1	
2	
3	Title: The natural sequence of events in larval settlement and metamorphosis of Hydroides
4	elegans (Polychaeta; Serpulidae)
5	
6	Short title: Sequencing events in larval settlement of Hydroides elegans
7	
8	Michael G. Hadfield* [¶] , Marnie L. Freckelton [¶] & Brian T. Nedved [¶]
9	
10	Kewalo Marine Laboratory, University of Hawaiʻi at Mānoa, Honolulu, Hawaiʻi, U.S.A
11	
12	
13	
14	*Corresponding author
15	E-mail: <u>hadfield@hawaii.edu</u>
16	
17	[¶] All authors contributed equally to this work.

2

18 Abstract

19 The broadly distributed serpulid worm Hydroides elegans has become a model organism for studies of marine biofouling, development and the processes of larval settlement and 20 21 metamorphosis induced by surface microbial films. Contrasting descriptions of the initial events 22 of these recruitment processes, whether settlement is induced by (1) natural multi-species biofilms, (2) biofilms composed of single bacterial species known to induce settlement, or (3) a 23 bacterial extract stimulated the research described here. We found that settlement induced by 24 25 natural biofilms or biofilms formed by the bacterium *Pseudoalteromonas luteoviolacea* is invariably initiated by attachment and secretion of an adherent and larva-enveloping primary 26 tube, followed by loss of motile cilia and ciliated cells and morphogenesis. The bacterial extract 27 containing complex tailocin arrays derived from an assemblage of phage genes incorporated 28 into the bacterial genome appears to induce settlement events by destruction of larval cilia and 29 30 ciliated cells, followed by attachment and primary-tube formation. Similar destruction occurred when precompetent larvae and larvae of a nudibranch gastropod were exposed to the extract, 31 32 neither of which metamorphosed. We further argue that larvae that lose their cilia before attachment would be swept away from the sites that stimulated settlement by the turbulent 33 flow characteristic of most marine habitats. 34

35 Introduction

The life cycle of the warm-water, marine, biofouling, serpulid polychaete *Hydroides elegans* (Haswell, 1883) has been described in many publications [e.g., 1,2] (Fig. 1). Sessile adult worms live in bays and estuaries attached to rocks, mangrove roots and, problematically, the hulls of ships and the pilings where they dock. Separate sexes spawn gametes into the surrounding

40	waters where fertilization and larval development take place. At water temperatures about
41	25°C, larvae begin feeding 12 h after fertilization and are metamorphically competent on day 5
42	[2]. Settlement and metamorphosis readily progress when, and only when, competent larvae
43	physically contact a microbially biofilmed marine surface [3–5].
44	
45	Fig. 1. The life cycle of <i>H. elegans</i> . (A) Mature population of <i>H. elegans</i> . (B) Close up of an adult
46	H. elegans. (C) competent larva of H. elegans. (D) biofilm bacterial surface required for larval
47	metamorphosis. (E) early juvenile of <i>H. elegans</i> . Scale bars: A, 5cm; B, 1 cm; C, 50 μ m; D, 5 μ m;
48	E, 50 μm.
49	
50	In the past 25 years, much of the settlement and metamorphosis processes of <i>H. elegans</i> has
51	been substantiated in both our and other laboratories. It is known, for example, that
52	settlement of competent larvae increases with increasing bacterial density on a surface, and
53	that, in a natural biofilm, settlement is cued by many different, but not all, bacterial species
54	[3,4,6,7]. Further, larvae must physically contact a biofilmed surface to perceive the bacterial
55	cue to settle. Larvae exhibit no settlement behavior when separated from a biofilmed surface
56	by as few as 20 μm ; i.e., there is no soluble settlement cue from bacteria in a natural biofilm
57	[8].
58	
59	Of the marine bacteria that induce larvae of <i>H. elegans</i> to settle, one that has been intensely
60	studied is the globally distributed, gram-negative gammaproteobacterium Pseudoalteromonas
61	luteoviolacea. This bacterium has been found to synthesize structures, now known as tailocins,

4

62	from a gene set gained from a T4-type bacteriophage [9,10]. These complex arrays of tailocins
63	produced by inductive strains of <i>P. luteoviolacea</i> were originally dubbed metamorphosis-
64	associated contractile systems, MACs [10]. However, neither arrays of tailocins nor their
65	individual elements are found in some other inductive biofilm bacterial species, suggesting that
66	other structures must be involved [11].
67	
68	In a more recent paper by Shikuma et al. [11] focused on the early transcriptional events in
69	larvae of <i>H</i> . elegans that have been cued to settle and metamorphosis in response to the
70	tailocin arrays isolated in a crude preparation from <i>P. luteoviolacea</i> . The authors reported that
71	the settlement process begins with loss of the prototrochal cilia that both propel and feed the
72	larva [11]. This was in contrast to the report of Carpizo-Ituarte and Hadfield [1], who noted that
73	settling larvae of <i>H</i> . elegans first tether themselves to a selected surface via a mucous thread,
74	next secrete an encompassing primary tube attached to the surface, and then, enclosed in the
75	primary tube, lose their motile cilia. Furthermore, larvae of <i>H. elegans</i> exist in a world of
76	turbulent flow, even in bays and harbors. At our field site in Pearl Harbor, Hawai'i, a habitat for
77	<i>H. elegans,</i> we measured flow rates of <6 cm s ⁻¹ and turbulence from wind chop and ship wakes
78	[12]. This strongly suggests that 'anchor first, metamorphose second,' must be the rule for a
79	settling larva to avoid being swept away after losing its motile cilia during metamorphosis. We

80 have thus re-visited the question and compared the order of metamorphic events when

competent larvae of *H. elegans* contact a naturally occurring biofilmed surface, a single-species
biofilm of the inductive bacterium *P. luteoviolacea*, or are induced to settle by the semi-purified

tailocin arrays from *P. luteoviolacea* described and labeled "MACs" by Shikuma et al. [10]. We

visually followed and video-recorded the settlement and developmental events for 30 – 60
minutes and recorded the timing of each.

