3938293 15266653 64.28% 35.72% 0% 

 SRR3938294 17017293 61.84% 38.16% 0% 

 SRR3938297 26530337 64.06% 35.94% 0% 

 SRR3938298 23053972 63.36% 36.64% 0% 

 SRR3938299 21432871 60.17% 39.83% 0% 

 SRR3938300 43291231 59.66% 40.34% 0% 

 SRR3938303 16006522 61.86% 38.13% 0% 

 SRR3938304 11318128 58.99% 41.00% 0% 

Sea cucumber SRR771602 4871221 55.45% 44.55% 0.01% 

 SRR771606 5032070 52.56% 47.43% 0.01% 

 SRR771605 4729107 51.30% 48.69% 0.01% 

 SRR771604 4879963 56.53% 43.47% 0.01% 

 SRR771603 4716678 54.72% 45.27% 0.01% 

Sea sponge SRR5863988  9003557 74.68% 25.12% 0.20% 

 SRR5863987 9351918 49.98% 49.63% 0.39% 

 SRR5234759 15749742 52.35% 47.34% 0.31% 

Zebrafish SRR1205171 37130242 61.26% 38.49% 0% 

 SRR1205170 32103088 63.52% 36.18% 0.30% 

 SRR1205169 38057998 63.25% 36.45% 0.30% 

 SRR1205165 28133154 60.32% 39.40% 0.28% 

 SRR1205164 28183558 64.43% 35.28% 0.29% 

 SRR1205163 27285102 57.78% 41.97% 0.25% 

 SRR1205162 40651710 64.07% 35.66% 0.27% 

 SRR1205161 31246933 59.53% 40.22% 0.25% 

 SRR1205160 33781001 63.24% 36.50% 0.26% 

 SRR1205159 32238384 60.30% 39.47% 0.23% 
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 SRR1205157 37460444 67.02% 32.72% 0.26% 

 SRR1205158 33073599 53.06% 46.74% 0.20% 

 SRR1205157 37460444 67.02% 32.72% 0.26% 
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