86

87	Because the observations made during the procedures described above suggested that the
88	action of tailocin arrays was primarily destruction of cilia and ciliated cells, we performed two
89	additional experiments. First, we exposed pre-competent larvae of <i>H. elegans</i> that is, larvae
90	not yet developmentally capable of undergoing metamorphosis to the tailocin-array
91	preparation to determine if these larvae might suffer destruction of their prototrochal cells or
92	cilia. Secondly, we exposed competent veliger larvae of the coral-eating nudibranch gastropod
93	Phestilla sibogae, who metamorphose only in response to a soluble cue from their prey coral,
94	to the tailocin-array preparation to determine if the prominent ciliated cells of the velum,
95	responsible for swimming and feeding, would be affected.
96	
96 97	Materials and Methods
	<u>Materials and Methods</u> <i>Culture of H. elegans.</i> Adult worms were collected at our field site in Pearl Harbor, Hawai'i and
97	
97 98	Culture of H. elegans. Adult worms were collected at our field site in Pearl Harbor, Hawai'i and
97 98 99	<i>Culture of H. elegans.</i> Adult worms were collected at our field site in Pearl Harbor, Hawai'i and maintained in running seawater at the Kewalo Marine Laboratory, Honolulu, HI (KML). We
97 98 99 100	<i>Culture of H. elegans.</i> Adult worms were collected at our field site in Pearl Harbor, Hawai'i and maintained in running seawater at the Kewalo Marine Laboratory, Honolulu, HI (KML). We spawned adult worms and reared larvae of <i>H. elegans</i> according to the protocols described by
97 98 99 100 101	<i>Culture of H. elegans.</i> Adult worms were collected at our field site in Pearl Harbor, Hawai'i and maintained in running seawater at the Kewalo Marine Laboratory, Honolulu, HI (KML). We spawned adult worms and reared larvae of <i>H. elegans</i> according to the protocols described by Nedved and Hadfield [2]. Metamorphically competent larvae, 5 – 6 days postfertilization, were
97 98 99 100 101 102	<i>Culture of H. elegans.</i> Adult worms were collected at our field site in Pearl Harbor, Hawai'i and maintained in running seawater at the Kewalo Marine Laboratory, Honolulu, HI (KML). We spawned adult worms and reared larvae of <i>H. elegans</i> according to the protocols described by Nedved and Hadfield [2]. Metamorphically competent larvae, 5 – 6 days postfertilization, were induced to settle by three different preparations: (1) a natural biofilm; (2) a monospecific

Experimental preparations. Natural biofilms were accumulated on glass microslides by 106 107 submersion for three weeks or longer in aquaria at the KML supplied with continuously flowing, unfiltered seawater in either an open position exposed to ambient light (WT-BF) or in a black 108 109 container without light (BB-BF). The biofilms formed in the latter lack the heavy coating of 110 diatoms that develop on slides exposed in natural light. These slides were scored with a diamond tipped pen, broken, and a piece of the biofilmed slide (approx. 22 mm X 22 mm) was 111 used as an inductive cue. Monospecific biofilms of P. luteoviolacea H1 were allowed to form on 112 113 pieces of glass microslides by inoculating them with 10⁷ cells ml⁻¹ from an overnight broth 114 culture of *P. luteoviolacea* for 1 h [6]. The crude preparation of tailocin arrays and other cell products from *P. luteoviolacea* was prepared as per Shikuma et al. [10]. A 100-fold dilution in 115 116 0.22 µm double-filtered, autoclaved seawater (DFASW) of this preparation was used as the cue. Treatment of competent larvae of H. elegans. Mono- and multi-species biofilmed slide pieces 117 118 were put onto a complete microscope slide for handling. An aliquot of 0.22 μ m-filtered 119 seawater (FSW) containing competent larvae of *H. elegans* was added to the top of the slide 120 fragment. To administer the tailocin-array preparation, larvae were added to a 35 mm petri dish containing the diluted preparation, and an aliquot of this mixture was added to a clean 121 122 microscope slide for observation.

123

Treatment of pre-competent larvae of H. elegans and larvae of a nudibranch. We exposed 2-day
 old, pre-competent trochophore larvae of H. elegans and veliger larvae of the nudibranch
 gastropod Phestilla sibogae to the tailocin-array preparation and recorded the results as

7

described below. Veliger larvae were obtained from a captive population of *P. sibogae*maintained at KML.

129

130	Video-recording. After adding larvae to each of the above preparations, they were observed
131	under a dissecting microscope to determine if they had begun the slow, circular swimming
132	characteristic of pre-settlement behavior for the Hydroides larvae, or slow swimming while
133	gliding across the surface, foot down, for the <i>Phestilla</i> larvae. When these behaviors were
134	observed, a coverslip with supports at each corner was added to the slide, and it was
135	transferred to the stage of a Zeiss microscope equipped for bright-field, phase-contrast and
136	interference-contrast microscopy. The larvae were then observed, and their behavior video
137	recorded with a camera (Canon Rebel T1i EOS 500D) mounted on the microscope. Additionally,
138	the sequences, timing and durations of their behavioral events were manually recorded. Video
139	recordings were made of larvae from ten different larval cultures over a five-month period.
140	During recording, we particularly focused on the initial events involving larval attachment, cilia
141	loss and primary-tube formation.
142	
143	Event sequence analysis: The settlement and metamorphosis events were analyzed using
144	hierarchical clustering with the TraMineR package in R (version 2.2-0.1) [13, 14]. Event
145	sequences were clustered using the Optimal Matching for the dissimilarity matrix [13–15]. This

146 method focuses on the order of events rather than the time spent in each event. Samples are

147 clustered based on similarity, with differences in the sequences receiving a gap penalty 1 and a

8

single substitution cost of 2. Larval searching behavior, attachment, cilia loss, cell loss and

- 149 primary tube formation were included in the analysis.
- 150
- 151 Results

152	While timing of the onset of events varied from larva to larva, when larvae were exposed to a
153	natural multispecies biofilm the order of events was always the same: (1) the larvae stop
154	swimming by attaching to the substratum with a mucus strand (Fig. 2); (2) the larvae secrete a
155	transparent primary tube which encases the entire larva, but remains open at the anterior end
156	(Figs. 2 and 3a); (3) the larvae shed their prototroch cilia, and their collars deflect anteriorly
157	(Figs. 2 and 3b); (4) the larvae shed their food groove cells and evert the toe-like neuropodia
158	from the posterior edge of their third segment (Figs. 2 and 3c); (5) the larvae begin to remodel
159	the episphere and develop branchial filaments. When larvae were exposed to a biofilm
160	composed only of <i>P. luteoviolacea</i> , this sequence was also largely the same, with all larvae
161	attaching and secreting primary tubes before loss of cilia (Fig. 2) (See Supporting Table ST1 and
162	Supporting Video SV1). In both instances, shed cilia and cells are typically directed to the food
163	groove toward and the mouth and swallowed (see Supporting Video SV1).

164

Fig. 2. Dendrogram of Hierarchical Cluster Analysis using Optimal Matching generated with the
TraMineR package [13]. The height of the vertical lines reflects the level of separation. Below the
dendrogram, the sequence of events for each sample is included. Samples are labelled according to the
settlement inducing treatment they received: Tail Arr, semi-purified preparation of tailocin arrays and
cellular products from *P. luteoviolacea*; PL BF, biofilm of *P. luteoviolacea*; BB BF, natural biofilms
accumulated in the absence of light; WT BF, natural biofilms accumulated in the presence of light.

9

171

172	Fig. 3. Sequence of metamorphic events in competent larvae of <i>H. elegans</i> exposed to a natural biofilm.
173	A) prototroch cilia are still attached when primary tube begins to form.; B) Prototroch cilia shed while
174	larvae is in primary tube; C) Loss of food-groove cells and collar eversion. Scale bar 20 μm . Ptc,
175	Prototroch cells; PT, Primary Tube; PC, shed Prototroch cilia; Col, collar; FGC, food groove cells.
176	
177	When larvae were exposed to the crude extract of tailocin arrays and other cell products from
178	P. luteoviolacea, the sequence of events was highly variable but consisted mostly of the
179	following sequence: (i) stopped swimming while secreting copious mucus which did not act as a
180	tether; (ii) shed their prototroch cilia; (iii) shed their food-groove cells and prototroch cells (Figs
181	2 and 4); and then, (iv) secreted a primary tube (Fig. 2)(Supporting Table ST1; Supporting Video
182	SV2). In all instances of exposure to the bacterial products, cilia loss was observed before
183	primary tube formation (Fig. 4). The entire contour of the larvae body became distorted during
184	response to treatment with the tailocin-array preparation. Because larvae are not enclosed in a
185	primary tube during loss of cilia and cells, these products, normally eaten during
186	metamorphosis, simply float away,
187	
188	Fig. 4. Larva of <i>H. elegans</i> induced to metamorphose by a tailocins-array preparation. (A) loss of

prototroch cilia before attachment and primary-tube formation; (B) loss of food-groove cells
before attachment and primary-tube formation; (C) loss of prototroch cells before attachment
and primary-tube secretion. FGC, food-groove cells; PC, prototroch cilia; Ptc, prototroch cilia.
Scale bars, 50 µm.

1	Λ
т	υ

1	q	2
_	.)	-

194	When pre-competent larvae of <i>H. elegans</i> were exposed to the crude preparation of tailocin
195	arrays, they shed their prototrochal cells and cilia without undergoing any further stages of
196	metamorphosis (Fig. 5) (Supporting Video SV3). And when the veliger larvae of the nudibranch
197	Phestilla sibogae were similarly exposed, they also began to shed their large ciliated velar cells
198	(Fig. 6) (Supporting Video SV4), which are homologues of the prototroch cells of other molluscs
199	and polychaetes.
200	
201	Fig. 5. Pre-competent larvae of <i>H. elegans</i> lose cilia and prototroch cells when exposed to the
202	semi-purified tailocin arrays from <i>P. luteoviolacea</i> . (A) Untreated pre-competent trochophore
203	larva of <i>H. elegans</i> . (B) Treated pre-competent larvae of <i>H. elegans</i> showing loss of prototroch
204	cells and cilia. AT, apical tuft of cilia; PC, prototroch cells detaching from the larva. Scale bar =
205	20 μm.
206	
207	Fig. 6. Larva of <i>P. sibogae</i> lose cilia when exposed to the semi-purified tailocin arrays from <i>P.</i>
208	<i>luteoviolacea</i> . (A) Untreated larva from <i>P. sibogae</i> showing velar cilia; F: foot, V: velum. (B)
209	Contracted larva exposed to tailocin arrays from <i>P. luteoviolacea</i> shed cilia and ciliated cells (C).
210	Scale bar 100 μm.
211	
212	Discussion
213	An initial paper on the larval biology of <i>H. elegans</i> noted its dependence on marine biofilms to
214	initiate settlement and metamorphosis [3]. Subsequently, many papers have appeared on this

215	topic focusing on both the bacterial specificity in settlement and the developmental biology of
216	this widely distributed marine worm. Among the latter, Carpizo-Ituarte and Hadfield [1]
217	characterized the events of settlement and metamorphosis on wild-type biofilms, noting the
218	same sequence found in the current investigation: (1) surface exploration; (2) attachment; (3)
219	primary-tube formation; (4) prototroch loss; and (5) morphogenesis of the anterior region.
220	Investigations by Walters et al. [16] and Koehl and Hadfield [12] focused on details of the
221	hydrodynamic forces in habitats inhabited by <i>H. elegans</i> , which revealed that larvae of this
222	species are always subject to turbulent, laminar flow when attempting to settle. The studies
223	made it clear that forming a strong attachment to a surface before loss of motility is of
224	paramout importance to the recruitment of <i>H</i> . elegans. Flow rates of 2 – 6 cm/sec, measured
225	along surfaces Pearl Harbor, HI [12], would carry a larva a meter or more from a selected
226	settlement site within a second, had it not firmly attached at that site. Because of this, we
227	reason that secretion of the primary tube <i>before</i> loss of the larval swimming organ, the
228	prototroch, is crucial to successful recruitment.
229	
230	The difference in the order of metamorphic events induced by the crude preparation of tailocin
231	arrays may also be simply a result of the experimental setup. The tailocin arrays of P.
232	luteoviolacea are exceptionally delicate, and their activity can be destroyed by gentle filtration
233	[10]. As a consequence, the current method of isolation uses low speed centrifugation to
234	remove cells and produces a concentrated but complex solution which also contains outer
235	membrane vesicles and other cellular materials [10, Fig. 2D]. It is also highly likely that the
236	preparation contains secondary metabolites such as violacein and other lightweight cellular

237	debris. This experimental difficulty necessitates that the larvae are exposed to the tailocin
238	arrays in the form of a bath to demonstrate the tailocin bioactivity. Since it has been clearly
239	demonstrated with naturally occurring biofilms that larvae of <i>H. elegans</i> must physically touch
240	the biofilms to detect and respond to the metamorphic cue, the use of a bath exposure,
241	although a helpful screening tool, must be recognized as not ecologically relevant. This situation
242	is far from unusual in the chemical ecology field, but it does serve as a timely reminder that
243	experimental results do not always reflect the ecological context of the setting where the
244	phenomenon under study would naturally occur.
245	
246	In the competent larva of <i>H</i> . elegans, there are a number of transcripts that are regulated
247	during stimulation of metamorphosis by the tailocin arrays from <i>P. luteoviolacea</i> [11]. The
248	p38/JNK MAPK signaling pathways that are associated with metamorphosis in the larva appear
249	to be implicated in the morphogenic events associated with metamorphosis and not cilia loss
250	induced by tailocins [11]. However, in addition to their potential roles in cell adhesion and
251	innate immunity, a subset of these transcripts is also associated with other cellular processes
252	including defense against pathogens [17,18,19] and inflammatory responses [20]. The up and
253	downregulation of these transcripts may also be a response to the cellular insult to the ciliated
254	cells of the trochal bands by the tailocin preparations. The revelation that the order of
255	morphogenetic events during settlement and metamorphosis of larval <i>H. elegans</i> is badly
256	disturbed when induced by the crude tailocin extract confounds our ability to ascertain the true
257	involvement of the identified transcripts in naturally induced metamorphosis of larvae of <i>H</i> .
258	elegans.

260	The a	dditional observations reported here, that the crude preparation of tailocin arrays is	
261	destr	uctive to larval ciliated cells in pre-competent larvae of <i>H. elegans</i> and unrelated larvae of	
262	a nuc	libranch strongly, suggest that the complexes have a natural function other than inducing	
263	settle	ement of specific polychaete larvae. Perhaps their evolutionary value lies in destroying	
264	ciliate	ed predators when cells of <i>P. luteoviolacea</i> are resident in biofilms. Freckelton et al.	
265	repoi	rted settlement induction by other bacterial species that lack the genes for tailocin arrays	
266	[20] a	and that lipopolysaccharide isolated from inductive Cellulophaga lytica, which does not	
267	make	e tailocins, induces larvae of <i>H. elegans</i> to settle [21]. There is still much to be learned	
268	abou	t the induction of settlement in <i>H. elegans</i> by surface films made by any single bacterial	
269	speci	es, and especially by Pseudoalteromonas luteoviolacea.	
270			
271	Acknowledgments:		
272	The a	outhors gratefully acknowledge the excellent laboratory assistance of Ms. Amy Knowles.	
273	<u>References:</u>		
274	1.	Carpizo-Ituarte E, Hadfield MG. Stimulation of metamorphosis in the polychaete Hydroides	
275		elegans Haswell (Serpulidae). Biol Bull. 1998;194: 14–24.	
276	2.	Nedved BT, Hadfield MG. Hydroides elegans (Annelida: Polychaeta): A Model for Biofouling	
277		Research. Marine and Industrial Biofouling. 2008. pp. 203–217. doi:10.1007/7142	
278	3.	Hadfield MG, Unabia CC, Smith CM, Michael TM. Settlement preferences of the ubiquitous fouler	
279		Hydroides elegans. Recent developments in biofouling control. 1994. pp. 65–74.	
280	4.	Unabia CRC, Hadfield MG. Role of bacteria in larval settlement and metamorphosis of the	
281		polychaete <i>Hydroides elegans</i> . Mar Biol. 1999;133: 55–64. doi:10.1007/s002270050442	

- 282 5. Lau SCK, Qian PY. Larval settlement in the serpulid polychaete *Hydroides elegans* in respouse to
- 283 bacterial films: An investigation of the nature of putative larval settlement cue. Mar Biol.
- 284 2001;138: 321–328. doi:10.1007/s002270000453
- 285 6. Huang S, Hadfield MG. Composition and density of bacterial biofilms determine larval settlement
- of the polychaete *Hydroides elegans*. Mar Ecol Prog Ser. 2003;260: 161–172.
- 287 doi:10.3354/meps260161
- 288 7. Vijayan N, Hadfield MG. The microbial diversity of a marine biofilm that induces larvae of
- 289 *Hydroides elegans* (Polychaeta) to settle and metamorphose. Environ Microbiol. 2020.
- 290 8. Hadfield MG, Nedved BT, Wilbur S, Koehl MAR. Biofilm cue for larval settlement in *Hydroides*
- 291 *elegans* (Polychaeta): is contact necessary? Mar Biol. 2014;161: 2577–2587. doi:10.1007/s00227-
- 292 014-2529-0
- Huang Y, Callahan S, Hadfield MG. Recruitment in the sea: Bacterial genes required for inducing
 larval settlement in a polychaete worm. Sci Rep. 2012;2: 228. doi:10.1038/srep00228
- 295 10. Shikuma NJ, Pilhofer M, Weiss GL, Hadfield MG, Jensen GJ, Newman DK. Marine tubeworm
- 296 metamorphosis induced by arrays of bacterial phage tail-like structures. Science (80-). 2014;343:
- 297 529–533. doi:10.1126/science.1246794
- 298 11. Shikuma NJ, Antoshechkin I, Medeiros JM, Pilhofer M, Newman DK. Stepwise metamorphosis of
- the tubeworm *Hydroides elegans* is mediated by a bacterial inducer and MAPK signaling. Proc
- 300 Natl Acad Sci. 2016;113: 10097–10102. doi:10.1073/pnas.1603142113
- 30112.Koehl MAR, Hadfield MG. Hydrodynamics of Larval Settlement from a Larva's Point of View.
- 302
 Integr Comp Biol. 2010;50: 539–551.
- 303 13. Gabadinho A, Ritschard G, Müller NS, Studer M. Analyzing and Visualizing State Sequences in R
 304 with TraMineR. J Stat Softw. 2011;40: 1–37.
- 305 14. Gabadinho A, Ritschard G, Studer M, Müller NS. Mining Sequence Data in R with the TraMineR

15

306	package: A user's guide. Department of Econometrics and Laboratory of Demography, University
307	of Geneva. 2009.

- 308 15. Studer M, Ritschard G. "What matters in differences between life trajectories: A comparative
- 309 review of sequence dissimilarity measures", J R Stat Soc Ser A. 2016;179: 481–511.
- 310 16. Walters L, Hadfield M, del Carmen K. The importance of larval choice and hydrodynamics in
- 311 creating aggregations of *Hydroides elegans* (Polychaeta: Serpulidae). Invert Biol. 1997;116: 102–
- 312

14.

- 313 17. Donpudsa S, Tassanakajon A, Rimphanitchayakit V. Domain inhibitory and bacteriostatic activities
- 314 of the five-domain Kazal-type serine proteinase inhibitor from black tiger shrimp *Penaeus*
- 315 *monodon*. Dev Comp Immunol. 2009;33: 481–8.
- 18. Ward S, O'Sullivan J, O'Donnell J. von Willebrand factor sialylation—A critical regulator of
- biological function. J Thromb Haemost. 2019;17: 1018–1029.
- 318 doi:https://doi.org/10.1111/jth.14471
- 19. Lenting PJ, Casari C, Christophe OD, Denis CV. von Willebrand factor: the old, the new and the
- 320 unknown. J Thromb Haemost. 2012; 2428–2437. doi:https://doi.org/10.1111/jth.12008
- 321 20. Freckelton ML, Nedved BT, Hadfield MG. Induction of Invertebrate Larval Settlement; Different
- 322 Bacteria, Different Mechanisms? Sci Rep. 2017;7. doi:10.1038/srep42557
- 21. Freckelton ML, Nedved BT, Cai Y-S, Cao S, Turano H, Alegado RA, Hadfield MG. 2020. Bacterial
- 324 lipopolysaccharide induces settlement and metamorphosis in a marine larva. bioRxiv.
- 325 doi.org/10.1101/851519
- 326

16

327 Supporting Information

328

329 ST1 Table 1. Mean time and range, in minutes, to the start of the settlement

and metamorphosis events in *Hydroides elegans*.

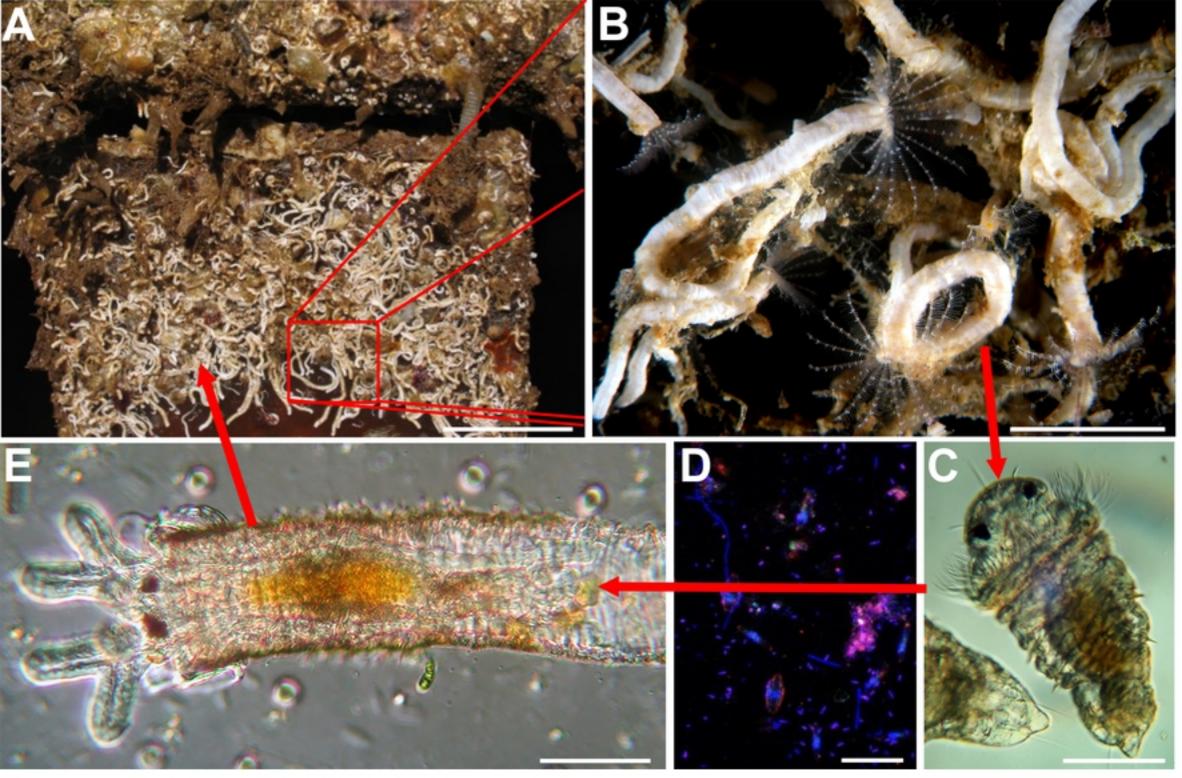
331

332 SV1 Video 1. Sequence of metamorphic morphogenesis initiated by biofilms. A

333 metamorphically competent larva of *Hydroides elegans* has been placed on a biofilm composed

- 334 of the bacterium *Pseudoalteromonas luteoviolacea* and videotaped as the events of
- 335 settlement/attachment and metamorphosis proceed. The observed events are the same when

a larva induced to settle by a complex, wild-type biofilm, but less easy to observe due to a


- 337 dense background of diatoms and cyanobacterial filaments. The primary tube is very
- transparent and can best be seen when it accumulates bacterial cells from the underlying
- biofilm. The larva moves constantly back and forth and rotates while secreting the primary
- tube. Typically, cilia from the prototroch and the cells of the food groove are swept into the
- food groove, then to the mouth and swallowed. FCG, food-groove cells; Muc, mucus; NP,

342 neuropodia; PT, primary tube.

343

SV2 Video 2. Sequence of metamorphic morphogenesis initiated by tailocin arrays. A metamorphically competent larva of *Hydroides elegans* has been exposed to a suspension that includes the crudely separated tailocin arrays produced by the bacterium *Pseudoalteromonas luteoviolacea*, known to induce metamorphosis (see Shikuma et al. 2014). Without first attaching, the larva sheds prototroch cilia, food groove cells and prototroch cells, and subsequently produces a primary tube. Because the larva is not enclosed in a primary tube,

350	shed cilia and cells float away; they are typically eaten by a larva during normal metamorphosis.
351	FGC, food-groove cells; PC, prototroch cilia; PT, primary tube; Ptc, prototroch cells.
352	
353	SV3 Video 3. Tailocin arrays trigger loss of cilia and cells in precompetent larvae. A
354	trochophore larva of Hydroides elegans, developmentally incapable of undergoing
355	metamorphosis, has been exposed to a suspension that includes the crudely separated tailocin
356	arrays produced by the bacterium Pseudoalteromonas luteoviolacea, known to induce
357	metamorphosis in competent larvae. The larva sheds both ciliated cells of its prototroch and
358	from its food groove. None of the larvae treated with the tailocins-array preparation underwent
359	metamorphosis. FGC, food-groove cell.
360	
361	SV4 Video 4. Tailocin arrays trigger loss of cilia and cells in veliger larvae. A metamorphically
362	competent veliger larva of the nudibranch gastropod Phestilla sibogae has been exposed to a
363	suspension that includes the crudely separated tailocin arrays produced by the bacterium
364	Pseudoalteromonas luteoviolacea, known to induce metamorphosis in larvae of Hydroides
365	elegans. The larva retracts and secretes mucus from its foot, then begins to lose ciliated cells
366	from either its foot or velum. Soon after, the larva begins to shed the large multi-ciliated cells of
367	its velum. Retained for an additional 24 hours, none of the treated larvae metamorphosed. VC,
368	velar cell.

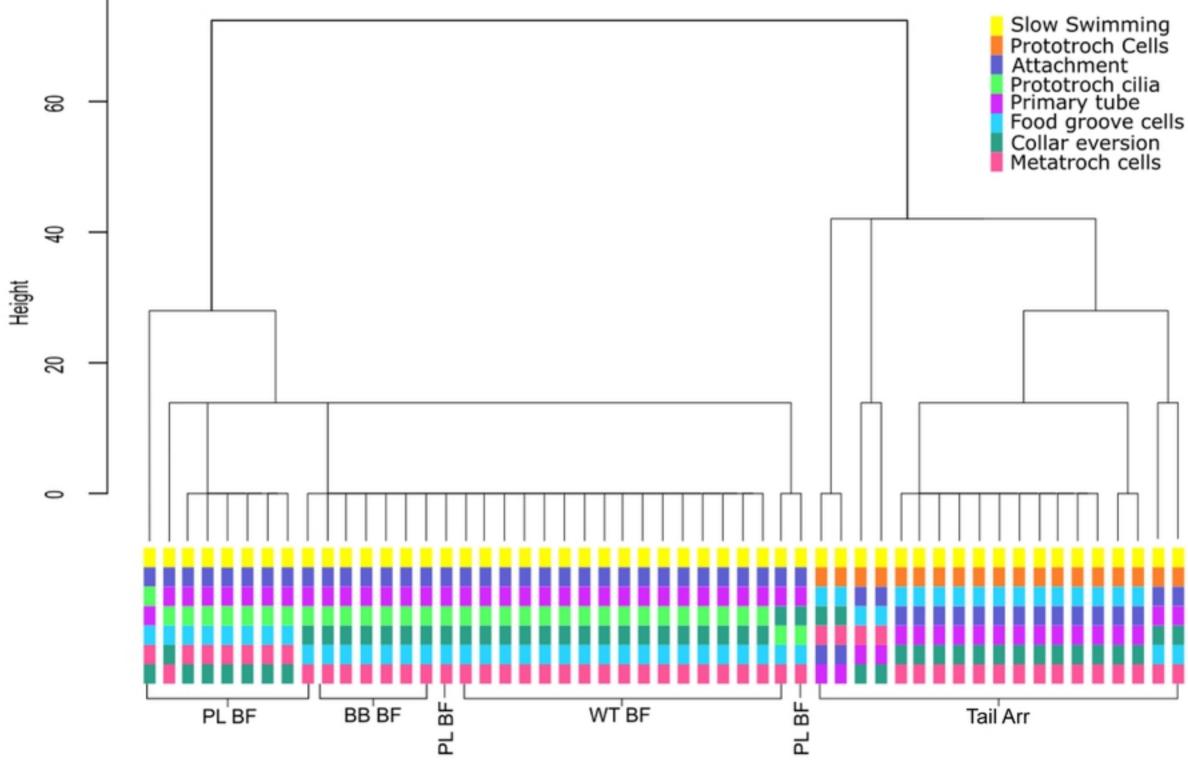
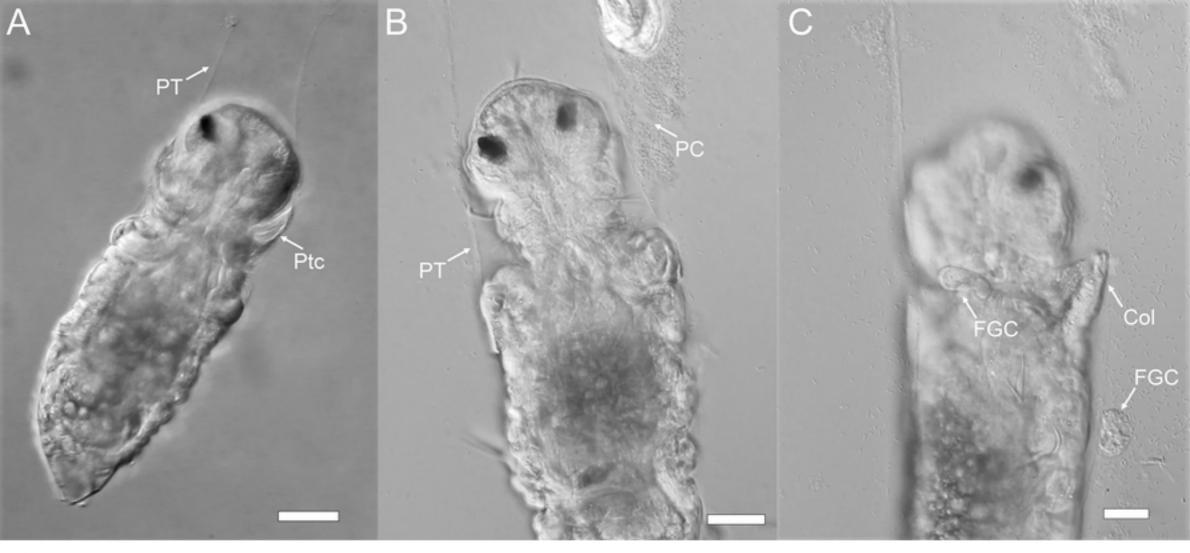



Figure 2

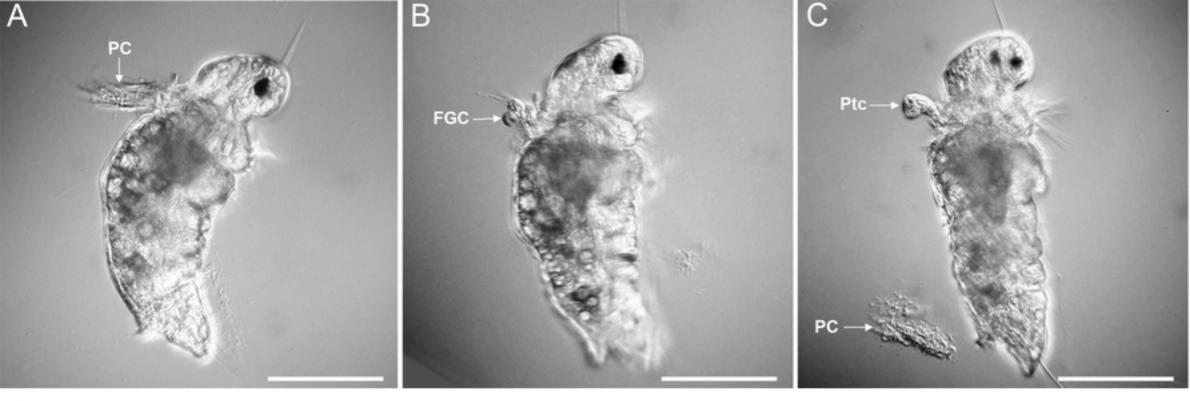
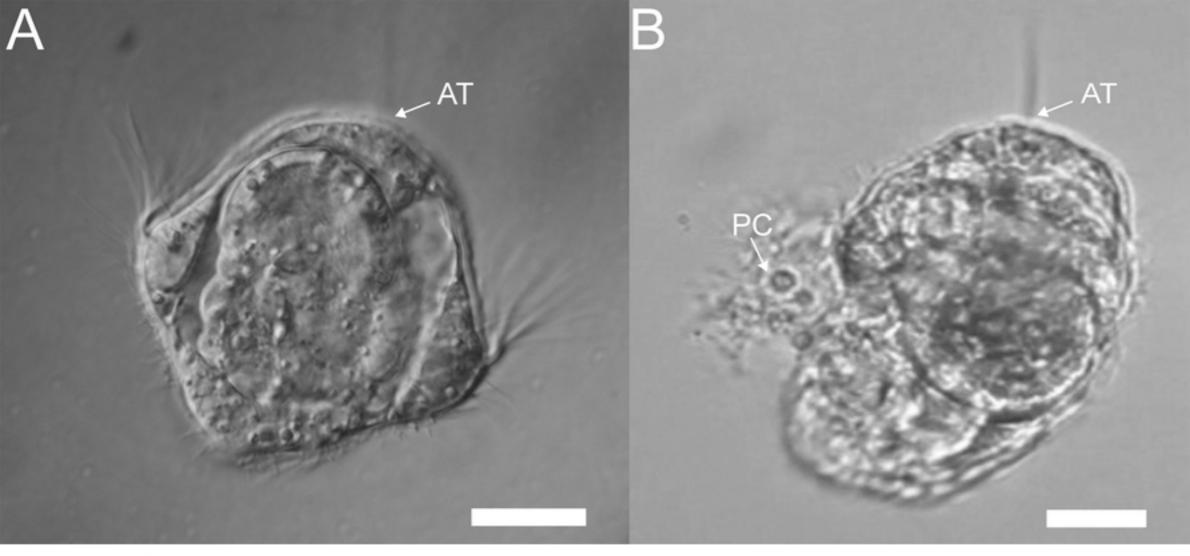
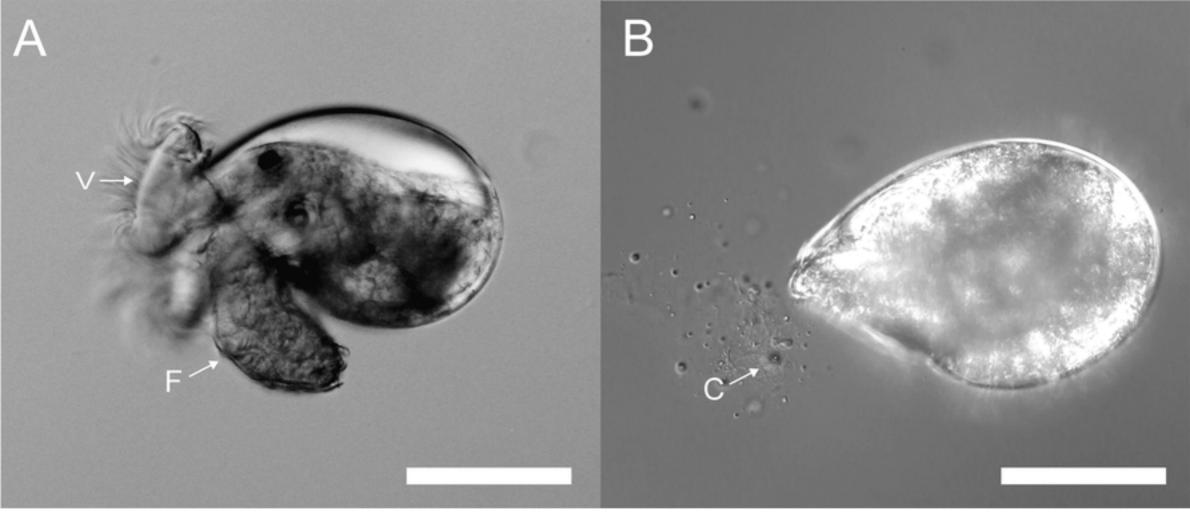




Figure 4

